KR20180016300A - 부분적으로 그물 형상이고 부분적으로 거의 그물 형상인 실리콘 카바이드 cvd - Google Patents

부분적으로 그물 형상이고 부분적으로 거의 그물 형상인 실리콘 카바이드 cvd Download PDF

Info

Publication number
KR20180016300A
KR20180016300A KR1020170098391A KR20170098391A KR20180016300A KR 20180016300 A KR20180016300 A KR 20180016300A KR 1020170098391 A KR1020170098391 A KR 1020170098391A KR 20170098391 A KR20170098391 A KR 20170098391A KR 20180016300 A KR20180016300 A KR 20180016300A
Authority
KR
South Korea
Prior art keywords
substrate
plasma
machining
material layer
shroud
Prior art date
Application number
KR1020170098391A
Other languages
English (en)
Inventor
저스틴 찰스 카니프
Original Assignee
램 리써치 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 램 리써치 코포레이션 filed Critical 램 리써치 코포레이션
Publication of KR20180016300A publication Critical patent/KR20180016300A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Abstract

기판 프로세싱 시스템에서 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법은 제 1 형상을 갖는 희생 기판을 제공하는 단계, 구조체의 목표된 최종 형상에 대응하는 치수들을 갖는 제 2 형상으로 기판을 머시닝하는 단계, 기판 상에 재료 층을 증착하는 단계, 재료 층 내의 기판을 노출하도록 재료 층의 제 1 선택된 부분들을 머시닝하는 단계, 기판의 남아 있는 부분들을 제거하는 단계, 및 프로세싱 동안 플라즈마에 노출되는 구조체의 표면들을 머시닝하지 않고 목표된 최종 형상을 갖는 구조체로 재료 층의 제 2 선택된 부분들을 머시닝하는 단계를 포함한다.

Description

부분적으로 정형 및 부분적으로 준 정형 실리콘 카바이드 CVD{PARTIAL NET SHAPE AND PARTIAL NEAR NET SHAPE SILICON CARBIDE CHEMICAL VAPOR DEPOSITION}
본 개시는 프로세싱 동안 플라즈마에 노출된 기판 프로세싱 시스템들의 컴포넌트들의 제조에 관한 것이다.
본 명세서에 제공된 배경기술 설명은 일반적으로 본 개시의 맥락을 제공하기 위한 것이다. 본 발명자들의 성과로서 본 배경기술 섹션에 기술되는 정도의 성과 및 출원시 종래 기술로서 인정되지 않을 수도 있는 기술의 양태들은 본 개시에 대한 종래 기술로서 명시적으로나 암시적으로 인정되지 않는다.
기판 프로세싱 시스템들은 반도체 웨이퍼들과 같은 기판들을 처리하도록 사용될 수도 있다. 기판 상에서 수행될 수도 있는 예시적인 프로세스들은 이로 제한되지 않지만, CVD (chemical vapor deposition) 프로세스, ALD (atomic layer deposition) 프로세스, 도전체 에칭, 및/또는 다른 에칭, 증착, 또는 세정 프로세스들을 포함한다. 기판은 기판 프로세싱 시스템의 프로세싱 챔버 내에서 기판 지지부, 예컨대 페데스탈, 정전 척 (ESC), 등 상에 배치될 수도 있다. 에칭 동안, 하나 이상의 전구체들을 포함하는 가스 혼합물들이 프로세싱 챔버 내로 도입될 수도 있고, 화학 반응들을 개시하도록 플라즈마가 사용될 수도 있다.
기판 지지부는 웨이퍼를 지지하도록 구성된 세라믹 층을 포함할 수도 있다. 예를 들어, 웨이퍼는 프로세싱 동안 세라믹 층에 클램핑될 수도 있다. 기판 지지부는 기판 지지부의 외측 (예를 들어, 주변부 외부 및/또는 주변부에 인접한) 부분 둘레에 배치된 에지 링을 포함할 수도 있다. 에지 링은 기판 위의 볼륨으로 플라즈마를 한정하고, 플라즈마에 의해 유발된 부식, 등으로부터 기판 지지부를 보호하도록 제공될 수도 있다. 기판 프로세싱 시스템은 기판 위의 볼륨 내에 플라즈마를 더 한정하도록 기판 지지부 및 상부 전극 (예를 들어, 샤워헤드) 각각의 둘레에 배치된 플라즈마 한정 슈라우드를 포함할 수도 있다.
기판 프로세싱 시스템에서 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법은 제 1 형상을 갖는 희생 기판을 제공하는 단계, 구조체의 목표된 최종 형상에 대응하는 치수들을 갖는 제 2 형상으로 기판을 머시닝하는 단계, 기판 상에 재료 층을 증착하는 단계, 재료 층 내의 기판을 노출하도록 재료 층의 제 1 선택된 부분들을 머시닝하는 단계, 기판의 남아 있는 부분들을 제거하는 단계, 및 프로세싱 동안 플라즈마에 노출되는 구조체의 표면들을 머시닝하지 않고 목표된 최종 형상을 갖는 구조체로 재료 층의 제 2 선택된 부분들을 머시닝하는 단계를 포함한다.
본 개시의 추가 적용가능 영역들은 상세한 기술, 청구항들 및 도면들로부터 명백해질 것이다. 상세한 기술 및 구체적인 예들은 단지 예시를 목적으로 의도되고, 본 개시의 범위를 제한하는 것으로 의도되지 않았다.
본 개시는 상세한 기술 및 첨부된 도면들로부터 보다 완전히 이해될 것이다.
도 1은 본 개시에 따른 예시적인 프로세싱 챔버의 기능적 블록도이다.
도 2는 본 개시에 따른 예시적인 플라즈마 한정 슈라우드이다.
도 3a 내지 도 3f는 본 개시에 따른 슈라우드 제조 프로세스의 예시적인 단계들을 예시한다.
도 4a 내지 도 4f는 본 개시에 따른 제 1 에지 링 제조 프로세스의 예시적인 단계들을 예시한다.
도 5a 내지 도 5f는 본 개시에 따른 제 2 에지 링 제조 프로세스의 예시적인 단계들을 예시한다.
도 6은 본 개시의 원리들에 따른 기판 프로세싱 시스템의 구조체를 제조하는 예시적인 방법의 단계들을 예시한다.
도면들에서, 참조 번호들은 유사한 그리고/또는 동일한 엘리먼트들을 식별하도록 재사용될 수도 있다.
관련 출원들에 대한 교차 참조
본 출원은 2016년 8월 4일 출원된 미국 특허 가출원 번호 제 62/370,916 호의 이점을 주장한다. 상기 출원들의 전체 개시들은 본 명세서에 참조로서 인용된다.
기판 프로세싱 시스템의 프로세싱 챔버는 플라즈마 한정 슈라우드를 포함할 수도 있다. 슈라우드는 프로세싱 챔버의 목표된 영역 내에 플라즈마 및 다른 반응물질들을 한정하도록 구성될 수도 있다. 예를 들어, 슈라우드는 기판 위 및 상부 전극 아래 볼륨 내에 플라즈마를 한정하기 위해 기판 지지부 및 상부 전극을 둘러싸도록 포지셔닝될 수도 있다.
일부 예들에서, 플라즈마 한정 슈라우드들은 희생 기판 상에 반도체 재료 (예를 들어, 실리콘 카바이드, 또는 SiC) 를 증착함으로써 제조된다. 예를 들어, SiC가 CVD (chemical vapor deposition) 프로세스를 사용하여 기판 상에 증착된다. 기판은 그래파이트 블록 (graphite block) 또는 슈라우드의 목표된 구성 (즉, 최종 형상) 에 대체로 대응하는 형상을 갖는 실린더를 포함할 수도 있다. 증착된 재료는 기판 상 그리고 기판 둘레에 SiC 층을 형성한다. 이어서 기판 상에 증착된 층이 최종 형상으로 (예를 들어, 커팅, 그라인딩, 등과 같은 다양한 기법들을 사용하여) 머시닝된다. 이 프로세스는 준 정형 (near net shape) 프로세스로 지칭될 수도 있다.
본 발명의 원리들에 따른 방법들 및 시스템들은 부분적으로 정형 (net shape) 또는 부분적으로 준 정형 프로세스를 구현한다. 부분적으로 정형 또는 부분적으로 준 정형 프로세스에서, 증착된 층의 일부 표면들은 최종 형상을 달성하기 위해 머시닝을 필요로 하는 한편 다른 표면들은 머시닝을 필요로 하지 않는다. 예를 들어, 프로세스는 증착된 층의 플라즈마 대면 표면들이 머시닝을 필요로 하지 않는 동안 슈라우드의 보다 적은 프로세스 임계 표면들 (예를 들어, 비플라즈마 대면 표면들) 이 머시닝을 필요로 할 수도 있도록 구성될 수도 있다.
예를 들어, 그래파이트 기판은 SiC 층의 증착을 수행하기 전에 머시닝될 수도 있다 (즉, 사전 머시닝). 보다 구체적으로, 기판은 슈라우드의 목표된 최종 형상 및 치수들에 보다 밀접하게 대응하는 형상 (상당하는 또는 상보적인 형상으로 지칭될 수도 있음) 으로 사전 머시닝된다. 이어서 SiC 층이 사전 머시닝된 기판 상에 증착된다. SiC 층 및 기판의 선택된 부분들이 머시닝되고, 기판은 SiC 층으로부터 제거된다 (예를 들어, 번 아웃된다 (burned out)). 기판의 제거시, SiC 층의 일부 부분들 및 표면들은 슈라우드의 목표된 최종 형상에 이미 대응한다.
이에 따라, 본 개시의 원리들에 따라 슈라우드를 제조하는 것은 머시닝을 감소시키고, 슈라우드의 표면 마감들에 대한 손상을 감소시키고, 머시닝에 의해 유발된 크랙킹으로 인한 제품 손실을 최소화하고, 그리고 전체 수율을 개선한다. 또한, 보다 복잡한 형상들을 갖는 슈라우드들은 대규모 커팅, 그라인딩, 또는 슈라우드를 손상시키는 리스크인 다른 재료 제거 방법들을 필요로 하지 않고 제조될 수 있다.
C-슈라우드에 대해 기술되었지만, 본 개시의 원리들은 또한 이로 제한되지 않지만, 다른 타입들의 플라즈마 한정 슈라우드들, 에지 링들, 상부 전극 또는 샤워헤드와 연관된 구조체들, 한정 링들, 등을 포함하는 기판 프로세싱 시스템 내의 다른 구조체들에 적용될 수도 있다. 이에 따라, 보다 복잡한 형상들을 갖는 에지 링들, 한정 링들, 등은 대규모 커팅, 그라인딩, 또는 각각의 구조체들을 손상시키는 리스크인 다른 재료 제거 방법들을 필요로 하지 않고 제조될 수 있다.
이제 도 1을 참조하면, 예시적인 기판 프로세싱 시스템 (100) 이 도시된다. 단지 예를 들면, 기판 프로세싱 시스템 (100) 은 RF 플라즈마를 사용하여 에칭 및/또는 다른 적합한 기판 프로세싱을 수행하기 위해 사용될 수도 있다. 기판 프로세싱 시스템 (100) 은 기판 프로세싱 시스템 (100) 의 다른 컴포넌트들을 둘러싸고 RF 플라즈마를 담는 프로세싱 챔버 (102) 를 포함한다. 기판 프로세싱 챔버 (102) 는 상부 전극 (104) 및 기판 지지부 (106) 예컨대, 정전 척 (ESC) 을 포함한다. 동작 동안, 기판 (108) 이 기판 지지부 (106) 상에 배치된다. 특정한 기판 프로세싱 시스템 (100) 및 챔버 (102) 가 예로서 도시되지만, 본 개시의 원리들은 다른 타입들의 기판 프로세싱 시스템들 및 챔버들, 예컨대 인시츄로 플라즈마를 생성하는 기판 프로세싱 시스템, (예를 들어, 플라즈마 튜브, 마이크로파 튜브를 사용하여) 리모트 플라즈마 생성 및 전달을 구현하는 기판 프로세싱 시스템, 등에 적용될 수도 있다.
단지 예를 들면, 상부 전극 (104) 은 프로세스 가스들을 도입하고 분배하는 샤워헤드 (109) 와 같은 가스 분배 디바이스를 포함할 수도 있다. 샤워헤드 (109) 는 프로세싱 챔버의 상단 표면에 연결된 일 단부를 포함하는 스템 부분을 포함할 수도 있다. 베이스 부분은 일반적으로 실린더형이고, 프로세싱 챔버의 상단 표면으로부터 이격된 위치에서 스템 부분의 반대편 단부로부터 방사상으로 외측으로 연장한다. 기판 대면 표면 또는 샤워헤드의 베이스 부분의 대면 플레이트는 프로세스 가스 또는 퍼지 가스가 흐르는 복수의 홀들을 포함한다. 대안적으로, 상부 전극 (104) 은 도전 플레이트를 포함할 수도 있고 프로세스 가스들은 다른 방식으로 도입될 수도 있다.
기판 지지부 (106) 는 하부 전극 (107) 으로서 기능하는 도전성 베이스 플레이트 (110) 를 포함한다. 베이스 플레이트 (110) 는 세라믹 층 (112) 을 지지한다. 일부 예들에서, 세라믹 층 (112) 은 히팅 층, 예컨대 세라믹 멀티-존 히팅 플레이트를 포함할 수도 있다. 내열층 (114) (예를 들어, 본딩 층) 이 세라믹 층 (112) 과 베이스 플레이트 (110) 사이에 배치될 수도 있다. 베이스 플레이트 (110) 는 베이스 플레이트 (110) 를 통해 냉각제를 흘리기 위한 하나 이상의 냉각제 채널들 (116) 을 포함할 수도 있다. 기판 지지부 (106) 는 기판 (108) 의 외측 주변부를 둘러싸도록 구성된 에지 링 (118) 을 포함할 수도 있다.
RF 생성 시스템 (120) 은 RF 전압을 생성하고, 상부 전극 (104) 및 하부 전극 (예를 들어, 기판 지지부 (106) 의 베이스 플레이트 (110)) 중 하나로 RF 전압을 출력한다. 상부 전극 (104) 및 베이스 플레이트 (110) 중 다른 하나는 DC 접지될 수도 있고, AC 접지될 수도 있고, 또는 플로팅할 수도 있다. 단지 예를 들면, RF 생성 시스템 (120) 은 매칭 및 분배 네트워크 (124) 에 의해 상부 전극 (104) 또는 베이스플레이트 (110) 로 피딩되는 RF 전압을 생성하는 RF 전압 생성기 (122) 를 포함할 수도 있다. 다른 예들에서, 플라즈마는 유도성으로 생성될 수도 있고 또는 리모트로 생성될 수도 있다. 예시를 목적으로 도시되었지만, RF 생성 시스템 (120) 은 CCP (capacitively coupled plasma) 시스템에 대응하고, 본 개시의 원리들은 또한 다른 적합한 시스템들, 예컨대 단지 예를 들면, TCP (transformer coupled plasma) 시스템들, CCP 캐소드 시스템들, 리모트 마이크로파 플라즈마 생성 및 전달 시스템들, 등에서 구현될 수도 있다.
가스 전달 시스템 (130) 은 하나 이상의 가스 소스들 (132-1, 132-2, …, 및 132-N (집합적으로 가스 소스들 (132)) 을 포함하고, N은 0보다 큰 정수이다. 가스 소스들 (132) 은 하나 이상의 전구체들 및 이들의 혼합물들을 공급한다. 가스 소스들은 또한 퍼지 가스를 공급할 수도 있다. 기화된 전구체가 또한 사용될 수도 있다. 가스 소스들 (132) 은 밸브들 (134-1, 134-2, …, 및 134-N (집합적으로 밸브들 (134)) 및 질량 유량 제어기들 (mass flow controllers) (136-1, 136-2, …, 및 136-N (집합적으로 질량 유량 제어기들 (136)) 에 의해 매니폴드 (140) 에 연결된다. 매니폴드 (140) 의 출력은 프로세싱 챔버 (102) 로 피딩된다. 단지 예를 들면, 매니폴드 (140) 의 출력은 샤워헤드 (109) 로 피딩된다.
온도 제어기 (142) 는 복수의 히팅 엘리먼트들, 예컨대 세라믹 층 (112) 에 배치된 TCE들 (thermal control elements) (144) 에 연결될 수도 있다. 예를 들어, 히팅 엘리먼트들 (144) 은 이로 제한되는 것은 아니지만, 멀티-존 히팅 플레이트의 각각의 존들에 대응하는 매크로 히팅 엘리먼트들 및/또는 멀티-존 히팅 플레이트의 멀티-존들에 걸쳐 배치된 마이크로 히팅 엘리먼트들의 어레이를 포함할 수도 있다. 온도 제어기 (142) 는 기판 지지부 (106) 및 기판 (108) 의 온도를 제어하기 위해 복수의 히팅 엘리먼트들 (144) 을 제어하도록 사용될 수도 있다. 본 개시의 원리들에 따른 히팅 엘리먼트들 (144) 각각은 이하에 보다 상세히 기술될 바와 같이, 포지티브 TCR을 갖는 제 1 재료 및 네거티브 TCR을 갖는 제 2 재료를 포함한다.
온도 제어기 (142) 는 채널들 (116) 을 통한 냉각제 플로우를 제어하도록 냉각제 어셈블리 (146) 와 연통할 수도 있다. 예를 들어, 냉각제 어셈블리 (146) 는 냉각제 펌프 및 저장부를 포함할 수도 있다. 온도 제어기 (142) 는 기판 지지부 (106) 를 냉각하도록 채널들 (116) 을 통해 냉각제를 선택적으로 흘리도록 냉각제 어셈블리 (146) 를 동작시킨다.
밸브 (150) 및 펌프 (152) 는 프로세싱 챔버 (102) 로부터 반응물질들을 배출하도록 사용될 수도 있다. 시스템 제어기 (160) 는 기판 프로세싱 시스템 (100) 의 컴포넌트들을 제어하도록 사용될 수도 있다. 로봇 (170) 은 기판 지지부 (106) 상으로 기판들을 전달하고, 그리고 기판 지지부 (106) 로부터 기판들을 제거하도록 사용될 수도 있다. 예를 들어, 로봇 (170) 은 기판 지지부 (106) 와 로드 록 (172) 사이에서 기판들을 이송할 수도 있다. 별도의 제어기들로서 도시되지만, 온도 제어기 (142) 는 시스템 제어기 (160) 내에서 구현될 수도 있다. 일부 예들에서, 보호 시일 (176) 이 세라믹 층 (112) 과 베이스 플레이트 (110) 사이의 본딩 층 (114) 의 주변부 둘레에 제공될 수도 있다.
프로세싱 챔버 (102) 는 C-슈라우드 (180) 와 같은 플라즈마 한정 슈라우드를 포함할 수도 있다. C-슈라우드 (180) 는 플라즈마 영역 (182) 내에 플라즈마를 한정하도록 상부 전극 (104) 및 기판 지지부 (106) 둘레에 배치된다. 일부 예들에서, C-슈라우드 (180) 는 반도체 재료, 예컨대 실리콘 카바이드 (SiC) 를 포함한다. C-슈라우드 (180) 는 가스들로 하여금 플라즈마 챔버 (106) 로부터 밸브 (150) 및 펌프 (152) 를 통해 벤팅되게 하기 위해 플라즈마 영역 (182) 으로부터 흐르게 하도록 구성된 하나 이상의 슬롯들 (184) 을 포함할 수도 있다. C-슈라우드 (180) 는 이하에 보다 상세히 기술된 바와 같이, 본 개시의 원리들에 따라 제조될 수도 있다.
이제 도 2를 참조하면, 예시적인 플라즈마 한정 슈라우드 (예를 들어, C-슈라우드) (200) 가 단면으로 도시된다. C-슈라우드 (200) 는 내측, 플라즈마 대면 표면들 (204) 및 외측, 비플라즈마 대면 표면들 (208) 을 포함한다. C-슈라우드 (200) 는 가스들로 하여금 C-슈라우드 (200) 내의 플라즈마 영역 (216) 으로부터 벤팅되게 하는 하나 이상의 슬롯들 (212) 을 포함할 수도 있다.
이제 도 3a 내지 도 3f를 참조하면, 본 개시의 원리들에 따른 예시적인 제조 프로세스가 도시된다. 제조 프로세스가 C-슈라우드에 대해 기술되지만, 제조 프로세스는 또한 이로 제한되는 것은 아니지만, 에지 링을 포함하는 기판 프로세싱 시스템의 다른 구조체들에 대해 수행될 수도 있다. 제조 프로세스는 부분적으로 정형 또는 부분적으로 준 정형 프로세스로서 지칭될 수도 있다. 도 3a는 그래파이트 블록 (300) 와 같은 기판을 도시한다. 도 3b는 C-슈라우드의 목표된 최종 형상의 상당하는 또는 상보적인 형상에 대응할 수도 있는, 예시적인 형상 (304) 으로 머시닝된 블록 (300) 을 도시한다. 예를 들어, 블록 (300) 을 머시닝하는 것은 형상 (304) 을 달성하도록 (예를 들어, 그라인딩, 커팅, 등을 통해) 블록 (300) 의 부분들을 제거하는 것을 포함한다. 형상 (304) 은 최종 형상에서 슬롯의 위치에 대응하는 돌출부 또는 핀 (fin) (308) 을 포함할 수도 있다. 단일 돌출부 (308) 만이 도시되지만, 다른 예들은 C-슈라우드 내에 형성된 복수의 슬롯들에 대응하는 2 이상의 동심 돌출부들을 포함할 수도 있다.
도 3c에 도시된 바와 같이, 블록 (300) 상에 SiC 층 (312) 을 형성하도록 반도체 재료, 예컨대 실리콘, SiC, 또는 또 다른 실리콘 함유 재료가 (예를 들어, CVD 프로세스를 사용하여) 증착된다. 단지 예를 들면, SiC 층 (312) 은 목표된 최종 형상의 임의의 부분의 최대 두께 (예를 들어, 0.365", 또는 9.271 ㎜) 에 대응하는 두께로 증착된다. 도 3d는 SiC 층 (312) 및 블록 (300) 의 부분들이 (예를 들어, 그라인딩을 통해) 제거된 후 SiC 층 (312) 및 블록 (300) 을 도시한다. 예를 들어, 돌출부 (308), 내경 (316), 및 블록 (300) 의 상단부 (320) 의 부분들 및 SiC 층 (312) 의 대응하는 부분들이 제거된다.
도 3d에 도시된 바와 같이 SiC 층 (312) 의 부분들을 제거하는 것은 그래파이트 블록 (300) 의 남아 있는 부분들로 하여금 다양한 프로세스 가스들에 노출되게 한다. 일 예에서, 도 3e는 그래파이트 블록 (300) 의 남아 있는 부분들이 제거된 후 SiC 층 (312) 을 도시한다. 예를 들어, 블록 (300) 의 남아 있는 부분들은 버닝 또는 또 다른 적합한 프로세스를 통해 제거될 수도 있다. SiC 층 (312) 은 임의의 부가적인 머시닝 전에 SiC 층 (312) 의 강도를 개선하도록 블록 (300) 의 남아 있는 부분들을 제거하는 것에 후속하여 어닐링될 수도 있다.
도 3f는 최종 목표된 형상을 갖는 C-슈라우드 (324) 를 형성하도록 추가 머시닝, 그라인딩, 등 후의 SiC 층 (312) 을 도시한다. 기술된 바와 같이, C-슈라우드 (324) 는 내측, 플라즈마 대면 표면들 (328) 상에서 어떠한 머시닝도 수행하지 않고 형성된다. 부가적인 프로세싱, 예컨대 산화 및 세정이 기판 프로세싱 챔버 내에 C-슈라우드 (324) 를 설치하기 전에 C-슈라우드 (324) 상에서 수행될 수도 있다.
이제 도 4a 내지 도 4f를 참조하면, 본 개시의 원리들에 따른 에지 링을 위한 예시적인 제조 프로세스가 도시된다. 도 4a는 그래파이트 블록 (400) 과 같은 기판을 도시한다. 도 4b는 2 개의 에지 링들의 목표된 최종 형상의 상당하는 또는 상보적인 형상에 대응할 수도 있는 예시적인 형상 (404) 으로 머시닝된 블록 (400) 을 도시한다. 도 4c에 도시된 바와 같이, 블록 (400) 상에 SiC 층 (412) 을 형성하도록 반도체 재료, 예컨대 실리콘, SiC, 또는 또 다른 실리콘 함유 재료가 (예를 들어, CVD 프로세스를 사용하여) 증착된다. 도 4d는 SiC 층 (412) 및 블록 (400) 의 부분들이 (예를 들어, 그라인딩을 통해) 제거된 후 SiC 층 (412) 및 블록 (400) 을 도시한다. 도 4e는 그래파이트 블록 (400) 의 남아 있는 부분들이 제거된 후 SiC 층 (412) 을 도시한다. SiC 층 (412) 은 임의의 부가적인 머시닝 전에 SiC 층 (412) 의 강도를 개선하기 위해 블록 (400) 의 남아 있는 부분들을 제거하는 것에 후속하여 어닐링될 수도 있다. 도 4f는 각각 최종 목표된 형상들을 갖는 에지 링들 (416 및 420) 을 형성하도록 추가 머시닝, 그라인딩, 등 후의 SiC 층 (412) 을 도시한다. 기술된 바와 같이, 에지 링들 (416 및 420) 은 각각의 플라즈마 대면 표면들 (424 및 428) 상에서 어떠한 머시닝도 수행하지 않고 형성된다. 부가적인 프로세싱, 예컨대 산화 및 세정이 기판 프로세싱 챔버 내에 에지 링들 (416 및 420) 을 설치하기 전에 에지 링들 (416 및 420) 상에서 수행될 수도 있다.
이제 도 5a 내지 도 5f를 참조하면, 본 개시의 원리들에 따른 에지 링을 위한 또 다른 예시적인 제조 프로세스가 도시된다. 도 5a는 그래파이트 블록 (500) 과 같은 기판을 도시한다. 도 5b는 2 개의 에지 링들의 목표된 최종 형상의 상당하는 또는 상보적인 형상에 대응할 수도 있는 예시적인 형상 (504) 으로 머시닝된 블록 (500) 을 도시한다. 도 5c에 도시된 바와 같이, 블록 (500) 상에 층 (512) (예를 들어, 이 예에서, SiC 층 (512)) 을 형성하도록 반도체 재료, 예컨대 실리콘, SiC, 또는 또 다른 실리콘 함유 재료가 (예를 들어, CVD 프로세스를 사용하여) 증착된다. 도 5d는 SiC 층 (512) 및 블록 (500) 의 부분들이 (예를 들어, 그라인딩을 통해) 제거된 후 SiC 층 (512) 및 블록 (500) 을 도시한다. 도 5e는 그래파이트 블록 (500) 의 남아 있는 부분들이 제거된 후 SiC 층 (512) 을 도시한다. SiC 층 (512) 은 임의의 부가적인 머시닝 전에 SiC 층 (512) 의 강도를 개선하기 위해 블록 (500) 의 남아 있는 부분들을 제거하는 것에 후속하여 어닐링될 수도 있다. 도 5f는 각각 최종 목표된 형상들을 갖는 에지 링들 (516 및 520) 을 형성하도록 추가 머시닝, 그라인딩, 등 후의 SiC 층 (512) 을 도시한다. 기술된 바와 같이, 에지 링들 (516 및 520) 은 각각의 플라즈마 대면 표면들 (524 및 528) 상에서 어떠한 머시닝도 수행하지 않고 형성된다. 부가적인 프로세싱, 예컨대 산화 및 세정이 기판 프로세싱 챔버 내에 에지 링들 (516 및 520) 을 설치하기 전에 에지 링들 (516 및 520) 상에서 수행될 수도 있다.
이제 도 6을 참조하면, 본 개시의 원리들에 따른 기판 프로세싱 시스템의 구조체 (예를 들어, 슈라우드, 에지 링, 등) 를 제조하는 예시적인 방법 (600) 이 604에서 시작된다. 608에서, 그래파이트 블록과 같은 기판이 제공된다. 612에서, 기판은 구조체의 목표된 최종 형상에 상당하거나 상보적인 피처들 및/또는 치수들을 갖는 형상으로 머시닝된다. 616에서, 재료 (예를 들어, 반도체 재료, 예컨대 실리콘 함유 재료) 가 머시닝된 기판 상에 막을 형성하도록 증착된다. 예를 들어, 층은 CVD 프로세스를 사용하여 기판 상에 증착된 SiC 층에 대응한다.
620에서, 증착된 층 및 기판은 층 및 기판의 부분들을 제거하도록 더 머시닝 (예를 들어, 그라인딩) 된다. 624에서, 기판의 남아 있는 부분들은 (예를 들어, 버닝을 통해) 제거된다. 628에서, 임의의 부가적인 제조 단계들이 구조체를 완성하기 위해 남아 있는 반도체 층 상에서 수행될 수도 있다. 단지 예를 들면, 부가적인 제조 단계들은, 이로 제한되는 것은 아니지만, 어닐링, 머시닝, 산화 및 세정, 등을 포함한다. 방법 (600) 은 632에서 종료된다.
전술한 기술은 본질적으로 단순히 예시적이고 어떠한 방법으로도 개시, 이들의 애플리케이션 또는 용도들을 제한하도록 의도되지 않는다. 개시의 광범위한 교시가 다양한 형태들로 구현될 수 있다. 따라서, 본 개시는 특정한 예들을 포함하지만, 다른 수정 사항들이 도면들, 명세서, 및 이하의 청구항들을 연구함으로써 명백해질 것이기 때문에, 본 개시의 진정한 범위는 이렇게 제한되지 않아야 한다. 방법 내의 하나 이상의 단계들이 본 개시의 원리들을 변경하지 않고 상이한 순서로 (또는 동시에) 실행될 수도 있다는 것이 이해되어야 한다. 또한, 실시예들 각각이 특정한 피처들을 갖는 것으로 상기에 기술되었지만, 본 개시의 임의의 실시예에 대하여 기술된 임의의 하나 이상의 이들 피처들은, 조합이 명시적으로 기술되지 않아도, 임의의 다른 실시예들의 피처들로 및/또는 임의의 다른 실시예들의 피처들과 조합하여 구현될 수 있다. 즉, 기술된 실시예들은 상호 배타적이지 않고, 하나 이상의 실시예들의 또 다른 실시예들과의 치환들이 본 개시의 범위 내에 남는다.
엘리먼트들 간 (예를 들어, 모듈들, 회로 엘리먼트들, 반도체 층들, 등 간) 의 공간적 및 기능적 관계들은, "연결된 (connected)", "인게이지된 (engaged)", "커플링된 (coupled)", "인접한 (adjacent)", "옆에 (next to)", "~의 상단에 (on top of)", "위에 (above)", "아래에 (below)", 및 "배치된 (disposed)"을 포함하는, 다양한 용어들을 사용하여 기술된다. "직접적 (direct)"인 것으로 명시적으로 기술되지 않는 한, 제 1 엘리먼트와 제 2 엘리먼트 간의 관계가 상기 개시에서 기술될 때, 이 관계는 제 1 엘리먼트와 제 2 엘리먼트 사이에 다른 중개하는 엘리먼트가 존재하지 않는 직접적인 관계일 수 있지만, 또한 제 1 엘리먼트와 제 2 엘리먼트 사이에 (공간적으로 또는 기능적으로) 하나 이상의 중개하는 엘리먼트들이 존재하는 간접적인 관계일 수 있다. 본 명세서에서 논의된 바와 같이, 구 A, B, 및 C 중 적어도 하나는 비배타적인 논리 OR를 사용하여, 논리적으로 (A 또는 B 또는 C) 를 의미하는 것으로 해석되어야 하고, "적어도 하나의 A, 적어도 하나의 B, 및 적어도 하나의 C"를 의미하도록 해석되지 않아야 한다.
일부 구현예들에서, 제어기는 상술한 예들의 일부일 수도 있는 시스템의 일부일 수 있다. 이러한 시스템들은, 프로세싱 툴 또는 툴들, 챔버 또는 챔버들, 프로세싱용 플랫폼 또는 플랫폼들, 및/또는 특정 프로세싱 컴포넌트들 (웨이퍼 페데스탈, 가스 플로우 시스템, 등) 을 포함하는, 반도체 프로세싱 장비를 포함할 수 있다. 이들 시스템들은 반도체 웨이퍼 또는 기판의 프로세싱 이전에, 프로세싱 동안에 그리고 프로세싱 이후에 그들의 동작을 제어하기 위한 전자장치에 통합될 수도 있다. 전자장치들은 시스템 또는 시스템들의 다양한 컴포넌트들 또는 하위부품들을 제어할 수도 있는 "제어기"로서 지칭될 수도 있다. 제어기는, 시스템의 프로세싱 요건들 및/또는 타입에 따라서, 프로세싱 가스들의 전달, 온도 설정사항들 (예를 들어, 가열 및/또는 냉각), 압력 설정사항들, 진공 설정사항들, 전력 설정사항들, 무선 주파수 (RF) 생성기 설정사항들, RF 매칭 회로 설정사항들, 주파수 설정사항들, 플로우 레이트 설정사항들, 유체 전달 설정사항들, 위치 및 동작 설정사항들, 툴들 및 다른 이송 툴들 및/또는 특정 시스템과 연결되거나 인터페이싱된 로드 록들 내외로의 웨이퍼 이송들을 포함하는, 본 명세서에 개시된 프로세스들 중 임의의 프로세스들을 제어하도록 프로그램될 수도 있다.
일반적으로 말하면, 제어기는 인스트럭션들을 수신하고, 인스트럭션들을 발행하고, 동작을 제어하고, 세정 동작들을 인에이블하고, 엔드포인트 측정들을 인에이블하는 등을 하는 다양한 집적 회로들, 로직, 메모리, 및/또는 소프트웨어를 갖는 전자장치로서 규정될 수도 있다. 집적 회로들은 프로그램 인스트럭션들을 저장하는 펌웨어의 형태의 칩들, 디지털 신호 프로세서들 (DSP), ASIC (application specific integrated circuit) 으로서 규정되는 칩들 및/또는 프로그램 인스트럭션들 (예를 들어, 소프트웨어) 을 실행하는 하나 이상의 마이크로프로세서들, 또는 마이크로제어기들을 포함할 수도 있다. 프로그램 인스트럭션들은 반도체 웨이퍼 상에서 또는 반도체 웨이퍼에 대한 특정 프로세스를 실행하기 위한 동작 파라미터들을 규정하는, 다양한 개별 설정사항들 (또는 프로그램 파일들) 의 형태로 제어기로 또는 시스템으로 전달되는 인스트럭션들일 수도 있다. 일부 실시예들에서, 동작 파라미터들은 하나 이상의 층들, 재료들, 금속들, 산화물들, 실리콘, 이산화 실리콘, 표면들, 회로들, 및/또는 웨이퍼의 다이들의 제조 동안에 하나 이상의 프로세싱 단계들을 달성하도록 프로세스 엔지니어에 의해서 규정된 레시피의 일부일 수도 있다.
제어기는, 일부 구현예들에서, 시스템에 통합되거나, 시스템에 커플링되거나, 이와 달리 시스템에 네트워킹되거나, 또는 이들의 조합으로 될 수 있는 컴퓨터에 커플링되거나 이의 일부일 수도 있다. 예를 들어, 제어기는 웨이퍼 프로세싱의 원격 액세스를 가능하게 할 수 있는 공장 (fab) 호스트 컴퓨터 시스템의 전부 또는 일부이거나 "클라우드" 내에 있을 수도 있다. 컴퓨터는 제조 동작들의 현 진행을 모니터링하고, 과거 제조 동작들의 이력을 조사하고, 복수의 제조 동작들로부터 경향들 또는 성능 계측치들을 조사하고, 현 프로세싱의 파라미터들을 변경하고, 현 프로세싱을 따르는 프로세싱 단계들을 설정하고, 또는 새로운 프로세스를 시작하기 위해서 시스템으로의 원격 액세스를 인에이블할 수도 있다. 일부 예들에서, 원격 컴퓨터 (예를 들어, 서버) 는 로컬 네트워크 또는 인터넷을 포함할 수도 있는 네트워크를 통해서 프로세스 레시피들을 시스템에 제공할 수 있다. 원격 컴퓨터는 차후에 원격 컴퓨터로부터 시스템으로 전달될 파라미터들 및/또는 설정사항들의 입력 또는 프로그래밍을 인에이블하는 사용자 인터페이스를 포함할 수도 있다. 일부 예들에서, 제어기는 하나 이상의 동작들 동안에 수행될 프로세스 단계들 각각에 대한 파라미터들을 특정한, 데이터의 형태의 인스트럭션들을 수신한다. 이 파라미터들은 제어기가 제어하거나 인터페이싱하도록 구성된 툴의 타입 및 수행될 프로세스의 타입에 특정적일 수도 있다는 것이 이해되어야 한다. 따라서, 상술한 바와 같이, 제어기는 예를 들어 서로 네트워킹되어서 함께 공통 목적을 위해서, 예를 들어 본 명세서에 기술된 프로세스들 및 제어들을 위해서 협력하는 하나 이상의 개별 제어기들을 포함함으로써 분산될 수도 있다. 이러한 목적을 위한 분산형 제어기의 예는 챔버 상의 프로세스를 제어하도록 조합되는, (예를 들어, 플랫폼 레벨에서 또는 원격 컴퓨터의 일부로서) 원격으로 위치한 하나 이상의 집적 회로들과 통신하는 챔버 상의 하나 이상의 집적 회로들일 수 있다.
비한정적으로, 예시적인 시스템들은 플라즈마 에칭 챔버 또는 모듈, 증착 챔버 또는 모듈, 스핀-린스 챔버 또는 모듈, 금속 도금 챔버 또는 모듈, 세정 챔버 또는 모듈, 베벨 에지 에칭 챔버 또는 모듈, PVD (physical vapor deposition) 챔버 또는 모듈, CVD (chemical vapor deposition) 챔버 또는 모듈, ALD (atomic layer deposition) 챔버 또는 모듈, ALE (atomic layer etch) 챔버 또는 모듈, 이온 주입 챔버 또는 모듈, 트랙 (track) 챔버 또는 모듈, 및 반도체 웨이퍼들의 제조 및/또는 제작 시에 사용되거나 연관될 수도 있는 임의의 다른 반도체 프로세싱 시스템들을 포함할 수도 있다.
상술한 바와 같이, 툴에 의해서 수행될 프로세스 단계 또는 단계들에 따라서, 제어기는, 반도체 제작 공장 내의 툴 위치들 및/또는 로드 포트들로부터/로 웨이퍼들의 컨테이너들을 이동시키는 재료 이송 시에 사용되는, 다른 툴 회로들 또는 모듈들, 다른 툴 컴포넌트들, 클러스터 툴들, 다른 툴 인터페이스들, 인접 툴들, 이웃하는 툴들, 공장 도처에 위치한 툴들, 메인 컴퓨터, 또 다른 제어기 또는 툴들 중 하나 이상과 통신할 수도 있다.

Claims (14)

  1. 기판 프로세싱 시스템에서 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법에 있어서,
    제 1 형상을 갖는 희생 기판을 제공하는 단계;
    상기 구조체의 목표된 최종 형상에 대응하는 치수들을 갖는 제 2 형상으로 상기 기판을 머시닝하는 단계;
    상기 기판 상에 재료 층을 증착하는 단계;
    상기 재료 층 내에서 상기 기판을 노출하도록 상기 재료 층의 제 1 선택된 부분들을 머시닝하는 단계;
    상기 기판의 남아 있는 부분들을 제거하는 단계; 및
    프로세싱 동안 플라즈마에 노출되는 상기 구조체의 상기 표면들을 머시닝하지 않고 상기 목표된 최종 형상을 갖는 상기 구조체로 상기 재료 층의 제 2 선택된 부분들을 머시닝하는 단계를 포함하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  2. 제 1 항에 있어서,
    상기 구조체는 플라즈마 한정 슈라우드에 대응하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  3. 제 2 항에 있어서,
    상기 플라즈마 한정 슈라우드는 C-슈라우드에 대응하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  4. 제 1 항에 있어서,
    상기 구조체는 에지 링에 대응하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  5. 제 1 항에 있어서,
    상기 기판은 그래파이트 블록 (graphite block) 을 포함하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  6. 제 1 항에 있어서,
    상기 제 2 형상은 상기 구조체의 상기 목표된 최종 형상의 슬롯의 위치에 대응하는 적어도 하나의 돌출부를 포함하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  7. 제 6 항에 있어서,
    상기 재료 층의 상기 제 1 선택된 부분들을 머시닝하는 단계는 상기 돌출부에 대응하는 상기 재료 층의 부분들을 제거하는 것을 포함하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  8. 제 1 항에 있어서,
    상기 재료 층을 증착하는 단계는 상기 재료 층으로 상기 기판을 완전히 둘러싸는 것을 포함하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  9. 제 1 항에 있어서,
    상기 재료 층의 상기 제 1 선택된 부분들을 머시닝하는 단계는 상기 기판의 선택된 부분들을 제거하는 것을 포함하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  10. 제 9 항에 있어서,
    상기 기판의 상기 선택된 부분들을 제거하는 단계에 후속하여, 플라즈마에 노출된 상기 구조체의 상기 표면들은 상기 기판의 남아 있는 부분들에 의해 커버되는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  11. 제 1 항에 있어서,
    상기 재료 층을 증착하는 단계는 CVD (chemical vapor deposition) 프로세스를 사용하여 상기 재료 층을 증착하는 것을 포함하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  12. 제 1 항에 있어서,
    상기 재료 층은 반도체 재료를 포함하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  13. 제 1 항에 있어서,
    상기 재료 층은 실리콘을 포함하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
  14. 제 1 항에 있어서,
    상기 재료 층은 실리콘 카바이드를 포함하는, 플라즈마에 노출된 표면들을 갖는 구조체를 제조하는 방법.
KR1020170098391A 2016-08-04 2017-08-03 부분적으로 그물 형상이고 부분적으로 거의 그물 형상인 실리콘 카바이드 cvd KR20180016300A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662370916P 2016-08-04 2016-08-04
US62/370,916 2016-08-04
US15/261,088 US10096471B2 (en) 2016-08-04 2016-09-09 Partial net shape and partial near net shape silicon carbide chemical vapor deposition
US15/261,088 2016-09-09

Publications (1)

Publication Number Publication Date
KR20180016300A true KR20180016300A (ko) 2018-02-14

Family

ID=61072048

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170098391A KR20180016300A (ko) 2016-08-04 2017-08-03 부분적으로 그물 형상이고 부분적으로 거의 그물 형상인 실리콘 카바이드 cvd

Country Status (4)

Country Link
US (1) US10096471B2 (ko)
KR (1) KR20180016300A (ko)
CN (1) CN107686983A (ko)
TW (1) TW201816838A (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11127572B2 (en) 2018-08-07 2021-09-21 Silfex, Inc. L-shaped plasma confinement ring for plasma chambers
JP7247819B2 (ja) * 2019-08-29 2023-03-29 住友金属鉱山株式会社 炭化ケイ素多結晶基板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376214A (en) * 1992-09-22 1994-12-27 Nissan Motor Co., Ltd. Etching device
US20120080753A1 (en) * 2010-10-01 2012-04-05 Applied Materials, Inc. Gallium arsenide based materials used in thin film transistor applications
US9337002B2 (en) * 2013-03-12 2016-05-10 Lam Research Corporation Corrosion resistant aluminum coating on plasma chamber components

Also Published As

Publication number Publication date
CN107686983A (zh) 2018-02-13
TW201816838A (zh) 2018-05-01
US10096471B2 (en) 2018-10-09
US20180040479A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP7401589B2 (ja) 静電チャック接合のための永久二次浸食封じ込め
KR102458699B1 (ko) 개선된 프로세스 균일도를 갖는 기판 지지부
KR102521717B1 (ko) 아킹 (arcing) 을 감소시키기 위한 헬륨 플러그 설계
US20190244793A1 (en) Tapered upper electrode for uniformity control in plasma processing
KR20180006307A (ko) 전기적 아크 및 발광을 방지하고 프로세스 균일도를 개선하기 위한 피처들을 갖는 정전 척
WO2018075750A1 (en) Pin lifter assembly with small gap
US9679749B2 (en) Gas distribution device with actively cooled grid
JP7470101B2 (ja) 寿命が延長された閉じ込めリング
KR20180016300A (ko) 부분적으로 그물 형상이고 부분적으로 거의 그물 형상인 실리콘 카바이드 cvd
JP7186494B2 (ja) 粒子性能および金属性能の改善のためのescセラミック側壁の加工
US11984296B2 (en) Substrate support with improved process uniformity
US20220235459A1 (en) Reduced diameter carrier ring hardware for substrate processing systems
US20230369025A1 (en) High precision edge ring centering for substrate processing systems