KR20170094882A - Cathode for lithium-ion secondary battery, lithium-ion secondary battery comprising the same and the preparation method thereof - Google Patents

Cathode for lithium-ion secondary battery, lithium-ion secondary battery comprising the same and the preparation method thereof Download PDF

Info

Publication number
KR20170094882A
KR20170094882A KR1020160016154A KR20160016154A KR20170094882A KR 20170094882 A KR20170094882 A KR 20170094882A KR 1020160016154 A KR1020160016154 A KR 1020160016154A KR 20160016154 A KR20160016154 A KR 20160016154A KR 20170094882 A KR20170094882 A KR 20170094882A
Authority
KR
South Korea
Prior art keywords
secondary battery
pdms
lithium
lithium secondary
positive electrode
Prior art date
Application number
KR1020160016154A
Other languages
Korean (ko)
Other versions
KR101775097B1 (en
Inventor
오시형
정경윤
조병원
장원영
최원창
나인욱
이영행
이해리
이보은
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020160016154A priority Critical patent/KR101775097B1/en
Publication of KR20170094882A publication Critical patent/KR20170094882A/en
Application granted granted Critical
Publication of KR101775097B1 publication Critical patent/KR101775097B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a positive electrode for a lithium secondary battery, a lithium secondary battery including the same, and a method for manufacturing the same. More specifically, a positive electrode for a lithium secondary battery is manufactured using polydimethylsiloxane (PDMS), which reacts with hydrofluoric acid eluted from an electrolyte when a lithium secondary battery is driven to form a stable reaction product. Accordingly, corrosion of manganese contained in the positive electrode for the lithium secondary battery is prevented, thereby increasing a capacity of the lithium secondary battery and improving the electrochemical performance.

Description

리튬 이차전지용 양극, 이를 포함하는 리튬 이차전지 및 이의 제조방법 {Cathode for lithium-ion secondary battery, lithium-ion secondary battery comprising the same and the preparation method thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a positive electrode for a lithium secondary battery, a lithium secondary battery including the same, and a manufacturing method thereof,

본 발명은 리튬 이차전지의 수명 특성과 전기화학적 특성 향상을 위한 리튬 이차전지용 양극, 이를 포함하는 리튬 이차전지 및 이의 제조방법에 관한 것이다. The present invention relates to a lithium secondary battery anode for improving lifetime characteristics and electrochemical characteristics of a lithium secondary battery, a lithium secondary battery comprising the same, and a method for manufacturing the same.

리튬 이차전지는 1992년 일본 소니(Sony) 사에 의해 상용화 된 이후 약 20년 동안 휴대전화, 디지털카메라, 노트북 컴퓨터 등과 같은 휴대용 전자기기의 발달과 함께 급격히 그 수요가 증가한 이후, 현재에 이르기까지 이들 전자기기를 위한 중요 전력 저장원으로 쓰이고 있다.Lithium rechargeable batteries were commercialized by Sony Corporation in 1992 and have been in demand for 20 years since the development of portable electronic devices such as mobile phones, digital cameras and notebook computers. It is used as an important power source for electronic devices.

리튬 이차전지는 근래 들어서는 그 활용영역이 더욱 넓어져서, 청소기, 전동공구와 같은 소형 가전의 충전용 전원으로 사용되기도 하고, 전기자전거, 전기스쿠터와 같은 분야에 적용될 수 있도록 중형전지로 개발되어 활용되고 있다.Lithium rechargeable batteries have been widely used in recent years, and they have been developed and utilized as middle-sized batteries for applications such as electric bicycles and electric scooters, and also as charging power sources for small household appliances such as vacuum cleaners and power tools have.

나아가, 리튬 이차전지는 하이브리드 전기자동차(hybrid electric vehicle; HEV), 전기자동차(electric vehicle; EV), 각종 로봇, 중ㅇ대형 전력저장장치(Electric Storage System; ESS)와 같은 분야에 사용되는 대용량 전지로도 활용되며, 빠른 속도로 그 수요가 늘어나고 있는 중요 전력 저장원이다.Further, the lithium secondary battery can be used as a large capacity battery used in fields such as a hybrid electric vehicle (HEV), an electric vehicle (EV), various robots, and a large electric storage system (ESS) And is an important power storage source that is rapidly increasing in demand.

현재 이러한 대형 전력저장장치용 리튬 이차전지의 양극소재로는, 가격과 성능의 측면에서 고려되어, 층상구조의 리튬 복합금속산화물인 리튬니켈망간코발트산화물(LiCoxNiyMnzO2)과 스피넬 구조(spinel structure)의 리튬망간산화물(LiMn2O4, 이하, LMO로 약칭함) 등이 주로 사용되고 있다.Currently, lithium-nickel manganese cobalt oxide (LiCo x Ni y Mn z O 2 ), which is a layered lithium composite metal oxide, and spinel A lithium manganese oxide having a spinel structure (LiMn 2 O 4 , hereinafter abbreviated as LMO) is mainly used.

특히 스피넬 구조의 리튬망간산화물은 제조 단가가 저렴하여 경제적인 측면에서 다른 소재에 비하여 유리하고 또한 리튬이 스피넬 구조 내에서 3차원 확산을 하여 확산속도가 빨라 고율방전 특성이 우수하다. In particular, lithium manganese oxide having a spinel structure is advantageous from other materials in view of economical efficiency due to low production cost, and lithium is three-dimensionally diffused in the spinel structure, so that the diffusion rate is high and the high rate discharge characteristic is excellent.

하지만 스피넬 구조의 리튬망간산화물은 방전이 진행되어 망간의 산화수가 +3.5 이하가 되면 Mn3+ 가 high-spin d4 전자배치를 가지고, 이로 인한 얀-텔러 뒤틀림(Jahn-Teller distortion)이 발생하여 구조적으로 불안정해지게 된다. 특히 고온에서 Mn3+ 는, 불균일 반응(disproportionation reaction) 등에 의해 생성되는 Mn2+ 이 전해질로 용출되는 망간용출현상이 지속적으로 발생하여(Mn3+ → Mn4+ + Mn2+) 리튬 이차전지의 성능이 저하되는 문제점이 있다. 또한, 충??방전간 고전압 환경에서 전해질(LiPF6)의 분해반응으로 생성되는 불산(HF)에 의하여 망간이 부식되는 현상이 발생하여 양극을 구조적으로 파괴시킬 뿐만 아니라, 용출된 망간 이온이 음극 표면에서 두꺼운 SEI 층을 형성하여 임피던스를 증가시키고 음극 효율을 낮추는 등의 문제점이 있다.However, when lithium manganese oxide of the spinel structure is discharged and the oxidation number of manganese is lower than +3.5, Mn 3+ has a high-spin d 4 electron arrangement, resulting in Jahn-Teller distortion Structurally unstable. In particular, Mn 3+ at a high temperature continuously develops manganese elution (Mn 3+ → Mn 4+ + Mn 2+ ) in which Mn 2+ generated by a disproportionation reaction is eluted into an electrolyte, There is a problem in that the performance of the display device is deteriorated. In addition, manganese is corroded by hydrofluoric acid (HF) generated by the decomposition reaction of electrolyte (LiPF 6 ) in the high voltage environment between the charge and discharge, so that not only the anode is structurally destroyed, There is a problem that a thick SEI layer is formed on the surface to increase the impedance and lower the anode efficiency.

스피넬 구조의 망간산화물을 비롯한 양극 활물질에서 발생하는 이러한 문제들을 해결하기 위하여, 종래에는 주로 Al, Mg, Ni, Zr, Cr 등과 같은 금속을 1종 이상 선택하여 LMO 소재에 소량 도핑하여 화학적 안정성이 높은 표면을 형성함과 동시에 망간의 평균산화수를 증대시켜 Mn3+ 형성에 따른 얀-텔러 뒤틀림(Jahn-Teller distortion)에 의한 구조적 불안정성 및 Mn2+ 용출을 최대한 억제하려고 하였다. In order to solve these problems occurring in the cathode active material including the spinel structure manganese oxide, conventionally, at least one metal such as Al, Mg, Ni, Zr, Cr and the like has been selected and doped in a small amount to the LMO material, The surface is formed and at the same time the average oxidation number of manganese is increased so as to suppress the structural instability and Mn 2+ leaching due to the Jahn-Teller distortion due to Mn 3+ formation as much as possible.

다른 방법으로, 부식 저항성이 큰 금속산화물, 금속불화물(metal fluoride), 금속인산화물(metal phosphate) 등을 LMO 소재 표면에 나노스케일로 코팅하여 표면에서의 망간 용출 문제를 해결하려고 하였다. 특히 졸겔법, 스프레이 코팅법, 유동층 코팅법 등과 같은 여러 가지 표면개질 방법을 이용하여 Al2O3, MgO, ZrO2 등의 금속산화물이나 AlF3, AlPO4 등을 전극표면에 나노스케일 층을 형성시키거나 활물질 내부에 농도 구배가 생기도록 형성시켜 충·방전간 전극물질의 용해를 막는 방법 등은 효과가 인정되어 상업적으로 이용되었다.Alternatively, metal oxides, metal fluorides, and metal phosphates, which are highly resistant to corrosion, are coated on the surface of the LMO material with nanoscale to solve the problem of manganese elution on the surface. In particular, metal oxide such as Al 2 O 3 , MgO, ZrO 2 , AlF 3 , AlPO 4 and the like are formed on the surface of the electrode using a variety of surface modification methods such as a sol-gel method, a spray coating method and a fluidized bed coating method Or forming a concentration gradient inside the active material to prevent dissolution of the electrode material between the charge and discharge.

하지만, 현재까지 개발된 이러한 코팅방법을 사용하여 활물질을 개질하게 되면 전기화학적으로는 비활성 물질이 표면에 추가되기 때문에 활물질의 용량이 증대되지는 않으며 때로는 과도한 임피던스(impedance)가 발생하기도 한다. 또한 졸겔법의 경우 복잡한 공정을 거치게 되므로 보다 간단한 방법을 이용하여 이러한 기능을 수행할 수 있는 표면처리 공정이 필요하다.However, when the active material is modified by using the coating method developed so far, electrochemically, an inactive material is added to the surface, so that the capacity of the active material is not increased and sometimes an excessive impedance is generated. In the case of the sol-gel process, a complicated process is required, so a surface treatment process capable of performing such a function using a simpler method is required.

이와 같이, 전지 구동시 양극 활물질을 보호하여 리튬 이차전지의 수명과 전기화학적 특성을 향상시킬 수 있는 새로운 기술 개발이 지속적으로 요구되고 있다.As described above, there is a continuing need to develop a new technology capable of protecting the cathode active material during battery operation to improve the lifetime and electrochemical characteristics of the lithium secondary battery.

대한민국 등록특허 제10-0420050호Korean Patent No. 10-0420050 대한민국 공개특허 제10-2015-0089967호Korean Patent Publication No. 10-2015-0089967 대한민국 등록특허 제10-0786850호Korean Patent No. 10-0786850

Yim et al.; "A facile method for construction of a functionalized multi-layered separator to enhance cycle perdormance of lithium manganese oxide"; RCS Advances. 3(48), 25658-35661(2014) Yim et al .; "A facile method for construction of a functionalized multi-layered separator to enhance cycle perdormance of lithium manganese oxide"; RCS Advances. 3 (48), 25658-35661 (2014) Lee et al.; "Scalable synthesis and electrochemical investigations of fluorine-dopoed lithium manganese psinel oxide"; Electrochimca Acta 136, 396-403(2014) Lee et al .; "Scalable synthesis and electrochemical investigations of fluorine-doped lithium manganese psinel oxide"; Electrochimica Acta 136, 396-403 (2014)

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 전지의 구동시 양극 활물질을 보호하여 전지의 수명과 전기화학적 특성을 향상시킬 수 있는 리튬 이차전지용 양극을 제공함에 있다.It is an object of the present invention to provide a positive electrode for a lithium secondary battery capable of protecting the positive electrode active material during battery operation and improving the lifetime and electrochemical characteristics of the battery.

본 발명의 다른 목적은 본 발명의 여러 구현예에 따른 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공함에 있다.It is another object of the present invention to provide a lithium secondary battery including a positive electrode for a lithium secondary battery according to various embodiments of the present invention.

본 발명의 또 다른 목적은 본 발명의 여러 구현예에 따른 리튬 이차전지용 양극을 간소한 공정에 의해 제조할 수 있는 리튬 이차전지용 양극 제조방법을 제공함에 있다.It is still another object of the present invention to provide a method for manufacturing a positive electrode for a lithium secondary battery, wherein the positive electrode for a lithium secondary battery according to various embodiments of the present invention can be manufactured by a simple process.

본 발명의 일 측면은 리튬망간산화물계 양극 활물질; 및 폴리디메틸실록산(polydimethylsiloxane, PDMS)을 포함하는 리튬 이차전지용 양극에 관한 것이다.One aspect of the present invention relates to a lithium manganese oxide-based cathode active material; And polydimethylsiloxane (PDMS). BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] The present invention relates to a positive electrode for a lithium secondary battery.

본 발명의 다른 측면은 본 발명의 여러 구현예에 따른 리튬 이차전지용 양극을 포함하는 리튬 이차전지에 관한 것이다.Another aspect of the present invention relates to a lithium secondary battery including a positive electrode for a lithium secondary battery according to various embodiments of the present invention.

본 발명의 다른 측면은 본 발명의 여러 구현예에 따른 리튬 이차전지용 양극을 포함하는 중대형 디바이스에 관한 것이다.Another aspect of the present invention relates to a middle- or large-sized device including a cathode for a lithium secondary battery according to various embodiments of the present invention.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 리튬 이차전지용 양극을 간소한 공정에 의해 제조할 수 있는 리튬 이차전지용 양극 제조방법에 관한 것이다. According to another aspect of the present invention, there is provided a method of manufacturing a positive electrode for a lithium secondary battery, wherein the positive electrode for a lithium secondary battery according to various embodiments of the present invention can be manufactured by a simple process.

본 발명에 따른 리튬 이차전지용 양극은 리튬망간산화물계 양극 화물질에 폴리디메틸실록산(polydimethylsiloxane, PDMS)가 균일하게 분산되어 있어, 리튬 이차전지 구동시 전해질로부터 용출되는 불산이 상기 리튬망간산화물계 양극 활물질과 반응하기 전에 상기 PDMS와 먼저 반응함으로써, 상기 리튬망간산화물계 양극 활물질의 망간이 부식되어 용출되는 것을 방지할 수 있다. The positive electrode for a lithium secondary battery according to the present invention is characterized in that polydimethylsiloxane (PDMS) is uniformly dispersed in the lithium manganese oxide-based cathode material, and when hydrofluoric acid eluted from the electrolyte during the operation of the lithium secondary battery is dispersed in the lithium manganese oxide- The manganese of the lithium manganese oxide-based positive electrode active material can be prevented from being corroded and eluted.

또한, 상기 리튬 이차전지용 양극은 상기 PDMS에 의해 상기 전해질로부터 용출되는 불산으로부터 상기 리튬망간산화물계 양극 활물질이 보호되므로, 전지의 수명을 증가시킬 수 있고, 전기화학적 성능을 향상시킬 수 있다.Also, since the lithium manganese oxide-based cathode active material is protected from hydrofluoric acid eluted from the electrolyte by the PDMS by the PDMS, the lifetime of the battery can be increased and the electrochemical performance can be improved.

도 1은 본 발명에 따른 리튬 이차전지용 양극의 모식도로서, 리튬망간산화물계 양극 활물질에 폴리디메틸실록산(polydimethylsiloxane, PDMS)이 분산된 형태의 모식도이다.
도 2는 본 발명에 따른 리튬 이차전지용 양극에 포함된 PDMS와 불산의 반응 메카니즘을 나타낸 모식도이다.
도 3은 본 발명에 따른 리튬 이차전지용 양극 제조방법의 순서도이다.
도 4는 실시예 1에서 제조된 PDMS를 포함하는 리튬 이차전지용 양극을 분석한 결과로서, 각각 주사전자현미경(scanning electron microscope, SEM) 사진(a), EDS(Energy dispersive X-ray spectroscopy) mapping 이미지(Si가 붉은 색 점으로 표시됨)(b) 및 성분분석차트(c)이다.
도 5는 실시예 1 및 비교예 1에서 각각 제조된 리튬 이차전지용 양극의 수명특성을 나타낸 그래프이다.
도 6은 실시예 1에서 제조된 양극의 수명특성 측정 전 및 후의 적외선 분광분석 결과는 나타낸 그래프이다.
도 7은 순수한 PDMS(검정색)와 이에 미량의 물을 첨가한 PDMS에 불산(HF)이 첨가된 샘플(붉은색, PDMS-HF)의 19F 핵자기공명 분석을 나타내는 그래프이다.
FIG. 1 is a schematic view of a positive electrode for a lithium secondary battery according to the present invention, in which polydimethylsiloxane (PDMS) is dispersed in a lithium manganese oxide-based positive electrode active material.
2 is a schematic view showing a reaction mechanism of PDMS and hydrofluoric acid contained in a cathode for a lithium secondary battery according to the present invention.
3 is a flowchart of a method of manufacturing a positive electrode for a lithium secondary battery according to the present invention.
FIG. 4 is a graph showing the results of analysis of a cathode for a lithium secondary battery including the PDMS manufactured in Example 1. As a result, a scanning electron microscope (SEM) photograph (a) and an energy dispersive X-ray spectroscopy (EDS) (Si is indicated by a red dot) (b) and a component analysis chart (c).
5 is a graph showing lifetime characteristics of the positive electrode for a lithium secondary battery manufactured in Example 1 and Comparative Example 1, respectively.
6 is a graph showing the results of infrared spectroscopic analysis before and after the measurement of lifetime characteristics of the anode prepared in Example 1. Fig.
7 is a graph showing 19 F nuclear magnetic resonance analysis of a sample (red, PDMS-HF) to which hydrofluoric acid (HF) was added to pure PDMS (black) and PDMS to which a trace amount of water was added.

이하, 도면을 참조하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.

본 발명의 일 측면은 리튬망간산화물계 양극 활물질; 및 폴리디메틸실록산(polydimethylsiloxane, PDMS)을 포함하는 리튬 이차전지용 양극에 관한 것이다.One aspect of the present invention relates to a lithium manganese oxide-based cathode active material; And polydimethylsiloxane (PDMS). BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] The present invention relates to a positive electrode for a lithium secondary battery.

일 구현예에 따르면, 상기 PDMS는 상기 리튬망간산화물계 양극 활물질 내에 분산된 것일 수 있으며, 상기 PDMS는 Si-C 결합 및 Si-O 결합 를 포함하며, 불산과 반응하여 염(adduct)과 같은 안정한 반응생성물을 형성할 수 있는 고분자이다.According to one embodiment, the PDMS may be dispersed in the lithium manganese oxide-based cathode active material, and the PDMS may include a Si-C bond and a Si-O bond, react with the hydrofluoric acid to form a stable And is a polymer capable of forming a reaction product.

도 1은 본 발명에 따른 리튬 이차전지용 양극의 모식도로서, 리튬망간산화물계 양극 활물질에 PDMS가 분산된 형태의 모식도이다. FIG. 1 is a schematic view of a cathode for a lithium secondary battery according to the present invention, in which PDMS is dispersed in a lithium manganese oxide-based cathode active material.

도 1을 참조하면, 상기 리튬망간산화물계 양극 활물질에서 상기 리튬망간산화물(LMO)는 입자 형태로 존재하고, 상기 PDMS가 상기 LMO 입자 사이에 균일하게 분산되어 있으며, 상기 PDMS는 LMO 입자 사이에서 바인더와 같은 역할을 할 수도 있다.1, the lithium manganese oxide (LMO) is present in the form of particles in the lithium manganese oxide-based positive electrode active material, the PDMS is uniformly dispersed among the LMO particles, and the PDMS is a binder It may also play a role.

또한, 리튬 이차전지 구동시 전해질에서 용출되는 불산(HF)은 상기 LMO 입자에 포함된 망간을 부식시켜 망간 이온(Mn2+)이 지속적으로 용출되게 하므로 양극을 구조적으로 파괴시킬 수 있다. 그러나, 상기 LMO 입자 사이에 상기 PDMS가 균일하게 분산되어 있을 경우 HF가 LMO와 반응하기 전에 HF가 PDMS와 먼저 반응하므로, 망간 이온의 용출을 방지하여 양극을 보호할 수 있다.In addition, when the lithium secondary battery is driven, hydrofluoric acid (HF) eluted from the electrolyte corrodes the manganese contained in the LMO particles, thereby allowing the manganese ions (Mn 2+ ) to be continuously eluted. However, when the PDMS is uniformly dispersed among the LMO particles, the HF reacts with the PDMS before the HF reacts with the LMO, so that the dissolution of the manganese ions can be prevented and the anode can be protected.

다른 구현예에 따르면, 상기 리튬 이차전지용 양극의 전체 중량을 기준으로 상기 PDMS의 중량은 0.1 중량% 내지 5 중량%일 수 있다.According to another embodiment, the weight of the PDMS may be 0.1 wt% to 5 wt% based on the total weight of the positive electrode for a lithium secondary battery.

상기 PDMS의 중량이 0.5 중량% 미만이면 전해질로부터 용출되는 불산의 양이 상대적으로 많을 때 불산과 반응해야 할 PDMS가 부족해져 리튬망간산화물계 양극 산화물에서 망간이 부식될 수 있고, 5 중량% 초과이면 전지의 에너지밀도가 저하될 수 있다.If the weight of the PDMS is less than 0.5% by weight, manganese may be corroded in the lithium manganese oxide-based anodic oxide due to insufficient PDMS to be reacted with hydrofluoric acid when the amount of hydrofluoric acid eluted from the electrolyte is relatively large, May be lowered.

또 다른 구현예에 따르면, 상기 리튬망간산화물은 금속 원소로 도핑된 리튬금속망간산화물일 수 있으며, 상기 금속 원소는 Ni, Zr, Co, Mg, Mo, Al 및 Ag 중 선택된 1종 이상인 것일 수 있다.According to another embodiment, the lithium manganese oxide may be a lithium metal manganese oxide doped with a metal element, and the metal element may be at least one selected from the group consisting of Ni, Zr, Co, Mg, Mo, Al and Ag .

또한, 상기 리튬망간산화물은 스피넬 구조 또는 층상 구조일 수 있다.The lithium manganese oxide may have a spinel structure or a layered structure.

도 2는 본 발명에 따른 리튬 이차전지용 양극에 포함된 PDMS와 불산의 반응 메카니즘을 나타낸 모식도이다.2 is a schematic view showing a reaction mechanism of PDMS and hydrofluoric acid contained in a cathode for a lithium secondary battery according to the present invention.

도 2를 참조하면, 상기 PDMS의 구조내의 Si 원자는 Si-O 결합을 양쪽에 포함하고 있기 때문에 친핵 공격(uncleophilc attack)을 쉽게 받을 수 있는 위치에 있다. 상기 폴리디메틸실록산과 불산(HF)이 반응하면 우선 불산에 의해 PDMS에 존재하는 O 원자의 activation이 발생하고, 이로 인해 Si-O결합이 끊어지며 Si-F 결합으로 대체되는 친핵 치환반응(nucleophilic substitution)이 발생될 수 있다. 이 때 Si와 분리된 O 원자는 H와 결합하여 결국 Si(F)(OH)(CH3)2가 형성되게 된다. 전지 구동시 발생될 수 있는 LiF 또한 상기 폴리디메틸실록산과 불산과 동일한 방식으로 반응할 수 있으며 이 경우에는 반응생성물로 Si(F)(OLi)(CH3)2가 생성된다.
Referring to FIG. 2, the Si atoms in the structure of the PDMS include Si-O bonds on both sides, and thus they are in a position to easily receive an uncleophilic attack. When the polydimethylsiloxane reacts with hydrofluoric acid (HF), activation of O atoms present in the PDMS is initiated by hydrofluoric acid. As a result, a nucleophilic substitution reaction in which a Si-O bond is cut off and replaced with a Si-F bond ) May be generated. At this time, the O atom separated from Si bonds with H, resulting in formation of Si (F) (OH) (CH 3 ) 2 . LiF, which may be generated when the cell is driven, can also react with the polydimethylsiloxane and hydrofluoric acid in the same manner, and Si (F) (OLi) (CH 3 ) 2 is produced as a reaction product in this case.

본 발명의 다른 측면은 상기 리튬 이온전지용 양극을 포함하는 리튬 이온전지에 관한 것이다.Another aspect of the present invention relates to a lithium ion battery including the positive electrode for the lithium ion battery.

상기 리튬 이온전지의 충방전시 전해질로부터 불산이 용출될 수 있다. 상기 불산은 상기 리튬 이온전지용 양극에 포함된 상기 리튬망간산화물계 양극 활물질의 입자 사이에 균일하게 분산된 상기 PDMS와 먼저 반응하므로, 상기 PDMS가 양극 활물질인 리튬망간산화물을 보호하는 역할을 하는 바, 상기 리튬 이온전지의 전기화학 성능이 향상될 수 있다.
Hydrofluoric acid may be eluted from the electrolyte during charging and discharging of the lithium ion battery. The hydrofluoric acid first reacts with the PDMS uniformly dispersed among the particles of the lithium manganese oxide-based cathode active material contained in the anode for the lithium ion battery, and thus the PDMS serves to protect lithium manganese oxide, which is a cathode active material, The electrochemical performance of the lithium ion battery can be improved.

본 발명의 다른 측면은 상기 리튬 이온전지용 양극을 포함하는 중대형 디바이스에 관한 것이다.Another aspect of the present invention relates to a middle- or large-sized device including the anode for the lithium-ion battery.

상기 중대형 디바이스는, 예를 들어, 전기적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV) 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; E-bike, E-scooter를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart) 등을 들 수 있으나 이에 제한되는 것은 아니다.
The middle- or large-sized device includes, for example, a power tool powered by an electric motor; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV); Electric motorcycle including E-bike, E-scooter; An electric golf cart, and the like.

본 발명의 또 다른 측면은, (A) 폴리디메틸실록산(polydimethylsiloxane, PDMS)과 유기용매를 혼합하여 PDMS 용액을 제조하는 단계; (B) 상기 PDMS 용액과 리튬망간산화물계 양극 활물질을 혼합하여 슬러리를 얻는 단계; 및 (C) 상기 슬러리를 집전체에 캐스팅하여 건조하는 단계;를 포함하는 리튬 이차전지용 양극 제조방법에 관한 것이다.According to another aspect of the present invention, there is provided a process for preparing a PDMS solution, comprising: (A) preparing a PDMS solution by mixing polydimethylsiloxane (PDMS) and an organic solvent; (B) mixing the PDMS solution and the lithium manganese oxide-based cathode active material to obtain a slurry; And (C) casting the slurry to a current collector and drying the slurry. The present invention also relates to a method for manufacturing a positive electrode for a lithium secondary battery.

상기 (A) 단계에서는 PDMS와 유기용매를 혼합하여 PDMS 용액을 제조할 수 있다.In the step (A), a PDMS solution may be prepared by mixing PDMS and an organic solvent.

상기 PDMS 용액의 농도는 5 내지 10 %인 것일 수 있으며, 상기 PDMS 용액의 농도가 5 % 미만이면 제조되는 양극 내에서 PDMS의 함량이 감소되어 불산으로부터 양극 보호 효과가 저하될 수 있고, 10 % 초과이면 제조되는 양극 내에서 PDMS의 함량이 과도하여 전지의 에너지밀도가 저하될 수 있다.If the concentration of the PDMS solution is less than 5%, the content of PDMS in the cathode may be decreased, so that the effect of protecting the cathode from hydrofluoric acid may be deteriorated. If the concentration of the PDMS solution exceeds 10% , The content of PDMS in the anode to be produced may be excessively high, so that the energy density of the battery may be lowered.

상기 PDMS 용액 제조시 용매로는 유기용매를 사용할 수 있으며, 테트라하이드로퓨란(THF), 에틸렌 카본네이트(EC), 프로필렌 카본네이트(PC), 디메틸 카본네이트(DMC), 디에틸 카본네이트(DEC), 에틸메틸 카본 네이트(EMC), 1,2-디메톡시에텐(DME), γ-부티로락톤(BL), 1,3-디옥솔레인(DOL), 디에틸이써(DEE), 메틸 포르메이트(MF), 메틸프로피오네이트(MP), 술폴레인(S), 디메틸설폭사이드(DMSO) 및 아세토니트릴(AN) 중에서 선택된 1종 이상일 수 있다.The organic solvent may be an organic solvent such as tetrahydrofuran (THF), ethylene carbonate (EC), propylene carbonate (PC), dimethylcarbonate (DMC), diethylcarbonate (DEC) (EMC), 1,2-dimethoxyethane (DME),? -Butyrolactone (BL), 1,3-dioxolane (DOL), diethyl ether (DEE), methyl (MF), methyl propionate (MP), sulfolane (S), dimethyl sulfoxide (DMSO), and acetonitrile (AN).

상기 (B) 단계에서는, 상기 PDMS 용액과 리튬망간산화물계 양극 활물질을 혼합하여 슬러리를 얻을 수 있다.In the step (B), the PDMS solution and the lithium manganese oxide-based cathode active material may be mixed to obtain a slurry.

상기 PDMS와 리튬망간산화물계 양극 활물질을 혼합할 때, 최종적으로 제조되는 리튬 이차전지용 양극의 전체 중량이 기준으로 상기 PDMS의 중량이 0.1 중량% 내지 5 중량%가 될 수 있도록 혼합하는 것이 바람직하다.When the PDMS and the lithium manganese oxide cathode active material are mixed, it is preferable that the weight of the PDMS is 0.1 wt% to 5 wt% based on the total weight of the cathode for the lithium rechargeable battery finally produced.

상기 (C) 단계에서는, 상기 슬러리를 집전체에 캐스팅하여 건조시켜 리튬 이차전지용 양극을 제조할 수 있으며, 상기 열처리는 건조에 의해 수행할 수 있다.
In the step (C), the slurry may be cast on a current collector and dried to produce a positive electrode for a lithium secondary battery. The heat treatment may be performed by drying.

실시예Example

이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백하다.
Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the scope and content of the present invention can not be construed to be limited or limited by the following Examples. In addition, it is apparent that, based on the teachings of the present invention including the following examples, those skilled in the art can easily carry out the present invention in which experimental results are not specifically shown.

제조예 1: 알루미늄 도핑 리튬망간산화물(LiProduction Example 1: Aluminum-doped lithium manganese oxide (Li 1.051.05 AlAl 0.150.15 MnMn 1.851.85 OO 44 ) 제조) Produce

리튬 전구체, 망간 전구체 및 알루미늄 전구체로서 각각 Li2CO3, Mn3O4 및 Al(NO3)3·9H2O를 사용하였다. 상기 각 전구체에 존재하는 Li, Al, Mn의 몰비가 1.00: 0.1: 1.9가 되도록 저울로 무게를 재어(총 전구체 무게: 50 g) 막자 및 유발을 이용하여 적절히 혼합한 다음 볼밀 용기(500 mL)에 넣었다.Li 2 CO 3 , Mn 3 O 4 and Al (NO 3 ) 3 .9H 2 O were used as a lithium precursor, a manganese precursor and an aluminum precursor, respectively. (Total precursor weight: 50 g) was weighed using a balance so that the molar ratio of Li, Al, and Mn present in each precursor was 1.00: 0.1: 1.9. .

BRP(Ball to Powder Ratio)가 6이 되도록 지름 10 mm/5 mm 크기의 볼을 용기에 넣은 다음 200 RPM에서 2시간 동안 기계적 밀링을 실시하였다. A ball with a diameter of 10 mm / 5 mm was placed in a container so that the ball to powder ratio (BRP) was 6, and then mechanical milling was performed at 200 RPM for 2 hours.

밀링이 끝난 후 분말을 회수하여 세라믹 보트에 담고 일반 공기 중의 상자 노(爐)에서 800 ℃로 12시간 동안 열처리를 수행한 후, 알루미늄이 도핑된 스피넬 구조의 리튬망간산화물을 제조하였다.
After the milling, the powder was recovered and placed in a ceramic boat and subjected to a heat treatment at 800 ° C. for 12 hours in a box furnace in general air, and then a lithium manganese oxide having an aluminum-doped spinel structure was produced.

비교예 1: 리튬 이차전지용 양극 제조Comparative Example 1: Preparation of positive electrode for lithium secondary battery

상기 제조예 1에서 제조된 알루미늄이 도핑된 스피넬 구조의 리튬망간산화물(LMO)을 양극 활물질로 하여, 아래와 같은 방법으로 리튬 이차전지용 양극을 제조하였다.A positive electrode for a lithium secondary battery was prepared by using lithium manganese oxide (LMO) of aluminum-doped spinel structure prepared in Preparation Example 1 as a positive electrode active material in the following manner.

(1) 양극 활물질 슬러리 제조(1) Production of cathode active material slurry

상기 양극 활물질, 도전재인 덴카블랙(Denka Black), 결합제인 폴리불화비닐리덴(Polyvinylidene Fluoride)을 85 : 10 : 5의 무게비로 무게를 재어 혼합한 후, 이를 노말 메틸 피로리돈(N-methyl-2-pyrrolidone) 일정량에 균일하게 분산, 혼합하여 슬러리 형태로 만들었다. Denka Black, a conductive material, and polyvinylidene fluoride, a binder, were weighed and weighed at a weight ratio of 85: 10: 5, and then mixed with N-methyl-2 -pyrrolidone) was uniformly dispersed and mixed in a predetermined amount to form a slurry.

(2) 양극 제조(2) cathode manufacturing

상기 슬러리를 알루미늄 호일(foil)에 닥터 블레이드(Dr. Blade)를 이용하여 코팅한 후, 80 ℃ 오븐에서 건조하여 양극을 제조하였다. The slurry was coated on an aluminum foil using a doctor blade (Dr Blade), and then dried in an oven at 80 ° C to prepare a cathode.

도 3은 실시예 1에 따른 리튬 이차전지용 양극 제조방법의 순서도이다.
3 is a flowchart of a method of manufacturing a positive electrode for a lithium secondary battery according to the first embodiment.

실시예 1: 폴리디메틸실록산을 포함하는 리튬 이차전지용 양극 제조Example 1: Preparation of positive electrode for lithium secondary battery containing polydimethylsiloxane

상기 제조예 1에서 제조된 알루미늄이 도핑된 스피넬 구조의 리튬망간산화물(LMO)을 양극 활물질로 하고, PDMS를 이용하여 도 3에 도시된 바와 같은 리튬 이차전지용 양극 제조방법에 따라, PDMS를 포함하는 리튬 이차전지용 양극을 제조하였다.The lithium manganese oxide (LMO) having an aluminum-doped spinel structure prepared in Preparation Example 1 was used as a positive electrode active material, and PDMS was used to manufacture a positive electrode for a lithium secondary battery as shown in FIG. 3, Thereby preparing a positive electrode for a lithium secondary battery.

(1) PDMS 용액 제조(1) PDMS solution preparation

PDMS을 테트라하이드로퓨란(Tetrahydrofuran) 용매에 용해시켜 PDMS 용액을 제조하되, 상기 PDMS 용액의 농도가 8 %이 되도록 하였다. A PDMS solution was prepared by dissolving PDMS in a tetrahydrofuran solvent so that the concentration of the PDMS solution was 8%.

(2) 양극 활물질 슬러리 제조(2) Production of cathode active material slurry

상기 제조예 1에서 제조된 리튬망간산화물, 도전재인 덴카블랙(Denka Black), 결합제인 폴리불화비닐리덴(Polyvinylidene Fluoride)을 85 : 10 : 5의 무게비로 무게를 재어 혼합하고, 최종 제조된 양극에서 PDMS의 중량이 2 중량%가 되도록 상기 PDMS을 혼합하였다. 얻어진 혼합물을 노말 메틸 피로리돈(n-methyl-2-pyrrolidone) 일정량에 균일하게 분산, 혼합하여 슬러리 형태로 만들었다. The lithium manganese oxide prepared in Preparation Example 1, Denka Black as a conductive material, and polyvinylidene fluoride as a binder were weighed and weighed at a weight ratio of 85: 10: 5, The PDMS was mixed such that the weight of the PDMS was 2 wt%. The resulting mixture was homogeneously dispersed and mixed in a certain amount of n-methyl-2-pyrrolidone to form a slurry.

(3) 양극 제조(3) cathode manufacturing

상기 슬러리를 알루미늄 호일(foil)에 닥터 블레이드(Dr. Blade)를 이용하여 코팅한 후, 80 ℃ 오븐에서 건조하여 양극을 제조하였다.
The slurry was coated on an aluminum foil using a doctor blade (Dr Blade), and then dried in an oven at 80 ° C to prepare a cathode.

시험예 1: PDMS를 포함하는 리튬 이차전지용 양극 분석Test Example 1: Bipolar analysis for lithium secondary battery including PDMS

도 4는 실시예 1에서 제조된 PDMS를 포함하는 리튬 이차전지용 양극을 분석한 결과로서, 각각 주사전자현미경(scanning electron microscope, SEM) 사진(a), EDS(Energy dispersive X-ray spectroscopy) mapping 이미지(Si가 붉은 색 점으로 표시됨)(b) 및 성분분석차트(c)이다.FIG. 4 is a graph showing the results of analysis of a cathode for a lithium secondary battery including the PDMS manufactured in Example 1. As a result, a scanning electron microscope (SEM) photograph (a) and an energy dispersive X-ray spectroscopy (EDS) (Si is indicated by a red dot) (b) and a component analysis chart (c).

도 4를 참조하면, 양극의 표면에 Si가 균일하게 분포된 것을 나타나며, 이로부터 PDMS가 양극의 표면에 균일하게 분산된 것을 알 수 있다.
Referring to FIG. 4, Si is uniformly distributed on the surface of the anode, and PDMS is uniformly dispersed on the surface of the anode.

시험예 2: 전기화학적 특성 시험Test Example 2: Electrochemical characteristic test

실시예 1 및 비교예 1에서 각각 제조된 리튬 이차전지용 양극의 전기화학적 특성을 측정하기 위하여, 상기 양극과 2032 코인셀(호센 가부시끼가이샤 제조)을 이용하여 반전지(half cell)를 제작하여 성능을 평가하였다.In order to measure the electrochemical characteristics of the positive electrode for a lithium secondary battery manufactured in each of Example 1 and Comparative Example 1, a half cell was manufactured using the positive electrode and a 2032 coin cell (manufactured by Hosenkaki Chemical Co., Ltd.) .

도 5는 실시예 1 및 비교예 1에서 각각 제조된 리튬 이차전지용 양극의 수명특성을 나타낸 그래프이다.5 is a graph showing lifetime characteristics of the positive electrode for a lithium secondary battery manufactured in Example 1 and Comparative Example 1, respectively.

도 5를 참조하면, 60 ℃의 고온에서 1 C(1 C = 148 mA/g)의 전류밀도로 50회 충전 및 방전 후 실시예 1 및 비교예 1의 양극은 각각 88% 및 86%의 용량 보존율을 나타내었다. 5, the positive electrodes of Example 1 and Comparative Example 1 after charging and discharging 50 times at a current density of 1 C (1 C = 148 mA / g) at a high temperature of 60 ° C were 88% and 86% Respectively.

이에 따라, 실시예 1의 양극을 이용하는 것이 비교예 1에 비하여 우수한 용량 보존율을 보이는 것을 알 수 있었다. 이러한 결과는 실시예 1의 양극의 표면에 균일하게 분포된 PDMS가 전해질에서 용출된 불산으로부터 리튬망간산화물을 보호하였기 때문인 것으로 보인다.
As a result, it was found that the use of the positive electrode of Example 1 showed an excellent capacity retention ratio as compared with Comparative Example 1. This result seems to be due to the fact that PDMS uniformly distributed on the surface of the anode of Example 1 protected lithium manganese oxide from hydrofluoric acid eluted from the electrolyte.

도 6은 실시예 1에서 제조된 양극의 수명특성 측정 전 및 후의 적외선 분광분석 결과는 나타낸 그래프이다. 상기 수명특성 측정은 60 ℃의 고온에서 1 C(1 C = 148 mA/g)의 전류밀도로 50회 충전 및 방전하여 수행하였다.6 is a graph showing the results of infrared spectroscopic analysis before and after the measurement of lifetime characteristics of the anode prepared in Example 1. Fig. The lifetime characteristics were measured by charging and discharging 50 times at a current density of 1 C (1 C = 148 mA / g) at a high temperature of 60 캜.

도 6을 참조하면, 수명특성 측정 전(LMO pristine) 양극에서는 PDMS에 존재하는 결합(S-CH3, Si-O-Si, Si-C)의 흡광도 피크가 나타났으며, 수명특성 측정 후(LMO 100 cycles) PDMS와 불산의 반응으로 새롭게 생겨난 Si-O, Si-F 피크가 관찰된 것을 알 수 있다.
6, the absorption peaks of the bonds (S-CH 3 , Si-O-Si and Si-C) present in the PDMS were observed at the anode before the measurement of the lifetime characteristics (LMO pristine) LMO 100 cycles) It can be seen that newly generated Si-O and Si-F peaks were observed due to the reaction of PDMS with hydrofluoric acid.

도 7은 순수한 PDMS(검정색, PDMS)와 이에 미량의 물을 첨가한 PDMS에 불산(HF)이 첨가된 샘플(붉은색, PDMS-HF)의 19F 핵자기공명 분석을 나타내는 그래프이다. 7 is a graph showing 19 F nuclear magnetic resonance analysis of a sample (red, PDMS-HF) to which hydrofluoric acid (HF) was added to pure PDMS (black, PDMS) and PDMS to which a trace amount of water was added.

도 7을 참조하면, PDMS와 불산의 반응에 의하여 새로운 반응생성물(scavenging adducts)이 생성된 것으로 나타났으며, 이로부터 PDMS가 불산을 스캐빈징(scavenging)하는 역할을 하는 것을 알 수 있다.
Referring to FIG. 7, new reaction products (scavenging adducts) were generated by the reaction of PDMS with hydrofluoric acid. From this, it can be seen that PDMS plays a role of scavenging hydrofluoric acid.

위에서 기재한 구현예 외에도, 본 발명이 속하는 기술분야의 당업자라면 본 발명의 출원 당시의 기술 상식 및 본 명세서의 기재 내용에 기초하여, 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 점은 자명하다.It will be apparent to those skilled in the art that the present invention is not limited to the embodiments described above and that various changes and modifications may be made without departing from the spirit and scope of the present invention as defined by the appended claims. As shown in FIG.

본 발명의 범위는 상기의 상세한 설명보다는 후술할 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It will be understood by those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention as defined by the appended claims and their equivalents. .

Claims (8)

리튬망간산화물계 양극 활물질; 및 폴리디메틸실록산(polydimethylsiloxane, PDMS)을 포함하는 리튬 이차전지용 양극.Lithium manganese oxide type cathode active material; And polydimethylsiloxane (PDMS). 제1항에 있어서, 상기 PDMS는 상기 리튬망간산화물계 양극 활물질의 입자 사이에 분산된 것을 특징으로 하는 리튬 이차전지용 양극.The positive electrode for a lithium secondary battery according to claim 1, wherein the PDMS is dispersed between particles of the lithium manganese oxide-based positive electrode active material. 제1항에 있어서, 상기 리튬 이차전지용 양극의 전체 중량을 기준으로 상기 PDMS의 중량은 0.1 중량% 내지 5 중량%인 것을 특징으로 하는 리튬 이차전지용 양극.The positive electrode for a lithium secondary battery according to claim 1, wherein the weight of the PDMS is 0.1 wt% to 5 wt% based on the total weight of the positive electrode for a lithium secondary battery. 제1항에 있어서, 상기 리튬망간산화물은 금속 원소로 도핑된 리튬금속망간산화물일 수 있으며, 상기 금속 원소는 Ni, Zr, Co, Mg, Mo, Al 및 Ag 중 선택된 1종 이상인 것을 특징으로 하는 리튬 이차전지용 양극.The lithium secondary battery according to claim 1, wherein the lithium manganese oxide is lithium metal manganese oxide doped with a metal element, and the metal element is at least one selected from the group consisting of Ni, Zr, Co, Mg, Mo, Anode for lithium secondary battery. 제1항 내지 제4항 중 어느 한 항에 따른 양극을 포함하는 리튬 이온전지.A lithium ion battery comprising a positive electrode according to any one of claims 1 to 4. 제1항 내지 제4항 중 어느 한 항에 따른 양극을 포함하는 중대형 디바이스.A medium- or large-sized device comprising a cathode according to any one of claims 1 to 4. (A) 폴리디메틸실록산(polydimethylsiloxane, PDMS)과 유기용매를 혼합하여 PDMS 용액을 제조하는 단계;
(B) 상기 PDMS 용액과 리튬망간산화물계 양극 활물질을 혼합하여 슬러리를 얻는 단계; 및
(C) 상기 슬러리를 집전체에 캐스팅하여 건조하는 단계;를 포함하는 리튬 이차전지용 양극 제조방법.
(A) preparing a PDMS solution by mixing polydimethylsiloxane (PDMS) and an organic solvent;
(B) mixing the PDMS solution and the lithium manganese oxide-based cathode active material to obtain a slurry; And
(C) casting the slurry into a current collector and drying the slurry.
제7항에 있어서, 상기 리튬 이차전지용 양극 전체 중량을 기준으로 상기 PDMS의 중량은 0.1 중량% 내지 5 중량%인 것을 특징으로 하는 리튬 이차전지용 양극 제조방법.8. The method of claim 7, wherein the weight of the PDMS is 0.1 wt% to 5 wt% based on the total weight of the positive electrode for a lithium secondary battery.
KR1020160016154A 2016-02-12 2016-02-12 Cathode for lithium-ion secondary battery, lithium-ion secondary battery comprising the same and the preparation method thereof KR101775097B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160016154A KR101775097B1 (en) 2016-02-12 2016-02-12 Cathode for lithium-ion secondary battery, lithium-ion secondary battery comprising the same and the preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160016154A KR101775097B1 (en) 2016-02-12 2016-02-12 Cathode for lithium-ion secondary battery, lithium-ion secondary battery comprising the same and the preparation method thereof

Publications (2)

Publication Number Publication Date
KR20170094882A true KR20170094882A (en) 2017-08-22
KR101775097B1 KR101775097B1 (en) 2017-09-05

Family

ID=59757760

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160016154A KR101775097B1 (en) 2016-02-12 2016-02-12 Cathode for lithium-ion secondary battery, lithium-ion secondary battery comprising the same and the preparation method thereof

Country Status (1)

Country Link
KR (1) KR101775097B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200095173A (en) * 2019-01-31 2020-08-10 서울대학교산학협력단 Hydrophobized Cathode Active Material and Method Thereof
WO2023245679A1 (en) * 2022-06-24 2023-12-28 宁德时代新能源科技股份有限公司 Positive electrode material composition and preparation method therefor, positive electrode plate comprising same, secondary battery, and electric device
WO2023245682A1 (en) * 2022-06-24 2023-12-28 宁德时代新能源科技股份有限公司 Positive electrode material composition and preparation method therefor, positive electrode sheet comprising positive electrode material composition, secondary battery, and electrical device
WO2023245680A1 (en) * 2022-06-24 2023-12-28 宁德时代新能源科技股份有限公司 Positive electrode material composition and preparation method therefor, positive electrode plate comprising same, secondary battery, and electric device
CN117673473A (en) * 2024-01-26 2024-03-08 宁德新能源科技有限公司 Lithium ion battery and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102142770B1 (en) 2018-10-19 2020-08-07 인천대학교 산학협력단 Cathode materials for lithium ion battery coated lithium trimethylsiloxide and preparing method thereof
KR102174482B1 (en) 2018-12-24 2020-11-04 인천대학교 산학협력단 Cathode materials for lithium ion battery coated dimethoxydimethylsilane and preparing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200095173A (en) * 2019-01-31 2020-08-10 서울대학교산학협력단 Hydrophobized Cathode Active Material and Method Thereof
WO2023245679A1 (en) * 2022-06-24 2023-12-28 宁德时代新能源科技股份有限公司 Positive electrode material composition and preparation method therefor, positive electrode plate comprising same, secondary battery, and electric device
WO2023245682A1 (en) * 2022-06-24 2023-12-28 宁德时代新能源科技股份有限公司 Positive electrode material composition and preparation method therefor, positive electrode sheet comprising positive electrode material composition, secondary battery, and electrical device
WO2023245680A1 (en) * 2022-06-24 2023-12-28 宁德时代新能源科技股份有限公司 Positive electrode material composition and preparation method therefor, positive electrode plate comprising same, secondary battery, and electric device
CN117673473A (en) * 2024-01-26 2024-03-08 宁德新能源科技有限公司 Lithium ion battery and electronic device

Also Published As

Publication number Publication date
KR101775097B1 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
Chen et al. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery
KR101775097B1 (en) Cathode for lithium-ion secondary battery, lithium-ion secondary battery comprising the same and the preparation method thereof
Zhang et al. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials
Ma et al. Surface and interface issues in spinel LiNi0. 5Mn1. 5O4: insights into a potential cathode material for high energy density lithium ion batteries
CN102694206B (en) Nonaqueous electrolyte battery and battery pack
JP5671831B2 (en) Method for producing lithium nitride-transition metal composite oxide, lithium nitride-transition metal composite oxide, and lithium battery
KR101601917B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
KR101816945B1 (en) Cathode active material, preparation method thereof, and lithium secondary battery comprising the same
US9660260B2 (en) Cathode active material coated with fluorine-doped lithium metal manganese oxide and lithium-ion secondary battery comprising the same
WO2015072359A1 (en) Method for producing surface-treated oxide particles, and oxide particles produced by said production method
CN110729458B (en) Positive active material, preparation method thereof, positive pole piece and lithium ion secondary battery
JP2007087820A (en) Nonaqueous electrolyte secondary battery
WO2019039566A1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing said material, nonaqueous electrolyte secondary cell, and method for manufacturing said cell
Wei et al. Enhancing electrochemical performance and structural stability of LiNi0. 5Mn1. 5O4 cathode material for rechargeable lithium-ion batteries by boron doping
JP2007188699A (en) Nonaqueous electrolyte secondary battery and method of manufacturing positive active material for nonaqueous electrolyte secondary battery
Guo et al. Effects of sodium substitution on properties of LiMn2O4 cathode for lithium ion batteries
KR20180032162A (en) Electrode, nonaqueous electrolyte battery, battery pack and vehicle
Jung et al. High-performance lithium-ion batteries combined with bi-functionalized electrolyte additive and nickel-rich layered oxides
KR20180044285A (en) POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NON-
Hao et al. Enhancing electrochemical performances of LiNi0. 5Co0. 2Mn0. 3O2 cathode materials derived from NiF2 artificial interface at elevated voltage
CN103931030A (en) Lithium ion secondary battery and method for manufacturing same
JP7262419B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101130318B1 (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
Li et al. Improving cyclic stability of LiMn2O4/graphite battery under elevated temperature by using 1, 3-propane sultone as electrolyte additive

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right