KR20130117490A - 다중방전관을 갖는 플라즈마 반응기 - Google Patents

다중방전관을 갖는 플라즈마 반응기 Download PDF

Info

Publication number
KR20130117490A
KR20130117490A KR1020120040197A KR20120040197A KR20130117490A KR 20130117490 A KR20130117490 A KR 20130117490A KR 1020120040197 A KR1020120040197 A KR 1020120040197A KR 20120040197 A KR20120040197 A KR 20120040197A KR 20130117490 A KR20130117490 A KR 20130117490A
Authority
KR
South Korea
Prior art keywords
discharge tube
plasma
plasma reactor
tube
power supply
Prior art date
Application number
KR1020120040197A
Other languages
English (en)
Other versions
KR101336796B1 (ko
Inventor
최대규
Original Assignee
최대규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최대규 filed Critical 최대규
Priority to KR1020120040197A priority Critical patent/KR101336796B1/ko
Priority to US13/730,277 priority patent/US8853948B2/en
Publication of KR20130117490A publication Critical patent/KR20130117490A/ko
Application granted granted Critical
Publication of KR101336796B1 publication Critical patent/KR101336796B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32899Multiple chambers, e.g. cluster tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/32119Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명의 다중방전관을 갖는 플라즈마 반응기는 다중 방전관을 구비하여 플라즈마를 발생함으로서 1 torr 이하의 저기압에서부터 10 torr 이상의 고기압에 이르기 까지 넓은 범위의 기압 조건에서 안정적으로 대용량의 플라즈마를 발생할 수 있다. 변압기 결합 플라즈마 소스 이외에 유도 결합 플라즈마 소스 또는 용량 결합 플라즈마 소스를 부가하게 되면 저압 영역에서 고압 영역까지 폭넓은 동작 영역을 안정적으로 얻을 수 있다. 두 개의 플라즈마 소스를 하나의 전원 공급원으로 효과적으로 동작시킬 수 있으며, 변압기 결합 플라즈마 소스와 다른 플라즈마 소스가 혼합된 구조에서 선택적으로 어느 하나만을 구동하거나 혼합된 구동이 가능하다.

Description

다중방전관을 갖는 플라즈마 반응기{PLASMA REACTOR HAVING MULTI DISCHARGING TUBE}
본 발명은 플라즈마 방전에 의하여 이온, 자유 래디컬, 원자 및 분자를 포함하는 활성 가스를 발생 시키고 그 활성 가스로 고체, 분말, 가스 등에 대한 플라즈마 처리를 하기 위한 플라즈마 반응기에 관한 것으로, 구체적으로는 다중 방전관을 갖는 플라즈마 반응기에 관한 것이다.
플라즈마 방전은 이온, 자유 래디컬, 원자, 분자를 포함하는 활성 가스를 발생하기 위한 가스 여기에 사용되고 있다. 활성 가스는 다양한 분야에서 널리 사용되고 있으며 대표적으로 반도체 제조 공정 예들 들어, 식각, 증착, 세정, 에싱 등 다양하게 사용되고 있다.
최근, 반도체 장치의 제조를 위한 웨이퍼나 LCD 글라스 기판은 더욱 대형화 되어 가고 있다. 그럼으로 플라즈마 이온 에너지에 대한 제어 능력이 높고, 대면적의 처리 능력을 갖는 확장성이 용이한 플라즈마 소스가 요구되고 있다. 플라즈마를 이용한 반도체 제조 공정에서 원격 플라즈마의 사용은 매우 유용한 것으로 알려져 있다. 예를 들어, 공정 챔버의 세정이나 포토레지스트 스트립을 위한 에싱 공정에서 유용하게 사용되고 있다.
원격 플라즈마 반응기(또는 원격 플라즈마 발생기라 칭함)는 변압기 결합 플라즈마 소스(transformer coupled plasma)를 사용한 것과 유도 결합 플라즈마 소스(inductively coupled plasma source)를 사용한 것이 있다. 변압기 결합 플라즈마 소스(transformer coupled plasma source)를 사용한 원격 플라즈마 반응기는 토로이달 구조의 반응기 몸체에 일차 권선 코일을 갖는 마그네틱 코어가 장착된 구조를 갖는다. 유도 결합 플라즈마 소스를 사용한 원격 플라즈마 반응기는 중공형 튜브 구조의 반응기 몸체에 유도 결합 안테나가 장착된 구조를 갖는다.
변압기 결합 플라즈마 소스를 갖는 원격 플라즈마 반응기의 경우에는 그 특성상 비교적 고압 분위기에서 동작하기 때문에 저압 분위기에서는 플라즈마 점화나 점화된 플라즈마를 유지하기가 어렵다. 유도 결합 플라즈마 플라즈마 소스를 갖는 원격 플라즈마 반응기의 경우에는 그 특성상 비교적 저압 분위기에서 동작이 가능하나 고압 분위기에서 동작하기 위해서는 공급 전력을 높게 하여야 하나 이러한 경우 반응기 몸체의 내부가 이온 충격에 의해 손상될 수도 있다.
그러나, 반도체 제조 공정의 다양한 요구에 따라 저압 또는 고압에서 효율적으로 동작하는 원격 플라즈마 반응기가 요구되고 있으나 변압기 결합 플라즈마 소스나 유도 결합 플라즈마 소스 중 어느 하나를 채용한 종래의 원격 플라즈마 반응기로는 적절하게 대응할 수 없었다. 또한 피처리 기판의 대형화에 따라 공정 챔버의 볼륨도 증가되고 있어서 고밀도의 활성 가스를 충분히 원격으로 공급할 수 있는 플라즈마 소스가 요구되고 있다.
반도체 장치의 생산 효율을 높이기 위하여 둘 이상의 피처리 기판을 병렬로 처리하기 위하여 둘 이상의 공정 챔버를 병렬로 구비하는 기판 처리 시스템이 제공되고 있다. 이때 둘 이상의 공정 챔버로 원격에서 활성화된 이온 가스를 공급하려는 경우 각각의 챔버에 개별적으로 플라즈마 반응기를 탑재할 수 있다. 그러나 이 경우에는 장비비가 증가되는 문제점이 있다. 반면 하나의 플라즈마 반응기를 사용하여 둘 이상의 공정 챔버로 활성화된 이온 가스를 공급하는 경우에는 대용량의 플라즈마 반응기를 사용하여야 하는데 기존의 플라즈마 반응기로는 대용량의 이온화된 가스를 발생하여 공급하는 것이 어려웠다.
한편, 반도체 제조 공정에 따라 서로 다른 종류의 공정 가스를 혼합하여 이온화하는 경우보다 분리하여 이온화하는 것이 공정 효율을 높일 수 있는 경우가 있다. 이러한 경우 하나의 플라즈마 반응기에서 이 목적을 달성할 수가 없었다.
본 발명의 목적은 대용량의 고밀도의 활성 가스를 충분히 원격으로 공급할 수 있는 다중방전관을 갖는 플라즈마 반응기를 제공하는데 있다.
본 발명의 다른 목적은 변압기 결합 플라즈마 소스 이외에도 유도 결합 플라즈마 소스 또는 용량 결합 플라즈마 소스를 병렬로 장착하여 저압 영역에서 고압 영역까지 폭넓은 동작 영역을 갖도록 하이브리드형의 다중 방전관을 갖는 플라즈마 반응기를 제공하는데 있다.
본 발명의 또 다른 목적은 둘 이상의 분리된 플라즈마 방전 경로를 제공하여 각가의 방전 경로에서 독립적으로 이온화된 활성 가스를 발생시켜 공정 챔버로 공급할 수 있는 플라즈마 발생기를 제공하는데 있다.
상기한 기술적 과제를 달성하기 위한 본 발명의 일면은 다중 방전관을 갖는 플라즈마 반응기에 관한 것이다. 본 발명의 일면에 따른 다중 방전관을 갖는 플라즈마 반응기는 가스 입구를 갖는 중공의 상부 방전관; 가스 출구를 갖는 중공의 하부 방전관; 상기 상부 방전관과 상기 하부 방전관 연결되는 복수개의 방전관 브리지; 상기 방전관 브리지에 장착되며 일차 권선 코일이 권선된 마그네틱 코어를 갖는 변압기 결합 플라즈마 소스; 및 상기 일차 권선 코일로 플라즈마 발생 전력을 공급하는 교류 스위칭 전원 공급원을 포함한다.
일 실시예에 있어서, 상기 상부 방전관에 일부에 형성된 개구부에 장착되는 유전체 평판 윈도우와 상기 유전체 윈우에 근접하여 설치되는 유도 안테나 평판 코일를 갖는 유도 결합 플라즈마 소스를 더 포함하고, 상기 유도 안테나와 상기 일차 권선 코일은 상기 교류 스위칭 전원 공급원에 직렬 또는 병렬로 연결된다.
일 실시예에 있어서, 상기 상부 방전관의 일부에 형성된 개구부에 장착되는 유전체 관과 상기 유전체 관에 권선되는 유도 안테나를 갖는 유도 결합 플라즈마 소스를 더 포함하고, 상기 유도 안테나와 상기 일차 권선 코일은 상기 교류 스위칭 전원 공급원에 대하여 직렬 또는 병렬로 연결된다.
일 실시예에 있어서, 상기 상부 방전관의 일부에 형성된 적어도 두 개의 개구부에 장착되는 용량 결합 전극을 포함하고, 상기 용량 결합 전극과 상기 일차 권선 코일은 상기 교류 스위칭 전원 공급원에 대하여 직렬 또는 병렬로 연결된다.
일 실시예에 있어서, 상기 다중방전관과 상기 상부방전관 사이 또는 상기 다중방전관과 상기 하부방전관 사이에 구비되는 하나 이상의 전기적 절연부재를 포함한다.
일 실시예에 있어서, 상기 상부 방전관은 서로 독립된 둘 이상의 방전 공간을 갖도록 내부를 구획하는 제1 격벽을 포함한다.
일 실시예에 있어서, 상기 하부 방전관은 서로 독립된 둘 이상의 방전 공간을 갖도록 내부를 구획하는 제2 격벽을 포함한다.
본 발명의 다중방전관을 갖는 플라즈마 반응기는 다중 방전관을 구비하여 플라즈마를 발생함으로서 1 torr 이하의 저기압에서부터 10 torr 이상의 고기압에 이르기 까지 넓은 범위의 기압 조건에서 안정적으로 대용량의 플라즈마를 발생할 수 있다. 플라즈마 반응기는 상부 방전관과 하부 방전관의 내부에 격벽을 설치하여 둘 이상의 독립된 방전 구역을 갖도록 할 수 있다. 이와 같이 구성한 경우 서로 다른 가스를 각각 독립된 방전 영역에서 활성화 시켜서 공정 챔버로 개별적으로 공급할 수 있다. 이와 같은 구조는 서로 다른 가스를 혼합하여 이온화하는 경우 공정 효율이 저하되거나 문제가 되는 경우에 효과적으로 사용될 수 있다. 변압기 결합 플라즈마 소스 이외에 유도 결합 플라즈마 소스 또는 용량 결합 플라즈마 소스를 부가하게 되면 저압 영역에서 고압 영역까지 폭넓은 동작 영역을 안정적으로 얻을 수 있다. 두 개의 플라즈마 소스를 하나의 전원 공급원으로 효과적으로 동작시킬 수 있으며, 변압기 결합 플라즈마 소스와 다른 플라즈마 소스가 혼합된 구조에서 선택적으로 어느 하나만을 구동하거나 혼합된 구동이 가능하다.
도 1은 본 발명의 다중 방전관을 갖는 플라즈마 반응기와 이를 구비한 플라즈마 처리 시스템의 전반적인 구성을 보여주는 블록도이다.
도 2는 본 발명의 제1 실시예에 따른 다중 방전관을 갖는 플라즈마 반응기의 분리 사시도이다.
도 3은 도 2의 플라즈마 반응기의 조립된 사시도이다.
도 4는 도 2의 플라즈마 반응기의 단면도이다.
도 5는 도 2의 마그네틱 코어에 권선된 일차 권선 코일에 흐르는 전류에 따른 유도 자속을 설명하기 위한 도면이다.
도 6은 방전관 브리지에 냉각수 공급 채널을 구성한 예를 보여주는 부분 절개 사시도이다.
도 7은 본 발명의 제2 실시예에 따른 다중 방전관을 갖는 플라즈마 반응기의 분리 사시도이다.
도 8는 도 7의 플라즈마 반응기의 조립 사시도이다.
도 9는 도 7의 플라즈마 반응기의 단면도이다.
도 10은 본 발명의 제3 실시예에 따른 다중 방전관을 갖는 플라즈마 반응기의 사시도이다.
도 11은 도 10의 플라즈마 반응기의 단면도이다.
도 12는 본 발명의 제4 실시예에 따른 다중 방전관을 갖는 플라즈마 반응기의 사시도이다.
도 13은 도 12의 플라즈마 반응기의 단면도이다.
도 14는 본 발명의 제5 실시예에 따른 다중 방전관을 갖는 플라즈마 반응기의 사시도이다.
도 15는 도 14의 플라즈마 반응기의 단면도이다.
본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공 되어지는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 구성은 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.
도 1은 본 발명의 다중 방전관을 갖는 플라즈마 반응기와 이를 구비한 플라즈마 처리 시스템의 전반적인 구성을 보여주는 블록도이다.
도 1을 참조하여, 본 발명의 다중 방전관을 갖는 플라즈마 반응기(10)는 공정 챔버(40)의 외부에 설치되어 원격으로 플라즈마 가스를 공정 챔버(40)로 공급한다. 플라즈마 반응기(10)는 상부 방전관(11)과 하부 방전관(12) 그리고 복수개의 방전관 브리지(13)로 구성되는 다중 방전관을 구비한다. 복수개의 방전관 브리지(13)는 상부 방전관(11)과 하부 방전관(12)을 연결하여 복수개의 방전 경로를 제공한다. 복수개의 방전관 브리지(13)에는 일차 권선 코일(21)을 갖는 마그네틱 코어(22)가 장착되어 변압기 결합 플라즈마 소스(20)를 구성한다.
플라즈마 반응기(10)의 상부 방전관(11)에는 가스 입구(14)가 하부 방전관(12)에는 가스 출구(15)가 구비된다. 가스 출구(15)는 어댑터(48)를 통하여 공정 챔버(40)의 챔버 가스 입구(47)에 연결된다. 플라즈마 반응기(10)에서 발생된 플라즈마 가스는 어댑터(48)를 통하여 공정 챔버(40)로 공급된다. 플라즈마 반응기(10)는 다중 방전관을 구비하여 플라즈마를 발생함으로서 1 torr 이하의 저기압에서부터 10 torr 이상의 고기압에 이르기 까지 넓은 범위의 기압 조건에서 안정적으로 대용량의 플라즈마를 발생할 수 있다.
공정 챔버(40)는 내부에 피처리 기판(44)을 지지하는 기판 지지대(42)가 구비된다. 기판 지지대(42)는 임피던스 정합기(74)를 통하여 하나 이상의 바이어스 전원 공급원(70, 72)에 전기적으로 연결될 수 있다. 어댑터(48)는 전기적 절연을 위한 절연 구간을 구비할 수 있으며, 과열을 방지하기 위한 냉각 채널을 구비할 수 있다. 공정 챔버(40)는 내부에 기판 지지대(42)와 챔버 가스 입구(47) 사이에 플라즈마 가스 분배를 위한 배플(46)을 구비한다. 배플(46)은 챔버 가스 입구(47)를 통하여 유입된 플라즈마 가스가 균일하게 분배되어 피처리 기판으로 확산되게 한다. 피처리 기판(44)은 예를 들어, 반도체 장치를 제조하기 위한 실리콘 웨이퍼 기판 또는 액정 디스플레이나 플라즈마 디스플레이 등의 제조를 위한 유리 기판이다.
하이브리드 플라즈마 소스(20)는 전원 공급원(30)으로부터 무선 주파수를 공급받아 동작한다. 전원 공급원(30)은 하나 이상의 스위칭 반도체 장치를 구비하여 무선 주파수를 발생하는 교류 스위칭 전원 공급원(AC switching power supply)(32)과 제어 회로(power control circuit)(33) 및 전압 공급원(31)을 포함한다. 하나 이상의 스위칭 반도체 장치는 예를 들어, 하나 이상의 스위칭 트랜지스터를 포함한다. 전압 공급원(31)은 외부로 부터 입력되는 교류 전압을 정전압으로 변환하여 교류 스위칭 전원 공급원(32)으로 공급한다. 교류 스위칭 전원 공급원(32)은 제어 회로(33)의 제어를 받아 동작하며 무선 주파수를 발생한다.
제어 회로(33)는 교류 스위칭 전원 공급원(32)의 동작을 제어하여 무선 주파수의 전압 및 전류를 제어한다. 제어 회로(33)의 제어는 변압기 결합 플라즈마 소스(20)와 플라즈마 반응기(10)의 내부에서 발생되는 플라즈마 중 적어도 하나와 관련된 전기적 또는 광학적 파라미터 값에 기초하여 이루어진다. 이를 위하여 제어 회로(33)는 전기적 또는 광학적 파라미터 값을 측정하기 위한 측정 회로가 구비된다. 예를 들어, 플라즈마의 전기적 및 광학적 파라미터를 측정하기 위한 측정 회로는 전류 프로브와 광학 검출기를 포함한다. 변압기 결합 플라즈마 소스(20)의 전기적 파라미터를 측정하기 위한 측정 회로는 변압기 결합 플라즈마 소스(20)의 구동 전류, 구동 전압, 평균 전력과 최대 전력, 전압 공급원(31)에서 발생된 전압 등을 측정한다.
제어 회로(33)는 측정 회로를 통하여 관련된 전기적 또는 광학적 파라미터 값을 지속적으로 모니터링하고 측정된 값과 정상 동작에 기준한 기준 값과 비교하면서 교류 스위칭 전원 공급원(32)을 제어하여 무선 주파수의 전압 및 전류를 제어한다. 구체적으로 도시하지는 않았으나 전원 공급원(30)에는 비정상적인 동작 환경에 의해 발생될 수 있는 전기적 손상을 방지하기 위한 보호회로가 구비된다. 전원 공급원(30)은 플라즈마 처리 시스템의 전반을 제어하는 시스템 제어부(60)와 연결된다. 전원 공급원(30)은 플라즈마 반응기(10)의 동작 상태 정보를 시스템 제어부(60)로 제공한다. 시스템 제어부(60)는 플라즈마 처리 시스템의 동작 과정 전반을 제어하기 위한 제어 신호(62)를 발생하여 플라즈마 반응기(10)와 공정 챔버(40)의 동작을 제어한다.
플라즈마 반응기(10)와 전원 공급원(30)은 물리적으로 분리된 구조를 갖는다. 즉, 플라즈마 반응기(10)와 전원 공급원(30)은 무선 주파수 공급 케이블(35)에 의해서 상호 전기적으로 연결된다. 이러한 플라즈마 반응기(10)와 전원 공급원(30)의 분리 구조는 유지 보수와 설치의 용이성을 제공한다. 그러나 플라즈마 반응기(10)와 전원 공급원(30)이 일체형 구조로 제공될 수도 있다.
도 2는 본 발명의 제1 실시예에 따른 다중 방전관을 갖는 플라즈마 반응기의 분리 사시도이고, 도 3은 도 2의 플라즈마 반응기의 조립된 사시도이다. 그리고 도 4는 도 2의 플라즈마 반응기의 단면도이다.
도 2 내지 도 4를 참조하여, 본 발명의 제1 실시예에 따른 플라즈마 반응기(10a)는 원격으로 플라즈마 가스를 공정 챔버(40)로 공급한다. 플라즈마 반응기(10a)는 상부 방전관(11)과 하부 방전관(12) 그리고 복수개의 방전관 브리지(13)로 구성되는 다중 방전관을 구비한다. 예를 들어, 네 개의 방전관 브리지(13)가 상부 방전관(11)의 개구부(18)와 하부 방전관(12)의 개구부(16)를 연결하여 복수개의 방전 경로를 제공한다. 복수개의 방전관 브리지(13)에는 일차 권선 코일(21)을 갖는 마그네틱 코어(22)가 장착되어 변압기 결합 플라즈마 소스(20)를 구성한다. 방전관 브리지(13) 모두에 마그네틱 코어(22) 장착되지 않을 수도 있다. 또한 방전관 브리지(13)의 증감이 가능하다.
4개의 방전관 브리지(13)가 구비되고, 각각의 방전관 브리지(13)에 일차 권선(21)을 갖는 마그네틱 코어(22)가 장착된 경우 일차 권선 코일(21)에 흐르는 전류의 방향에 따라 변화되는 자속의 방향을 예시적으로 첨부도면 도 5에 도시하였다. 도 5에 도시된 바와 같이, 하나의 방전관 브리지(13)는 마주 대향된 것과는 동일한 방향으로 이웃한 것과는 반대 방향으로 자속이 유도됨으로 서로 이웃한 방전관 브리지(13)는 쌍을 이루어 방전 경로를 형성하게 된다. 방전관 브리지(13)는 튜브 구조를 갖는데 튜브의 내부에는, 도 6에 도시된 바와 같이, 냉각 채널(13a)이 구비되고 외측에 냉각수 입구(13b)가 마련된다.
상부 방전관(11)에는 가스 입구(14)가 구비되고, 하부 방전관(12)에는 공정 챔버(40)와 연결되는 가스 출구(15)가 구비된다. 가스 공급원(미도시)으로부터 공정 가스가 공급되면 상부 방전관(11)으로 유입되고, 다수개의 방전관 브리지(13)를 통하여 분배되어 하부 방전관(12)으로 흐른다. 전원 공급원(30)으로부터 플라즈마 발생을 위한 전력이 일차 권선(21)으로 공급되면, 상부 방전관(11)과 다수개의 방전관 브리지(13) 및 하부 방전관(12)을 경유하는 방전 경로를 따라서 플라즈마 방전이 이루진다.
본 발명의 제1 실시예에 따른 플라즈마 반응기(10a)는 다중 방전관 구조를 갖고, 다수개의 방전관 브리지(13)에 일차 권선(21)을 갖는 마그네틱 코어(22)를 장착할 수 있기 때문에 대용량의 활성 가스를 발생할 수 있다. 상부 방전관(11)과 하부 방전관(12) 및 다수개의 방전관 브리지(13)는 알루미늄, 스테인리스, 구리와 같은 금속 물질로 재작될 수 있다. 또는 코팅된 금속 예를 들어, 양극 처리된 알루미늄이나 니켈 도금된 알루미늄으로 재작될 수도 있다.
상부 방전관(11)과 하부 방전관(12) 및 다수개의 방전관 브리지(13)가 전체적으로 금속 물질로 재작되는 경우에는 적절한 위치에 절연갭(17)을 구성하는 것이 바람직한다. 예를 들어, 상부 방전관(11)과 방전관 브리지(13) 사이에 또는 하부 방전관(12)과 방전과 브리지(13) 사이에 절연 갭(17)을 구성할 수 있다. 또는 방전관 브리지(13)의 중간 영역에 절연 갭(17)을 구성할 수도 있다. 절연 갭(17)을 구성하면 플라즈마 방전 경로를 따라서 플라즈마 반응기(10a)에 와류가 유도되는 것을 차단할 수 있다.
상부 방전관(11)과 하부 방전관(12) 및 다수개의 방전관 브리지(13)는 탄소나노튜브가 공유 결합된 복합 금속을 사용할 수도 있다. 또는 내화 금속(refractory metal)로 재작될 수도 있다. 또는 전체적 또는 부분적으로 석영, 세라믹과 같은 전기적 절연 물질로 재작하는 것도 가능하다. 이와 같이 플라즈마 반응기(10a)는 의도된 플라즈마 프로세스가 수행되기에 적합한 어떠한 물질로도 제작될 수 있다.
플라즈마 반응기(10a)의 구조는 피처리 기판(13)에 따라 그리고 플라즈마의 균일한 발생을 위하여 적합한 구조 예를 들어, 원형 구조나 사각형 구조 그리고 이외에도 어떠한 형태의 구조를 가질 수 있다. 피처리 기판(44)은 예를 들어, 반도체 장치, 디스플레이 장치, 태양전지 등과 같은 다양한 장치들의 제조를 위한 웨이퍼 기판, 유리 기판, 플라스틱 기판 등과 같은 기판들이다.
도면에는 도시 하지 않았으나, 이상과 같은 플라즈마 반응기(10a)는 상부 방전관(11)과 하부 방전관(12)의 내부에 격벽(11a, 12a)을 설치하여 둘 이상의 독립된 방전 구역을 갖도록 할 수 있다. 그리고 각각의 독립된 방전 구역에 대응하여 복수개의 가스 입구(14a, 14b)가 상부 방전관(11)에 연결되어 서로 다른 가스를 각각 독립된 방전 영역에서 활성화 시켜서 공정 챔버(40)로 공급할 수 있다. 이와 같은 구조는 서로 다른 가스를 혼합하여 이온화하는 경우 공정 효율이 저하되거나 문제가 되는 경우에 효과적으로 사용될 수 있다.
도 7은 본 발명의 제2 실시예에 따른 다중 방전관을 갖는 플라즈마 반응기의 분리 사시도이고, 도 8은 도 7의 플라즈마 반응기의 조립 사시도이다. 그리고 도 9는 도 7의 플라즈마 반응기의 단면도이다.
도 7 내지 도 9를 참조하여, 본 발명의 제2 실시예에 따른 플라즈마 반응기(10b)는 상술한 제1 실시예의 플라즈마 반응기(10a)의 구성과 기본적으로 동일하다. 그러나 제2 실시예의 플라즈마 반응기(10b)는 상부 방전관(11)의 외측 천정에 유도 결합 플라즈마 소스(50)가 설치된다. 상부 방전관(11)의 천정에는 윈도우 설치용 개구부(19)가 형성되고, 개구부(19)를 덮도록 유전체 평판 윈도우(52)가 설치된다. 유전체 윈도우(52)에 근접해서 유도 안테나 평판 코일(51)이 설치된다.
유도 결합 플라즈마 소스(50)의 유도 안테나 평판 코일(51)과 변압기 결합 플라즈마 소스(20)의 일차 권선(21)은 전원 공급원(30)이 직렬로 연결된다. 그러나 유도 안테나 평판 코일(51)과 일차 권선(21)은 전원 공급원(30)에 병렬로 연결될 수도 있다. 또는 스위칭 회로(미도시)를 구성하여, 직렬 또는 병렬로 선택적으로 연결되거나, 둘 중 어느 하나만이 선택적으로 연결되도록 할 수도 있다.
이와 같은 유도 결합 플라즈마 소스(50)를 부가하게 되면 저압 영역에서 고압 영역까지 폭넓은 동작 영역을 안정적으로 얻을 수 있다. 유도 결합 플라즈마 소스(50)에 의해서 저압 영역에서도 쉽게 플라즈마 점화를 발생하고 유지하며 변압기 결합 플라즈마 소스(20)에 의해서 고압 영역에서도 반응기 내부 손상 없이 대용량의 플라즈마를 유지할 수 있다. 두 개의 플라즈마 소스를 하나의 전원 공급원으로 효과적으로 동작시킬 수 있으며, 유도 결합 플라즈마 소스(50)와 변압기 결합 플라즈마 소스(20)가 혼합된 구조에서 선택적으로 어느 하나만을 구동하거나 혼합된 구동이 가능하다.
도 10은 본 발명의 제3 실시예에 따른 다중 방전관을 갖는 플라즈마 반응기의 사시도이고, 도 11은 도 10의 플라즈마 반응기의 단면도이다.
도 10 및 도 11을 참조하여, 본 발명의 제3 실시예에 따른 플라즈마 반응기(10c)는 상술한 제2 실시예와 달리 가스 입구를 겸하도록 유도 결합 플라즈마 소스(50b)가 상부 방전관(11)에 구비된다. 가스 입구를 겸하는 유전체 튜브(52a)가 상부 방전관(11)에 설치되고, 유전체 튜브(52a)에는 유도 안테나 권선 코일(51a)이 설치된다. 그럼으로 유전체 튜브(52a)를 통하여 유입되는 가스는 유전체 튜브(52a)를 통과하면서 바로 플라즈마 방전을 일으키는 구조를 갖게된다.
도 12는 본 발명의 제4 실시예에 따른 다중 방전관을 갖는 플라즈마 반응기의 사시도이고, 도 13은 도 12의 플라즈마 반응기의 단면도이다.
도 12 및 도 13을 참조하여, 본 발명의 제4 실시예에 따른 플라즈마 반응기(10d)는 상술한 제3 실시예와 달리 유전체 튜브(52b)가 가스 입구를 겸하지는 않는다. 상부 방전관(11)의 바닥에 개구부(54)를 개설하고, 여기에 유전체 튜브(52b)와 유도 안테나 권선 코일(51b)을 장착한다. 상부 방전관(11)의 내부에 국부적으로 유도 결합 플라즈마 소스(50b)에 의한 플라즈마가 지속적으로 유지되기 때문에 플라즈마 방전 유지 효율이 향상될 수 있다.
도 14는 본 발명의 제5 실시예에 따른 다중 방전관을 갖는 플라즈마 반응기의 사시도이고, 도 15는 도 14의 플라즈마 반응기의 단면도이다.
도 14 및 도 15를 참조하여, 본 발명의 제5 실시예에 따른 플라즈마 반응기(10e)는 상술한 제1 실시예의 플라즈마 반응기(10a)의 구성과 기본적으로 동일하다. 그러나 제5 실시예의 플라즈마 반응기(10e)는 상부 방전관(11)의 천정과 바닥에 각각 개구부(81, 82)를 구성하고, 여기에 용량 결합 전극(83, 84)을 갖는 용량 결합 플라즈마 소스(80)가 설치된다. 용량 결합 플라즈마 소스(80)의 용량 결합 전극(83, 84)과 변압기 결합 플라즈마 소스(20)의 일차 권선(26)은 전원 공급원(30)에 직렬로 연결된다. 그러나 용량 결합 전극(83, 84)과 일차 권선은 병렬로 연결될 수도 있다. 또는 스위칭 회로(미도시)를 구성하여, 직렬 또는 병렬로 선택적으로 연결되거나, 둘 중 어느 하나만이 선택적으로 연결되도록 할 수도 있다.
이와 같은 용량 결합 플라즈마 소스(50)를 부가하게 되면 저압 영역에서 고압 영역까지 폭넓은 동작 영역을 안정적으로 얻을 수 있다. 용량 결합 결합 플라즈마 소스(80)에 의해서 저압 영역에서도 쉽게 플라즈마 점화를 발생하고 유지하며 변압기 결합 플라즈마 소스(20)에 의해서 고압 영역에서도 반응기 내부 손상 없이 대용량의 플라즈마를 유지할 수 있다. 두 개의 플라즈마 소스를 하나의 전원 공급원으로 효과적으로 동작시킬 수 있으며, 용량 결합 플라즈마 소스(50)와 변압기 결합 플라즈마 소스(20)가 혼합된 구조에서 선태적으로 어느 하나만을 구동하거나 혼합된 구동이 가능하다.
이상에서 설명된 본 발명의 다중방전관을 갖는 플라즈마 반응기의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그럼으로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.
10, 10a, 10b, 10c, 10d, 10d: 플라즈마 반응기
11: 상부 방전관 11a: 상부 격벽
12: 하부 방전관 12a: 하부 격벽
13: 방전관 브리지 13a: 냉각 채널
13b: 냉각수 입구 14, 14a, 14b: 가스 입구
15, 15a, 15b: 가스 출구 16, 18: 개구부
17: 절연갭 19: 개구부
20: 변압기 결합 플라즈마 소스 21: 일차 권선 코일
22: 마그네틱 코어 30: 전원 공급원
31: 전압 공급원 32: 교류 스위칭 전원 공급원
33: 스위칭 제어 회로 34: 측정 회로
35: 전원 공급 케이블 40: 공정 챔버
42: 기판 지지대 44: 피처리 기판
46: 배플 47: 챔버 가스 입구
48: 어댑터 50, 50a, 50b: 유도결합 플라즈마 소스
51: 유도 안테나 평판 코일 51a, 51b: 유도 안테나 권선 코일
52: 유전체 평판 윈도우 52a, 52b: 유전체 튜브
54: 개구부 60: 시스템 제어부
62: 시스템 제어 신호 70, 72: 바이어스 전원 공급원
74: 임피던스 정합기 80: 용량 결합 플라즈마 소스
81, 82: 용량 결합 전극

Claims (7)

  1. 가스 입구를 갖는 중공의 상부 방전관;
    가스 출구를 갖는 중공의 하부 방전관;
    상기 상부 방전관과 상기 하부 방전관 연결되는 복수개의 방전관 브리지;
    상기 방전관 브리지에 장착되며 일차 권선 코일이 권선된 마그네틱 코어를 갖는 변압기 결합 플라즈마 소스; 및
    상기 일차 권선 코일로 플라즈마 발생 전력을 공급하는 교류 스위칭 전원 공급원을 포함하는 것을 특징으로 하는 다중방전관을 갖는 플라즈마 반응기.
  2. 제1항에 있어서,
    상기 상부 방전관에 일부에 형성된 개구부에 장착되는 유전체 평판 윈도우와 상기 유전체 윈우에 근접하여 설치되는 유도 안테나 평판 코일를 갖는 유도 결합 플라즈마 소스를 더 포함하고,
    상기 유도 안테나와 상기 일차 권선 코일은 상기 교류 스위칭 전원 공급원에 직렬 또는 병렬로 연결되는 것을 특징으로 하는 다중방전관을 갖는 플라즈마 반응기.
  3. 제1항에 있어서,
    상기 상부 방전관의 일부에 형성된 개구부에 장착되는 유전체 관과 상기 유전체 관에 권선되는 유도 안테나를 갖는 유도 결합 플라즈마 소스를 더 포함하고,
    상기 유도 안테나와 상기 일차 권선 코일은 상기 교류 스위칭 전원 공급원에 대하여 직렬 또는 병렬로 연결되는 것을 특징으로 하는 다중방전관을 갖는 플라즈마 반응기.
  4. 제1항에 있어서,
    상기 상부 방전관의 일부에 형성된 적어도 두 개의 개구부에 장착되는 용량 결합 전극을 포함하고,
    상기 용량 결합 전극과 상기 일차 권선 코일은 상기 교류 스위칭 전원 공급원에 대하여 직렬 또는 병렬로 연결되는 것을 특징으로 하는 다중방전관을 갖는 플라즈마 반응기.
  5. 제1항에 있어서,
    상기 다중방전관과 상기 상부방전관 사이 또는 상기 다중방전관과 상기 하부방전관 사이에 구비되는 하나 이상의 전기적 절연부재를 포함하는 것을 특징으로 하는 다중방전관을 갖는 플라즈마 반응기.
  6. 제1항에 있어서,
    상기 상부 방전관은 서로 독립된 둘 이상의 방전 공간을 갖도록 내부를 구획하는 제1 격벽을 포함하는 것을 특징으로 하는 다중방전관을 갖는 플라즈마 반응기.
  7. 제6항에 있어서,
    상기 하부 방전관은 서로 독립된 둘 이상의 방전 공간을 갖도록 내부를 구획하는 제2 격벽을 포함하는 것을 특징으로 하는 다중방전관을 갖는 플라즈마 반응기.
KR1020120040197A 2012-04-18 2012-04-18 다중방전관을 갖는 플라즈마 반응기 KR101336796B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120040197A KR101336796B1 (ko) 2012-04-18 2012-04-18 다중방전관을 갖는 플라즈마 반응기
US13/730,277 US8853948B2 (en) 2012-04-18 2012-12-28 Multi discharging tube plasma reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120040197A KR101336796B1 (ko) 2012-04-18 2012-04-18 다중방전관을 갖는 플라즈마 반응기

Publications (2)

Publication Number Publication Date
KR20130117490A true KR20130117490A (ko) 2013-10-28
KR101336796B1 KR101336796B1 (ko) 2013-12-04

Family

ID=49636242

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120040197A KR101336796B1 (ko) 2012-04-18 2012-04-18 다중방전관을 갖는 플라즈마 반응기

Country Status (1)

Country Link
KR (1) KR101336796B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527374B1 (ko) * 2013-12-06 2015-06-09 주식회사 테라텍 원격 라디칼 드라이 클리닝 장치 및 이를 이용한 클리닝 방법
KR20180001801A (ko) * 2016-06-28 2018-01-05 (주) 엔피홀딩스 캐비티 구조를 갖는 플라즈마 반응기

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100557292B1 (ko) * 2003-10-14 2006-03-15 주식회사 뉴파워 프라즈마 다중 방전관 브리지를 구비한 유도 플라즈마 챔버
KR100785164B1 (ko) * 2006-02-04 2007-12-11 위순임 다중 출력 원격 플라즈마 발생기 및 이를 구비한 기판 처리시스템
KR100980291B1 (ko) 2008-01-29 2010-09-06 주식회사 뉴파워 프라즈마 다중 방전관 브리지를 구비한 유도 플라즈마 챔버
KR101020075B1 (ko) * 2008-05-06 2011-03-09 주식회사 뉴파워 프라즈마 유도 결합 플라즈마 반응기

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527374B1 (ko) * 2013-12-06 2015-06-09 주식회사 테라텍 원격 라디칼 드라이 클리닝 장치 및 이를 이용한 클리닝 방법
KR20180001801A (ko) * 2016-06-28 2018-01-05 (주) 엔피홀딩스 캐비티 구조를 갖는 플라즈마 반응기

Also Published As

Publication number Publication date
KR101336796B1 (ko) 2013-12-04

Similar Documents

Publication Publication Date Title
US8961736B2 (en) Plasma reactor with internal transformer
KR101314667B1 (ko) 자속 채널 결합 플라즈마 반응기
KR101314666B1 (ko) 하이브리드 플라즈마 반응기
KR20180001799A (ko) 복합 플라즈마 소스를 갖는 플라즈마 챔버
KR101364578B1 (ko) 하이브리드 플라즈마 반응기
KR100803794B1 (ko) 마그네틱 코어 블록에 매설된 플라즈마 방전 튜브를 구비한유도 결합 플라즈마 소스
KR100805557B1 (ko) 다중 마그네틱 코어가 결합된 유도 결합 플라즈마 소스
KR20090130907A (ko) 혼합형 플라즈마 반응기
KR101364444B1 (ko) 하이브리드 플라즈마 반응기
US8853948B2 (en) Multi discharging tube plasma reactor
KR101336796B1 (ko) 다중방전관을 갖는 플라즈마 반응기
KR101475502B1 (ko) 다중방전관을 갖는 플라즈마 반응기
KR101364576B1 (ko) 하이브리드 플라즈마 반응기
KR101336798B1 (ko) 다중 가스 공급 구조를 갖는 다중 방전관 플라즈마 반응기
KR100743842B1 (ko) 자속 채널에 결합된 플라즈마 챔버를 구비한 플라즈마반응기
KR100793457B1 (ko) 다중 방전실을 갖는 플라즈마 반응기
KR100798351B1 (ko) 다중 원격 플라즈마 발생기를 구비한 플라즈마 처리 챔버
KR101314669B1 (ko) 하이브리드 플라즈마 반응기
KR101314670B1 (ko) 하이브리드 플라즈마 반응기
KR20100009614A (ko) 코어 내장실을 갖는 플라즈마 반응기
KR102636459B1 (ko) 캐비티 구조를 갖는 플라즈마 반응기
KR101446185B1 (ko) 고효율 유도 결합 플라즈마 반응기
KR100772447B1 (ko) 내장 마그네틱 코어를 갖는 유도 결합 플라즈마 소스
KR20170133995A (ko) 페라이트 코어의 설치 위치를 변경한 플라즈마 챔버
KR101437861B1 (ko) 자속 채널에 결합된 플라즈마 챔버를 구비한 고효율플라즈마 반응기

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161129

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171123

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181129

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191120

Year of fee payment: 7