JP2007188699A - Nonaqueous electrolyte secondary battery and method of manufacturing positive active material for nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery and method of manufacturing positive active material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007188699A
JP2007188699A JP2006004439A JP2006004439A JP2007188699A JP 2007188699 A JP2007188699 A JP 2007188699A JP 2006004439 A JP2006004439 A JP 2006004439A JP 2006004439 A JP2006004439 A JP 2006004439A JP 2007188699 A JP2007188699 A JP 2007188699A
Authority
JP
Japan
Prior art keywords
secondary battery
active material
positive electrode
electrolyte secondary
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004439A
Other languages
Japanese (ja)
Inventor
Fumihiko Maki
文彦 槇
Masaki Sekine
雅樹 関根
Hajime Kajima
肇 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kagaku Sangyo Co Ltd
Original Assignee
Nihon Kagaku Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kagaku Sangyo Co Ltd filed Critical Nihon Kagaku Sangyo Co Ltd
Priority to JP2006004439A priority Critical patent/JP2007188699A/en
Publication of JP2007188699A publication Critical patent/JP2007188699A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having higher charge/discharge characteristics (load characteristics) than a conventional nonaqueous electrolyte secondary battery, and to provide the method of manufacturing a positive active material for the nonaqueous electrolyte secondary battery. <P>SOLUTION: The nonaqueous secondary battery is equipped with at least a positive electrode containing positive active material particles covered with a low valence oxide of a transition metal element; a negative electrode; and a nonaqueous electrolyte containing a lithium salt. The positive active material for the nonaqueous electrolyte secondary battery is manufactured in such a way that the low valence oxide particles of the transition metal element and positive active material particles are dispersed in a solvent to prepare slurry, the solvent is removed from the slurry, and then residual particles are dried to obtain the positive active material particles covered with the low valence oxide particles of the transition metal element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は負荷特性に優れたリチウムイオン二次電池(リチウム二次電池)等の非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法に関する。   The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery (lithium secondary battery) having excellent load characteristics, and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.

自動車業界ではガソリン車など化石燃料を使用する自動車に代え、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入を促進すべく、EV駆動用電池の開発が活発に行われている。
EV用電池としては蓄電池、ニッケル−カドミウム電池、ニッケル−水素電池などの研究が行われているが、重量、エネルギー密度の点からリチウム二次電池が有望視されている。
In the automobile industry, EV drive batteries are being actively developed in order to promote the introduction of electric vehicles (EV) and hybrid electric vehicles (HEV) instead of vehicles using fossil fuels such as gasoline vehicles.
As a battery for EV, researches on a storage battery, a nickel-cadmium battery, a nickel-hydrogen battery, and the like have been conducted, but a lithium secondary battery is considered promising in terms of weight and energy density.

現在市販されているリチウム二次電池は、正極物質として希少金属であるコバルトを主成分としていて、EV用などの大型電池となった場合に資源的な不安があり、また、コストも高くなる恐れがある。そこで、これに代わる正極物質としてスピネル型LiMnの研究が盛んに行われているが、スピネル型LiMnは高温時のサイクル劣化が解決できないことや、他の正極材料と比較して容量が低いことから、Niにシフトする動きも見られる等、未だ実用化には至っていない。
また、Ni−Co−Mn三元系複合酸化物からなる正極材料はスピネル型LiMnに比較して高容量でかつ熱安定性に優れ、Ni系正極材料と比較してもプロセスコストが安価であるという特徴がある。
The lithium secondary battery currently on the market is based on cobalt, which is a rare metal, as the positive electrode material, and there is a concern about resource when it becomes a large battery for EVs and the cost may increase. There is. Therefore, research on spinel-type LiMn 2 O 4 has been actively conducted as an alternative positive electrode material. However, spinel-type LiMn 2 O 4 cannot solve the cycle deterioration at high temperatures, and compared with other positive-electrode materials. Because of its low capacity, it has not yet been put into practical use, such as a shift to Ni.
In addition, the positive electrode material made of Ni—Co—Mn ternary composite oxide has higher capacity and thermal stability than spinel type LiMn 2 O 4 , and the process cost is lower than that of Ni type positive electrode material. It is characterized by being inexpensive.

しかしながら、EVは発進、加速時に大きなエネルギーを要し、また、減速時に発生する大きなエネルギーを効率良く回生させなければならないため、EV用電源として用いるリチウム二次電池には高い出力特性と入力特性が要求される。
リチウム二次電池はHイオンよりもイオン半径の大きいLiイオンの拡散により電気エネルギーに変換する仕組みであるため、早い充放電ができない欠点があり、正極材料としてNi−Co−Mn三元系複合酸化物を用いたリチウム二次電池でも、これをEVに搭載するにはさらに優れた充放電特性(負荷特性)が必要となる。
However, since EV requires a large amount of energy when starting and accelerating, and a large amount of energy generated when decelerating must be efficiently regenerated, a lithium secondary battery used as an EV power source has high output characteristics and input characteristics. Required.
Since the lithium secondary battery is a mechanism that converts it into electric energy by diffusion of Li + ions having an ionic radius larger than that of H + ions, there is a drawback that quick charge / discharge cannot be performed, and Ni—Co—Mn ternary system as a positive electrode material Even in a lithium secondary battery using a composite oxide, further excellent charge / discharge characteristics (load characteristics) are required to mount it on an EV.

そのため、リチウム二次電池等の非水電解質二次電池用の正極材として、チタン(Ti)、スズ(Sn)等の電気伝導性やリチウムイオン伝導性を有する金属酸化物や金属硫化物の被覆をLi−Ni複合酸化物からなる正極活物質の表面に施した正極材を用いる提案(特許文献1参照)や、コバルト酸リチウム粒子の表面の一部に特定量のチタン及び/又はチタン酸リチウムを被覆した正極活物質を用いた非水電解質二次電池(特許文献2)や、正極活物質の周りにTi,Al,Sn,Bi,Cu,Si,Ga,W,Zr,B,Moから選ばれた少なくとも1種を含む金属及びまたはこれらの複数個の組み合わせにより得られる金属間化合物、及び/又は酸化物を被覆したものを正極として使用した電池(特許文献3)等をはじめ、リチウム二次電池の新しい電極素材の開発や、該素材の表面処理について多数の提案がなされている。しかしながら、市場ではさらに優れた充放電特性(負荷特性)を有する非水分解質二次電池の開発が切望されている。   Therefore, as a positive electrode material for a non-aqueous electrolyte secondary battery such as a lithium secondary battery, it is coated with a metal oxide or metal sulfide having electrical conductivity such as titanium (Ti) or tin (Sn) or lithium ion conductivity. A proposal using a positive electrode material made of Li-Ni composite oxide on the surface of a positive electrode active material (see Patent Document 1), a specific amount of titanium and / or lithium titanate on a part of the surface of lithium cobalt oxide particles Non-aqueous electrolyte secondary battery using a positive electrode active material coated with Pt (Patent Document 2), and around the positive electrode active material from Ti, Al, Sn, Bi, Cu, Si, Ga, W, Zr, B, Mo Batteries using a metal containing at least one selected metal and / or an intermetallic compound obtained by combining a plurality of these and / or an oxide as a positive electrode (Patent Document 3), etc., and lithium Development of new electrode materials of the following cell, a number of proposals have been made for the surface treatment of the said workpiece. However, development of a non-aqueous decomposition secondary battery having even better charge / discharge characteristics (load characteristics) is desired in the market.

特開2003−173775号公報JP 2003-173775 A 特開2002−151078号公報JP 2002-151078 A 特開平11−16566号公報Japanese Patent Laid-Open No. 11-16666

本発明は前記状況に鑑みてなされたものであり、従来の非水電解質二次電池よりもさらに優れた充放電特性(負荷特性)を有する非水電解質二次電池、及び非水電解質二次電池用の正極活物質の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery having charge / discharge characteristics (load characteristics) further superior to those of conventional nonaqueous electrolyte secondary batteries. An object of the present invention is to provide a method for producing a positive electrode active material.

本発明者等は、リチウム二次電池をはじめとする非水電解質二次電池の正極として採用される正極活物質粒子に種々の表面処理を施し、これらを非水電解質二次電池の正極として用いた場合の、該非水電解質二次電池の充放電特性(負荷特性)に及ぼす効果について鋭意検討の結果、特定の遷移金属酸化物であって、同一の遷移金属酸化物の中で該遷移金属元素と結合している酸素数が少ない酸化物(低原子価酸化物)を表面に被覆した正極活物質粒子を正極として用いることにより、特に充放電特性(負荷特性)に優れた非水電解質二次電池が得られ、前記本発明の目的が達成されるとの知見を得て本発明に到った。   The present inventors performed various surface treatments on the positive electrode active material particles employed as the positive electrode of non-aqueous electrolyte secondary batteries such as lithium secondary batteries, and used these as positive electrodes of non-aqueous electrolyte secondary batteries. As a result of intensive studies on the effects on the charge / discharge characteristics (load characteristics) of the non-aqueous electrolyte secondary battery, it is a specific transition metal oxide, and the transition metal element in the same transition metal oxide Non-aqueous electrolyte secondary with excellent charge / discharge characteristics (load characteristics) by using positive electrode active material particles coated with oxides with low oxygen number (low valence oxide) bonded to the surface A battery was obtained, and the present invention was obtained with the knowledge that the object of the present invention was achieved.

即ち、本発明の非水電解質二次電池は以下の構成からなる。
(1)遷移金属元素の低原子価酸化物が表面に被覆された正極活物質粒子を含む正極と、負極と、リチウム塩を含む非水電解質から構成されていることを特徴とする非水電解質二次電池。
(2)前記遷移金属元素の低原子価酸化物がチタン(Ti)、スズ(Sn)、バナジウム(V)、ニオブ(Nb)、モリブデン(Mo)及びタングステン(W)の中の少なくとも1種の元素の低原子価酸化物であることを特徴とする前記(1)に記載の非水電解質二次電池。
(3)前記遷移金属元素の低原子価酸化物の被覆量が前記正極活物質粒子に対して0.1〜10.0重量%、より好ましくは0.3〜3.0重量%であることを特徴とする前記(1)又は(2)に記載の非水電解質二次電池。
That is, the nonaqueous electrolyte secondary battery of the present invention has the following configuration.
(1) A non-aqueous electrolyte comprising a positive electrode including positive electrode active material particles whose surface is coated with a low-valent oxide of a transition metal element, a negative electrode, and a non-aqueous electrolyte containing a lithium salt Secondary battery.
(2) The low-valent oxide of the transition metal element is at least one of titanium (Ti), tin (Sn), vanadium (V), niobium (Nb), molybdenum (Mo), and tungsten (W). The nonaqueous electrolyte secondary battery according to (1) above, which is a low-valent oxide of an element.
(3) The coating amount of the low-valent oxide of the transition metal element is 0.1 to 10.0% by weight, more preferably 0.3 to 3.0% by weight with respect to the positive electrode active material particles. The nonaqueous electrolyte secondary battery according to (1) or (2), wherein

(4)前記正極活物質がNi−Co−Mn三元系複合酸化物又はリチウム−遷移金属複合酸化物であることを特徴とする前記(1)〜(3)のいずれかに記載の非水電解質二次電池。
(5)前記リチウム含有酸化物がコバルト酸リチウム(LiCoO)、スピネル型マンガン酸リチウム(LiMn)及びニッケル酸リチウム(LiNiO)の中の1種であることを特徴とする前記(4)に記載の非水電解質二次電池。
(6)前記遷移金属元素の低原子価酸化物が一酸化チタンであることを特徴とする前記(1)〜(5)のいずれかに記載の非水電解質二次電池。
(4) The non-aqueous solution according to any one of (1) to (3), wherein the positive electrode active material is a Ni—Co—Mn ternary composite oxide or a lithium-transition metal composite oxide. Electrolyte secondary battery.
(5) The lithium-containing oxide is one of lithium cobaltate (LiCoO 2 ), spinel type lithium manganate (LiMn 2 O 4 ), and lithium nickelate (LiNiO 2 ). 4) A nonaqueous electrolyte secondary battery.
(6) The nonaqueous electrolyte secondary battery according to any one of (1) to (5), wherein the low-valent oxide of the transition metal element is titanium monoxide.

(7)遷移金属元素の低原子価酸化物粒子と正極活物質粒子とを溶媒中に分散させてなるスラリーから前記溶媒を除去して乾燥することにより、前記正極活物質粒子の表面に前記遷移金属元素の低原子価酸化物粒子を付着させることを特徴とする非水電解質二次電池用正極活物質の製造方法。 (7) The transition is made to the surface of the positive electrode active material particles by removing the solvent from a slurry obtained by dispersing low-valent oxide particles of transition metal elements and positive electrode active material particles in a solvent and drying the slurry. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising attaching low-valent oxide particles of a metal element.

本発明によれば、表面に酸素欠陥が多く存在し、電子伝導性に優れた遷移元素の低原子価酸化物を被覆した正極活物質粒子を正極として用いたため、従来のものよりも、より優れた充放電特性(負荷特性)を有する非水分解質二次電池が得られる。   According to the present invention, since positive electrode active material particles coated with a low-valent oxide of a transition element having many oxygen vacancies on the surface and excellent in electronic conductivity are used as a positive electrode, it is superior to conventional ones. Thus, a non-hydrolytic secondary battery having charge / discharge characteristics (load characteristics) can be obtained.

以下、本発明について詳細に説明する。
本発明の非水電解質二次電池は、正極、負極、セパレータ、リチウム塩を含有する非水電解質を必須成分として構成される。正極は、正極板(例えばアルミニウム板等からなる正極集電体)上に正極活物質、導電剤及び結着剤を含有した正極合剤を塗布してなるものである。
本発明の非水電解質二次電池は、正極を構成する正極活物質として表面に遷移元素の低原子価酸化物が被覆された正極活物質粒子を含む以外は従来の非水電解質二次電池と同様の構成からなる。
また、本発明の非水電解質二次電池の製造方法は、該電池の正極である正極活物質の表面を被覆する被覆材の出発原料として、遷移元素の低原子価酸化物を用いることを特徴とする。
The present invention will be described in detail below.
The nonaqueous electrolyte secondary battery of the present invention comprises a nonaqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt as essential components. The positive electrode is obtained by applying a positive electrode mixture containing a positive electrode active material, a conductive agent and a binder on a positive electrode plate (for example, a positive electrode current collector made of an aluminum plate or the like).
The non-aqueous electrolyte secondary battery of the present invention is a conventional non-aqueous electrolyte secondary battery except that the positive electrode active material constituting the positive electrode includes positive electrode active material particles coated with a low-valent oxide of a transition element on the surface. It consists of the same composition.
The method for producing a non-aqueous electrolyte secondary battery of the present invention is characterized in that a low-valent oxide of a transition element is used as a starting material for a coating material that covers the surface of a positive electrode active material that is a positive electrode of the battery. And

本発明の非水電解質二次電池の正極活物質は、例えば所定量の遷移金属元素の低酸化物粒子をエタノール等の揮発性溶媒中に分散させた溶液中に、正極活物質の粒子を分散させて充分に攪拌し、スラリー状態にし、次いで該溶媒を蒸発、乾固して正極活物質粒子の表面に遷移金属の低酸化物粒子を被覆することによって製造される。
また、正極活物質と所定量の遷移金属元素の低酸化物粒子とをボールミル、各種ブレンダーにより混合する方法や、化学蒸着(CVD)法、粉体へのコ−ティング装置により正極活物質粒子表面に所定量の遷移金属元素の低酸化物粒子を付着する等の乾式によるコーティング方法によっても製造することができる。
The positive electrode active material of the non-aqueous electrolyte secondary battery according to the present invention is, for example, dispersed in a solution in which a predetermined amount of transition metal element low oxide particles are dispersed in a volatile solvent such as ethanol. The mixture is sufficiently stirred to form a slurry, and then the solvent is evaporated and dried to coat the surface of the positive electrode active material particles with low oxide particles of transition metal.
Moreover, the surface of the positive electrode active material particles can be obtained by a method of mixing the positive electrode active material and a predetermined amount of transition metal element low oxide particles using a ball mill or various blenders, a chemical vapor deposition (CVD) method, or a powder coating apparatus. It can also be produced by a dry coating method, such as attaching a predetermined amount of transition metal element low oxide particles.

本発明において正極活物質粒子の表面を被覆する遷移金属元素の低原子化酸化物の中でも、チタン(Ti)、スズ(Sn)、バナジウム(V)、ニオブ(Nb)、モリブデン(Mo)及びタングステン(W)の中の少なくとも1種の遷移金属元素の低酸化物粒子である、一酸化チタン、一酸化スズ、一酸化バナジウム、一酸化ニオブ、二酸化モリブデン、二酸化タングステン等が好適に用いられるが、特にTiの低原子化酸化物である一酸化チタンを被覆するのがより好ましい。   Among transition metal element low-oxides covering the surface of the positive electrode active material particles in the present invention, titanium (Ti), tin (Sn), vanadium (V), niobium (Nb), molybdenum (Mo), and tungsten The low oxide particles of at least one transition metal element in (W), titanium monoxide, tin monoxide, vanadium monoxide, niobium monoxide, molybdenum dioxide, tungsten dioxide, etc. are preferably used. In particular, it is more preferable to coat titanium monoxide which is a low atomized oxide of Ti.

正極活物質粒子の表面に被覆する前記遷移金属元素の低原子価酸化物の被覆量は、該正極活物質粒子に対して0.1〜10.0重量%とするのが好ましく、より好ましくは0.3〜3.0重量%とするのがよい。遷移金属元素の酸化物の被覆量が正極活物質粒子0.1重量%より少ないと活物質表面を覆う被覆面積が低下し、低酸化状態酸化物(低原子価酸化物)でコートした効果が現れないので好ましくなく、また、10.0重量%より多いと単位重量あたりの容量が低下するため好ましくない。   The amount of the transition metal element low-valence oxide coated on the surface of the positive electrode active material particles is preferably 0.1 to 10.0% by weight, more preferably, the positive electrode active material particles. It is good to set it as 0.3 to 3.0 weight%. If the coating amount of the transition metal element oxide is less than 0.1% by weight of the positive electrode active material particles, the coating area covering the active material surface is reduced, and the effect of coating with a low oxidation state oxide (low valence oxide) Since it does not appear, it is not preferable, and when it is more than 10.0% by weight, the capacity per unit weight is decreased, which is not preferable.

なお、本発明において遷移金属元素の「低原子価酸化物」とは、存在するそれぞれ特定の遷移金属元素の酸化物の中で、該遷移金属元素と結合している酸素数が最大ではない酸化物をいう。例えば、遷移金属元素がTiである場合には、Tiの酸化物としては二酸化チタンと一酸化チタンが知られているが、本発明において正極活物質粒子の表面に被覆される遷移金属の低原子価酸化物としては二酸化チタンではなく一酸化チタンが挙げられ、MoやWの酸化物としては三酸化モリブデンや三酸化タングステンではなく、二酸化モリブデンや二酸化タングステンが挙げられる。
これら遷移金属元素の低原子価酸化物は、いずれも酸素欠陥を多く含む酸化物であり、電子伝導性に優れるため、レート特性がより改善される。
In the present invention, a “low-valent oxide” of a transition metal element is an oxidation in which the number of oxygen atoms bonded to the transition metal element is not the maximum among the oxides of each specific transition metal element. Say things. For example, when the transition metal element is Ti, titanium dioxide and titanium monoxide are known as Ti oxides, but in the present invention, the low atom of the transition metal coated on the surface of the positive electrode active material particles Examples of the valent oxide include titanium monoxide instead of titanium dioxide, and examples of the Mo and W oxide include molybdenum dioxide and tungsten dioxide instead of molybdenum trioxide and tungsten trioxide.
These low-valent oxides of transition metal elements are oxides containing a large amount of oxygen vacancies, and are excellent in electron conductivity, so that the rate characteristics are further improved.

前記の遷移金属元素の低原子価酸化物が被覆される正極活物質粒子としては、Ni−Co−Mn三元系複合酸化物又はリチウム−遷移金属複合酸化物が使用されるが、これらの中でもリチウム含有酸化物、特に、コバルト酸リチウム(LiCoO)、スピネル型マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、酸化マグネシウム(MgO)、酸化チタン(TiO)又は酸化ジルコニウム(ZrO)とLiCoOとが混合されたコバルト酸リチウム複合化合物が好適に用いられる。 As the positive electrode active material particles coated with the low-valent oxide of the transition metal element, Ni—Co—Mn ternary composite oxide or lithium-transition metal composite oxide is used. Lithium-containing oxides, particularly lithium cobaltate (LiCoO 2 ), spinel type lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), magnesium oxide (MgO), titanium oxide (TiO 2 ) or zirconium oxide A lithium cobaltate composite compound in which (ZrO 2 ) and LiCoO 2 are mixed is preferably used.

前記正極板上に塗布される正極合剤は、正極活物質に加えて導電剤、結着剤及びフィラーなどを添加することができる。導電剤としては、例えば天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、炭素繊維、ニッケル粉のような金属粉等からなる群から選択された導電性材料の1種または2種以上を使用することができる。上述の中で、黒鉛とアセチレンブラックを導電剤として併用することが好ましい。なお、正極合剤への導電剤の配合量は、1〜50重量%、好ましくは2〜30重量%の範囲内である。   The positive electrode mixture applied on the positive electrode plate may contain a conductive agent, a binder, a filler, and the like in addition to the positive electrode active material. As the conductive agent, for example, a conductive material selected from the group consisting of natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, carbon fiber, metal powder such as nickel powder, and the like. One type or two or more types of sexual materials can be used. Among the above, it is preferable to use graphite and acetylene black as a conductive agent. In addition, the compounding quantity of the electrically conductive agent to a positive mix is 1 to 50 weight%, Preferably it exists in the range of 2 to 30 weight%.

また、結着剤としては、例えばポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、エチレン−プロピレン−ジエンターボリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマーなどの1種または2種以上を使用することができる。なお、正極合剤への結着剤の配合量は、2〜30重量%の範囲内が好ましい。   Examples of the binder include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl pyrrolidone, ethylene-propylene-diene turbolimer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, One or more of polysaccharides such as polyethylene oxide, thermoplastic resins, and polymers having rubber elasticity can be used. The blending amount of the binder to the positive electrode mixture is preferably in the range of 2 to 30% by weight.

更に、フィラーは、非水電解質二次電池において、化学変化を起こさない繊維状材料であればいずれのものも使用可能であるが、通常ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス繊維、炭素繊維のような繊維が用いられる。正極合剤へのフィラー配合量は、特に限定されるものではないが、0〜30重量%の範囲内が好ましい。なお、本発明の正極活物質の正極合剤への配合量は、特に限定されるものではないが、好ましくは60〜95重量%、特に好ましくは70〜94重量%の範囲内である。   Furthermore, any filler can be used as long as it is a fibrous material that does not cause a chemical change in the nonaqueous electrolyte secondary battery. Usually, an olefin polymer such as polypropylene or polyethylene, glass fiber, or carbon fiber is used. Such fibers are used. The blending amount of the filler in the positive electrode mixture is not particularly limited, but is preferably in the range of 0 to 30% by weight. In addition, the compounding quantity to the positive mix of the positive electrode active material of this invention is although it does not specifically limit, Preferably it is 60 to 95 weight%, Especially preferably, it exists in the range of 70 to 94 weight%.

次に、非水電解質二次電池に用いられる非水電解液は、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチルラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、礒酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒の少なくとも1種以上を混合した溶媒と、その溶媒に溶解するリチウム塩例えばLiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウムなどの1種以上のリチウム塩から構成される。 Next, non-aqueous electrolytes used in non-aqueous electrolyte secondary batteries are, for example, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyl lactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl oxalate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl 2-Oxazodinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, at least one kind of aprotic organic solvent such as 1,3-propane sultone And solvent combined, lithium salts such as LiClO 4 is dissolved in the solvent, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, chloroborane lithium, It is composed of one or more lithium salts such as lower aliphatic lithium carboxylate and lithium tetraphenylborate.

また、非水電解液の他に、有機固体電解質を用いることもできる。例えばポリエチレン誘導体またはこれを含むポリマー、ポリプロピレンオキサイド誘導体またはこれを含むポリマー、燐酸エステルポリマーなどが挙げられる。   In addition to the non-aqueous electrolyte, an organic solid electrolyte can also be used. Examples thereof include a polyethylene derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, and a phosphate ester polymer.

上記化合物を所望の量混合して非水電解質二次電池を構成させることができる。電極の集電体は、構成された非水電解質二次電池において化学変化を起こさない電子伝導体であれば特に制限されるものではないが、例えばステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面をカーボン、ニッケル、銅、チタンまたは銀で表面処理したものが用いられ、負極にはステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素などの他に、銅やステンレス鋼の表面をカーボン、ニッケル、チタンまたは銀などで処理したもの、Al−Cd合金などが用いられる。   A desired amount of the above compounds can be mixed to constitute a non-aqueous electrolyte secondary battery. The current collector of the electrode is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constructed nonaqueous electrolyte secondary battery.For example, stainless steel, nickel, aluminum, titanium, calcined carbon, The surface of aluminum or stainless steel is treated with carbon, nickel, copper, titanium or silver. The negative electrode is made of stainless steel, nickel, copper, titanium, aluminum, calcined carbon, etc. A surface treated with carbon, nickel, titanium, silver, or the like, or an Al—Cd alloy is used.

次に実施例をあげて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
〔実施例1〕
(正極活物質の調製)
使用するLi(Ni1/3Co1/3Mn1/3)O(正極活物質)粉末のメタルに対して0.5のモル%の一酸化チタン粉末(株式会社高純度化学研究所社製、純度99%up)をエタノールに投入し、これを超音波洗浄機を用いて1時間かけて分散処理を施して一酸化チタンン粉末のエタノール分散液を得た。
次に、この分散液にLi(Ni1/3Co1/3Mn1/3)O(正極活物質)粉末を投入し、攪拌することにより一酸化チタンと正極活物質との混合スラリーを調製した。
次いでエバポレータ−によりこのLi(Ni1/3Co1/3Mn1/3)O(正極活物質)と一酸化チタンとの混合スラリーからエタノールを完全に揮散させて、表面に0.5のモル%の一酸化チタンを被覆した実施例1の正極活物質を調製した。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
[Example 1]
(Preparation of positive electrode active material)
Titanium monoxide powder of 0.5 mol% with respect to the metal of the Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 (positive electrode active material) powder used (High Purity Chemical Laboratory Co., Ltd.) Manufactured and having a purity of 99% up) was added to ethanol, and this was subjected to a dispersion treatment using an ultrasonic cleaner for 1 hour to obtain an ethanol dispersion of titanium monoxide powder.
Next, Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 (positive electrode active material) powder is charged into this dispersion and stirred to prepare a mixed slurry of titanium monoxide and the positive electrode active material. Prepared.
Next, ethanol was completely stripped from the mixed slurry of Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 (positive electrode active material) and titanium monoxide by an evaporator, and 0.5 A positive electrode active material of Example 1 coated with mol% titanium monoxide was prepared.

(コイン型非水電解質二次電池の作製)
前記のようにして得た実施例1の正極活物質90重量%と、アセチレンブラック7重量%と、PTFE3重量%とを混合して正極材とし、これを厚さ70〜80μmの延ばした物を11mmの円盤状に打ち抜きアルミメッシュにプレスして乾燥させて正極とした。
この正極板を用いて、セパレーター、負極、集電板、電解液等の各部材を使用して非水電解質二次電池を製作した。このうち、負極には金属リチウム箔を用い、非水電解液には、1:1vol%のLiPF/PC(プロピレンカーボネイト)+DMC(ジメチルカーボネイト)を用いてCR2016タイプの実施例1のコインセル(非水電解質二次電池)を作製した。
(Production of coin-type non-aqueous electrolyte secondary battery)
90% by weight of the positive electrode active material of Example 1 obtained as described above, 7% by weight of acetylene black, and 3% by weight of PTFE were mixed to obtain a positive electrode material, which was formed by extending the thickness of 70 to 80 μm. It was punched into a disk shape of 11 mm, pressed into an aluminum mesh and dried to obtain a positive electrode.
Using this positive electrode plate, a non-aqueous electrolyte secondary battery was manufactured using each member such as a separator, a negative electrode, a current collector plate, and an electrolytic solution. Among these, the coin cell of Example 1 of CR2016 type using a metal lithium foil for the negative electrode and 1: 1 vol% LiPF 6 / PC (propylene carbonate) + DMC (dimethyl carbonate) for the non-aqueous electrolyte (non-aqueous electrolyte) A water electrolyte secondary battery) was produced.

(電池の負荷特性試験)
前記のようにして作製した実施例1のコイン型非水電解質二次電池を20℃で作動させ、0.2mA・cm−2で初期放電容量を確認し、ついで、同じく20℃において0.2C〜10Cで負荷特性を評価した。
0.2C、1C、2C、3C、6C、10Cで2サイクルずつ充放電試験を行い、2サイクル目の放電容量を各レートにおける放電容量とした。これらの放電容量を初期放電容量(0.2mA・cmー2における放電容量)で割った放電容量の比(0.2Cの放電容量/0.2mA・cmー2の放電容量、1Cの放電容量/0.2mA・cmー2の放電容量、2Cの放電容量/0.2mA・cmー2の放電容量、3Cの放電容量/0.2mA・cmー2の放電容量、6Cの放電容量/0.2mA・cmー2の放電容量、及び10Cの放電容量/0.2mA・cmー2の放電容量)から負荷特性を評価した(この放電容量比が大きい方が負荷特性が良好であることを意味する)。得られた結果を表1に示す。
(Battery load characteristics test)
The coin-type non-aqueous electrolyte secondary battery of Example 1 manufactured as described above was operated at 20 ° C., the initial discharge capacity was confirmed at 0.2 mA · cm −2 , and then 0.2 C at 20 ° C. The load characteristics were evaluated at 10C.
The charge / discharge test was performed for 2 cycles at 0.2C, 1C, 2C, 3C, 6C, and 10C, and the discharge capacity at the second cycle was defined as the discharge capacity at each rate. These discharge capacity and the discharge capacity of the initial discharge capacity ratio of the discharge capacity divided by (0.2 mA · cm over discharge capacity at 2) (0.2 C discharge capacity /0.2mA · cm over 2, 1C discharge capacity /0.2 mA · cm −2 discharge capacity, 2C discharge capacity / 0.2 mA · cm −2 discharge capacity, 3C discharge capacity / 0.2 mA · cm −2 discharge capacity, 6C discharge capacity / 0 discharge capacity .2mA · cm-2, and were evaluated load characteristics from discharge capacity) of the discharge capacity /0.2mA · cm -2 of 10C (that is towards the discharge capacity ratio is large load characteristic is good means). The obtained results are shown in Table 1.

〔実施例2〕
0.5のモル%の一酸化チタンに代えて、2.5モル%の一酸化チタンを用いた以外は実施例1の正極活物質と同様にして、表面に2.5のモル%の一酸化チタンを被覆した実施例2の正極活物質を調製し、実施例1の正極活物質の代わりに実施例2の正極活物質を用いた以外は実施例1のコインセル(非水電解質二次電池)と同様にして、実施例2のコインセル(非水電解質二次電池)を作製した。
次に、得られた実施例2のコインセル(非水電解質二次電池)について、実施例1と同様にしてこの電池の負荷特性を評価した。得られた結果を表1に示す。
[Example 2]
In the same manner as the positive electrode active material of Example 1, except that 2.5 mol% titanium monoxide was used instead of 0.5 mol% titanium monoxide, 2.5 mol% of titanium monoxide was formed on the surface. The positive electrode active material of Example 2 coated with titanium oxide was prepared, and the coin cell (nonaqueous electrolyte secondary battery of Example 1) was used except that the positive electrode active material of Example 2 was used instead of the positive electrode active material of Example 1. ), A coin cell (nonaqueous electrolyte secondary battery) of Example 2 was produced.
Next, the load characteristics of the obtained coin cell (nonaqueous electrolyte secondary battery) of Example 2 were evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.

〔実施例3〕
0.5のモル%の一酸化チタンに代えて、5.0モル%の一酸化チタンを用いた以外は実施例1の正極活物質と同様にして、表面に5.0のモル%の一酸化チタンを被覆した実施例3の正極活物質を調製し、実施例1の正極活物質の代わりに実施例3の正極活物質を用いた以外は実施例1のコインセル(非水電解質二次電池)と同様にして実施例3のコインセル(非水電解質二次電池)を作製した。
次に、得られた実施例3のコインセル(非水電解質二次電池)について、実施例1と同様にしてこの電池の負荷特性を評価した。得られた結果を表1に示す。
Example 3
In the same manner as the positive electrode active material of Example 1 except that 5.0 mol% titanium monoxide was used instead of 0.5 mol% titanium monoxide, 5.0 mol% The positive electrode active material of Example 3 coated with titanium oxide was prepared, and the coin cell (nonaqueous electrolyte secondary battery of Example 1) was used except that the positive electrode active material of Example 3 was used instead of the positive electrode active material of Example 1. ) To produce a coin cell (nonaqueous electrolyte secondary battery) of Example 3.
Next, for the obtained coin cell (non-aqueous electrolyte secondary battery) of Example 3, the load characteristics of this battery were evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.

〔比較例1〕
実施例1で用いたLi(Ni1/3Co1/3Mn1/3)O(正極活物質)粉末90重量部と、アセチレンブラック(AB)7重量部とポリテトラフルオロエチレン(PTFE)3重量部とを乳鉢により混合して比較例1の正極活物質を調製した。
次に、実施例1の正極活物質に代えて比較例1の正極活物質を用いた以外は実施例1のコインセル(非水電解質二次電池)と同様にして、比較例1のコインセル(非水電解質二次電池)を作製した。
次に、得られた比較例1のコインセル(非水電解質二次電池)について、実施例1と同様にしてこの電池の負荷特性を評価した。得られた結果を表1に示す。
[Comparative Example 1]
90 parts by weight of Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 (positive electrode active material) powder, 7 parts by weight of acetylene black (AB) and polytetrafluoroethylene (PTFE) used in Example 1 A positive electrode active material of Comparative Example 1 was prepared by mixing 3 parts by weight with a mortar.
Next, the coin cell of Comparative Example 1 (non-aqueous electrolyte secondary battery) was used in the same manner as the coin cell (non-aqueous electrolyte secondary battery) of Example 1 except that the positive electrode active material of Comparative Example 1 was used instead of the positive electrode active material of Example 1. A water electrolyte secondary battery) was produced.
Next, the load characteristics of the obtained coin cell (nonaqueous electrolyte secondary battery) of Comparative Example 1 were evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.

〔比較例2〕
0.5のモル%の一酸化チタンに代えて、2.5のモル%の二酸化チタンを用いた以外は実施例1の正極活物質と同様にして比較例2の正極活物質を製造した。次いで実施例1の正極活物質の代わりに前記の比較例2の正極活物質を用いた以外は実施例1のコインセル(非水電解質二次電池)と同様にして比較例2のコインセル(非水電解質二次電池)を作製した。
次に、得られた比較例2のコインセル(非水電解質二次電池)について、実施例1と同様にしてこの電池の負荷特性を評価した。得られた結果を表1に示す。
[Comparative Example 2]
A positive electrode active material of Comparative Example 2 was produced in the same manner as the positive electrode active material of Example 1 except that 2.5 mol% of titanium dioxide was used instead of 0.5 mol% of titanium monoxide. Next, the coin cell (non-aqueous electrolyte) of Comparative Example 2 was used in the same manner as the coin cell (non-aqueous electrolyte secondary battery) of Example 1 except that the positive electrode active material of Comparative Example 2 was used instead of the positive electrode active material of Example 1. An electrolyte secondary battery) was produced.
Next, the load characteristics of the obtained coin cell (nonaqueous electrolyte secondary battery) of Comparative Example 2 were evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.

Figure 2007188699
Figure 2007188699

表1からわかるように、本発明の非水電解質二次電池(実施例1〜3)は、従来のもの(比較例1、2)よりも放電容量維持率が特に3C以上で大である。
しかも、実施例1〜3、(特に実施例2)と比較例2との比較からわかるように、Li(Ni1/3Co1/3Mn1/3)O(正極活物質)粉末粒子の表面に一酸化チタンを被覆してなる正極活物質を用いた本発明の非水電解質二次電池は、同じ正極活物質に二酸化チタンを被覆してなる正極活物質を用いた従来の非水電解質二次電池(比較例2)に比べて、特に3C以上で放電容量維持率が大で負荷特性が良好である。
As can be seen from Table 1, the non-aqueous electrolyte secondary batteries (Examples 1 to 3) of the present invention have a discharge capacity retention rate of 3C or more, in particular, higher than that of the conventional ones (Comparative Examples 1 and 2).
Moreover, as can be seen from the comparison between Examples 1 to 3 (particularly Example 2) and Comparative Example 2, Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 (positive electrode active material) powder particles The non-aqueous electrolyte secondary battery of the present invention using the positive electrode active material formed by coating titanium monoxide on the surface of the conventional non-aqueous electrolyte using the positive electrode active material formed by coating the same positive electrode active material with titanium dioxide. Compared to the electrolyte secondary battery (Comparative Example 2), the discharge capacity retention rate is particularly large and the load characteristics are good at 3C or more.

本発明の非水電解質二次電池は特に負荷特性に優れ、コイン、ボタン、シート、シリンダー、角などの種々の形状とすることにより、例えばノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス電話機、ポータブルCD、ラジオなどの電子機器、自動車、電動車両、ゲーム機器などの民生用電子機器などに適用することができる。   The non-aqueous electrolyte secondary battery of the present invention is particularly excellent in load characteristics, and has various shapes such as coins, buttons, sheets, cylinders, and corners, for example, notebook computers, laptop computers, pocket word processors, cellular phones, cordless. The present invention can be applied to electronic devices such as telephones, portable CDs, and radios, and consumer electronic devices such as automobiles, electric vehicles, and game machines.

Claims (7)

遷移金属元素の低原子価酸化物が表面に被覆された正極活物質粒子を含む正極と、負極と、リチウム塩を含む非水電解質とを少なくとも備えて構成されていることを特徴とする非水電解質二次電池。   A non-aqueous material comprising at least a positive electrode including positive electrode active material particles coated with a low-valent oxide of a transition metal element, a negative electrode, and a non-aqueous electrolyte containing a lithium salt Electrolyte secondary battery. 前記遷移金属元素の低原子価酸化物が、チタン(Ti)、スズ(Sn)、バナジウム(V)、ニオブ(Nb)、モリブデン(Mo)及びタングステン(W)の中の少なくとも1種の元素の低原子価酸化物であることを特徴とする請求項1に記載の非水電解質二次電池。   The low-valent oxide of the transition metal element includes at least one element selected from titanium (Ti), tin (Sn), vanadium (V), niobium (Nb), molybdenum (Mo), and tungsten (W). The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is a low valence oxide. 前記遷移金属元素の低原子価酸化物の被覆量が前記正極活物質粒子に対して0.1〜10.0重量%であることを特徴とする請求項1又は2に記載の非水電解質二次電池。   3. The non-aqueous electrolyte 2 according to claim 1, wherein a coating amount of the low-valent oxide of the transition metal element is 0.1 to 10.0% by weight with respect to the positive electrode active material particles. Next battery. 前記正極活物質がNi−Co−Mn三元系複合酸化物又はリチウム−遷移金属複合酸化物であることを特徴とする請求項1〜3のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is a Ni—Co—Mn ternary composite oxide or a lithium-transition metal composite oxide. . 前記リチウム含有酸化物がコバルト酸リチウム(LiCoO)、スピネル型マンガン酸リチウム(LiMn)及びニッケル酸リチウム(LiNiO)の中の1種であることを特徴とする請求項4に記載の非水電解質二次電池。 The lithium-containing oxide is one of lithium cobaltate (LiCoO 2 ), spinel-type lithium manganate (LiMn 2 O 4 ), and lithium nickelate (LiNiO 2 ). Non-aqueous electrolyte secondary battery. 前記遷移金属元素の低原子価酸化物が一酸化チタンであることを特徴とする請求項1〜5のいずれか1項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the low-valent oxide of the transition metal element is titanium monoxide. 遷移金属元素の低原子価酸化物粒子と正極活物質粒子とを溶媒中に分散させてなるスラリーから前記溶媒を除去して乾燥することにより、前記正極活物質粒子の表面に前記遷移金属元素の低原子価酸化物粒子を付着させることを特徴とする非水電解質二次電池用正極活物質の製造方法。   By removing the solvent from the slurry obtained by dispersing the low-valent oxide particles of the transition metal element and the positive electrode active material particles in a solvent and drying, the transition metal element is deposited on the surface of the positive electrode active material particles. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising attaching low-valent oxide particles.
JP2006004439A 2006-01-12 2006-01-12 Nonaqueous electrolyte secondary battery and method of manufacturing positive active material for nonaqueous electrolyte secondary battery Pending JP2007188699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004439A JP2007188699A (en) 2006-01-12 2006-01-12 Nonaqueous electrolyte secondary battery and method of manufacturing positive active material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004439A JP2007188699A (en) 2006-01-12 2006-01-12 Nonaqueous electrolyte secondary battery and method of manufacturing positive active material for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2007188699A true JP2007188699A (en) 2007-07-26

Family

ID=38343726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004439A Pending JP2007188699A (en) 2006-01-12 2006-01-12 Nonaqueous electrolyte secondary battery and method of manufacturing positive active material for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2007188699A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050079A (en) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
WO2011016553A1 (en) * 2009-08-07 2011-02-10 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2011161832A1 (en) * 2010-06-25 2011-12-29 日本シリコン・エレクトロニクス・テクノロジー株式会社 Electrode collector material and production method for same
WO2014019162A1 (en) * 2012-08-01 2014-02-06 Ningbo Institute Of Materials Technology And Engineering Chinese Academy Of Sciences A new solid solution composite limv04-lini1-x-ycoxmnyo2 material for rechargeable lithium ion batteries
WO2015001957A1 (en) * 2013-07-03 2015-01-08 株式会社日立製作所 Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
US9126845B2 (en) 2011-05-31 2015-09-08 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
US9293761B2 (en) 2012-10-05 2016-03-22 Samsung Sdi Co., Ltd. Positive active material layer composition for rechargeable lithium battery and rechargeable lithium battery using the same
CN108352524A (en) * 2015-10-26 2018-07-31 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and the non-aqueous electrolyte secondary battery for using the positive active material
CN115312782A (en) * 2022-10-10 2022-11-08 苏州大学 Sodium-ion battery positive electrode material and preparation method thereof, and sodium-ion battery
CN117254016A (en) * 2023-11-20 2023-12-19 深圳华钠新材有限责任公司 High-ion mobility sodium-ion battery positive electrode material and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
JP2010050079A (en) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
WO2011016553A1 (en) * 2009-08-07 2011-02-10 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2011161832A1 (en) * 2010-06-25 2011-12-29 日本シリコン・エレクトロニクス・テクノロジー株式会社 Electrode collector material and production method for same
CN103140971A (en) * 2010-06-25 2013-06-05 日本硅电子技术株式会社 Electrode collector material and production method for same
JPWO2011161832A1 (en) * 2010-06-25 2013-08-29 清水 幹治 Current collector material for electrode and manufacturing method thereof
US9126845B2 (en) 2011-05-31 2015-09-08 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
WO2014019162A1 (en) * 2012-08-01 2014-02-06 Ningbo Institute Of Materials Technology And Engineering Chinese Academy Of Sciences A new solid solution composite limv04-lini1-x-ycoxmnyo2 material for rechargeable lithium ion batteries
US9917301B2 (en) 2012-08-01 2018-03-13 Ningbo Institute Of Materials Technology & Engineering Chinese Academy Of Sciences Solid solution composite LIMVO4-LINI-X-YCOXMNYO2 material for rechargeable lithium ion batteries
US9293761B2 (en) 2012-10-05 2016-03-22 Samsung Sdi Co., Ltd. Positive active material layer composition for rechargeable lithium battery and rechargeable lithium battery using the same
WO2015001957A1 (en) * 2013-07-03 2015-01-08 株式会社日立製作所 Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
CN108352524A (en) * 2015-10-26 2018-07-31 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and the non-aqueous electrolyte secondary battery for using the positive active material
CN115312782A (en) * 2022-10-10 2022-11-08 苏州大学 Sodium-ion battery positive electrode material and preparation method thereof, and sodium-ion battery
CN115312782B (en) * 2022-10-10 2022-12-27 苏州大学 Sodium-ion battery positive electrode material and preparation method thereof, and sodium-ion battery
CN117254016A (en) * 2023-11-20 2023-12-19 深圳华钠新材有限责任公司 High-ion mobility sodium-ion battery positive electrode material and preparation method thereof
CN117254016B (en) * 2023-11-20 2024-02-20 深圳华钠新材有限责任公司 High-ion mobility sodium-ion battery positive electrode material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5063948B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4725594B2 (en) Method for manufacturing lithium secondary battery
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP3625680B2 (en) Lithium secondary battery
JP5150966B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP2007188699A (en) Nonaqueous electrolyte secondary battery and method of manufacturing positive active material for nonaqueous electrolyte secondary battery
KR101666871B1 (en) Positive electrode active material and method of manufacturing the same, and rechargeable lithium battery including the positive electrode active material
US20070141470A1 (en) Lithium ion secondary battery
JP2007018985A (en) Lithium ion secondary battery
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
KR20080031151A (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2013110134A (en) Nonaqueous electrolyte battery
JP2011090876A (en) Lithium secondary battery and method of manufacturing the same
JP5958256B2 (en) Nonaqueous electrolyte secondary battery
CN113677624B (en) Octahedral lithium manganese-based positive electrode active material, positive electrode comprising same, and lithium secondary battery
JP7135282B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN109155431B (en) Lithium ion secondary battery
CN102160215A (en) Nonaqueous electrolyte secondary battery
CN111602274A (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
KR20200018852A (en) Cathode active material for lithium secondary battery, method of preparing the same and lithium secondary battery including the same
CN112313817A (en) Positive electrode material and secondary battery
CN112424976A (en) Positive electrode active material and secondary battery
JP2006318926A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2013073818A (en) Composite negative electrode active material for lithium ion secondary battery
JP4651279B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080311