KR20170046369A - 발광 소자 - Google Patents

발광 소자 Download PDF

Info

Publication number
KR20170046369A
KR20170046369A KR1020150146615A KR20150146615A KR20170046369A KR 20170046369 A KR20170046369 A KR 20170046369A KR 1020150146615 A KR1020150146615 A KR 1020150146615A KR 20150146615 A KR20150146615 A KR 20150146615A KR 20170046369 A KR20170046369 A KR 20170046369A
Authority
KR
South Korea
Prior art keywords
particles
electrode
electrostatic discharge
lead frame
light emitting
Prior art date
Application number
KR1020150146615A
Other languages
English (en)
Other versions
KR102445531B1 (ko
Inventor
홍준희
황덕기
김회준
임우식
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020150146615A priority Critical patent/KR102445531B1/ko
Priority to US15/770,158 priority patent/US10586892B2/en
Priority to PCT/KR2016/011922 priority patent/WO2017069577A1/ko
Publication of KR20170046369A publication Critical patent/KR20170046369A/ko
Application granted granted Critical
Publication of KR102445531B1 publication Critical patent/KR102445531B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02606Nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Led Device Packages (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

실시 예는 전도성 입자가 분산된 레진을 포함하는 정전기 방전 억제 패턴을 이용하여 정전기 방전으로부터 자유로운 발광 소자에 관한 것으로, 제 1 반도체층, 활성층 및 제 2 반도체층을 포함하는 발광 구조물; 상기 제 1 반도체층과 접속된 제 1 전극; 상기 제 2 반도체층과 접속된 제 2 전극; 및 상기 제 1 전극 및 상기 제 2 전극과 중첩되며, 레진에 전도성의 제 1 입자가 분산되어 상기 제 1 전극과 상기 제 2 전극의 이격 영역을 덮는 정전기 방전 억제 패턴을 포함한다

Description

발광 소자{LIGHT EMITTING DEVICE}
본 발명 실시 예는 정전기 방전으로부터 자유로운 발광 소자에 관한 것이다.
발광 다이오드(Light Emitting Diode: LED)는 전류가 인가되면 광을 방출하는 발광 소자 중 하나이다. 발광 다이오드는 저전압으로 고효율의 광을 방출할 수 있어 에너지 절감 효과가 뛰어나다. 최근, 발광 다이오드의 휘도 문제가 크게 개선되어, 액정 표시 장치의 백라이트 유닛(Backlight Unit), 전광판, 표시기, 가전 제품 등과 같은 각종 기기에 적용되고 있다.
발광 다이오드는 제 1 반도체층, 활성층, 및 제 2 반도체층으로 구성된 발광 구조물의 일 측에 제 1 전극과 제 2 전극이 배치된 구조일 수 있다. 그런데, 정전기 방전(Electrostatic discharge; ESD)시 역방향으로 전류가 흘러 광이 발생하는 활성층에 손상을 입히는 문제가 발생할 수 있다.
이를 해결하기 위해 발광 소자의 패키징(Packaging) 시, 제너 다이오드(Zener diode), 바리스터(Varistor), 순간 전압 억제 소자(Transient Voltage Suppression; TVS) 등과 같은 소자를 실장하는 방법에 제안되었다. 그러나, 이 경우 상기 소자를 실장하는 공정이 더 추가되며 상기 소자가 발광 소자에서 방출되는 광을 흡수하므로, 발광 소자의 발광 출력이 저하되는 문제가 발생한다.
본 발명이 이루고자 하는 기술적 과제는 레진에 전도성 입자가 분산된 구조의 정전기 방전 억제 패턴을 통해 정전기 방전으로부터 자유로운 발광 소자를 제공하는 데 있다.
본 발명의 한 실시 예의 발광 소자는 제 1 반도체층, 활성층 및 제 2 반도체층을 포함하는 발광 구조물; 상기 제 1 반도체층과 접속된 제 1 전극; 상기 제 2 반도체층과 접속된 제 2 전극; 및 상기 제 1 전극 및 상기 제 2 전극과 중첩되며, 레진에 전도성의 제 1 입자가 분산되어 상기 제 1 전극과 상기 제 2 전극의 이격 영역을 덮는 정전기 방전 억제 패턴을 포함한다.
또한, 본 발명의 다른 실시 예의 발광 소자는 제 1 반도체층, 활성층 및 제 2 반도체층을 포함하는 발광 구조물; 상기 제 1 반도체층과 접속된 제 1 전극; 상기 제 2 반도체층과 접속된 제 2 전극; 상기 제 1 와이어를 통해 상기 제 1 전극과 접속된 제 1 리드 프레임; 상기 제 2 와이어를 통해 상기 제 2 전극과 접속된 제 2 리드 프레임; 및 상기 제 1 리드 프레임 및 상기 제 2 리드 프레임과 중첩되며, 레진에 전도성의 제 1 입자가 분산되어 상기 제 1 리드 프레임과 상기 제 2 리드 프레임의 이격 영역을 덮는 정전기 방전 억제 패턴을 포함한다.
상기 정전기 방전 억제 패턴은 임계 전압을 기준으로 절연성 또는 전도성을 가져, 상기 정전기 방전 억제 패턴은 상기 제 1 전극과 상기 제 2 전극 사이에 상기 임계 전압 미만의 전압이 인가되는 경우, 상기 제 1 전극과 상기 제 2 전극을 절연시킨다.
그리고, 상기 정전기 방전 억제 패턴은 상기 제 1 전극과 상기 제 2 전극 사이에 상기 임계 전압 이상의 전압이 인가되는 경우, 상기 제 1 전극과 상기 제 2 전극을 전기적으로 연결시킨다.
본 발명의 발광 소자는 다음과 같은 효과가 있다.
첫째, 제 1 입자가 분산된 레진을 포함하는 정전기 방전 억제 패턴이 제 1, 제 2 전극의 일부를 덮도록 제 1, 제 2 전극 사이에 배치되어, 정전기 방전 억제 패턴이 임계 전압을 기준으로 절연체 또는 전도체로 기능한다. 따라서, 임계 전압 이상의 전압이 인가된 경우, 정전기 방전 억제 패턴이 전도체로 기능하여 제 1, 제 2 전극 사이에 전류 패스가 형성될 수 있다. 이에 따라, 정전기에 의해 발광 구조물의 파손을 방지할 수 있다.
둘째, 제 1 입자의 분산성을 향상시키기 위해 레진에 더 분산된 제 2 입자의 함량을 조절하거나 제 1 입자의 직경을 조절하여 정전기 방전 억제 패턴의 임계 전압을 조절할 수 있다.
도 1a는 본 발명 실시 예의 발광 소자의 하부 평면도이다.
도 1b는 도 1a의 Ⅰ-Ⅰ'의 단면도이다.
도 1c는 도 1b의 정전기 방전 억제 패턴의 확대 단면도이다.
도 1d는 정전기 방전 인가 시 도 1b의 제 1 입자의 통전 모식도를 나타난 평면도이다.
도 2a 및 도 2b는 분산성이 상이한 정전기 방전 억제 패턴의 사진이다.
도 3a는 본 발명 다른 실시 예의 정전기 방전 억제 패턴의 단면도이다.
도 3b는 정전기 방전 인가 시 도 3a의 제 1 입자의 통전 모식도를 나타난 평면도이다.
도 4a는 제 2 입자의 중량 백분율에 따른 전류를 나타낸 그래프이다.
도 4b는 제 2 입자의 함량에 따른 전류를 나타낸 그래프이다.
도 5는 전도성 입자의 직경에 따른 정전기 방전 억제 패턴의 임계 전압을 나타낸 그래프이다.
도 6a는 다른 실시 예에 따른 도 1a의 Ⅰ-Ⅰ'의 단면도이다.
도 6b는 본 발명 다른 실시 예의 발광 소자의 상부 평면도이다.
도 6c는 도 6b의 Ⅰ-Ⅰ'의 단면도이다.
도 6d는 도 6b의 Ⅱ-Ⅱ'의 단면도이다.
도 7은 본 발명 실시 예의 정전기 방전 억제 패턴의 제조 방법을 나타낸 블록도이다.
도 8은 제너 다이오드와 본 발명 실시 예의 정전기 방전 억제 패턴의 온도에 따른 누설 전류를 비교한 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하, 첨부된 도면을 참조하여 실시 예의 발광 소자를 상세히 설명하면 다음과 같다.
도 1a는 본 발명 실시 예의 발광 소자의 하부 평면도이며, 도 1b는 도 1a의 Ⅰ-Ⅰ'의 단면도이다. 그리고, 도 1c는 도 1b의 정전기 방전 억제 패턴의 확대 단면도이다.
도 1a, 도 1b 및 도 1c와 같이, 본 발명 실시 예의 발광 소자는 제 1 반도체층, 활성층 및 제 2 반도체층을 포함하는 발광 구조물(110), 제 1 반도체층과 접속된 제 1 전극(120a), 제 2 반도체층과 접속된 제 2 전극(120b)을 포함하며, 제 1 전극(120a) 및 제 2 전극(120b)과 중첩되며, 레진(140b)에 전도성의 제 1 입자(140a)가 분산되어 제 1 전극(120a)과 제 2 전극(120b)의 이격 영역을 덮는 정전기 방전 억제 패턴(ESD Suppressor)(140)을 포함한다. 그리고, 정전기 방전 억제 패턴(140) 및 제 1, 제 2 전극(120a, 120b)를 덮도록 충진층(150)이 형성될 수 있다.
발광 소자는 하부면에 제 1, 제 2 전극(120a, 120b)이 배치되고, 제 1, 제 2 전극(120a, 120b)이 각각 제 1 본딩 패드(130a)와 제 2 본딩 패드(130a, 130b)를 통해 인쇄 회로 기판 등과 같은 기판(미도시)에 연결되는 플립칩 구조(Flip Chip)의 발광 소자일 수 있다.
발광 구조물(110)은 지지 기판(100)에 의해 지지될 수 있으며, 도시하지는 않았으나, 발광 구조물(110)은 제 1, 제 2 반도체층 및 활성층을 포함하여 이루어진다.
제 1 반도체층은 3족-5족, 2족-6족 등의 화합물 반도체로 구현될 수 있으며, 제 1 도전형 도펀트가 도핑될수 있다. 예를 들어, 제 1 반도체층은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 가지는 반도체일 수 있으며, Si, Ge, Sn 등 과 같은 n형 도펀트가 도핑될 수 있다.
활성층은 제 1 반도체층 및 제 2 반도체층에서 제공되는 전자(electron)와 정공(hole)의 재결합(recombination) 과정에서 발생하는 에너지에 의해 광을 생성할 수 있다. 활성층은 반도체 화합물, 예를 들어, 3족-5족, 2족-6족의 화합물 반도체일 수 있으며, 단일 우물 구조, 다중우물 구조, 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 등으로 형성될 수 있다. 활성층이 양자우물구조인 경우에는 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 우물층과 InaAlbGa1-a-bN (0≤a≤1, 0≤b≤1, 0≤a+b≤1)의 조성식을 갖는 장벽층을 갖는 단일 또는 양자우물구조를 가질 수 있다. 우물층은 장벽층의 에너지 밴드 갭보다 낮은 밴드 갭을 갖는 물질일 수 있다.
제 2 반도체층은 3족-5족, 2족-6족 등의 화합물 반도체로 구현될 수 있으며, 제 2 도전형 도펀트가 도핑될 수 있다. 예를 들어, 제 2 반도체층은 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체일 수 있으며, Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트가 도핑될 수 있다.
발광 구조물(110)의 제 1 반도체층 및 제 2 반도체층은 각각 제 1 전극(120a) 및 제 2 전극(120b)과 전기적으로 접속될 수 있다.
그런데, 발광 소자가 물체에 접촉하여 수천 볼트 또는 그 이상의 정전기 방전이 발생하는 경우, 발광 소자뿐만 아니라 발광 소자에 전원을 제공하는 전원 장치 및 기타 다양한 전자 장치에 손상이 가해질 수 있다.
종래에는 정전기 방전에 의한 발광 소자의 손상을 방지하기 위해, 발광 소자의 패키징(Packaging) 시, 제너 다이오드(Zener diode), 바리스터(Varistor), 순간 전압 억제 소자(Transient Voltage Suppression; TVS) 등과 같은 정전기 방전 방지 소자를 실장하였다. 그러나, 정전기 방전 방지 소자를 실장하는 공정이 더 추가되며 정전기 방전 방지 소자가 발광 소자에서 방출되는 광을 흡수하므로, 발광 소자의 발광 출력이 저하되는 문제가 발생한다.
따라서, 본 발명 실시 예는 제 1 전극(120a) 및 제 2 전극(120b)과 중첩되도록 제 1, 제 2 전극(120a, 120b) 사이에 하나 이상의 전도성을 갖는 제 1 입자(140a)가 분산된 레진(140b)을 포함하는 정전기 방전 억제 패턴(140)을 배치한다.
정전기 방전 억제 패턴(140)은 레진(140b)에 제 1 입자(140a)가 분산된 구조이다. 정전기 방전 억제 패턴(140)은 제 1, 제 2 전극(120a, 120b) 사이에 제 1 입자(140a)가 분산된 레진(140b)을 도포하고, 이를 경화시켜 형성할 수 있다.
구체적으로, 정전기 방전 억제 패턴(140)이 임계 전압 미만에서는 절연체로 기능한다. 이를 위해, 제 1 입자(140a)는 레진(140b) 내에서 서로 이격되어, 골고루 분산된 구조이다. 즉, 임계 전압 미만에서는 인접한 제 1 입자(140a)가 전기적으로 절연되어 정전기 방전 억제 패턴(140)이 절연체로 기능한다.
반대로, 임계 전압 이상에서는 인접한 제 1 입자(140a)들이 서로 통전되어 정전기 방전 억제 패턴(140)이 전도체로 기능한다.
도 1d는 정전기 방전 인가 시 도 1b의 제 1 입자의 통전 모식도를 나타난 평면도이다.
도 1d와 같이, 발광 소자에 정전기 등에 의해 임계 전압 이상이 인가된 경우, 제 1 입자(140a)들의 터널링 효과에 의해 물리적으로 이격된 제 1 입자(140a)가 전기적으로 연결될 수 있다. 이 때, 제 1 전극(120a)과 제 1 입자(140a) 사이 및 제 2 전극(120b)과 제 1 입자(140a) 사이 역시 터널링 효과가 발생하여 정전기 방전 억제 패턴(140)이 제 1, 제 2 전극(120a, 120b)을 연결할 수 있는 전도체로 기능한다. 즉, 임계 전압 이상의 전압에서는 제 1, 제 2 전극(120a, 120b) 사이에 전류 패스가 형성된다.
따라서, 정전기 방전 억제 패턴(140)이 절연체로 기능할 수 있도록 인접한 제 1 입자(140a)는 물리적으로 서로 이격된 상태로 존재하며, 임계 전압 이상에서는 터널링 효과에 의해 전기적으로 연결되도록 제 1 입자(140a)는 최대한 인접한 상태로 이격된 구조인 것이 바람직하다. 이를 위해, 인접한 제 1 입자(140a)의 이격 간격(d1)은 4㎛ 내지 5㎛인 것이 바람직하다.
레진(140b)은 아크릴계 레진 에폭시계 레진, 우레탄계 레진, 실리콘계 레진 등에서 선택될 수 있으며, 이에 한정하지 않는다.
제 1 입자(140a)는 Ag, Al, Cu 등과 같이 전도성을 갖는 금속으로 이루어지거나, SiC와 같은 금속 탄화물에서 선택될 수 있다. 또한, 경우에 따라서, 제 1, 제 2 전극(120a, 120b)의 이격 거리가 수 ㎚인 경우, 제 1 입자(140a)는 탄소 나노튜브(carbon nanotube; CNT)일 수 있다.
예를 들어, 제 1 입자(140a)가 금속으로 이루어진 경우, 제 1 입자(140a)의 산화를 방지하기 위해 제 1 입자(140a)를 감싸도록 제 1 입자(140a)의 표면에 코팅막을 형성할 수 있다. 이 때, 코팅막은 제 1 입자(140a)보다 낮은 산화성을 갖는 금속으로 이루어지거나, 절연성을 갖는 물질로 이루어질 수 있다. 예를 들어, 코팅막은 ZnO등과 같은 금속 산화물, 산화성이 낮은 Ag로 형성될 수 있다.
예를 들어, 제 1 입자(140a)로 산화성이 높은 Cu를 사용하는 경우, 코팅막으로는 Cu보다 산화성이 낮은 Ag을 이용할 수 있다. 그리고, 제 1 입자(140a)로 산화성이 낮은 Al을 사용하는 경우, 코팅막을 형성하지 않을 수 있다.
특히, 코팅막을 금속으로 형성하는 경우, 코팅막의 두께가 너무 얇으면 레진(140b)을 경화할 때, 코팅막이 산화될 수 있다. 또한, 코팅막을 금속 산화물로 형성하는 경우, 코팅막의 두께가 너무 두꺼우면 인접한 제 1 입자(140a) 사이에 터널링 효과가 발생하지 않을 수 있다. 따라서, 코팅막의 두께는 0.5㎛ 내지 1.5㎛일 수 있으며, 이에 한정하지는 않는다.
상술한 바와 같이, 본 발명 실시 예는 제 1, 제 2 전극(120a, 120b) 사이에 배치된 정전기 방전 억제 패턴(140)이 임계 전압을 기준으로 절연체 또는 전도체로 기능하므로, 정전기 방전 억제 패턴(140)이 전도체로 기능하여 제 1, 제 2 전극(120a, 120b) 사이에 전류 패스가 형성됨으로써, 정전기에 의해 발광 구조물(110)의 파손을 방지할 수 있다.
이 때, 정전기 방전 억제 패턴(140)의 특성은 제 1 입자(140a)의 분산성이 높을수록 향상될 수 있다.
도 2a 및 도 2b는 분산성이 상이한 정전기 방전 억제 패턴의 사진이다.
도 2a와 같이, 제 1 입자(140a)의 분산성이 낮은 경우, 제 1, 제 2 전극(120a, 120b) 사이에 제 1 입자(140a)가 배치되지 않을 수 있다. 이 경우, 임계 전압 이상의 전압이 인가되어도, 제 1, 제 2 전극(120a, 120b) 사이에 제 1 입자(140a)가 없으므로, 정전기 방전(Electrostatic discharge; ESD)시 역방향으로 전류가 흘러 활성층이 손상되는 문제가 발생한다.
그러나, 도 2b와 같이, 제 1 입자(140a)의 분산성이 높아 레진(140b)에 제 1 입자(140a)가 골고루 분산된 경우, 제 1, 제 2 전극(120a, 120b) 사이에 제 1 입자(140a)가 균일하게 배치될 수 있다. 예를 들어, 제 1, 제 2 전극(120a, 120b) 사이의 간격이 150㎛인 경우, 제 1, 제 2 전극(120a, 120b) 사이에는 직경이 30㎛ 내지 40㎛의 제 1 입자(140a)가 4~5개 분포하는 것이 바람직하다.
그런데, 제 1 입자(140a)가 골고루 분산되지 않고 인접한 제 1 입자(140a)들끼리 서로 뭉칠 수 있다. 따라서, 본 발명 실시 예는 제 1 입자(140a)의 분산성을 향상시키기 위해 레진(140b)에 분산제나 용제(Solvent)를 더 첨가하거나, 제 1 입자(140a)와 상이한 제 2 입자(140c)를 더 첨가할 수 있다. 이 때, 제 2 입자(140c)는 절연성을 갖거나 제 1 입자(140a)와 같이 전도성을 가질 수 있다.
이하, 레진(140b)에 제 1 입자(140a)와 상이한 제 2 입자(140c)를 더 첨가한 구조를 구체적으로 설명하면 다음과 같다.
도 3a는 본 발명 다른 실시 예의 정전기 방전 억제 패턴의 단면도이며, 도 3b는 정전기 방전 인가 시 도 3a의 제 1 입자의 통전 모식도를 나타난 평면도이다.
도 3a 및 도 3b와 같이, 제 2 입자(140c)는 인접한 제 1 입자(140a)의 접속을 방지하여, 제 1 입자(140a)의 분산성을 향상시킬 수 있다.
한편, 제 1 입자(140a)와 제 2 입자(140c)의 이격 간격(d2)은 제 2 입자(140c)의 특성에 따라 달라질 수 있다.
예를 들어, 제 2 입자(140c)가 절연성을 가지면, 제 1 입자(140a)와 제 2 입자(140c)가 서로 접촉되어도 무방하다. 반면에, 제 2 입자(140c)가 제 1 입자(140a)와 같이 전도성을 갖는 경우에는 제 2 입자(140c)와 제 1 입자(140a)는 서로 이격 되어야 하며, 이격 간격(d2)은 도 1c의 인접한 제 1 입자(140a) 사이의 이격 간격(d1)과 같이 4㎛ 내지 5㎛인 것이 바람직하다.
더욱이, 레진(140b)에 제 2 입자(140c)를 더 분산시키는 경우, 제 2 입자(140c)의 함량에 따라 정전기 방전 억제 패턴의 특성이 조절된다.
레진(140b)에 절연성을 갖는 제 2 입자(140c)를 더 첨가하는 경우, 제 2 입자(140c)는 인접한 제 1 입자(140a)들의 물리적 접촉을 방해하는 물질로 기능할 수 있다. 이 때, 제 2 입자(140c)의 함량이 너무 높은 경우 정전기 방전 억제 패턴(140)이 거의 절연체로 기능할 수 있다. 그리고, 제 2 입자(140c)의 함량이 너무 낮은 경우 인접한 제 1 입자(140a)들의 물리적 접촉을 방지할 수 없다.
또한, 제 2 입자(140c)가 전도성을 갖는 경우, 제 2 입자(140c)의 함량이 너무 높은 경우 정전기 방전 억제 패턴(140)이 거의 전도체로 기능할 수 있다.
따라서, 제 2 입자(140c)의 함량은 제 1 입자(140a)의 함량보다는 낮고, 정전기 방전 억제 패턴(140)의 중량의 10% 이상의 중량 백분율(wt%)인 것이 바람직하다. 그러나, 이에 한정하지 않는다. 이는, 제 2 입자(140c)의 함량에 따라 임계 전압이 조절되기 때문이다.
도 4a는 제 2 입자의 중량 백분율에 따른 전류를 나타낸 그래프이며, 도 4b는 제 2 입자의 함량에 따른 전류를 나타낸 그래프이다.
도 4a와 같이, 제 1 입자(140a)가 SiC이며, 제 2 입자(140c)가 산화된 SiC인 경우, 제 2 입자(140c)의 중량 백분율이 높아질수록 정전기 방전 억제 패턴(140)의 임계 전압이 커진다. 이는, 제 2 입자(140c)가 절연체이기 때문에 제 2 입자(140c)의 중량 백분율이 높아질수록 정전기 방전 억제 패턴(140)의 절연성이 향상되기 때문이다.
그리고, 도 4b와 같이, 제 1 입자(140a)가 SiC이며, 제 2 입자(140c)가 ZnO인 경우에도 제 2 입자(140c)의 함량이 2배 증가하는 경우, 정전기 방전 억제 패턴(140)의 임계 전압이 커진다.
정전기 방전 억제 패턴(140)의 임계 전압은 전도성 입자(140a)의 직경에 따라서도 조절될 수 있다.
도 5는 전도성 입자의 직경에 따른 정전기 방전 억제 패턴의 임계 전압을 나타낸 그래프이다.
도 5와 같이, 제 1, 제 2 전극(120a, 120b) 사이의 간격이 150㎛으로 동일한 경우에, 직경이 35㎛인 제 1 입자(140a)를 포함하는 정전기 방전 억제 패턴(140)의 임계 전압은 약 80V이다. 그러나, 직경이 45㎛인 제 1 입자(140a)를 포함하는 정전기 방전 억제 패턴(140)의 임계 전압은 약 100V이다.
즉, 제 1 입자(140a)의 직경이 작을수록 정전기 방전 억제 패턴(140)의 임계 전압이 감소한다. 이는, 제 1 입자(140a)의 직경이 작을수록 제 1, 제 2 전극(120a, 120b) 사이에 더 많은 제 1 입자(140a)가 배치될 수 있으며, 인접한 제 1 입자(140a)들 사이의 이격 간격(d1)이 감소하므로, 낮은 전압에서도 제 1 입자(140a)들 사이의 터널링 효과가 발생하기 때문이다.
반대로, 제 1 입자(140c)이 직경이 크면, 제 1, 제 2 전극(120a, 120b) 사이에 배치될 수 있는 제 1 입자(140c) 수가 감소한다. 이에 따라, 인접한 제 1 입자(140a)들 사이의 이격 간격(d1) 역시 넓어져 임계 전압이 커진다. 또한, 제 1 입자(140a)의 직경이 클수록 제 1 입자(140a)들 사이의 이격 간격(d1) 역시 넓어져 발광 소자가 물체에 접촉할 때 발생하는 수천 볼트 또는 그 이상의 전압이 제 1 입자(140a)를 통해 제 1 전극(120a)과 제 2 전극(120b) 사이에 전류 패스가 형성되기 전에 발광 구조물(110)에 인가되어 발광 소자의 불량이 야기될 수 있다.
하기 표 1은 본 발명 실시 예의 정전기 방전 억제 특성을 비교한 표이다.
제 1 입자의 직경(㎛) 제 1, 제 2 전극 사이의 간격(㎛) 정전기 방전 억제 특성 평가
시험 수량 불량 수량 불량률(%)
35 150 12 0 0
45 150 19 1 5.3
표 1과 같이, 제 1, 제 2 전극(120a, 120b) 사이의 간격이 동일하고, 제 1 입자(140a)의 직경이 상이한 경우, 제 1 입자(140a)의 직경이 더 큰 경우, 더 용이하게 불량이 발생한다. 이 때, 불량은 일반적인 발광 소자의 구동 전압(10V) 에서 10-8A의 누설 전류의 발생 유무로 판단하였다.
도 6a는 다른 실시 예에 따른 도 1a의 Ⅰ-Ⅰ'의 단면도이다.
도 6a와 같이, 정전기 방전 억제 패턴(140)이 제 1, 제 2 전극(120a, 120b)을 절연시키는 충진층(150) 표면을 덮으며 제 1, 제 2 전극(120a, 120b)과 중첩된다. 이 때, 제 1, 제 2 전극(120a, 120b)은 도 1a의 제 1, 제 2 전극(120a, 120b)보다 매우 두껍게 형성된다. 도 6a의 정전기 방전 억제 패턴(140)은 기본적으로 절연 특성을 가지므로, 제 1, 제 2 전극(120a, 120b)과 회로 기판 등과 같은 기판을 전기적으로 연결키는 솔더(Solder) 등과 같은 본딩 물질과 접촉되더라도 무방하다.
특히, 도면에서는 충진층(150)이 제 1, 제 2 전극(120a, 120b)의 측면을 완전히 감싸는 것을 도시하였으나, 충진층(150)은 제 1, 제 2 전극(120a, 120b) 사이에 일부 채워질 수 있으며, 이 경우, 정전기 방전 억제 패턴(140)은 제 1, 제 2 전극(120a, 120b)의 이격 영역에 일부 채워진 구조로 제 1, 제 2 전극(120a, 120b)과 중첩될 수 있다.
도 6b는 본 발명 다른 실시 예의 발광 소자의 상부 평면도이다. 그리고, 도 6c는 도 6b의 Ⅰ-Ⅰ'의 단면도이며, 도 6d는 도 6b의 Ⅱ-Ⅱ'의 단면도이다.
도 6b, 도 6c 및 도 6d와 같이, 본 발명 실시 예의 발광 소자가 와이어(200a, 200b)를 통해 제 1, 제 2 전극(120a, 120b)이 각각 제 1, 제 2 리드 프레임(160a, 160b)에 접속되는 수평형(Lateral) 발광 소자인 경우, 정전기 방전 억제 패턴(140)은 일반적으로 제너 다이오드가 배치되는 영역에서 제 1 리드 프레임(160a) 및 제 2 리드 프레임(160b)과 중첩되어 제 1 리드 프레임(160a)과 제 2 리드 프레임(160b)의 이격 영역을 덮도록 배치될 수도 있다.
즉, 도 6b의 정전기 방전 억제 패턴(150)은 임계 전압 이상의 전압이 인가되는 경우, 제 1, 제 2 전극(120a, 120b)을 서로 연결시키기 위해 제 1, 제 2 리드 프레임(160a, 160b) 어디에도 형성될 수 있다.
상기와 같은 본 발명 실시 예의 발광 소자는 레진(140b)에 제 1 입자(140a)만 분산되거나, 제 1 입자(140a)와 제 2 입자(140c)가 분산된 레진(140b)을 포함하는 정전기 방전 억제 패턴(140)이 제 1, 제 2 전극(120a, 120b)의 일부를 덮도록 제 1, 제 2 전극(120a, 120b) 사이에 배치된다. 이 때, 정전기 방전 억제 패턴(140)이 임계 전압을 기준으로 절연체 또는 전도체로 기능하며, 임계 전압 이상의 전압에서는 정전기 방전 억제 패턴(140)이 전도체로 기능하여 제 1, 제 2 전극(120a, 120b) 사이에 전류 패스가 형성될 수 있다. 이에 따라, 정전기에 의해 발광 구조물(110)의 손상을 방지할 수 있다.
또한, 제 2 입자(140c)의 함량을 조절하거나 제 1 입자(140a)의 직경을 조절하여 정전기 방전 억제 패턴(140)의 임계 전압을 조절할 수 있다.
이하, 본 발명 실시 예의 정전기 방전 억제 패턴의 제조 방법을 나타내면 다음과 같다.
도 7은 본 발명 실시 예의 정전기 방전 억제 패턴의 제조 방법을 나타낸 블록도이다.
도 7과 같이, 제 1 입자(140a)와 제 2 입자(140c)를 레진(140b)에 분산시켜 이를 혼합(S100)하여 혼합액을 형성한다. 예를 들어, 표면에 Ag가 코팅된 제 1 입자(140a)와 SiC를 포함하는 제 2 입자(140c)를 아크릴계 레진(140b)에 분산시킬 수 있다.
이 때, 절연성을 갖는 제 2 입자(140c)의 함량이 높아지면 상대적으로 제 1 입자(140a)의 함량이 낮아져 정전기 방전 억제 패턴이 충분한 전도성을 갖기 어려우며, 제 2 입자(140c)가 전도성을 갖는 경우, 제 2 입자(140c)의 함량이 높아지면 제 1, 제 2 입자(140c)가 서로 접속될 수 있다. 반대로, 제 2 입자(140c)의 함량이 너무 낮으면 제 2 입자(140c)가 제 1 입자(140a)의 분산성을 향상시키기 위한 충분한 기능을 수행하지 못한다.
따라서, 제 1 입자(140a)와 제 2 입자(140c)의 혼합비는 60:40 내지 70:30일 수 있다.
또한, 제 1, 제 2 입자(140a, 140c)의 중량 백분율은 레진(140b)을 포함하는 혼합액의 85wt% 내지 87.5wt%일 수 있다. 이는, 제 1, 제 2 입자(140a, 140c)의 함량이 너무 낮은 경우, 혼합액 내에서 단위 거리당 제 1, 제 2 입자(140a, 140c)의 수가 감소하여 정전기 방전 억제 패턴의 동작 전압이 증가하며 응답 속도가 느려지기 때문이다. 반대로, 제 1, 제 2 입자(140a, 140c)의 함량이 너무 높은 경우, 혼합액 내에서 단위 거리당 제 1, 제 2 입자(140a, 140c)의 수가 증가하여 인접한 제 1 입자(140a)들이 서로 접속될 수 있기 때문이다.
제 1 입자(140a)와 제 2 입자(140c)가 골고루 분산되도록 3개의 롤을 이용하는 3 roll mill 방법을 이용하여 제 1 입자(140a)와 제 2 입자(140c)를 레진(140b)을 혼합할 수 있다. 또한, 제 1 입자(140a)와 제 2 입자(140c)가 충분히 분산되도록 3 roll mill을 3~4번 실시할 수 있다.
그리고, 약 30분 동안 혼합액에 에이징(Aging) 공정(S105)을 실시한 후, 혼합액을 제 1, 제 2 전극(120a, 120b)과 중첩되도록 제 1 전극(120a)과 제 2 전극(120b)의 이격 영역에 코팅(S110)한다. 이어, 혼합액을 경화(S115)시켜 정전기 방전 억제 패턴(140)을 형성할 수 있다.
도 8은 제너 다이오드와 본 발명 실시 예의 정전기 방전 억제 패턴의 온도에 따른 누설 전류를 비교한 그래프로, 각 온도에서 20분동안 유지 후 누설 전류를 측정하였다.
도 8과 같이, 일반적으로 정전기 방전을 방지하기 위해 사용하는 제너 다이오드(Zener diode)는 온도가 높아질수록 누설 전류가 많이 발생한다. 따라서, 제너 다이오드가 실장된 발광 다이오드 패키지는 외부의 고온이나 발광 소자의 구동 시 발생하는 열에 누설 전류가 발생하여 신뢰성이 저하된다. 더욱이, 열에 취약한 제너 다이오드의 실장 위치에 제약이 많다.
반면에, 본 발명의 정전기 방전 억제 패턴은 100℃ 이상의 고온에서도 누설 전류가 거의 발생하지 않는다. 따라서, 정전기 방전 억제 패턴(140)을 포함하는 본 발명 실시 예의 발광 소자는 온도에 대한 신뢰성이 매우 높아, 본 발명 실시 예의 발광 소자가 도광판, 프리즘 시트, 확산 시트 등의 광학 부재와 함께 백라이트 유닛으로 기능할 수 있다. 또한, 실시 예의 발광 소자는 표시 장치, 조명 장치, 지시 장치에 더 적용될 수 있다.
이 때, 표시 장치는 바텀 커버, 반사판, 발광 모듈, 도광판, 광학 시트, 디스플레이 패널, 화상 신호 출력 회로 및 컬러 필터를 포함할 수 있다. 바텀 커버, 반사판, 발광 모듈, 도광판 및 광학 시트는 백라이트 유닛(Backlight Unit)을 이룰 수 있다.
반사판은 바텀 커버 상에 배치되고, 발광 모듈은 광을 방출한다. 도광판은 반사판의 전방에 배치되어 발광 소자에서 발산되는 광을 전방으로 안내하고, 광학 시트는 프리즘 시트 등을 포함하여 이루어져 도광판의 전방에 배치된다. 디스플레이 패널은 광학 시트 전방에 배치되고, 화상 신호 출력 회로는 디스플레이 패널에 화상 신호를 공급하며, 컬러 필터는 디스플레이 패널의 전방에 배치된다.
그리고, 조명 장치는 기판과 실시 예의 발광 소자를 포함하는 광원 모듈, 광원 모듈의 열을 발산시키는 방열부 및 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 광원 모듈로 제공하는 전원 제공부를 포함할 수 있다. 더욱이 조명 장치는, 램프, 해드 램프, 또는 가로등 등을 포함할 수 있다.
이상에서 설명한 본 발명은 상술한 실시 예 및 첨부된 도면에 한정되는 것이 아니고, 실시 예의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 종래의 지식을 가진 자에게 있어 명백할 것이다.
100: 기판 110: 발광 구조물
120a: 제 1 전극 120b: 제 2 전극
130a: 제 1 본딩 패드 130b: 제 2 본딩 패드
140a: 제 1 입자 140b: 레진
140c: 제 2 입자 150: 충진층
160a: 제 1 리드 프레임 160b: 제 2 리드 프레임
200a: 제 1 와이어 200b: 제 2 와이어

Claims (20)

  1. 제 1 반도체층, 활성층 및 제 2 반도체층을 포함하는 발광 구조물;
    상기 제 1 반도체층과 접속된 제 1 전극;
    상기 제 2 반도체층과 접속된 제 2 전극; 및
    상기 제 1 전극 및 상기 제 2 전극과 중첩되며, 레진에 전도성의 제 1 입자가 분산되어 상기 제 1 전극과 상기 제 2 전극의 이격 영역을 덮는 정전기 방전 억제 패턴을 포함하는 발광 소자.
  2. 제 1 항에 있어서,
    상기 레진에 상기 제 1 입자와 상이하며 전도성 또는 절연성을 갖는 제 2 입자가 더 분산된 발광 소자.
  3. 제 2 항에 있어서,
    상기 제 2 입자의 직경이 상기 제 1 입자의 직경보다 작은 발광 소자.
  4. 제 2 항에 있어서,
    상기 제 2 입자의 함량이 상기 제 1 전도성 입자의 함량보다 낮은 발광 소자.
  5. 제 1 항에 있어서,
    상기 정전기 방전 억제 패턴은 임계 전압을 기준으로 절연성 또는 전도성을 갖는 발광 소자.
  6. 제 5 항에 있어서,
    상기 정전기 방전 억제 패턴은 상기 제 1 전극과 상기 제 2 전극 사이에 상기 임계 전압 미만의 전압이 인가되는 경우, 상기 제 1 전극과 상기 제 2 전극을 절연시키는 발광 소자.
  7. 제 5 항에 있어서,
    상기 정전기 방전 억제 패턴은 상기 제 1 전극과 상기 제 2 전극 사이에 상기 임계 전압 이상의 전압이 인가되는 경우, 상기 제 1 전극과 상기 제 2 전극을 전기적으로 연결시키는 발광 소자.
  8. 제 1 항에 있어서,
    상기 제 1 입자의 표면에 코팅된 코팅막을 더 포함하는 발광 소자.
  9. 제 8 항에 있어서,
    상기 코팅막은 상기 제 1 입자보다 산화성이 낮은 입자 또는 절연성을 갖는 물질을 포함하는 발광 소자.
  10. 제 1 항에 있어서,
    상기 제 1 입자는 탄소 나노튜브인 발광 소자.
  11. 제 1 반도체층, 활성층 및 제 2 반도체층을 포함하는 발광 구조물;
    상기 제 1 반도체층과 접속된 제 1 전극;
    상기 제 2 반도체층과 접속된 제 2 전극;
    상기 제 1 와이어를 통해 상기 제 1 전극과 접속된 제 1 리드 프레임;
    상기 제 2 와이어를 통해 상기 제 2 전극과 접속된 제 2 리드 프레임; 및
    상기 제 1 리드 프레임 및 상기 제 2 리드 프레임과 중첩되며, 레진에 전도성의 제 1 입자가 분산되어 상기 제 1 리드 프레임과 상기 제 2 리드 프레임의 이격 영역을 덮는 정전기 방전 억제 패턴을 포함하는 발광 소자.
  12. 제 11 항에 있어서,
    상기 레진에 상기 제 1 입자와 상이하며 전도성 또는 절연성을 갖는 제 2 입자가 더 분산된 발광 소자.
  13. 제 12 항에 있어서,
    상기 제 2 입자의 직경이 상기 제 1 입자의 직경보다 작은 발광 소자.
  14. 제 12 항에 있어서,
    상기 제 2 입자의 함량이 상기 제 1 전도성 입자의 함량보다 낮은 발광 소자.
  15. 제 11 항에 있어서,
    상기 정전기 방전 억제 패턴은 임계 전압을 기준으로 절연성 또는 전도성을 갖는 발광 소자.
  16. 제 15 항에 있어서,
    상기 정전기 방전 억제 패턴은 상기 제 1 리드 프레임과 상기 제 2 리드 프레임 사이에 상기 임계 전압 미만의 전압이 인가되는 경우, 상기 제 1 리드 프레임과 상기 제 2 리드 프레임을 절연시키는 발광 소자.
  17. 제 15 항에 있어서,
    상기 정전기 방전 억제 패턴은 상기 제 1 리드 프레임과 상기 제 2 리드 프레임에 상기 임계 전압 이상의 전압이 인가되는 경우, 상기 제 1 리드 프레임과 상기 제 2 리드 프레임을 전기적으로 연결시키는 발광 소자.
  18. 제 11 항에 있어서,
    상기 제 1 입자의 표면에 코팅된 코팅막을 더 포함하는 발광 소자.
  19. 제 18 항에 있어서,
    상기 코팅막은 상기 제 1 입자보다 산화성이 낮은 입자 또는 절연성을 갖는 물질을 포함하는 발광 소자.
  20. 제 11 항에 있어서,
    상기 제 1 입자는 탄소 나노튜브인 발광 소자.
KR1020150146615A 2015-10-21 2015-10-21 발광 소자 KR102445531B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020150146615A KR102445531B1 (ko) 2015-10-21 2015-10-21 발광 소자
US15/770,158 US10586892B2 (en) 2015-10-21 2016-10-21 Light emitting device with an electrostatic discharge (ESD) suppression pattern having first and second conductive particles dispersed in a resin
PCT/KR2016/011922 WO2017069577A1 (ko) 2015-10-21 2016-10-21 발광 소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150146615A KR102445531B1 (ko) 2015-10-21 2015-10-21 발광 소자

Publications (2)

Publication Number Publication Date
KR20170046369A true KR20170046369A (ko) 2017-05-02
KR102445531B1 KR102445531B1 (ko) 2022-09-21

Family

ID=58557757

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150146615A KR102445531B1 (ko) 2015-10-21 2015-10-21 발광 소자

Country Status (3)

Country Link
US (1) US10586892B2 (ko)
KR (1) KR102445531B1 (ko)
WO (1) WO2017069577A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523040A (ja) * 1997-11-08 2001-11-20 リッテルフューズ インコーポレイテッド 過電圧保護ポリマー組成物
KR20090045212A (ko) * 2006-07-29 2009-05-07 쇼킹 테크놀로지스 인코포레이티드 도전성 혹은 반도전성 유기 물질을 갖는 전압 절환형 유전체
WO2011108664A1 (ja) * 2010-03-03 2011-09-09 有限会社Mtec 光半導体装置
KR20110134232A (ko) * 2010-06-08 2011-12-14 부경대학교 산학협력단 내정전성 발광소자 및 그 제조방법
KR20120092137A (ko) * 2009-11-26 2012-08-20 가마야 덴끼 가부시끼가이샤 정전기 보호용 페이스트, 정전기 보호 부품 및 그 제조 방법
KR20150010211A (ko) * 2013-07-18 2015-01-28 엘지이노텍 주식회사 발광소자 패키지 및 조명시스템

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273928B2 (ja) * 2003-10-30 2009-06-03 豊田合成株式会社 Iii−v族窒化物半導体素子
US7064353B2 (en) * 2004-05-26 2006-06-20 Philips Lumileds Lighting Company, Llc LED chip with integrated fast switching diode for ESD protection
KR100748241B1 (ko) * 2006-02-07 2007-08-09 삼성전기주식회사 정전기 방전 충격에 대한 보호 기능이 내장된 고휘도 발광다이오드 및 그 제조방법
EP2286220A2 (en) * 2008-05-29 2011-02-23 Bristol-Myers Squibb Company Methods for predicting patient response to modulation of the co-stimulatory pathway
KR20100003320A (ko) * 2008-06-24 2010-01-08 엘지이노텍 주식회사 발광 다이오드 패키지
KR20130011088A (ko) * 2011-07-20 2013-01-30 삼성전자주식회사 발광소자 패키지 및 그 제조방법
KR101500514B1 (ko) * 2013-06-26 2015-03-10 김성호 피부자극이 없는 방부제 조성물을 함유하는 물티슈
KR102188993B1 (ko) * 2013-11-15 2020-12-10 삼성디스플레이 주식회사 광원 유닛 및 이를 포함하는 백라이트 어셈블리

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523040A (ja) * 1997-11-08 2001-11-20 リッテルフューズ インコーポレイテッド 過電圧保護ポリマー組成物
KR20090045212A (ko) * 2006-07-29 2009-05-07 쇼킹 테크놀로지스 인코포레이티드 도전성 혹은 반도전성 유기 물질을 갖는 전압 절환형 유전체
KR20120092137A (ko) * 2009-11-26 2012-08-20 가마야 덴끼 가부시끼가이샤 정전기 보호용 페이스트, 정전기 보호 부품 및 그 제조 방법
WO2011108664A1 (ja) * 2010-03-03 2011-09-09 有限会社Mtec 光半導体装置
KR20110134232A (ko) * 2010-06-08 2011-12-14 부경대학교 산학협력단 내정전성 발광소자 및 그 제조방법
KR20150010211A (ko) * 2013-07-18 2015-01-28 엘지이노텍 주식회사 발광소자 패키지 및 조명시스템

Also Published As

Publication number Publication date
US10586892B2 (en) 2020-03-10
US20180309026A1 (en) 2018-10-25
WO2017069577A1 (ko) 2017-04-27
KR102445531B1 (ko) 2022-09-21

Similar Documents

Publication Publication Date Title
US7768020B2 (en) AC light emitting diode
US7589350B2 (en) Light-emitting diode chip
US11756937B2 (en) Display apparatus and method of manufacturing the same
US8575630B2 (en) Light emitting device, light emitting device unit, and method for fabricating light emitting device
US8106411B2 (en) Light emitting device
US20110127491A1 (en) Light emitting device, method of manufacturing the same, light emitting device package, and lighting system
KR20020027589A (ko) 광전기 소자 및 이의 피복 방법
CN105576100A (zh) 发光器件和照明系统
KR101734558B1 (ko) 발광 소자
TW201434134A (zh) 發光裝置、背光模組及照明模組
US10586892B2 (en) Light emitting device with an electrostatic discharge (ESD) suppression pattern having first and second conductive particles dispersed in a resin
KR20170032020A (ko) 발광 소자 패키지
KR100674857B1 (ko) 정전기 방전(esd)을 강화한 엘이디 패키지 및 그제조방법
WO2017018767A1 (ko) 자외선 발광소자 및 발광소자 패키지
US10573683B2 (en) Light-emitting diode chip
CN108701739A (zh) 发光器件
KR101662239B1 (ko) 발광 소자, 그 제조 방법 및 발광 소자 패키지
KR20170096489A (ko) 발광 소자
CN101373804B (zh) 具有放电结构的led芯片
US20110291150A1 (en) Led illumination device
US8059380B2 (en) Package level ESD protection and method therefor
WO2020005009A1 (ko) 반도체 소자
CN100392885C (zh) 发光二极管结构
KR20150008626A (ko) 발광 장치
CN101373805B (zh) 具有过压保护结构的发光二极管芯片

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right