KR20180001801A - 캐비티 구조를 갖는 플라즈마 반응기 - Google Patents

캐비티 구조를 갖는 플라즈마 반응기 Download PDF

Info

Publication number
KR20180001801A
KR20180001801A KR1020160080695A KR20160080695A KR20180001801A KR 20180001801 A KR20180001801 A KR 20180001801A KR 1020160080695 A KR1020160080695 A KR 1020160080695A KR 20160080695 A KR20160080695 A KR 20160080695A KR 20180001801 A KR20180001801 A KR 20180001801A
Authority
KR
South Korea
Prior art keywords
plasma
reactor body
discharge space
cavity structure
reactor
Prior art date
Application number
KR1020160080695A
Other languages
English (en)
Other versions
KR102636459B1 (ko
Inventor
최대규
Original Assignee
(주) 엔피홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엔피홀딩스 filed Critical (주) 엔피홀딩스
Priority to KR1020160080695A priority Critical patent/KR102636459B1/ko
Publication of KR20180001801A publication Critical patent/KR20180001801A/ko
Application granted granted Critical
Publication of KR102636459B1 publication Critical patent/KR102636459B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명은 캐비티 구조를 갖는 플라즈마 반응기에 관한 것으로, 본 발명의 일실시예에 따른 플라즈마 반응기는, 바깥쪽 영역과 안쪽 영역 사이에 플라즈마 방전 공간을 형성하고, 상기 안쪽 곡면 부분에 의해 캐비티 구조가 형성되는 반응기 몸체; 상기 반응기 몸체의 일측에 플라즈마 방전 공간과 연결되는 가스 입구; 상기 반응기 몸체의 타측에 플라즈마 방전 공간과 연결되는 가스 출구; 상기 반응기 몸체의 캐비티 내부에 코일이 권선된 페라이트 코어를 위치시키는 플라즈마 소스; 및 상기 코일에 전원을 공급하는 전원공급원을 포함한다.

Description

캐비티 구조를 갖는 플라즈마 반응기{PLASMA REACTOR HAVING CAVITY STRUCTURE}
본 발명은 캐비티 구조를 갖는 플라즈마 반응기에 관한 것으로, 구체적으로는 반응기 몸체의 중심 부분에 캐비티 구조를 형성하고, 캐비티 내부에 페라이트 코어를 위치시켜 반응기 몸체의 플라즈마 방전 공간에서 플라즈마를 형성함으로써 플라즈마 발생시에 파티클 발생을 방지하기 위한, 캐비티 구조를 갖는 플라즈마 반응기에 관한 것이다.
플라즈마 방전은 이온, 자유 래디컬, 원자, 분자를 포함하는 활성 가스를 발생하기 위한 가스 여기에 사용되고 있다. 활성 가스는 다양한 분야에서 널리 사용되고 있으며 대표적으로 반도체 제조 공정 예들 들어, 식각, 증착, 세정, 에싱 등 다양하게 사용되고 있다.
최근, 반도체 장치의 제조를 위한 웨이퍼나 LCD 글라스 기판은 더욱 대형화 되어 가고 있다. 그럼으로 플라즈마 이온 에너지에 대한 제어 능력이 높고, 대면적의 처리 능력을 갖는 확장성이 용이한 플라즈마 소스가 요구되고 있다. 플라즈마를 이용한 반도체 제조 공정에서 원격 플라즈마의 사용은 매우 유용한 것으로 알려져 있다.
예를 들어, 공정 챔버의 세정이나 포토레지스트 스트립을 위한 에싱 공정에서 유용하게 사용되고 있다. 그런데 피처리 기판의 대형화에 따라 공정 챔버의 볼륨도 증가되고 있어서 고밀도의 활성 가스를 충분히 원격으로 공급할 수 있는 플라즈마 소스가 요구되고 있다.
한편, 원격 플라즈마 반응기(또는 원격 플라즈마 발생기라 칭함)는 변압기 결합 플라즈마 소스(transformer coupled plasma)를 사용한 것과 유도 결합 플라즈마 소스(inductively coupled plasma source)를 사용한 것이 있다. 변압기 결합 플라즈마 소스(transformer coupled plasma source)를 사용한 원격 플라즈마 반응기는 토로이달 구조의 반응기 몸체에 일차 권선 코일을 갖는 마그네틱 코어가 장착된 구조를 갖는다. 유도 결합 플라즈마 소스를 사용한 원격 플라즈마 반응기는 중공형 튜브 구조의 반응기 몸체에 유도 결합 안테나가 장착된 구조를 갖는다.
변압기 결합 플라즈마 소스를 갖는 원격 플라즈마 반응기의 경우에는 그 특성상 비교적 고압 분위기에서 동작하기 때문에 저압 분위기에서는 플라즈마 점화나 점화된 플라즈마를 유지하기가 어렵다. 유도 결합 플라즈마 플라즈마 소스를 갖는 원격 플라즈마 반응기의 경우에는 그 특성상 비교적 저압 분위기에서 동작이 가능하나 고압 분위기에서 동작하기 위해서는 공급 전력을 높게 하여야 하나 이러한 경우 반응기 몸체의 내부가 이온 충격에 의해 손상될 수도 있다.
그러나, 반도체 제조 공정의 다양한 요구에 따라 저압 또는 고압에서 효율적으로 동작하는 원격 플라즈마 반응기가 요구되고 있으나 결합 플라즈마 소스나 유도 결합 플라즈마 소스 중 어느 하나를 채용한 종래의 원격 플라즈마 반응기는 적절하게 대응할 수 없었다.
본 발명의 목적은 반응기 몸체의 중공 부분에 캐비티 구조를 형성하고, 캐비티 내부에 페라이트 코어를 위치시켜 반응기 몸체의 플라즈마 방전 공간에서 플라즈마를 형성함으로써 플라즈마 발생시에 파티클 발생을 방지하기 위한, 캐비티 구조를 갖는 플라즈마 반응기를 제공하는데 있다.
본 발명의 일실시예에 따른 플라즈마 반응기는, 바깥쪽 곡면 부분과 안쪽 곡면 부분 사이에 플라즈마 방전 공간을 형성하고, 상기 안쪽 곡면 부분에 의해 캐비티 구조가 형성되는 반응기 몸체; 상기 반응기 몸체의 일측에 플라즈마 방전 공간과 연결되는 가스 입구; 상기 반응기 몸체의 타측에 플라즈마 방전 공간과 연결되는 가스 출구; 상기 반응기 몸체의 캐비티 내부에 코일이 권선된 페라이트 코어를 위치시키는 플라즈마 소스; 및 상기 코일에 전원을 공급하는 전원공급원을 포함한다.
본 발명의 다른 실시예에 따른 플라즈마 반응기는, 바깥쪽 곡면 부분과 안쪽 곡면 부분 사이에 플라즈마 방전 공간을 형성하고, 상기 안쪽 곡면 부분에 의해 캐비티 구조가 형성되는 반응기 몸체; 상기 반응기 몸체의 일측에 플라즈마 방전 공간과 연결되는 가스 입구; 상기 반응기 몸체의 타측에 플라즈마 방전 공간과 연결되는 가스 출구; 상기 반응기 몸체의 캐비티 내부에 제1 면 전극이 권취된 페라이트 코어를 위치시키고, 상기 반응기 몸체의 바깥쪽 곡면을 따라 제2 면 전극을 권취시키는 플라즈마 소스; 및 상기 면 전극에 전원을 공급하는 전원공급원을 포함한다.
상기 제1 및 제2 면 전극은, 소정의 턴수로 제공되는 전류 경로에 의해 형성되어 플라즈마 방전 공간에 유도 결합된 플라즈마를 형성한다.
상기 제1 및 제2 면 전극은 구리판과 절연부재로 구성되며, 상기 구리판은 절연부재에 의해 절연된다.
상기 반응기 몸체는, 종방향 단면이 도넛 형상이고 횡방향 단면이 U자 형상을 나타내는 역-종형(reverse bell-shape)이다.
상기 반응기 몸체는 유전체 물질로 구성된다.
상기 가스 입구를 통해 공급되는 가스를 플라즈마 방전 공간 내부에 균일하게 가스를 분배시키기 위한 배플 구조를 갖는 가스 분배부를 더 포함한다.
본 발명은 반응기 몸체의 중공 부분에 캐비티 구조를 형성하고, 캐비티 내부에 페라이트 코어를 위치시켜 반응기 몸체의 플라즈마 방전 공간에서 플라즈마를 형성함으로써 플라즈마 발생시에 파티클 발생을 방지할 수 있다.
본 발명은 반도체 제조 공정의 다양한 요구에 따라 저압 또는 고압에서 효율적으로 동작하는 원격 플라즈마 반응기를 제공할 수 있다.
도 1은 본 발명의 캐비티 구조를 갖는 플라즈마 반응기와 이를 구비한 플라즈마 처리 시스템의 전반적인 구성을 보여주는 블록도,
도 2는 본 발명의 일실시예에 따른 플라즈마 반응기에 대한 사시도,
도 3은 상기 도 2의 플라즈마 반응기에 대한 A-A'선 종방향 단면도,
도 4는 상기 도 2의 플라즈마 반응기에 대한 B-B'선 횡방향 단면도,
도 5는 상기 도 2의 플라즈마 반응기에 장착된 페라이트 코어의 일실시예를 나타낸 대한 사시도,
도 6은 상기 도 5의 플라즈마 반응기에 대한 단면도,
도 7은 상기 도 2의 플라즈마 반응기에 장착된 페라이트 코어의 다른 실시예를 나타낸 대한 사시도,
도 8은 상기 도 7의 플라즈마 반응기에 대한 단면도,
도 9는 본 발명의 다른 실시예에 따른 플라즈마 반응기에 대한 사시도,
도 10은 상기 도 9의 플라즈마 반응기에 대한 A-A'선 종방향 단면도,
도 11은 상기 도 9의 플라즈마 반응기에 대한 B-B'선 횡방향 단면도,
도 12는 상기 도 1에 적용되는 가스 분배부에 대한 도면,
도 13 내지 도 15는 상기 도 12의 가스 분배부의 C-C'선 단면도이다.
본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공 되어지는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.
도 1은 본 발명의 캐비티 구조를 갖는 플라즈마 반응기와 이를 구비한 플라즈마 처리 시스템의 전반적인 구성을 보여주는 블록도이다.
도 1을 참조하여, 본 발명의 캐비티 구조를 갖는 플라즈마 반응기(이하 "플라즈마 반응기"라 함,10)는 플라즈마 방전 공간(24)을 제공하는 반응기 몸체(11)를 구비한다. 반응기 몸체(11)는 가스 입구(12)와 가스 출구(16)를 갖는다. 가스 출구(16)는 어뎁터(48)를 통하여 공정 챔버(40)의 챔버 가스 입구(47)에 연결된다. 플라즈마 반응기(10)에서 발생된 플라즈마 가스는 어뎁터(48)를 통하여 공정 챔버(40)로 공급된다.
반응기 몸체(11)는 종방향 단면이 도넛 형상이고 횡방향 단면이 U자 형상을 나타내는 역-종형(reverse bell-shape)을 나타낼 수 있다. 여기서, 반응기 몸체(11)는 종방향 단면에서 볼 때 중심 부분에 캐비티 구조(cavity structure)를 가질 수 있다. 즉, 반응기 몸체(11)는 곡면 부분이 아래를 향하는 반구형으로서 중공 부분이 비어 있는 형상을 가짐으로써, 외부와 접하는 바깥쪽 영역과 캐비티 공간을 형성하는 안쪽 영역을 갖는 몸체를 형성할 수 있다. 또한, 플라즈마 방전 공간(24)은 바깥쪽 영역과 안쪽 영역 사이의 공간에 형성할 수 있다.
반응기 몸체(11)는 반구형 외부 곡면과 내부 곡면 사이에 플라즈마 중공의 캐비티(23)가 제외된 영역에 플라즈마 방전 공간(24)을 형성할 수 있다.
플라즈마 반응기(10)는 공정 챔버(40)의 외부에 설치되어 원격으로 플라즈마를 공정 챔버(40)로 공급한다. 플라즈마 소스(20)는 플라즈마 반응기(10)에서 발생되는 플라즈마와 유도적으로 결합된다. 플라즈마 소스(20)는 코일(22)이 권선된 페라이트 코어(21)를 포함할 수 있다. 코일(22)이 권선된 페라이트 코어(21)는 반응기 몸체(11)의 중공의 캐비티(23)에 위치할 수 있다.
공정 챔버(40)는 내부에 피처리 기판(44)을 지지하는 기판 지지대(42)가 구비된다. 기판 지지대(42)는 임피던스 정합기(74)를 통하여 하나 이상의 바이어스 전원 공급원(70,72)에 전기적으로 연결될 수 있다. 어뎁터(48)는 전기적 절연을 위한 절연 구간을 구비할 수 있으며, 과열을 방지하기 위한 냉각 채널을 구비할 수 있다.
공정 챔버(40)는 내부에 기판 지지대(42)와 챔버 가스 입구(47) 사이에 플라즈마 가스 분배를 위한 배플(46)을 구비할 수 있다. 배플(46)은 챔버 가스 입구(47)를 통하여 유입된 플라즈마 가스가 균일하게 분배되어 피처리 기판으로 확산되게 한다. 피처리 기판(44)은 예를 들어, 반도체 장치를 제조하기 위한 실리콘 웨이퍼 기판 또는 액정 디스플레이나 플라즈마 디스플레이 등의 제조를 위한 유리 기판이다.
플라즈마 소스(20)는 전원 공급원(30)으로부터 무선 주파수를 공급받아 동작한다. 전원 공급원(30)은 하나 이상의 스위칭 반도체 장치를 구비하여 무선 주파수를 발생하는 교류 스위칭 전원 공급원(AC switching power supply)(32)과 제어 회로(power control circuit)(33) 및 전압 공급원(31)을 포함한다. 하나 이상의 스위칭 반도체 장치는 예를 들어, 하나 이상의 스위칭 트랜지스터를 포함한다. 전압 공급원(31)은 외부로부터 입력되는 교류 전압을 정전압으로 변환하여 교류 스위칭 전원 공급원(32)으로 공급한다. 교류 스위칭 전원 공급원(32)은 제어 회로(33)의 제어를 받아 동작하며 무선 주파수를 발생한다.
제어 회로(33)는 교류 스위칭 전원 공급원(32)의 동작을 제어하여 무선 주파수의 전압 및 전류를 제어한다. 제어 회로(33)의 제어는 플라즈마 소스(20)와 반응기 몸체(11)의 내부에서 발생되는 플라즈마 중 적어도 하나와 관련된 전기적 또는 광학적 파라미터 값에 기초하여 이루어진다. 이를 위하여 제어 회로(33)는 전기적 또는 광학적 파라미터 값을 측정하기 위한 측정 회로(13,14)가 구비된다. 예를 들어, 플라즈마의 전기적 및 광학적 파라미터를 측정하기 위한 측정 회로는 전류 프로브(13)와 광학 검출기(14)를 포함한다. 플라즈마 소스(20)의 전기적 파라미터를 측정하기 위한 측정 회로(13,14)는 플라즈마 소스(20)의 구동 전류, 구동 전압, 평균 전력과 최대 전력, 전압 공급원(31)에서 발생된 전압 등을 측정한다.
제어 회로(33)는 측정 회로(13,14)를 통하여 관련된 전기적 또는 광학적 파라미터 값을 지속적으로 모니터링하고 측정된 값과 정상 동작에 기준한 기준 값과 비교하면서 교류 스위칭 전원 공급원(32)을 제어하여 무선 주파수의 전압 및 전류를 제어한다. 구체적으로 도시하지는 않았으나 전원 공급원(30)에는 비정상적인 동작 환경에 의해 발생될 수 있는 전기적 손상을 방지하기 위한 보호회로가 구비된다. 전원 공급원(30)은 플라즈마 처리 시스템의 전반을 제어하는 시스템 제어부(60)와 연결된다. 전원 공급원(30)은 플라즈마 반응기(10)의 동작 상태 정보를 시스템 제어부(60)로 제공한다. 시스템 제어부(60)는 플라즈마 처리 시스템의 동작 과정 전반을 제어하기 위한 제어 신호를 발생하여 플라즈마 반응기(10)와 공정 챔버(40)의 동작을 제어한다.
플라즈마 반응기(10)와 전원 공급원(30)은 물리적으로 분리된 구조를 갖는다. 즉, 플라즈마 반응기(10)와 전원 공급원(30)은 무선 주파수 공급 케이블(35)에 의해서 상호 전기적으로 연결된다. 이러한 플라즈마 반응기(10)와 전원 공급원(30)의 분리 구조는 유지 보수와 설치의 용이성을 제공한다. 그러나 플라즈마 반응기(10)와 전원 공급원(30)이 일체형 구조로 제공될 수도 있다.
도 2는 본 발명의 일실시예에 따른 플라즈마 반응기에 대한 사시도이고, 도 3은 상기 도 2의 플라즈마 반응기에 대한 A-A'선 종방향 단면도이고, 도 4는 상기 도 2의 플라즈마 반응기에 대한 B-B'선 횡방향 단면도이다.
도 2 내지 도 4를 참조하면, 플라즈마 반응기(10)는 플라즈마 방전 공간(24)과 가스 입구(12) 및 가스 출구(16)를 갖는 반응기 몸체(11)를 구비한다.
반응기 몸체(11)는 상부에 가스 입구(12)가 하부에 가스 출구(16)를 구비할 수 있다. 가스 입구(12)는 반응기 몸체(11)에 하나 이상 형성할 수 있고, 하나의 가스 공급원(미도시)으로부터 공급된 가스가 균등하게 분배되는 분배 구조로 형성할 수 있다. 플라즈마 방전 공간(24)은 종방향 단면에서 도넛 형상을 나타내므로 어느 일측에 가스 입구(12)를 설치하여 가스 공급이 불균일하지 않도록 가스 분배 구조를 통해 가스 입구(12)와 연결되는 것이 바람직하다. 여기서는 좌우 대칭 구조의 가스 분배 구조(즉, 0°, 180°의 위상으로 입구를 갖는 가스 분배 구조)를 도시하고 있으나, 이에 한정되지 않는다. 한편, 가스 출구(16)는 플라즈마 방전 공간(24)을 수렴하는 구조로 형성(즉, 캐비티(23)가 형성된 위치의 연장선상에 위치하는 구조로서, 종방향 단면에서 중심 부분)되어 공정 챔버(40)와 연결된다.
반응기 몸체(11)는 금속 재질(Al 등)인 경우에, 횡방향으로 전기적 절연 구간을 가질 수 있으며, 석영 또는 질화알루미늄(AlN) 등과 같은 유전체 물질로 구성될 수 있다. 또는 적절한 대체재료를 사용하여 구성할 수도 있다.
페라이트 코어(21)는 페라이트 코어(21)는 코일(22)이 권선될 수 있다. 페라이트 코어(21)는 코일(22)이 권선되어 반응기 몸체(11)의 캐비티(23) 내부에 위치할 수 있다. 이때, 코일(22)은 일측이 전원 공급부(30)에 연결되고, 타측이 접지된다. 코일(22)은 파이프 형태로서 과열 방지를 위해 파이프 내부에 냉각 채널(미도시)을 구비할 수 있다.
코일(22)이 권선된 페라이트 코어(21)는 전원 공급원(30)으로부터 전원이 공급되면, 반응기 몸체(11)의 플라즈마 방전 공간(24) 내부를 관통하는 자기장(H)이 집속된다. 페라이트 코어(21)에 의해 형성된 자기장(H)은 반응기 몸체(11)가 제공하는 플라즈마 방전 공간(24) 내부에서는 전기장(E)을 발생시킨다. 그러므로 반응기 몸체(11)의 내부 플라즈마 방전 공간(24)에서는 유도 결합된 플라즈마가 형성된다.
도 5는 상기 도 2의 플라즈마 반응기에 장착된 페라이트 코어의 일실시예를 나타낸 대한 사시도이고, 도 6은 상기 도 5의 플라즈마 반응기에 대한 단면도이고, 도 7은 상기 도 2의 플라즈마 반응기에 장착된 페라이트 코어의 다른 실시예를 나타낸 대한 사시도이고,도 8은 상기 도 7의 플라즈마 반응기에 대한 단면도이다.
도 5 내지 도 8의 플라즈마 반응기(10)의 구성 요소에 대한 설명은 전술한 바와 같이 중복되므로 자세한 설명을 생략하기로 한다.
도 5 및 도 6을 참고하면, 플라즈마 반응기(10)는 플라즈마 처리의 효율을 향상시키기 위해 페라이트 코어(21)와 별도로 반응기 몸체(11)의 외주면을 둘러싸는 원통형 페라이트 코어(21a)를 장착할 수 있다. 이때, 원통형 페라이트 코어(21a)는 코일(22a)이 권선된다.
도 7 및 도 8을 참고하면, 플라즈마 반응기(10)는 플라즈마 처리의 효율을 향상시키기 위해 반응기 몸체(11)의 캐비티에 위치할 뿐만 아니라 외주면을 둘러싸는 일체형 구조로 'm'자 형상을 나타내는 m자형 페라이트 코어(21b)를 장착할 수 있다. 이때, m자형 페라이트 코어(21b)는 외주면측에 제1 코일(22b-1)이 권선되고, 캐비티측에 제2 코일(22b-2)이 권선된다. 즉, m자형 페라이트 코어(21b)는 캐비티에 삽입된 부분과 외주면을 둘러싸는 부분으로 구분되며, 이들에 각각 제1 코일(22b-1)과 제2 코일(22b-2)이 권선된다. 가스 입구(12)는 m자형 페라이트 코어(21b)를 관통하여 반응기 몸체(11)에 연결된다.
한편, 도 6을 참고하면, 원통형 페라이트 코어(21a)에 권선된 코일(22a)에 전원을 공급하는 전원공급원(30)은 페라이트 코어(21)에 권선된 코일(22)에 전원을 공급하는 전원공급원(20)과 개별 전원이거나 동일한 전원일 수 있다. 페라이트 코어(21)에 권선된 코일(22)과 원통형 페라이트 코어(21a)에 권선된 코일(22a)은, 전원공급원(30)에 병렬 또는 직렬로 연결될 수 있다.
마찬가지로, 도 8을 참고하면, 캐비티측에 권선된 제2 코일(22b-2)에 전원을 공급하는 전원공급원(30)은 외주면측에 권선된 제1 코일(22b-1)에 전원을 공급하는 전원공급원(20)과 개별 전원이거나 동일한 전원일 수 있다. 외주면측에 권선된 제1 코일(22b-1)과 캐비티측에 권선된 제2 코일(22b-2)은, 전원공급원(30)에 병렬 또는 직렬로 연결될 수 있다.
도 9는 본 발명의 다른 실시예에 따른 플라즈마 반응기에 대한 사시도이고, 도 10은 상기 도 9의 플라즈마 반응기에 대한 A-A'선 종방향 단면도이고, 도 11은 상기 도 9의 플라즈마 반응기에 대한 B-B'선 횡방향 단면도이다.
도 9 내지 도 11을 참조하면, 플라즈마 반응기(10-1)는 플라즈마 방전 공간(24-1)과 가스 입구(12-1) 및 가스 출구(16-1)를 갖는 반응기 몸체(11-1)를 구비한다. 이에 대한 자세한 설명은 앞서 설명한 바와 중복되므로 생략하기로 한다.
페라이트 코어(21-1)는 반응기 몸체(11-1)의 캐비티(23-1) 내부 즉, 반응기 몸체(11-1)의 안쪽 곡면 부분에 위치할 수 있다.
제1 면 전극(22-1)은 반응기 몸체(11-1)의 바깥쪽 영역을 따라 권취되어 장착될 수 있고, 제2 면 전극(22-2)은 페라이트 코어(21-1)에 권취되어 작창될 수 있다. 제1 및 제2 면 전극(22-1,22-2)은 구리판(22-1a)과 구리판(22-1a)를 절연시키는 절연부재(22-1b)로 구성될 수 있다. 여기서, 절연 부재(22-1b)는 일례로, 테프론, 세라믹 등일 수 있다. 제1 및 제2 면 전극(22-1,22-2)은 전원 공급원(30)이 병렬 또는 직렬로 연결될 수 있다.
제1 면 전극(22-1)과 제2 면 전극(22-2)은 양자 사이에 발생되는 전위차에 의해 전기장(E1)이 반응기 몸체(11-1)의 플라즈마 방전 공간(24-1)으로 제공된다. 이와 더불어, 면 전극(22-1)에 의한 소정의 턴수(일례로, 투턴 등)로 제공되는 전류 경로에 의해 형성되는 자기장(H1)은 반응기 몸체(11-1)로 집속된다. 이때, 자기장(H1)은 반응기 몸체(11-1)가 제공하는 플라즈마 방전 공간(24-1)의 내부에서 전기장(E2)를 형성시킨다. 그러므로 반응기 몸체(11-1)의 내부 플라즈마 방전 공간(24-1)에는 용량 결합 및 유도 결합된 플라즈마가 복합적으로 형성된다. 이 경우에, 플라즈마 반응기(10-1)는 유도 결합된 플라즈마와 변압기 결합된 플라즈마를 혼합적으로 발생하는 하이브리드 플라즈마 소스를 제공함으로써 파티클 발생을 저감시킬 수 있다.
반응기 몸체(11)는 금속 재질(Al 등)인 경우에, 횡방향으로 전기적 절연 구간을 가지거나, 바깥쪽 영역과 안쪽 영역 전체를 절연부재로 커버할 수 있다. 아울러, 반응기 몸체(11)는 석영 또는 질화알루미늄(AlN) 등과 같은 유전체 물질로 구성될 수 있다. 또는 적절한 대체재료를 사용하여 구성할 수도 있다.
도 12는 상기 도 1에 적용되는 가스 분배부에 대한 도면이고, 도 13 내지 도 15는 상기 도 12의 가스 분배부의 C-C'선 단면도이다.
도 12를 참조하면, 플라즈마 반응기(10)는 반응기 몸체(11)의 상부에 가스 분배부(15)를 포함할 수 있다. 가스 분배부(15)는 가스 입구(12)를 통해 공급되는 가스를 플라즈마 방전 공간 내부에 균일하게 가스를 분배시키기 위한 배플 구조를 구비하고 있다. 가스 분배부(15)는 반응기 몸체(11)와 착탈되어 유지 보수에 용이하다.
도 13 내지 도 15에서는 가스 분배부(15)에서 가스 분배를 균일하게 하는 배플 구조를 도시한다. 가스 분배부(15)의 전체적으로 균일한 가스 분배를 위한 가스 유로(15a 내지 15c)를 형성한다.
도 13에서 가스 분배부(15)의 가스 유로(15a)는 전체적으로 동일한 크기의 유로를 균일하게 분포할 수 있다. 도 14에서 가스 분배부(15)의 가스 유로(15b)는 도 9의 가스 유로(15a)와 마찬가지로 동일한 크기의 유로를 균일하게 분포할 수 있으나, 유로의 형태를 다양한 형태로 나타낼 수 있다. 도 15에서 가스 분배부(15)의 가스 유로(15c)는 가스 입구(12)로부터 공급된 가스가 직접 닿는 영역의 유로를 가장 좁게 형성하고, 그 이외의 영역의 유로를 점점 넓혀서 형성함으로써, 유로의 크기를 상이하게 설계할 수 있다. 이외에도 다양한 형태의 유로가 형성될 수 있음은 당업자라면 쉽게 이해할 수 있을 것이다.
이상에서 설명된 본 발명의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그럼으로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.
10 : 플라즈마 반응기 11 : 반응기 몸체
12 : 가스 입구 16 : 가스 출구
21 : 페라이트 코어 22 : 코일
23 : 캐비티 24 : 플라즈마 방전 공간
30 : 전원 공급원 40 : 공정 챔버

Claims (9)

  1. 바깥쪽 영역과 안쪽 영역 사이에 플라즈마 방전 공간을 형성하고, 상기 안쪽 곡면 부분에 의해 캐비티 구조가 형성되는 반응기 몸체;
    상기 반응기 몸체의 일측에 플라즈마 방전 공간과 연결되는 가스 입구;
    상기 반응기 몸체의 타측에 플라즈마 방전 공간과 연결되는 가스 출구;
    상기 반응기 몸체의 캐비티 내부에 코일이 권선된 페라이트 코어를 위치시키는 플라즈마 소스; 및
    상기 코일에 전원을 공급하는 전원공급원
    을 포함하는 캐비티 구조를 갖는 플라즈마 반응기.
  2. 바깥쪽 영역과 안쪽 영역 사이에 플라즈마 방전 공간을 형성하고, 상기 안쪽 곡면 부분에 의해 캐비티 구조가 형성되는 반응기 몸체;
    상기 반응기 몸체의 일측에 플라즈마 방전 공간과 연결되는 가스 입구;
    상기 반응기 몸체의 타측에 플라즈마 방전 공간과 연결되는 가스 출구;
    상기 반응기 몸체의 캐비티 내부에 제1 면 전극이 권취된 페라이트 코어를 위치시키고, 상기 반응기 몸체의 바깥쪽 영역을 따라 제2 면 전극을 권취시키는 플라즈마 소스; 및
    상기 면 전극에 전원을 공급하는 전원공급원
    을 포함하는 캐비티 구조를 갖는 플라즈마 반응기.
  3. 제 2 항에 있어서,
    상기 제1 및 제2 면 전극은,
    소정의 턴수로 제공되는 전류 경로에 의해 형성되어 플라즈마 방전 공간에 유도 결합된 플라즈마를 형성하는 캐비티 구조를 갖는 플라즈마 반응기.
  4. 제 2 항에 있어서,
    상기 제1 및 제2 면 전극은 구리판과 절연부재로 구성되며, 상기 구리판은 절연부재에 의해 절연되는 캐비티 구조를 갖는 플라즈마 반응기.
  5. 제 1 항 또는 제 2 항에 있어서,
    상기 반응기 몸체는,
    종방향 단면이 도넛 형상이고 횡방향 단면이 U자 형상을 나타내는 역-종형(reverse bell-shape)인 캐비티 구조를 갖는 플라즈마 반응기.
  6. 제 1 항 또는 제 2 항에 있어서,
    상기 반응기 몸체는 유전체 물질로 구성되는 캐비티 구조를 갖는 플라즈마 반응기.
  7. 제 1 항 또는 제 2 항에 있어서,
    상기 가스 입구를 통해 공급되는 가스를 플라즈마 방전 공간 내부에 균일하게 가스를 분배시키기 위한 배플 구조를 갖는 가스 분배부를 더 포함하는 캐비티 구조를 갖는 플라즈마 반응기.
  8. 제 1 항에 있어서,
    상기 반응기 몸체의 외주면에 코일이 권선된 페라이트 코어를 위치시키는 원통형 플라즈마 소스를 더 포함하는 캐비티 구조를 갖는 플라즈마 반응기.
  9. 제 1 항에 있어서,
    상기 페라이트 코어는,
    상기 반응기 몸체의 외주면에 일체형으로 장착되고, 상기 캐비티에 삽입된 부분과 외부면을 둘러싸는 부분에 각각 코일이 권선되는 캐비티 구조를 갖는 플라즈마 반응기.
KR1020160080695A 2016-06-28 2016-06-28 캐비티 구조를 갖는 플라즈마 반응기 KR102636459B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160080695A KR102636459B1 (ko) 2016-06-28 2016-06-28 캐비티 구조를 갖는 플라즈마 반응기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160080695A KR102636459B1 (ko) 2016-06-28 2016-06-28 캐비티 구조를 갖는 플라즈마 반응기

Publications (2)

Publication Number Publication Date
KR20180001801A true KR20180001801A (ko) 2018-01-05
KR102636459B1 KR102636459B1 (ko) 2024-02-15

Family

ID=61001814

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160080695A KR102636459B1 (ko) 2016-06-28 2016-06-28 캐비티 구조를 갖는 플라즈마 반응기

Country Status (1)

Country Link
KR (1) KR102636459B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060066794A (ko) * 2004-12-14 2006-06-19 주식회사 뉴파워 프라즈마 외부 방전 브릿지를 구비하는 유도 플라즈마 소오스
KR100731994B1 (ko) * 2006-02-23 2007-06-27 주식회사 뉴파워 프라즈마 매설된 외부 페라이트 코어를 구비하는 플라즈마 처리 챔버
KR20130051027A (ko) * 2011-11-09 2013-05-20 최대규 하이브리드 플라즈마 반응기
KR20130117490A (ko) * 2012-04-18 2013-10-28 최대규 다중방전관을 갖는 플라즈마 반응기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060066794A (ko) * 2004-12-14 2006-06-19 주식회사 뉴파워 프라즈마 외부 방전 브릿지를 구비하는 유도 플라즈마 소오스
KR100731994B1 (ko) * 2006-02-23 2007-06-27 주식회사 뉴파워 프라즈마 매설된 외부 페라이트 코어를 구비하는 플라즈마 처리 챔버
KR20130051027A (ko) * 2011-11-09 2013-05-20 최대규 하이브리드 플라즈마 반응기
KR20130117490A (ko) * 2012-04-18 2013-10-28 최대규 다중방전관을 갖는 플라즈마 반응기

Also Published As

Publication number Publication date
KR102636459B1 (ko) 2024-02-15

Similar Documents

Publication Publication Date Title
JP6539113B2 (ja) プラズマ処理装置およびプラズマ処理方法
US10090160B2 (en) Dry etching apparatus and method
CN102832095B (zh) 等离子处理装置
KR101314666B1 (ko) 하이브리드 플라즈마 반응기
KR101314667B1 (ko) 자속 채널 결합 플라즈마 반응기
KR20180001799A (ko) 복합 플라즈마 소스를 갖는 플라즈마 챔버
KR100803794B1 (ko) 마그네틱 코어 블록에 매설된 플라즈마 방전 튜브를 구비한유도 결합 플라즈마 소스
US8866390B2 (en) Hybrid plasma reactor
JP2012018921A (ja) プラズマ発生装置
KR20070104695A (ko) 다중 마그네틱 코어가 결합된 유도 결합 플라즈마 소스
KR20090009369A (ko) 히터가 설치된 유도 결합 플라즈마 소스를 구비한 플라즈마반응기
WO2007117122A1 (en) Compound plasma source and method for dissociating gases using the same
KR100806522B1 (ko) 유도 결합 플라즈마 반응기
KR101475502B1 (ko) 다중방전관을 갖는 플라즈마 반응기
KR100743842B1 (ko) 자속 채널에 결합된 플라즈마 챔버를 구비한 플라즈마반응기
KR102636459B1 (ko) 캐비티 구조를 갖는 플라즈마 반응기
KR101336796B1 (ko) 다중방전관을 갖는 플라즈마 반응기
KR102616743B1 (ko) 플라즈마 상태 측정 센서가 구비된 일체형 연결부를 갖는 플라즈마 챔버 및 플라즈마 상태 측정 센서가 구비된 어댑터
KR101336798B1 (ko) 다중 가스 공급 구조를 갖는 다중 방전관 플라즈마 반응기
KR101314670B1 (ko) 하이브리드 플라즈마 반응기
KR101314669B1 (ko) 하이브리드 플라즈마 반응기
KR100777841B1 (ko) 향상된 수직 식각 성능을 갖는 유도 결합 플라즈마 반응기
KR100772447B1 (ko) 내장 마그네틱 코어를 갖는 유도 결합 플라즈마 소스
KR100980288B1 (ko) 자기 조절 메커니즘을 구비한 플라즈마 처리 장치
KR20170134012A (ko) 챔버블럭을 이용하여 플라즈마 점화가 가능한 플라즈마 챔버

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right