KR102174482B1 - Cathode materials for lithium ion battery coated dimethoxydimethylsilane and preparing method thereof - Google Patents

Cathode materials for lithium ion battery coated dimethoxydimethylsilane and preparing method thereof Download PDF

Info

Publication number
KR102174482B1
KR102174482B1 KR1020180168474A KR20180168474A KR102174482B1 KR 102174482 B1 KR102174482 B1 KR 102174482B1 KR 1020180168474 A KR1020180168474 A KR 1020180168474A KR 20180168474 A KR20180168474 A KR 20180168474A KR 102174482 B1 KR102174482 B1 KR 102174482B1
Authority
KR
South Korea
Prior art keywords
ncm811
dodsi
active material
positive electrode
electrode active
Prior art date
Application number
KR1020180168474A
Other languages
Korean (ko)
Other versions
KR20200079022A (en
Inventor
임태은
송혜지
장설희
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Priority to KR1020180168474A priority Critical patent/KR102174482B1/en
Publication of KR20200079022A publication Critical patent/KR20200079022A/en
Application granted granted Critical
Publication of KR102174482B1 publication Critical patent/KR102174482B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 양극 활물질; 및 상기 양극 활물질 표면에 코팅된 디메톡시디메틸실란(dimethoxydimethylsilane, DODSi)을 포함하는 리튬 이차전지용 양극 활물질에 관한 것이다. DODSi로 기능화된 NCM811 양극 재료는 간단하고 편리한 원스텝 코팅 공정을 통해 성공적으로 합성되었으며, 두께가 수 나노미터 이내인 NCM811 양극 재료의 표면에 Si-O 작용기가 형성되었다. 체계적인 분석 결과에 따르면 인공 CEI 층에 함침된 Si-O 작용기는 전극/전해질 계면의 전해질 분해를 억제하여 셀의 표면 저항을 감소시키는 중요한 역할을 하였다. 또한, Si-O 기능화된 인공 CEI 층은 Si-O 작용기가 소거 반응을 통해 F- 화학 종과 화학 반응하여 Ni 용해 작용을 감소시키기 때문에 셀 내에서 F- 농도를 감소시켰다. 그 결과, NCM811 양극의 표면 안정성이 Si-O 기능화된 인공 CEI 층의 형성으로 향상되었기 때문에 DODSi 기능화된 NCM811 양극으로 사이클된 셀은 55℃에서 무처리 NCM811로 사이클된 셀보다 훨씬 향상된 사이클링 유지력을 보였다.The present invention is a positive electrode active material; And dimethoxydimethylsilane (DODSi) coated on the surface of the positive electrode active material, and to a positive electrode active material for a lithium secondary battery. The NCM811 anode material functionalized with DODSi was successfully synthesized through a simple and convenient one-step coating process, and Si-O functional groups were formed on the surface of the NCM811 anode material within a few nanometers in thickness. According to the systematic analysis results, the Si-O functional groups impregnated in the artificial CEI layer played an important role in reducing the surface resistance of the cell by inhibiting electrolyte decomposition at the electrode/electrolyte interface. In addition, the Si-O functionalized artificial CEI layer reduced the F- concentration in the cell because the Si-O functional group chemically reacted with the F - species through a scavenging reaction to reduce the Ni dissolution action. As a result, since the surface stability of the NCM811 anode was improved by the formation of the Si-O functionalized artificial CEI layer, the cell cycled with the DODSi-functionalized NCM811 anode showed significantly improved cycling retention than the cell cycled with the untreated NCM811 at 55℃. .

Description

디메톡시디메틸실란이 코팅된 리튬이온전지용 양극 활물질 및 이의 제조방법{CATHODE MATERIALS FOR LITHIUM ION BATTERY COATED DIMETHOXYDIMETHYLSILANE AND PREPARING METHOD THEREOF}A cathode active material for lithium ion batteries coated with dimethoxydimethylsilane and its manufacturing method {CATHODE MATERIALS FOR LITHIUM ION BATTERY COATED DIMETHOXYDIMETHYLSILANE AND PREPARING METHOD THEREOF}

본 발명은 양극 활물질; 및 상기 양극 활물질 표면에 코팅된 디메톡시디메틸실란(dimethoxydimethylsilane, DODSi)을 포함하는 리튬 이차전지용 양극 활물질에 관한 것이다.The present invention is a positive electrode active material; And dimethoxydimethylsilane (DODSi) coated on the surface of the positive electrode active material, and to a positive electrode active material for a lithium secondary battery.

리튬 이온 배터리(LIB)는 주로 에너지 전환 및 저장 반응에 의해 작동되는 유망한 전력원이다. 최근, 이러한 응용이 소형 장치에서 전기 자동차(EV) 및 에너지 저장 시스템(ESS)과 같은 대규모 장치로 기하급수적으로 확대되었다. 이와 관련하여 LIB의 성능은 EV의 주행 거리 또는 ESS 작동의 안정된 시간과 같은 대상 장치의 사양에 영향을 미치므로 중요하다. 이러한 사양은 LIB의 에너지 밀도에 의해 주로 영향을 받기 때문에, 높은 비용량 및 작동 전위를 허용하는 많은 유형의 첨단 전극 재료가 집중적으로 연구되었다.Lithium-ion batteries (LIBs) are a promising power source driven primarily by energy conversion and storage reactions. In recent years, these applications have expanded exponentially from small devices to large-scale devices such as electric vehicles (EV) and energy storage systems (ESS). In this regard, the performance of the LIB is important because it affects the specifications of the target device, such as the driving distance of the EV or the stable time of ESS operation. Since these specifications are primarily influenced by the energy density of the LIB, many types of advanced electrode materials that allow high specific capacity and operating potential have been intensively studied.

층상 구조를 갖는 리튬 니켈-코발트-망간 산화물(Li[NixCoyMnz]O2, NCM)은 LIBs의 대체 양극 재료로서 상당한 주목을 받았다. 특히 Ni의 존재는 Ni2+의 산화 전위가 Co3+의 산화 전위보다 낮기 때문에 NCM 양극 물질의 특정 용량을 증가시키는 중요한 요소이다. 즉, NCM 양극 재료의 적층 구조에서 Co보다 상대적 Ni 조성을 증가시키는 것은 효과적으로 전지의 에너지 밀도를 향상시킬 수 있다. 이것은 높은 Ni 조성으로 인해 동일한 충전 전위에서 NCM 양극의 비용량이 높아짐에 기인합니다. 따라서 Ni 함량이 60%를 넘는 Ni-rich NCM 양극 활물질이 주목을 받고 있다. 리튬 코발트 산화물인 LiCoO2(~145mA h-1)보다 더 높은 비용량(>180mA h-1)을 제공하기 때문이다.Lithium nickel-cobalt-manganese oxide (Li[Ni x Co y Mn z ]O 2 , NCM) having a layered structure has received considerable attention as an alternative cathode material for LIBs. In particular, the presence of Ni is an important factor in increasing the specific capacity of the NCM anode material because the oxidation potential of Ni 2+ is lower than that of Co 3+ . That is, increasing the relative Ni composition than Co in the stacked structure of the NCM positive electrode material can effectively improve the energy density of the battery. This is due to the high specific capacity of the NCM anode at the same charging potential due to the high Ni composition. Therefore, a Ni-rich NCM positive electrode active material with an Ni content exceeding 60% is attracting attention. This is because it provides a higher specific capacity (>180mA h -1 ) than LiCoO 2 (~145mA h -1 ), a lithium cobalt oxide.

그러나 Ni가 풍부한 NCM 양극 재료는 열악한 표면 안정성으로 인한 사이클 성능이 좋지 않다. 충전 상태에서, 화학적으로 불안정한 Ni4+의 존재는 Ni가 풍부한 NCM 양극의 표면에서 전해질 분해를 유발한다. 이는 불안정한 Ni4+ 종이 환원에 의해 보다 안정한 화학 상태 (Ni3+ 또는 Ni2+)로 변하기 쉽기 때문에, 전해질은 전해질/전극 계면에서 즉시 분해될 수 있으며, Ni4+에 전자를 제공한다. 특히, 분해된 부가물이 Ni-rich NCM 양극의 표면상에 연속적으로 축적되면, 이는 표면 저항을 증가시킴으로써 Li+ 인터칼레이션/디인터칼레이션(intercalation/de-intercalation) 반응을 현저하게 방해할 것이고, 따라서 용량 감소가 빠르게 일어난다. 더욱이, 전해질 분해는 셀 내에서 친핵성 불소(F-) 종의 형성을 유도하고, 이는 Ni-rich NCM 양극의 전이 금속 성분을 현저히 부식시킬 것이다. 그러므로 Ni-rich NCM 양극의 높은 표면 안정성을 보장하는 것은 긴 사이클 수명, 셀의 높은 성능 및 LIB의 높은 특정 용량을 달성하는 데 없어서는 안될 필수 요소이다.However, the Ni-rich NCM anode material has poor cycle performance due to poor surface stability. In the charged state, the presence of chemically unstable Ni 4+ causes electrolyte decomposition at the surface of the Ni-rich NCM anode. This is because the unstable Ni 4+ species are liable to change to a more stable chemical state (Ni 3+ or Ni 2+ ) by reduction, so the electrolyte can be decomposed immediately at the electrolyte/electrode interface, giving electrons to Ni 4+ . In particular, when decomposed adducts accumulate continuously on the surface of the Ni-rich NCM anode, this will significantly hinder the Li + intercalation/de-intercalation reaction by increasing the surface resistance. And thus the dose reduction occurs rapidly. Moreover, electrolytic decomposition leads to the formation of nucleophilic fluorine (F ) species within the cell, which will significantly corrode the transition metal components of the Ni-rich NCM anode. Therefore, ensuring the high surface stability of the Ni-rich NCM anode is an indispensable factor in achieving long cycle life, high cell performance and high specific capacity of LIB.

양극-전해질 계면(cathode-electrolyte interface, CEI) 층이 양극 물질의 표면 안정성을 향상시키는데 중요한 역할을 한다는 것이 이미 잘 알려져 있다. 이것은 전극과 전해질 사이의 전자 전달 반응이 일어나지 않기 때문에, CEI 층이 전해질/전극 계면에서의 전해질 분해를 효과적으로 억제할 수 있다. 특히, 디메톡시디메틸실란(dimethoxydimethylsilane, DODSi)은 주로 유기 작용기로 구성되어 있기 때문에 열분해 온도가 낮고, 이는 CEI가 일반적으로 시도된 무기-기반 코팅 접근법의 대체 라운드에서 비교적 저온에서 형성될 수 있음을 의미한다. 또한, DODSi의 실릴 에테르(Si-O) 잔기는 Ni-rich NCM 양극으로부터의 전이 금속 성분의 비가역적인 용해를 심각하게 촉진시키는 F- 종을 효과적으로 소거시킬 것으로 기대된다. It is well known that the cathode-electrolyte interface (CEI) layer plays an important role in improving the surface stability of the anode material. This is because the electron transfer reaction between the electrode and the electrolyte does not occur, the CEI layer can effectively suppress the electrolyte decomposition at the electrolyte/electrode interface. In particular, since dimethoxydimethylsilane (DODSi) is mainly composed of organic functional groups, the thermal decomposition temperature is low, which means that CEI can be formed at relatively low temperatures in an alternative round of commonly tried inorganic-based coating approaches. do. In addition, the silyl ether (Si-O) residues of DODSi are expected to effectively scavenging F - species, which severely promotes the irreversible dissolution of the transition metal component from the Ni-rich NCM anode.

한국등록특허 제10-1775097호Korean Patent Registration No. 10-1775097

본 발명자는 Ni-rich NCM 양극의 표면 안정성을 향상시키기 위해 LiNi0.8Co0.1Mn0.1O2(NCM811)의 표면에 인공 CEI 층을 개발하였으며, 이는 실릴에테르(Si-O) 작용기로 변형되었다(도 1). 본 발명자는 인공 CEI 층을 습식 코팅법으로 NCM811의 표면에 효율적으로 도입한 후 DODSi를 CEI 형성 전구체로 사용하는 열처리 공정을 수행하였다. 이러한 고려 사항을 바탕으로 원스텝 공정을 통해 표면 기능화된 Ni-rich NCM을 합성하고 그 물리 화학적 특성과 전기 화학적 특성을 조사하였다.The present inventors developed an artificial CEI layer on the surface of LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) to improve the surface stability of the Ni-rich NCM anode, which was transformed into a silyl ether (Si-O) functional group (Fig. One). The present inventors performed a heat treatment process using DODSi as a CEI forming precursor after efficiently introducing an artificial CEI layer onto the surface of NCM811 by a wet coating method. Based on these considerations, surface-functionalized Ni-rich NCM was synthesized through a one-step process, and its physicochemical and electrochemical properties were investigated.

상기 기술적 과제를 해결하고자, 본 발명은 양극 활물질; 및 상기 양극 활물질 표면에 코팅된 디메톡시디메틸실란(dimethoxydimethylsilane, DODSi)을 포함하는 리튬 이차전지용 양극 활물질을 제공한다. In order to solve the above technical problem, the present invention is a positive electrode active material; And it provides a positive electrode active material for a lithium secondary battery including dimethoxydimethylsilane (DODSi) coated on the surface of the positive electrode active material.

본 발명에 있어서, 상기 양극 활물질은 하기 [화학식 1]로 표시되는 것을 특징으로 하는 리튬 이차전지용 양극 활물질이며;In the present invention, the positive electrode active material is a positive electrode active material for a lithium secondary battery, characterized in that represented by the following [Chemical Formula 1];

[화학식1][Formula 1]

LiNiaCobMncO2 (0.6≤a≤0.9, a+b+c=1)LiNi a Co b Mn c O 2 (0.6≤a≤0.9, a+b+c=1)

상기 양극 활물질은 LiNi0.8Co0.1Mn0.1O2 인 것이 바람직하다. The positive electrode active material is preferably LiNi 0.8 Co 0.1 Mn 0.1 O 2 .

상기 디메톡시디메틸실란(dimethoxydimethylsilane)과 양극 활물질은 1:1 내지 1:100의 중량비를 가지며 더욱 바람직하게는 1:1 내지 1:10의 중량비로 혼합된다. The dimethoxydimethylsilane and the positive electrode active material have a weight ratio of 1:1 to 1:100 and more preferably are mixed in a weight ratio of 1:1 to 1:10.

상기 다른 과제를 해결하기 위하여, 본 발명은 상기 양극 활물질을 포함하는 양극; 전해질;및 음극을 포함하는 리튬 이차전지를 제공하며, 상기 전해질은 EC(ethylene carbonate):EMC(ethyl methyl carbonate)=1:2 에 1.0 M LiPF6를 포함한다. In order to solve the above other problems, the present invention provides a positive electrode including the positive electrode active material; It provides a lithium secondary battery including an electrolyte; and a negative electrode, wherein the electrolyte includes 1.0 M LiPF 6 in EC (ethylene carbonate): EMC (ethyl methyl carbonate) = 1:2.

상기 또 다른 과제를 해결하기 위하여, 본 발명은 디메톡시디메틸실란(dimethoxydimethylsilane)과 양극 활물질을 혼합하여 디메톡시디메틸실란을 양극 활물질 표면에 코팅시키는 단계;및 상기 코팅된 양극 활물질을 열처리 하는 단계를 포함하는 리튬 이차전지용 양극 활물질 제조방법을 제공한다. In order to solve the another problem, the present invention includes mixing dimethoxydimethylsilane and a positive electrode active material to coat dimethoxydimethylsilane on the surface of a positive electrode active material; And heat treating the coated positive electrode active material It provides a method of manufacturing a cathode active material for a lithium secondary battery.

상기 열처리는 400 ~ 800℃에서 수행되며, 바람직하게는 600℃에서 수행된다. 열처리가 400℃ 미만에서 수행되는 경우 디메톡시디메틸실란이 제대로 코팅되지 않으며, 800℃를 초과하는 경우에는 높은 열온도에 의하여 디메톡시디메틸실란 코팅층이 분해될 수 있다. The heat treatment is performed at 400 to 800°C, preferably at 600°C. When the heat treatment is performed at less than 400° C., dimethoxydimethylsilane is not properly coated, and when it exceeds 800° C., the dimethoxydimethylsilane coating layer may be decomposed by a high heat temperature.

DODSi로 기능화된 NCM811 양극 재료는 간단하고 편리한 원스텝 코팅 공정을 통해 성공적으로 합성되었으며, 두께가 수 나노미터 이내인 NCM811 양극 재료의 표면에 Si-O 작용기가 형성되었다. 체계적인 분석 결과에 따르면 인공 CEI 층에 함침된 Si-O 작용기는 전극/전해질 계면의 전해질 분해를 억제하여 셀의 표면 저항을 감소시키는 중요한 역할을 하였다. 또한, Si-O 기능화된 인공 CEI 층은 Si-O 작용기가 소거 반응을 통해 F- 화학 종과 화학 반응하여 Ni 용해 작용을 감소시키기 때문에 셀 내에서 F- 농도를 감소시켰다. 그 결과, NCM811 양극의 표면 안정성이 Si-O 기능화된 인공 CEI 층의 형성으로 향상되었기 때문에 DODSi 기능화된 NCM811 양극으로 사이클된 셀은 55℃에서 무처리 NCM811로 사이클된 셀보다 훨씬 향상된 사이클링 유지력을 보였다. The NCM811 anode material functionalized with DODSi was successfully synthesized through a simple and convenient one-step coating process, and Si-O functional groups were formed on the surface of the NCM811 anode material within a few nanometers in thickness. According to the systematic analysis results, the Si-O functional groups impregnated in the artificial CEI layer played an important role in reducing the surface resistance of the cell by inhibiting electrolyte decomposition at the electrode/electrolyte interface. In addition, the Si-O functionalized artificial CEI layer reduced the F- concentration in the cell because the Si-O functional group chemically reacted with the F - species through a scavenging reaction to reduce the Ni dissolution action. As a result, since the surface stability of the NCM811 anode was improved by the formation of the Si-O functionalized artificial CEI layer, the cell cycled with the DODSi-functionalized NCM811 anode showed significantly improved cycling retention than the cell cycled with the untreated NCM811 at 55℃. .

도 1은 DODSi에 의해 기능화된 표면 개질된 NCM811 양 재료의 역할을 개략적으로 도시한 그림이다.
도 2는 (a) 무처리 NCM811, (b) 1% DODSi로 개질된 NCM811, (c) 2% DODSi로 개질된 NCM811 및 (d) 10% DODSi로 개질된 NCM811의 SEM 분석 및 (e) 무처리 NCM811 및 (f) 1% DODSi로 개질된 NCM811의 TEM 분석결과를 나타낸 이미지이다.
도 3은 DODSi로 개질된 NCM811 전극에 대한 FT-IR 분석결과를 나타낸 그래프이다(검정: 무처리 NCM811, 빨간색: 1% DODSi로 개질된 NCM811, 파란색: 2% DODSi로 개질된 NCM811, 녹색: 10% DODSi로 개질된 NCM811).
도 4는 무처리 NCM811(검정색) 및 10% DODSi로 개질된 NCM811(적색)의 XRD 스펙트럼을 나타낸 그래프이다.
도 5는 (a) 초기 상태(선) 및 100 사이클 후(점)의 셀의 포텐셜 프로필; (b) 상온에서 셀의 사이클링 거동; (c) 초기 상태(선) 및 100 사이클 후(점)에서의 셀의 포텐셜 프로필; (d) 고온에서 셀의 사이클링 거동(검정: 무처리 NCM811, 빨간색: 1% DODSi로 개질된 NCM811, 파란색: 2% DODSi로 개질된 NCM811, 녹색: 10% DODSi로 개질된 NCM811)을 도시한 그래프이다.
도 6은 무처리 NCM811 및 1% DODSi로 개질된 NCM811의 CV(Cyclic voltammetry)그래프이다; (a) 1% DODSi로 개질된 NCM811 및 무처리 NCM811의 제1사이클 및 (b) 1% DODSi로 개질된 NCM811 및 무처리 NCM811의 제2사이클.
도 7은 (a) 1 사이클 및 (b) 25 사이클 (검정색: NCM811 및 빨간색: DODSi-NCM811)에서의 EIS 결과를 나타낸 그래프 및 SEM에 의해 분석된 (c) 사이클된 NCM811 및 (d) 사이클된 DODSi-NCM811의 표면 형태의 이미지이다.
도 8은 DODSi로 개질된 사이클된 NCM811(위) 및 NCM811(아래)의 XPS 분석결과를 나타낸 그래프이다;(a) C1s, (b) F1s, (c) P2p 및 (d) Si2p.
도 9는 (a) 무처리 NCM811 및 (b) 1% DODSi로 개질된 NCM811로 사이클된 리튬 금속의 ICP-MS 분석결과를 나타낸 그래프이다.
1 is a diagram schematically showing the role of both the surface-modified NCM811 materials functionalized by DODSi.
2 shows SEM analysis of (a) untreated NCM811, (b) NCM811 modified with 1% DODSi, (c) NCM811 modified with 2% DODSi and (d) NCM811 modified with 10% DODSi, and (e) no It is an image showing the TEM analysis results of treated NCM811 and (f) NCM811 modified with 1% DODSi.
3 is a graph showing the results of FT-IR analysis of the NCM811 electrode modified with DODSi (black: NCM811 without treatment, red: NCM811 modified with 1% DODSi, blue: NCM811 modified with 2% DODSi, green: 10 % DODSi modified NCM811).
4 is a graph showing the XRD spectra of untreated NCM811 (black) and NCM811 (red) modified with 10% DODSi.
Fig. 5 shows (a) a potential profile of a cell in an initial state (line) and after 100 cycles (point); (b) cycling behavior of the cell at room temperature; (c) the potential profile of the cell at the initial state (line) and after 100 cycles (point); (d) a graph showing the cycling behavior of the cell at high temperature (black: NCM811 untreated, red: NCM811 modified with 1% DODSi, blue: NCM811 modified with 2% DODSi, green: NCM811 modified with 10% DODSi) to be.
6 is a CV (Cyclic voltammetry) graph of NCM811 untreated and NCM811 modified with 1% DODSi; (a) the first cycle of NCM811 modified with 1% DODSi and untreated NCM811 and (b) the second cycle of NCM811 modified with 1% DODSi and untreated NCM811.
7 is a graph showing EIS results in (a) 1 cycle and (b) 25 cycles (black: NCM811 and red: DODSi-NCM811) and analyzed by SEM (c) cycled NCM811 and (d) cycled This is an image of the surface form of DODSi-NCM811.
8 is a graph showing the XPS analysis results of cycled NCM811 (top) and NCM811 (bottom) modified with DODSi; (a) C1s, (b) F1s, (c) P2p and (d) Si2p.
9 is a graph showing the ICP-MS analysis results of lithium metal cycled with (a) untreated NCM811 and (b) NCM811 modified with 1% DODSi.

이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are only for helping the understanding of the present invention, and the scope of the present invention is not limited to these examples in any sense.

실시예Example

(1) DODSi-기능화된 NCM811 양극 제조(1) Preparation of DODSi-functionalized NCM811 anode

DODSi-기능화된 NCM811 양극 재료는 다음과 같이 제조하였다. 주위 온도에서 DODSi(Sigma-Aldrich)를 50mL의 N-메틸-2-피롤리돈(NMP, Sigma-Aldrich)에 용해시킨 후, 5g의 NCM811을 용액에 첨가하였다. DODSi는 NCM811 대비 1, 2 및 10 wt%를 사용하였다. 생성된 혼합물을 1시간 동안 교반한 다음 여과하여 습윤 코팅된 NCM811 물질을 회수하였다. 회수된 NCM811 고체를 실온에서 600℃까지 10℃/분의 속도로 가열하고 공기 대기하에 3시간 동안 유지시켰다.The DODSi-functionalized NCM811 cathode material was prepared as follows. After dissolving DODSi (Sigma-Aldrich) in 50 mL of N-methyl-2-pyrrolidone (NMP, Sigma-Aldrich) at ambient temperature, 5 g of NCM811 was added to the solution. DODSi used 1, 2 and 10 wt% compared to NCM811. The resulting mixture was stirred for 1 hour and then filtered to recover the wet coated NCM811 material. The recovered NCM811 solid was heated from room temperature to 600° C. at a rate of 10° C./min and maintained under an air atmosphere for 3 hours.

DODSi로 기능화된 NCM811 양극 재료의 표면 형태는 전계-방출 주사 전자 현미경(FESEM, JSM-7001F, JEOL) 및 투과 전자 현미경(TEM, TALOS F200X, FEI)을 사용하여 측정되었다. 준비된 양극재의 결정 구조는 단색 Cu Kα 선 (λ=1.54056Å)이 장착된 X선 회절 계(XRD, SmartLab, Rigaku)를 사용하여 조사되었다. 또한, DODSi로 기능화된 NCM811 양극 재료의 표면 영역의 화학 성분을 감쇠 전반사(ATR) 모드에서 푸리에 변환 적외선 분광기(FT-IR, VERTEX 70, Bruker)로 분석했다.The surface morphology of the NCM811 anode material functionalized with DODSi was measured using a field-emission scanning electron microscope (FESEM, JSM-7001F, JEOL) and a transmission electron microscope (TEM, TALOS F200X, FEI). The crystal structure of the prepared cathode material was investigated using an X-ray diffractometer (XRD, SmartLab, Rigaku) equipped with a single color Cu Kα ray (λ=1.54056Å). In addition, the chemical composition of the surface area of the NCM811 anode material functionalized with DODSi was analyzed by Fourier transform infrared spectroscopy (FT-IR, VERTEX 70, Bruker) in attenuated total reflection (ATR) mode.

(2) DODSi-기능화된 NCM811 양극을 포함하는 이차전지 제조 및 전기화학적 특성 평가(2) Manufacture of secondary battery including DODSi-functionalized NCM811 positive electrode and evaluation of electrochemical properties

전기 화학적 성능의 평가를 위해, NCM811 양극은 다음과 같이 준비되었다. NMP에 NCM811 양극, 폴리(비닐리덴 플루오라이드)(PVDF, KF3000, Kureha) 및 카본 블랙(Super P)을 90:5:5(wt%)의 비율로 혼합하였다. 생성된 혼합물을 Al 전류 수집기 상에 코팅하고 120℃의 진공 오븐에서 건조시켰다. 양극의 로딩 밀도는 약 12.5mg cm-2이었다. 사이클링 성능은 각각의 양극, Li 금속 음극, 폴리(에틸렌)(PE) 분리막(Celgard), 및 전해질(1:2 (v/v)의 에틸렌 카보네이트(EC)와 에틸메틸 카보네이트(EMC)의 혼합물(PanaxEtec)에 1M LiPF6)로 구성된 2032 코인 셀을 사용하여 조사되었다. 셀은 2사이클(형성 단계) 동안 0.1 C-rate으로 3.0-4.3V(vs.Li/Li+)의 전위 범위에서 충전/방전되었으며 그들은 충방전 유닛(WBCS3000, Wonatech)에 의해 25℃ 또는 55℃에서 1.0C-rate(180 mA g-1) (사이클 단계)로 사이클링되었다.For evaluation of the electrochemical performance, the NCM811 anode was prepared as follows. NCM811 positive electrode, poly(vinylidene fluoride) (PVDF, KF3000, Kureha) and carbon black (Super P) were mixed in the NMP in a ratio of 90:5:5 (wt%). The resulting mixture was coated on an Al current collector and dried in a vacuum oven at 120°C. The loading density of the positive electrode was about 12.5 mg cm -2 . Cycling performance is a mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) in each anode, Li metal anode, poly(ethylene) (PE) separator (Celgard), and electrolyte (1:2 (v/v)) PanaxEtec) was investigated using a 2032 coin cell consisting of 1M LiPF 6 ). Cells were charged/discharged at a potential range of 3.0-4.3V (vs.Li/Li + ) at 0.1 C-rate for 2 cycles (formation phase) and they were 25°C or 55°C by charging and discharging units (WBCS3000, Wonatech). At 1.0 C-rate (180 mA g -1 ) (cycle step).

사이클링 후, 셀을 분해하고 각각의 사이클된 NCM811 양극을 아르곤 충전 글러브 박스에서 회수하였다. 사이클된 NCM811 양극의 표면 형태를 SEM으로 관찰하고, 표면 영역의 화학 조성을 N2 대기 하에서 X선 광전자 분광법(XPS, K alpha, PHI 5000 versa Probe II)으로 분석 하였다. 또한, Li 금속 음극에 침착된 전이 금속 성분은 유도 결합 플라즈마-질량 분석기(ICP-MS, Bruker)에 의해 정량화되었다. 전기 화학 분석장치(Zive MP1, Wonatech)를 사용하여 1 MHz ~ 10 mHz의 주파수 범위에서 10mV의 진폭에서 AC 신호로 전기 화학 임피던스 분광법(EIS) 분석을 수행했다.After cycling, the cell was disassembled and each cycled NCM811 anode was recovered from an argon filled glove box. The surface morphology of the cycled NCM811 anode was observed by SEM, and the chemical composition of the surface area was analyzed by X-ray photoelectron spectroscopy (XPS, K alpha, PHI 5000 versa Probe II) under N 2 atmosphere. In addition, the transition metal component deposited on the Li metal cathode was quantified by inductively coupled plasma-mass spectrometry (ICP-MS, Bruker). Electrochemical impedance spectroscopy (EIS) analysis was performed with an AC signal at an amplitude of 10 mV in a frequency range of 1 MHz to 10 mHz using an electrochemical analyzer (Zive MP1, Wonatech).

실험예 Experimental example

(1) DODSi-작용화된 NCM811 양극의 표면 형태의 SEM 분석 결과(1) SEM analysis result of the surface morphology of DODSi-functionalized NCM811 anode

다양한 양의 DODSi-작용화된 NCM811 양극의 표면 형태를 SEM으로 분석 하였다(도 2). 본 발명자는 표면 개질 후 DODSi로 처리된 NCM811 양극의 표면이 DODSi 기반의 새로운 CEI 층으로 잘 코팅된 것을 확인하였다. TEM 이미지 (도 2e-2f)에 따르면 NCM811 양극 재료의 표면에 약 5nm 기반의 CEI 층이 발견되었다. 이것은 NCM811 양극 재료의 표면이 DODSi를 사용하여 원-스텝 기능화 후에 변경되었음을 나타낸다. 이 화학 변화의 기원을 명확히 하기 위해 준비된 NCM811 양극을 FT-IR 분광법으로 분석했다(도 3). 1410 및 1470cm-1에서 관측된 Si-O 진동 피크는 실릴 에테르(Si-O) 관능기가 DODSi 기능화된 NCM811 양극 표면상에 형성되었음을 나타냈다.  특히, NCM811 양극 재료의 벌크 구조는 DODSi를 사용한 열처리에 의해 영향을 받지 않았다. 이것은 R-3m 대칭을 갖는 층상 α-NaFeO2 구조를 나타내는 NCM811과 DODSi-기능화된 NCM811 물질의 XRD 패턴의 비교에 의해 나타났다(표 1).The surface morphology of various amounts of DODSi-functionalized NCM811 anode was analyzed by SEM (FIG. 2). The present inventors confirmed that the surface of the NCM811 anode treated with DODSi after surface modification was well coated with a new DODSi-based CEI layer. According to the TEM image (Figs. 2e-2f), a CEI layer based on about 5 nm was found on the surface of the NCM811 anode material. This indicates that the surface of the NCM811 anode material was altered after one-step functionalization using DODSi. In order to clarify the origin of this chemical change, the prepared NCM811 anode was analyzed by FT-IR spectroscopy (Fig. 3). Si-O vibration peaks observed at 1410 and 1470 cm -1 indicated that a silyl ether (Si-O) functional group was formed on the DODSi functionalized NCM811 anode surface. In particular, the bulk structure of the NCM811 cathode material was not affected by the heat treatment using DODSi. This was revealed by a comparison of the XRD patterns of NCM811 and DODSi-functionalized NCM811 materials showing a layered α-NaFeO 2 structure with R-3m symmetry (Table 1).

[표 1][Table 1]

Figure 112018129803501-pat00001
Figure 112018129803501-pat00001

두 물질의 격자 파라미터(a, c)와 (003)에서 (104) 피크의 강도 비는 거의 같아서 DODSi가 NCM811 양극재의 구조 안정성을 손상시키지 않는 것으로 확인되었다(도 4).The lattice parameters (a, c) of the two materials and the intensity ratio of the (104) peak in (003) were almost the same, so it was confirmed that DODSi did not impair the structural stability of the NCM811 cathode material (FIG.

따라서 DODSi를 사용한 열처리만으로는 벌크 구조 자체가 아닌 NCM811 양극의 표면 특성이 변경되었다.Therefore, only heat treatment using DODSi changed the surface characteristics of the NCM811 anode, not the bulk structure itself.

(2) DODSi-작용화된 NCM811 양극의 전기화학적 특성 평가(2) Evaluation of electrochemical properties of DODSi-functionalized NCM811 anode

DODSi로 기능화된 NCM811 양극의 전기 화학적 성능은 25℃에서 평가되었다(도 5a 및 5b). 첫 번째 사이클에서 DODSi 기능화된 NCM811 양극은 NCM811 양극보다 더 큰 분극화(polarization)를 보였다. 이것은 NCM811 양극 위에 새로운 CEI 층이 형성되어 표면 저항이 증가하기 때문일 것이다. 따라서, DODSi-기능화된 NCM811로 사이클된 셀의 초기 방전-비용량(형성 단계 후)은 NCM811 양극(179.7 mA h-1)보다 약간 낮았다(1% DODSi: 181.1 mA h g-1; 2% DODSi: 176.4 mA h g-1; 10% DODSi: 172.4 mA h g-1). 이러한 결과는 셀의 순환 전압 전류 측정 결과와 잘 일치한다(도 6). 특히, DODSi-기능화된 NCM811을 갖는 전지는 NCM811(3.80V)을 갖는 것보다 첫 번째 탈리튬 반응(3.87V)과 관련하여 더 높은 산화 피크를 나타냈다. 이는 첫 번째 사이클에서 증가하는 표면 저항 때문인 것으로 생각된다. 흥미롭게도, DODSi-기능화된 NCM811의 두 번째 탈 리튬 반응의 전기 화학 포텐셜은 3.70V로 감소하였으며, 이는 NCM811(3.66V)의 경우에 얻은 결과와 유사하다. 이 결과는 NCM811 표면에서의 운동 거동이 첫 활성화 단계 후에 안정화되었음을 나타낸다. 결과적으로, 모든 셀은 100 사이클 후에 약 85%의 유사한 사이클 유지력을 나타내었고, 이는 25℃에서 NCM811로 사이클된 셀 중 하나와 유사했다.The electrochemical performance of the NCM811 positive electrode functionalized with DODSi was evaluated at 25° C. (FIGS. 5A and 5B ). In the first cycle, the DODSi functionalized NCM811 anode showed greater polarization than the NCM811 anode. This may be because a new CEI layer is formed on the NCM811 anode, which increases the surface resistance. Thus, the initial discharge-specific capacity (after the formation step) of the cell cycled with DODSi-functionalized NCM811 was slightly lower than that of the NCM811 anode (179.7 mA h-1) (1% DODSi: 181.1 mA hg -1 ; 2% DODSi: 176.4 mA hg -1 ; 10% DODSi: 172.4 mA hg -1 ). These results are in good agreement with the results of measuring the cyclic voltage current of the cell (Fig. 6). In particular, cells with DODSi-functionalized NCM811 exhibited a higher oxidation peak with respect to the first delithium reaction (3.87V) than those with NCM811 (3.80V). This is believed to be due to the increasing surface resistance in the first cycle. Interestingly, the electrochemical potential of the second delithiation reaction of DODSi-functionalized NCM811 decreased to 3.70V, which is similar to the results obtained for NCM811 (3.66V). These results indicate that the kinetic behavior on the NCM811 surface stabilized after the first activation step. As a result, all cells showed a similar cycle holding power of about 85% after 100 cycles, similar to one of the cells cycled with NCM811 at 25°C.

(3) 고온에서의 DODSi-작용화된 NCM811 양극의 전기화학적 특성 평가(3) Evaluation of electrochemical properties of DODSi-functionalized NCM811 anode at high temperature

55℃(도 5c 및 5d)의 고온 환경에서 DODSi-기능화된 NCM811은 첫 번째 사이클에서 여전히 약간 증가된 분극을 보였다. 그러나 강화된 온도에서 셀의 Li+ 이동이 강하게 촉진되기 때문에 실온에서의 사이클링에 비해 크게 감소했다. 또한, 셀의 초기 방전 비용량은 실온에서 나타나는 경향과 유사하다. 즉, DODSi 함량이 증가함에 따라 감소한다(NCM811: 209.6 mA h-1; 1% DODSi: 202.9 mA h-1; 2% DODSi: 201.6 mA h-1; 10% DODSi: 200.9 mA h-1). 사이클 성능을 고려할 때, DODSi-기능화된 NCM811은 순환 유지율(cycling retention)에 큰 향상을 보였다. 보다 구체적으로, 55℃에서 100 사이클 후에 DODSi-기능화된 NCM811 양극에는 71.8%(1% DODSi), 70.8%(2% DODSi) 및 69.5%(10% DODSi)의 유지율을 보였으나, NCM811은 47.1%만 유지되었다. In a high temperature environment of 55° C. (FIGS. 5C and 5D ), DODSi-functionalized NCM811 still showed slightly increased polarization in the first cycle. However, since the Li + migration of the cell is strongly promoted at the enhanced temperature, it is significantly reduced compared to cycling at room temperature. Also, the initial discharge specific capacity of the cell is similar to the tendency seen at room temperature. That is, it decreases with increasing DODSi content (NCM811: 209.6 mA h -1 ; 1% DODSi: 202.9 mA h -1 ; 2% DODSi: 201.6 mA h -1 ; 10% DODSi: 200.9 mA h -1 ). Considering the cycling performance, DODSi-functionalized NCM811 showed a significant improvement in cycling retention. More specifically, after 100 cycles at 55°C, the DODSi-functionalized NCM811 anode showed a retention rate of 71.8% (1% DODSi), 70.8% (2% DODSi) and 69.5% (10% DODSi), but the NCM811 was 47.1%. Was maintained only.

(4) 사이클 이후 DODSi-작용화된 NCM811 양극의 EIS 분석 결과(4) EIS analysis results of DODSi-functionalized NCM811 anode after cycle

이러한 결과는 EIS 분석(도 7a 및 7b)에서 얻은 결과와 일치한다. 초기 활성화 과정(형성 단계) 후 DODSi-기능화된 NCM811 양극의 표면 저항(RCEI: 3.0Ω 및 RCT: 37.3Ω)은 NCM811(RCEI: 5.1Ω 및 RCT: 44.3)보다 약간 낮았다. 25사이클 후에, DODSi-기능화된 NCM811 양극으로 순환된 셀은 전하 이동 저항(RCEI: 4.6Ω, RCT: 46.7Ω)으로 더 낮은 표면 저항을 나타내었고, 무처리 NCM811로 사이클된 셀의 표면 및 전하 이동 저항은 상당히 증가했다(RCEI: 7.6 Ω, RCT: 84.1 Ω). 특히, 사이클 수가 증가하면 NCM811 표면에 분해 생성물이 지속적으로 축적될 수 있으며, 그에 따라 셀의 내부 저항이 증가하게 된다.These results are consistent with those obtained in the EIS analysis (Figs. 7A and 7B). After the initial activation process (formation step), the surface resistance (RCEI: 3.0Ω and RCT: 37.3Ω) of the DODSi-functionalized NCM811 anode was slightly lower than that of NCM811 (RCEI: 5.1Ω and RCT: 44.3). After 25 cycles, the cell cycled with the DODSi-functionalized NCM811 anode showed a lower surface resistance with charge transfer resistance (RCEI: 4.6 Ω, RCT: 46.7 Ω), and the surface and charge transfer of the cell cycled with untreated NCM811. The resistance increased significantly (RCEI: 7.6 Ω, RCT: 84.1 Ω). In particular, as the number of cycles increases, decomposition products may continuously accumulate on the NCM811 surface, thereby increasing the internal resistance of the cell.

(5) 사이클 이후 DODSi-작용화된 NCM811 양극의 SEM 분석 결과(5) SEM analysis results of DODSi-functionalized NCM811 anode after cycle

일반적으로 NCM811 양극재의 표면 안정성은 불안정한 Ni4+ 종이 전해질의 전기 화학적 분해를 강력하게 가속시키므로 상승된 온도에서 크게 감소하는 경향이 있으며, 그 결과 셀 사이클링 성능이 급속히 저하된다. DODSi-기능화된 NCM811 양극의 경우 높은 사이클 수명을 보였으며, 이는 이들 물질이 전해질 분해를 억제하는데 효과적이었으며 따라서 고온에서보다 우수한 사이클 유지력을 나타냄을 의미한다. 사이클된 NCM811 양극의 SEM 분석은 이 가설을 뒷받침했다(도 7c, d). 사이클된 NCM811 양극의 SEM 이미지는 양극 표면상에 명백한 두꺼운 층을 보여 주었는데, 이것은 전해질의 분해된 생성물 때문이었다. 이 결과는 NCM811 소재가 전기 화학적 충/방전 공정 중에 전해질이 지속적으로 분해되어 고온에서 사이클링 성능이 떨어지는 것을 나타낸다. 대조적으로, 사이클된 DODSi-기능화된 NCM811 양극은 상대적으로 균일하고 깨끗한 표면상태를 나타냈으며, 이들 셀에서 전해질 분해가 더 적음을 나타낸다.In general, the surface stability of the NCM811 cathode material tends to decrease significantly at elevated temperatures because the unstable Ni 4+ paper strongly accelerates the electrochemical decomposition of the electrolyte, and as a result, cell cycling performance rapidly deteriorates. The DODSi-functionalized NCM811 anode showed high cycle life, which means that these materials were effective in inhibiting electrolyte decomposition and thus exhibited better cycle holding power than at high temperatures. SEM analysis of the cycled NCM811 anode supported this hypothesis (Figs. 7c, d). The SEM image of the cycled NCM811 anode showed a distinct thick layer on the anode surface, due to the decomposed products of the electrolyte. This result indicates that the NCM811 material continuously decomposes the electrolyte during the electrochemical charging/discharging process, resulting in poor cycling performance at high temperatures. In contrast, the cycled DODSi-functionalized NCM811 anodes exhibited a relatively uniform and clean surface condition, indicating less electrolyte degradation in these cells.

(6) 사이클 이후 DODSi-작용화된 NCM811 양극의 XPS 분석 결과(6) XPS analysis result of DODSi-functionalized NCM811 anode after cycle

사이클된 양극의 XPS 분석은 또한 NCM811 표면상에 DODSi-유래 인공 층의 효과를 입증했다(도 8). 도 8a의 C1s 스펙트럼에서 모든 사이클된 NCM811 양극은 유사한 화학 조성, 즉 -C-F (291.1eV), -C=O (289.1eV), R-C=O)-R (287.7 eV), -C-O- (286.4 eV), -C-C- (285.0 eV)을 나타내었다. 특히, 카르보닐(-C=O 및 R-C(=O)-R) 및 에테르(-C-O-) 작용기의 형성은 발생하는 전해질 분해에 대한 분광학적인 증거로 간주되며, 이 화학적 부분은 전기 화학적 분해로 형성된 탄산염 기반의 전해질 성분 때문일 수 있다. 또한, C1s 스펙트럼은 전해질 분해로부터 유도된 탄소 종의 양이 사이클된 DODSi-기능화된 NCM811에서보다 사이클된 NCM811에서 분명히 더 높다는 것을 나타냈다. 이 결과는 추가 XPS 스펙트럼(F1s 및 P2p)에 의해 뒷받침된다. 보다 구체적으로, 도 8b의 F1s 스펙트럼에서, 전기 화학 사이클 동안 분해된 부가물로 간주될 수 있는 더 많은 양의 LiF (686.4eV) 및 PVDF (688.3eV)가 사이클된 DODSi-기능화된 NCM811에서 사이클된 NCM811에서 발견되었다. 또한, P2p 스펙트럼에서, 사이클된 DODSi-기능화된 NCM811과 비교하여 전해질분해로부터의 부가불로 간주될 수 있는 비교적 높은 농도의 LixPFy (138.1eV) 및 LixPOyFz (135.7eV) 종이 사이클된 NCM811에서 발견되었다. 이러한 결과는 DODSi로 기능화된 인공 CEI 층이 NCM811 표면의 전해질 분해를 크게 감소시켜 계면 안정성이 향상되고 셀의 사이클 성능이 향상되었음을 의미한다.XPS analysis of the cycled anode also demonstrated the effect of a DODSi-derived artificial layer on the NCM811 surface (Figure 8). In the C1s spectrum of Figure 8A, all cycled NCM811 anodes have similar chemical compositions, i.e. -CF (291.1eV), -C=O (289.1eV), RC=O)-R (287.7 eV), -CO- (286.4 eV). ), -CC- (285.0 eV). In particular, the formation of carbonyl (-C=O and RC(=O)-R) and ether (-CO-) functional groups is regarded as spectroscopic evidence for the electrolytic degradation that occurs, and this chemical part is due to electrochemical degradation. This may be due to the carbonate-based electrolyte component formed. In addition, the C1s spectrum indicated that the amount of carbon species derived from electrolyte decomposition was clearly higher in cycled NCM811 than in cycled DODSi-functionalized NCM811. This result is supported by additional XPS spectra (F1s and P2p). More specifically, in the F1s spectrum of FIG.8B, higher amounts of LiF (686.4 eV) and PVDF (688.3 eV), which can be considered as degraded adducts during the electrochemical cycle, were cycled in the cycled DODSi-functionalized NCM811. Found in NCM811. In addition, in the P2p spectrum, relatively high concentrations of LixPFy (138.1 eV) and LixPOyFz (135.7 eV) species were found in the cycled NCM811, which could be considered as additives from electrolytic degradation compared to the cycled DODSi-functionalized NCM811. These results indicate that the artificial CEI layer functionalized with DODSi greatly reduced the electrolyte decomposition on the NCM811 surface, resulting in improved interfacial stability and improved cell cycle performance.

흥미롭게도, 사이클된 DODSi-기능화된 NCM811 양극의 Si2p 스펙트럼은 도 8d에서 DODSi-기능화된 인공 CEI 층의 역할을 평가할 수 있는 유익한 단서를 제공했다. 특히, 사이클된 DODSi-기능화된 NCM811은 CEI 층의 원래 화학적 구성 요소로 간주되는 Si-O 화학 조성(103.0eV)을 보였다. 추가로 Si-F 피크가 103.9eV에서 관찰되었는데, 이는 초기에 유도된 Si-O 기능화된 인공 CEI 층이 전기 화학 사이클 동안 전해질 분해를 억제할 뿐만 아니라, 선택적으로 소거된 F-종을 제거하여 Ni-rich음극으로부터 전이 금속 성분의 용해를 촉진시켰다. Interestingly, the Si2p spectrum of the cycled DODSi-functionalized NCM811 anode provided an informative clue to assess the role of the DODSi-functionalized artificial CEI layer in FIG. 8D. In particular, the cycled DODSi-functionalized NCM811 showed a Si-O chemical composition (103.0 eV), which was considered the original chemical constituent of the CEI layer. In addition, a Si-F peak was observed at 103.9 eV, indicating that the initially induced Si-O functionalized artificial CEI layer not only inhibited electrolyte decomposition during the electrochemical cycle, but also selectively removed the scavenged F - species to remove Ni -rich promoted dissolution of the transition metal component from the cathode.

(7) 사이클 이후 회수된 Li 음극의 ICP-MS 분석 결과(7) ICP-MS analysis result of Li negative electrode recovered after cycle

실제로, 회수된 Li 음극의 ICP-MS 분석은 이 가설을 뒷받침한다(도 9). DODSi-기능화된 CEI 층에 의한 NCM811/전해질 계면에서 전해질 분해의 효과적인 억제는 셀에서 NCM811 양극으로부터 Ni 성분의 용해를 현저하게 촉진시키는 친핵성 F-종의 형성을 감소시킨다. 따라서, DODSi-기능화된 NCM811 양극에서는 비가역적인 Ni 용해 반응이 크게 억제될 수 있다. 특히, 일단 Ni 용해가 발생하면, 상기 성분은 음극 표면으로 이동하여 음극 표면에서 실질적으로 감소된다. 따라서 100사이클 후에 NCM811 및 DODSi-기능화된 NCM811 양극에서 Li 음극에 흡착된 Ni의 양을 정량화하는 것이 DODSi-기반 표면 개질의 효율성을 비교하는 효율적인 방법이었다. 본 발명자는 NCM811로 사이클된 Li 음극에서 상당한 양의 Ni가 검출된다는 것을 발견했다(129.7 ppm). 이는 NCM811이 전해질 분해에 의해 유발된 비가역적으로 용해된 Ni에 의해 심각하게 변형되었음을 나타낸다. 대조적으로, DODSi-기능화된 NCM811 양극으로 사이클된 Li 음극에서 Ni의 현저하게 더 적은 양이 검출되었다(95.4ppm). 이것은 NCM811의 표면이 전기 화학 반응 동안 DODSi-기능화된 CEI 층에 의해 보호된다는 것을 나타내었으며, 그 결과 DODSi-기능화된 NCM811 양극의 표면 안정성이 향상되어 셀 사이클링 성능이 향상되었다.Indeed, ICP-MS analysis of the recovered Li negative electrode supports this hypothesis (Fig. 9). Effective inhibition of electrolyte degradation at the NCM811/electrolyte interface by the DODSi-functionalized CEI layer reduces the formation of nucleophilic F - species that significantly promote dissolution of the Ni component from the NCM811 anode in the cell. Therefore, in the DODSi-functionalized NCM811 anode, the irreversible Ni dissolution reaction can be greatly suppressed. In particular, once Ni dissolution occurs, the component migrates to the cathode surface and is substantially reduced at the cathode surface. Therefore, quantifying the amount of Ni adsorbed on the Li cathode in the NCM811 and DODSi-functionalized NCM811 anodes after 100 cycles was an efficient way to compare the efficiency of DODSi-based surface modification. The inventors found that a significant amount of Ni was detected in the Li cathode cycled with NCM811 (129.7 ppm). This indicates that NCM811 was severely deformed by irreversibly dissolved Ni caused by electrolyte decomposition. In contrast, a significantly smaller amount of Ni was detected (95.4 ppm) in the Li cathode cycled with the DODSi-functionalized NCM811 anode. This indicated that the surface of NCM811 was protected by the DODSi-functionalized CEI layer during the electrochemical reaction, and as a result, the surface stability of the DODSi-functionalized NCM811 anode was improved, thereby improving the cell cycling performance.

Claims (11)

양극 활물질; 및 상기 양극 활물질 표면에 코팅된 디메톡시디메틸실란(dimethoxydimethylsilane, DODSi)을 포함하며,
상기 양극 활물질은 하기 [화학식 1]로 표시되는 것을 특징으로 하고,
[화학식1]
LiNiaCobMncO2 (0.6≤a≤0.9, a+b+c=1),
상기 디메톡시디메틸실란(dimethoxydimethylsilane)은 상기 양극 활물질 100 wt% 대비 1 wt% 내지 10 wt% 함량으로 포함되며,
상기 디메톡시디메틸실란 (dimethoxydimethylsilane, DODSi)이 표면에 코팅된 상기 양극 활물질은 400 ~ 800 ℃에서 열처리된 리튬 이차전지용 양극 활물질.
Positive electrode active material; And dimethoxydimethylsilane (DODSi) coated on the surface of the positive electrode active material,
The positive electrode active material is characterized in that it is represented by the following [Chemical Formula 1],
[Formula 1]
LiNi a Co b Mn c O 2 (0.6≤a≤0.9, a+b+c=1),
The dimethoxydimethylsilane is included in an amount of 1 wt% to 10 wt% relative to 100 wt% of the positive electrode active material,
The positive electrode active material coated on the surface of the dimethoxydimethylsilane (DODSi) is a positive electrode active material for a lithium secondary battery heat-treated at 400 ~ 800 ℃.
삭제delete 제1항에 있어서,
상기 양극 활물질은 LiNi0.8Co0.1Mn0.1O2 인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
The method of claim 1,
The positive electrode active material is a positive active material for a lithium secondary battery, characterized in that LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
삭제delete 삭제delete 제1항 또는 제3항 중 어느 한 항의 양극 활물질을 포함하는 양극;
전해질;및
음극을 포함하는 리튬 이차전지.
A positive electrode comprising the positive electrode active material of any one of claims 1 or 3;
Electrolyte; and
Lithium secondary battery comprising a negative electrode.
제6항에 있어서,
상기 전해질은 EC(ethylene carbonate):EMC(ethyl methyl carbonate)=1:2 에 1.0 M LiPF6가 포함된 것을 특징으로 하는 리튬 이차전지.
The method of claim 6,
The electrolyte is a lithium secondary battery, characterized in that 1.0 M LiPF 6 is included in EC (ethylene carbonate): EMC (ethyl methyl carbonate) = 1:2.
디메톡시디메틸실란(dimethoxydimethylsilane)과 양극 활물질을 N-메틸-2-피롤리돈(NMP) 용매에 혼합하여 디메톡시디메틸실란을 양극 활물질 표면에 코팅시키는 단계; 및
상기 코팅된 양극 활물질을 열처리 하는 단계를 포함하며,
상기 양극 활물질은 하기 [화학식 1]로 표시되는 것을 특징으로 하고,
[화학식1]
LiNiaCobMncO2 (0.6≤a≤0.9, a+b+c=1),
상기 디메톡시디메틸실란(dimethoxydimethylsilane)은 상기 양극 활물질 100 wt% 대비 1 wt% 내지 10 wt% 함량으로 포함되며,
상기 열처리는 400 ~ 800℃에서 수행되는 것을 특징으로 하는 리튬 이차전지용 양극 활물질 제조방법.
Mixing dimethoxydimethylsilane and a positive electrode active material in an N-methyl-2-pyrrolidone (NMP) solvent to coat dimethoxydimethylsilane on the surface of the positive electrode active material; And
Including the step of heat-treating the coated positive active material,
The positive electrode active material is characterized in that it is represented by the following [Chemical Formula 1],
[Formula 1]
LiNi a Co b Mn c O 2 (0.6≤a≤0.9, a+b+c=1),
The dimethoxydimethylsilane is included in an amount of 1 wt% to 10 wt% relative to 100 wt% of the positive electrode active material,
The heat treatment method for manufacturing a positive electrode active material for a lithium secondary battery, characterized in that performed at 400 ~ 800 ℃.
삭제delete 제8항에 있어서,
상기 열처리는 600℃에서 수행되는 것을 특징으로 하는 리튬 이차전지용 양극 활물질 제조방법.
The method of claim 8,
The heat treatment method for producing a positive electrode active material for a lithium secondary battery, characterized in that performed at 600 ℃.
삭제delete
KR1020180168474A 2018-12-24 2018-12-24 Cathode materials for lithium ion battery coated dimethoxydimethylsilane and preparing method thereof KR102174482B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180168474A KR102174482B1 (en) 2018-12-24 2018-12-24 Cathode materials for lithium ion battery coated dimethoxydimethylsilane and preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180168474A KR102174482B1 (en) 2018-12-24 2018-12-24 Cathode materials for lithium ion battery coated dimethoxydimethylsilane and preparing method thereof

Publications (2)

Publication Number Publication Date
KR20200079022A KR20200079022A (en) 2020-07-02
KR102174482B1 true KR102174482B1 (en) 2020-11-04

Family

ID=71599684

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180168474A KR102174482B1 (en) 2018-12-24 2018-12-24 Cathode materials for lithium ion battery coated dimethoxydimethylsilane and preparing method thereof

Country Status (1)

Country Link
KR (1) KR102174482B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105126A1 (en) * 2010-02-24 2011-09-01 日立マクセルエナジー株式会社 Positive electrode material, method of production therefor, positive electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
WO2015190250A1 (en) * 2014-06-12 2015-12-17 住友金属鉱山株式会社 Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775097B1 (en) 2016-02-12 2017-09-05 한국과학기술연구원 Cathode for lithium-ion secondary battery, lithium-ion secondary battery comprising the same and the preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105126A1 (en) * 2010-02-24 2011-09-01 日立マクセルエナジー株式会社 Positive electrode material, method of production therefor, positive electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
WO2015190250A1 (en) * 2014-06-12 2015-12-17 住友金属鉱山株式会社 Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles

Also Published As

Publication number Publication date
KR20200079022A (en) 2020-07-02

Similar Documents

Publication Publication Date Title
KR101878113B1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing said material, and nonaqueous electrolyte secondary cell in which said material is used
JP5514433B2 (en) Anode including surface-treated anode active material and lithium battery employing the same
KR101592658B1 (en) A surface-treated cathode active material and lithium secondary battery using it
CN107017385B (en) Positive electrode active material, method for producing same, and lithium secondary battery
KR101913939B1 (en) Organic additive coating method for improving interfacial stability of cathode material for lithium secondary battery
KR101807348B1 (en) Silicon-carbon composite, preparation method thereof, and anode active material comprising the same
Chae et al. Sulfonate-immobilized artificial cathode electrolyte interphases layer on Ni-rich cathode
JP2014096343A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
KR102142776B1 (en) Cathode active material having lithium tetramethylsilyl borate-coating layers for lithium secondary battery and manufacturing method thereof
Chae et al. Effect of surface modification using a sulfate-based surfactant on the electrochemical performance of Ni-rich cathode materials
JP7135282B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
Li et al. Kinetics and electrochemical evolution of binary silicon–polymer systems for lithium ion batteries
KR20190001191A (en) Positive Electrode Material for Lithium-Ion Batteries and Lithium-Ion Battery Having the Same
KR20180044285A (en) POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NON-
US20130177815A1 (en) Negative active material, lithium secondary battery comprising the negative active material and manufacturing method thereof
Wang et al. Lithium carbonate as an electrolyte additive for enhancing the high-temperature performance of lithium manganese oxide spinel cathode
JP2023015188A (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
US20180301698A1 (en) Carboxylic Acids As Surface Modifier for Improved Electrode
Liao et al. Dimethyl trimethylsilyl phosphite as a novel electrolyte additive for high voltage layered lithium cobaltate-based lithium ion batteries
JP2016530678A (en) Method for producing an active cathode material comprising a mixture of metal oxide and metal sulfide, and method for using the active cathode material in a rechargeable electrochemical cell
KR102174482B1 (en) Cathode materials for lithium ion battery coated dimethoxydimethylsilane and preparing method thereof
Song et al. Simultaneous fluorination of active material and conductive agent for improving the electrochemical performance of LiNi0. 5Mn1. 5O4 electrode for lithium-ion batteries
JP2022130698A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
KR102398381B1 (en) Electrolyte for lithium ion battery containing silyl ether and lithium ion battery including the same
JP5692269B2 (en) Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
GRNT Written decision to grant
X701 Decision to grant (after re-examination)