KR20160150279A - 골 형성 촉진 또는 골 흡수 억제용 펩타이드 및 이의 용도 - Google Patents

골 형성 촉진 또는 골 흡수 억제용 펩타이드 및 이의 용도 Download PDF

Info

Publication number
KR20160150279A
KR20160150279A KR1020160075873A KR20160075873A KR20160150279A KR 20160150279 A KR20160150279 A KR 20160150279A KR 1020160075873 A KR1020160075873 A KR 1020160075873A KR 20160075873 A KR20160075873 A KR 20160075873A KR 20160150279 A KR20160150279 A KR 20160150279A
Authority
KR
South Korea
Prior art keywords
peptide
vnp
bone
cells
rvn
Prior art date
Application number
KR1020160075873A
Other languages
English (en)
Other versions
KR101896762B1 (ko
Inventor
민병무
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of KR20160150279A publication Critical patent/KR20160150279A/ko
Application granted granted Critical
Publication of KR101896762B1 publication Critical patent/KR101896762B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 골 형성 촉진 또는 골 흡수 억제용 펩타이드 및 이의 용도에 관한 것이다. 본 발명의 골 형성 또는 골 흡수 조절용 펩타이드는 조골세포의 분화를 촉진하고, 동시에 파골세포 분화 및 흡수 기능을 억제하여 골 흡수를 저해함으로써 골 형성을 촉진시키는 효과가 있다. 또한, 본 발명의 펩타이드는 저분자량이므로, 경제적인 생산이 가능하여 골 질환의 예방 및 치료에 유용하게 사용될 수 있다.

Description

골 형성 촉진 또는 골 흡수 억제용 펩타이드 및 이의 용도{A peptide for promoting bone formation or inhibiting bone resorption and use thereof}
본 발명은 골 형성 촉진 또는 골 흡수 억제용 펩타이드 및 이의 용도에 관한 것이다.
골의 결함은 골절, 사고, 암 또는 기타 질병으로 인해 야기될 수 있고, 골 기능 손실에 심각한 위험을 가하며, 삶의 질을 저하시키는 원인이 된다. 현재, 이와 같은 골 질환을 치료하기 위해 조직 이식 방법 등을 수행하고 있지만, 공여 부위의 합병증 또는 이식 거부와 같은 여러 한계점이 여전히 존재한다.
한편, 펩타이드는 단백질의 국부적인 구조적 특징을 선택하고 모방하는데 유연하기 때문에 전체 단백질을 대신하여 기능할 수 있다. 펩타이드는 작은 분자량, 합성 가능성 및 경제적인 생산이 가능한 장점을 가지고 있다. 이는, 전체 단백질을 사용하는 것에 비해 재생의학적인 측면에서 면역원성, 단백질 분해에 대한 민감성 및 암 관련 부작용 등을 낮추는 이점을 가지며, 약물 타겟팅, 약물의 효능, 안정성 및 생체 이용률 측면에서 단백질을 기반으로 하는 다른 생물학적 치료제와 견주어 우수성을 가진다. 현재까지 많은 수의 펩타이드가 골 결함을 치료하기 위해 임상에서 국부적 치료제로 사용되었지만, 극소수의 펩타이드만이 골 형성을 가능하게 하였고, 또한, 치료목적으로 사용하기에는 생산 비용이 높다는 등의 많은 난점이 있었다.
한편, 골 질량 및 골 구조는 파골세포와 조골세포에 의한 골 흡수 및 골 형성 사이의 동적 균형을 통해 유지된다. 파골세포의 증가된 활성 및/또는 세포 수에 의해 야기된 불균형은 골다공증, 파제트병(Paget's disease), 류마티스성 관절염 및 골 용해성 전이 등의 골 질병으로 골 파괴를 야기한다. 그러한 이유로 골다공증과 관절염을 포함한 파골세포에 관한 골 장애의 치료는 파골세포의 약물 제어에 좀 더 초점을 맞추고 있는 상황이다.
본 발명자들은 골 형성 및 골 흡수를 모두 조절하는 골 질환 치료제의 개발을 위하여 예의 노력한 결과, 포컬 부착 인산화효소(focal adhesion kinase, FAK)의 활성화를 유도함으로써 β1 인테그린으로 조골세포의 기능 및 분화를 촉진시키는 인간 비트로넥틴 내에 존재하는 RVYFFKGKQYWE 모티프(VnP-16)를 개발하였다. 또한, 상기 VnP-16은 인비트로 및 인비보 모두에서 조골세포 분화를 촉진하고, 동시에 파골세포 분화 및 흡수 기능을 억제함으로써 골 흡수를 저해하여 골 형성을 촉진시킬 수 있음을 확인하고, 본 발명을 완성하였다.
본 발명의 목적은 서열번호 19의 아미노산 서열 내의 서열번호 17의 아미노산 서열(RVYFFKGKQYWE)을 포함하는 연속하는 12개 내지 173개의 아미노산으로 이루어진, 골 형성 또는 골 흡수 조절용 펩타이드를 제공하는 것이다.
본 발명의 목적은 서열번호 17의 아미노산 서열(RVYFFKGKQYWE)을 포함하는 골 형성 또는 골 흡수 조절용 펩타이드를 제공하는 것이다.
본 발명의 다른 목적은 상기 펩타이드를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 펩타이드, 상기 펩타이드를 코딩하는 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 유효성분으로 포함하는 골 질환의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 서열번호 19의 아미노산 서열 내의 서열번호 17의 아미노산 서열(RVYFFKGKQYWE)을 포함하는 연속하는 12개 내지 173개의 아미노산으로 이루어진, 골 형성 또는 골 흡수 조절용 펩타이드를 제공한다.
다른 하나의 양태로서, 본 발명은 서열번호 17의 아미노산 서열(RVYFFKGKQYWE)을 포함하는 골 형성 또는 골 흡수 조절용 펩타이드를 제공한다. 또한, 본 발명은 서열번호 17의 아미노산 서열(RVYFFKGKQYWE)을 구성하는 골 형성 또는 골 흡수 조절용 펩타이드를 제공한다.
본 발명에서, 용어 "펩타이드"는 2개 이상, 200개 이하의 알파-아미노산이 펩티드결합으로 연결된 형태의 화합물을 의미한다.
본 발명의 골 형성 또는 골 흡수 조절 펩타이드는 서열번호 19의 아미노산 서열 내의 서열번호 17의 아미노산 서열을 포함하며, 구체적으로 서열번호 19의 아미노산 서열 내의 서열번호 17의 아미노산 서열을 포함하는 연속하는 12개 내지 173개, 또는 연속하는 12개 내지 80개, 또는 연속하는 12개 내지 40개, 또는 연속하는 12개 내지 14개, 또는 연속하는 12개 내지 13개의 아미노산으로 이루어진 펩타이드로서, 골 형성 또는 골 흡수의 조절 활성을 나타내는 펩타이드일 수 있다. 상기 아미노산 서열에 다른 아미노산, 펩타이드 등이 융합된 펩타이드로서 골 형성 및 골 흡수 조절 활성을 나타내는 한, 본 발명의 범위에 포함된다.
본 발명의 일 실험예에서는, 상기 골 형성 또는 골 흡수 조절용 펩타이드는 결함을 갖는 두개골에서 조골세포의 수를 증가시키고(도 3d), RANKL에 의해 유도되는 파골세포의 형성(도 4a 및 4b) 및 분화를 억제하며(도 4h 및 4i), RANKL에 의해 유도되는 골흡수를 억제하고(도 5), IL-1에 의해 증가된 흡수공의 수와 면적을 감소시키고(도 6a 및 6b), IL-1에 의해 증가된 파골세포의 수와 면적을 감소시키는 것을 확인하였다(도 6c 내지 6h). 이는, 본 발명의 펩타이드는 골 형성 또는 골 흡수를 조절함으로써 골 형성을 촉진시키므로, 골 질환의 예방 및 치료에 유용하게 사용될 수 있음을 시사하는 것이다.
본 발명의 펩타이드는 공지의 펩타이드 합성법 또는 형질전환된 숙주세포를 배양함으로써 제조할 수 있다. 본 발명의 펩타이드를 형질전환된 숙주세포를 배양하여 제조하는 경우, 본 발명의 펩타이드를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터를 숙주세포에 도입하여 형질전환한 후, 상기 형질전환체를 배양하여 생산할 수 있다. 상기 형질전환체를 배양하는 방법은 본 발명의 펩타이드를 생산하기 위하여 당업계에 공지된 임의의 방법을 적절하게 선택하여 이용할 수 있다.
본 발명의 아미노산 서열은 하나 이상의 아미노산이 치환, 결실, 삽입 또는 이들 조합에 의해 용이하게 변형될 수 있다. 따라서, 서열번호 17과 높은 상동성을 갖는 펩타이드 또는 단백질, 예를 들면 그 상동성이 70% 이상, 바람직하게는 80% 이상의 높은 상동성을 갖는 펩타이드와 단백질도 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명에서 용어, "상동성(homology)"은 야생형(wild type) 단백질의 아미노산 서열과의 유사한 정도를 나타내기 위한 것으로서, 본 발명의 아미노산 서열과 상기와 같은 퍼센트 이상의 동일한 서열을 가지는 서열을 포함한다. 이러한 상동성은 두 서열을 육안으로 비교하여 결정할 수도 있으나, 비교대상이 되는 서열을 나란히 배열하여 상동성 정도를 분석해 주는 생물정보 알고리즘(bioinformatic algorithm)을 사용하여 결정할 수 있다. 상기 두 개의 아미노산 서열 사이의 상동성은 백분율로 표시할 수 있다. 유용한 자동화된 알고리즘은 Wisconsin Genetics Software Package(Genetics Computer Group, Madison, W, USA)의 GAP, BESTFIT, FASTA와 TFASTA 컴퓨터 소프트웨어 모듈에서 이용가능하다. 상기 모듈에서 자동화된 배열 알고리즘은 Needleman & Wunsch와 Pearson & Lipman과 Smith & Waterman 서열 배열 알고리즘을 포함한다. 다른 유용한 배열에 대한 알고리즘과 상동성 결정은 FASTP, BLAST, BLAST2,PSIBLAST와 CLUSTAL W를 포함하는 소프트웨어에서 자동화되어 있다.
본 발명의 서열번호 19의 아미노산 서열은 비트로넥틴(vitronectin) 유래일 수 있으며, 구체적으로 인간 비트로넥틴 유래일 수 있고, 특히 인간 유래 비트로넥틴 단편(아미노산 150-322)일 수 있다.
본 발명의 서열번호 17의 아미노산 서열은 비트로넥틴(vitronectin) 유래일 수 있으며, 구체적으로 인간 비트로넥틴 유래일 수 있고, 특히 인간 유래 비트로넥틴 단편(아미노산 270-281)일 수 있다.
본 발명에서, 용어 "비트로넥틴(vitronectin)"은 혈청, 세포외기질 및 골에 풍부하게 존재하는 당단백질을 의미하고, 구체적으로 상기 비트로넥틴은 세포의 접착 및 확산을 촉진시키는 활성을 갖는다.
본 발명에서, 용어 "조골세포"는 골아세포라고도 하며, 세포 밖으로 골기질을 분비하고 스스로는 골기질에 싸여 골세포로 변하는 세포를 의미한다. 상기 조골세포는 섬유모세포(섬유아세포)에서 분화한 것으로, 조골세포군의 바깥쪽에는 골막이 존재하는데, 골 형성이 끝나도 골막 내면에는 조골세포가 존재하지만, 노화된 골에서는 그 수가 감소한다.
본 발명에서, 용어 "파골세포"는 골조직의 파괴, 흡수 기능을 수행하는 세포를 의미한다. 파골세포는 지름이 20 내지 100 ㎛인 거대세포로, 2 내지 20 개 가량의 핵을 포함하고 있다. 상기 파골세포는 대식세포에서 분화한 것으로, 파골세포의 형성은 상호 협력한 대식세포-콜로니 자극 인자(M-CSF), NF-κB 리간드의 수용체 활성자(RANKL) 및 상기 활성자의 공동 자극 인자에 의해 유도된다.
본 발명에서, 용어 "골 형성"은 뼈가 형성되는 과정을 의미하며, 골아세포에 의한 골기질 형성과 골기질의 석회화 현상을 의미한다.
본 발명에서, 용어 "골 흡수"는 골 조직에서 칼슘이 빠져나가 뼈에 구멍이 나고 부서지기 쉽게 되는 과정을 의미하며, 그 과정에서는 골기질과 골미네랄이 동시에 골에서 제거된다. 골의 성장이나 개조 시에 생기는 생리적인 현상이지만, 염증이나 암세포의 골전이에 의해서도 골흡수 현상이 발생할 수 있다.
본 발명의 골 형성 촉진 활성은 조골세포의 분화를 촉진시키는 것을 의미하고, 구체적으로 상기 조골세포의 분화는 조골세포에 존재하는 β1 인테그린(integrin) 표면 수용체의 작용에 의해 유도될 수 있고, 또한, FAK 인산화에 의해 활성화된 신호전달 경로를 통해 유도될 수 있다.
본 발명의 β1 인테그린(integrin) 표면 수용체는 세포-외기질(ECM)의 상호작용을 위한 가교 역할을 하는 막단백질 수용체를 의미한다. 상기 인테그린은 세포 외부로부터 신호를 받은 후, 세포의 주기, 모양, 운동성 등을 조절하는 ECM 화학적 조성 및 물리적 상태를 조절하기 위해 세포 내부의 화학적 신호전달을 촉발시킨다. 상기 인테그린에 의한 신호전달에 의해 FAK(포컬 부착 인산화효소; Focal Adhesion Kinase)의 인산화가 유도된다. 인산화된 FAK은 세포 내의 하위 신호전달 경로를 통해 세포의 분화를 유도하고, 구체적으로 본 발명에서는 조골세포의 분화를 유도한다.
본 발명의 골 파괴 억제 활성은 파골세포의 분화 또는 골 흡수를 저해하는 것을 의미하고, 구체적으로 상기 파골세포의 분화 또는 골 흡수의 저해는 JNK-c-Fos-NFATc1 신호전달 경로의 억제 또는 Src-PYK2 신호전달 경로의 억제를 통해 유도될 수 있다.
상기 JNK-c-Fos-NFATc1 신호전달 경로는 타입 Ⅱ 막단백질의 종류인 RANKL(핵인자 카파-β 리간드의 수용체 활성자; Receptor activator of nuclear factor kappa-B ligand)에 의해 촉발된다. 상기 RANKL은 여러 세포 종류를 생산하는데 관여하고, 구체적으로 골세포를 생산하며, 더불어 파골세포의 분화 및 활성화에도 중요한 역할을 한다. RNAKL은 JNK(c-Jun N-말단 인산화효소; c-Jun N-terminal kinases)를 활성화하여 신호를 촉발하고, 상기 신호는 c-Fos 단백질을 거쳐 NFATc1(활성 T 세포의 핵인자, 세포질 1; Nuclear factor of activated T-cells, cytoplasmic 1)에 전달된다. 활성화된 상기 NFATc1은 다른 전사 인자와 협력하여 파골세포 특이적 유전자의 수를 조절함으로써 파골세포 분화에 관여한다.
상기 Src-PYK2 신호전달 경로 또한 RANKL에 의해 촉발되며, 활성화된 Src(프로토-종양유전자 티로신-단백질 인산화효소; Proto-oncogene tyrosine-protein kinase)에 의한 세포 내 신호전달경로에 의해 PYK2(단백질 티로신 인산화효소 2; Protein tyrosine kinase 2)가 인산화되고, 상기 인산화된 PYK2는 파골세포의 골흡수 활성에 관여한다.
한편, 본 발명의 신호전달은 외부 환경을 인지하여 그 정보를 세포 내부에 전달함으로써 유전자 발현을 조절하는 과정을 의미하며, 구체적으로 리간드가 세포의 수용체에 결합하여 신호전달이 촉발되고, 신호전달 분자들에 의해 그 과정이 매개된다.
본 발명의 일 실험예에서는, 본 발명의 인간 비트로넥틴 유래 단편 VnP-16에 대한 부착 어세이를 여러 세포 종류에 대하여 수행한 결과, VnP-16은 섬유아세포 특이적으로 작용한다는 것을 확인하였다(도 1f).
본 발명의 다른 일 실험예에서는, siRNA의 형질주입을 통해 β1 인테그린의 발현을 억제한 세포에서 VnP-16의 세포부착 매개 기능을 확인한 결과, β1 인테그린이 VnP-16의 주요한 표면 수용체로 작용하여 세포 기능을 매개한다는 것을 확인하였다(도 2d).
본 발명의 또 다른 일 실험예에서는, 조골세포에서 VnP-16/β1 인테그린에 의해 활성화된 하위 신호 전달 경로를 조사한 결과, VnP-16/β1 인테그린-매개 신호전달에 FAK의 Tyr397 인산화가 필수적이라는 것을 확인하였고(도 2f), 또한, 상기 FAK의 Tyr397 인산화는 VnP-16/β1 조골세포 분화에도 필수적이라는 것을 확인하였다(도 2i).
본 발명의 또 다른 일 실험예에서는, 두개골에 결함을 갖는 랫트 모델을 사용하여 인비보에서 VnP-16의 골 형성 능력을 조사한 결과, VnP-16은 대조군에 비해 조골세포의 수가 상당히 증가하는 것을 확인하였다(도 3d).
본 발명의 또 다른 일 실험예에서는, VnP-16이 파골세포 전구체 세포에 작용하여 파골세포 분화를 제한할 수 있는지 여부를 조사한 결과, VnP-16은 M-CSF 및 RANKL에 의해 유도되는 파골세포형성을 거의 억제하는 것을 확인하였고(도 4a 및 4b), JNK-c-Fos-NFATc1 신호전달 경로의 억제를 통해 RANKL-유도 파골세포 분화를 제한한다는 것을 확인하였다(도 4h 및 4i).
본 발명의 또 다른 일 실험예에서는, M-CSF 및 RANKL에 의해 유도되는 파골세포 분화의 저해와 αvβ3 인테그린 신호전달과의 상관관계에 대한 VnP-16의 영향을 확인한 결과, VnP-16이 Src-PYK2 신호전달의 예방을 통해 RANKL-유도 골흡수를 억제한다는 것을 알아내었다(도 5).
본 발명의 또 다른 일 실험예에서는, VnP-16이 골 흡수 기능에 미치는 영향을 조사한 결과, VnP-16은 IL-1에 의해 증가된 흡수공의 수와 면적을 감소시키는 것을 확인하였고(도 6a 및 6b), 또한, IL-1에 의해 증가된 파골세포의 수와 면적을 감소시키는 것을 확인하였다(도 6c 내지 6h).
본 발명의 또 다른 일 실험예에서는, CD 분광학을 이용하여 VnP-16의 이차구조를 예측한 결과, β- 구조가 풍부한 단백질의 특성을 갖는다는 것을 확인하였다(도 7d).
본 발명의 또 다른 일 실험예에서는, 비트로넥틴 유래 단편 각각의 세포 부착 활성을 조사한 결과, 세 재조합 단편 중에 rVn-FI과 rVn-FII가 생물학적으로 활성이 좋은 단백질이라는 것을 확인하였다(도 8).
본 발명의 또 다른 일 실험예에서는, 피부 유래 전구체 세포에서 중간엽세포를 거쳐 조골세포로의 직접 분화가 가능한지 확인하기 위해 세포 분화를 수행한 후, 조골세포 특이적 마커의 발현 수준을 확인한 결과, 피부 유래 전구체 세포 유래 중간엽 세포가 조골세포 계통으로 분화한다는 것을 확인하였다(도 10).
다른 하나의 양태로서, 본 발명은 본 발명의 펩타이드를 코딩하는 폴리뉴클레오티드 및 이를 포함하는 재조합 벡터를 제공한다.
본 발명의 폴리뉴클레오티드는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 사슬모양으로 길게 이어진 뉴클레오티드의 중합체(polymer)이며, 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 본 발명에 따른 펩타이드를 코딩하는 폴리뉴클레오티드를 의미한다.
또한, 본 발명의 폴리뉴클레오티드는 상기 펩타이드를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 펩타이드의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있고, 코딩영역을 제외한 부분에서도 유전자의 발현에 영향을 미치지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있다. 즉, 본 발명의 폴리뉴클레오티드는 이와 동등한 활성을 갖는 펩타이드를 코딩하는 한, 하나 이상의 핵산 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있으며, 이들 또한 본 발명의 범위에 포함된다.
본 발명의 재조합 벡터는 세포 내에 도입하여 본 발명의 펩타이드를 발현시키기 위한 수단으로서, 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 등 공지의 발현벡터를 사용할 수 있으며, 벡터는 DNA 재조합 기술을 이용한 임의의 공지된 방법에 따라 당업자가 용이하게 제조할 수 있다.
또 다른 하나의 양태로서, 본 발명은 본 발명의 펩타이드, 상기 펩타이드를 코딩하는 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 유효성분으로 포함하는 골 질환의 예방 또는 치료용 약학적 조성물을 제공한다.
또한, 또 다른 하나의 양태로서, 본 발명은 상기 약학적 조성물을 골 질환이 발병한 또는 발병가능성이 있는 개체에게 투여하는 단계를 포함하는 골 질환의 예방 또는 치료방법을 제공한다.
본 발명에서 용어, "예방"이란 본 발명의 약학적 조성물의 투여에 의해 골 질환을 억제시키거나 발병을 지연시키는 모든 행위를 의미하고, 용어 "치료"란 본 발명의 약학적 조성물의 투여에 의해 골 질환에 의한 증세를 호전시키거나 이롭게 변경하는 모든 행위를 의미한다.
본 발명에서 용어, "개체"란 골 질환이 발병하였거나 발병할 수 있는 인간을 포함한 모든 동물을 의미한다. 상기 골 질환은 골다공증, 파제트병, 골절, 골형성부전증, 치주질환 및 골 관절염으로 이루어진 군에서 선택되는 하나 이상의 질환일 수 있지만, 이에 제한되지 않는다.
본 발명의 약학적 조성물의 투여 경로는 목적 조직(골 결손 부위 등) 또는 세포에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 본 발명의 약학적 조성물은 목적하는 바에 따라 복강 내 투여, 정맥 내 투여, 근육 내투여, 피하 투여, 피 내 투여, 경구 투여, 폐 내 투여, 직장 내 투여, 세포 내 직간접 투여될 수 있다. 이를 위하여 본 발명의 약학적 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.
본 발명의 약학적 조성물은 허용 가능한 담체를 포함할 수 있다. 약학적으로 허용 가능한 담체를 포함하는 상기 약학적 조성물은 경구 또는 비경구의 여러 가지 제형일 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 하나 이상의 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로오스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제된다. 경구투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구투여를 위한제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테로 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.
본 발명의 약학적 조성물은 정제, 환제, 산제, 과립제, 캡슐제, 현탁제, 내용액제, 유제, 시럽제, 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제 및 좌제로 이루어진 군으로부터 선택되는 어느 하나의 제형을 가질 수 있다.
본 발명의 약학적 조성물은 치료적 유효량 또는 약학적으로 유효한 양으로 투여한다. 용어 "치료적 유효량 또는 약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.
본 발명의 약학적 조성물은 골 질환의 치료를 위하여 단독으로, 수술, 호로몬 치료, 약물 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 투여될 수 있다.
본 발명의 골 형성 또는 골 흡수 조절용 펩타이드는 조골세포의 분화를 촉진하고, 파골세포 분화 및 흡수 기능을 억제하여 골 흡수를 저해함으로써 골 형성을 촉진시키는 효과가 있다. 또한, 본 발명의 펩타이드는 저분자량이므로 경제적인 생산이 가능하여 골 질환의 예방 및 치료에 유용하게 사용될 수 있다.
도 1a 내지 1g는 두 개의 β-가닥을 포함하는 VnP-16 도데카펩타이드(dodecapeptide)가 섬유아세포 계열 세포에서 세포 기능을 촉진한다는 것을 보여주는 도이다.
도 1a는 인간 비트로넥틴의 중앙 영역에서 정렬한 부분적인 아미노산 서열을 도시한다(아미노산 230-322).
도 1b는 플레이트에 고정된 합성 펩타이드에 용량-의존적으로 부착한 세포를 도시한다. 혈청이 없는 배지에서 인간 조골세포를 펩타이드로 코팅된 플레이트 위에 1시간 동안 부착하였다.
도 1c 및 1d는 혈청이 없는 배지에서 BSA(1%), 비트로넥틴(0.23 ㎍/㎠), rVn-FII(5.7 ㎍/㎠) 및 합성 펩타이드(9.1 ㎍/㎠)로 1시간 동안(c) 또는 3시간 동안(d) 유도한 조골세포의 부착(c) 및 확산(d)을 도시한다.
도 1e는 VnP-16을 24시간 또는 48시간 처리한 조골세포, NHDFs, NHOFs, MC3T3-E1 및 NIH/3T3 세포의 수용성 테트라졸리움염(tetrazolium salt) 방법을 이용한 생존능 테스트를 도시한다.
도 1f는 VnP-16에 대한 NHEKs, NHOKs, NHDFs, NHOFs, PC-12, MC3T3-E1, CV-1 및 NIH/3T3 세포의 부착을 도시한다. 혈청이 없는 배지에서 VnP-16(9.1 ㎍/㎠)이 코팅된 플레이트위에 조골세포를 1시간 동안 부착하였다.
도 1g는 PSIPRED 단백질 구조 예측 서버를 통해 두 개의 β-사슬을 가질 것이라고 예측된 VnP-16 도데카펩타이드 구조의 계산을 도시한다. * P < 0.01. 결과는 평균 ± S.D.로 표시하였다(n = 4).
도 2a 내지 2k는 VnP-16이 Tyr397에서 FAK의 인산화를 유도시킴으로써 β1 인테그린을 통해 세포 기능 및 조골세포의 분화를 촉진한다는 것을 보여주는 도이다.
도 2a는 VnP-16(9.1 ㎍/㎠)이 미리 코팅되어 있던 플레이트 위에서 1시간 동안 배양된 인간 조골세포의 VnP-16에 대한 세포 부착을 도시한다. 상기 인간 조골세포에 각각 EDTA(5 mM), MnCl2(500 μM) 또는 헤파린(100 ㎍/㎖)을 처리하였다.
도 2b는 β1 인테그린-블로킹 항체의 처리에 의해 완전히 막힌 세포의 VnP-16에 대한 부착을 도시한다(평균 ± S.D., n = 3).
도 2c 및 2d는 10 nM의 대조군 siRNA 또는 10 nM의 β1 인테그린 siRNA로 형질주입된 조골세포에서의 β1 인테그린의 면역블롯 분석(c) 및 VnP-16에 세포 부착(평균 ± S.D., n = 4)(d)을 도시한다.
도 2e는 VnP-16의 β1 인테그린에의 직접 결합 여부를 확인하기 위하여, 비오틴화 VnP-16 펩타이드 또는 스트렙타비딘-비드(Streptavidin-bead) 단독을 이용하여 수행한 풀다운 어세이의 결과를 도시한다. 비오틴화 VnP-16으로 코팅한 배양 접시에서 3시간 동안 배양한, β1 인테그린이 세포 표면에 존재하는 인간 조골 세포 또는 HOS 세포를 어세이에 이용하였다.
도 2f는 비트로넥틴(0.23 ㎍/㎠), 망가진 펩타이드(SP) 또는 VnP-16(9.1 ㎍/㎠)이 코팅된 플레이트에서 3시간 동안 배양한 조골세포의 FAK, 인산화-Akt Ser473, 인산화-PKCδ Thr505 및 인산화-c-Src Tyr416에서 인산기-받개 위치의 면역블롯 분석을 도시한다.
도 2g는 FAK 저해제인 PF-573228을 1시간 동안 먼저 처리한 조골세포에서 인산화-FAK Tyr397의 면역 분석을 도시한다.
도 2h는 VnP-16에 대한 세포의 부착을 도시한다. 세포에 1시간 동안 PF-573228를 처리한 후, 1시간 동안 혈청이 없는 배지에서 VnP-16(9.1 ㎍/㎠)으로 미리 코팅된 플레이트에 시딩하였다.
도 2i는 PF-573228가 조골세포의 분화를 억제한다는 것을 도시한다. SKP-유래 중간엽세포(MSCs), 마우스 두개골 조골세포 전구체(MC3T3-E1) 및 인간 골 형성 세포를 PF-573228(1 μM)이 있거나 또는 없는 골 형성 분화 배지가 담긴 VnP-16(9.1 ㎍/㎠)로 코팅된 플레이트에서 2주 동안 배양하였다.
도 2j 및 2k는 100 nM의 대조군 siRNA 또는 100 nM의 FAK siRNA로 형질주입된 조골세포에서의 전체 FAK의 면역블롯 분석(j) 및 VnP-16에 세포 부착(평균 ± S.D., n = 4)(k)을 도시한다. 대조군, 대조군 siRNA 형질주입된 세포. * P < 0.01, ** P < 0.05.
도 3a 내지 도3e는 인비보 골 흡수에 대한 VnP-16의 영향을 보여주는 도이다. 흡수할 수 있는 콜라겐 스펀지에 비히클(vehicle; DMSO), BMP-2(2 ㎍/scaffold), 망가진 펩타이드(SP; 1 mg/scaffold) 또는 VnP-16(1 mg/scaffold)를 처리하여 랫트의 임계 크기 두개골 결함에 이식하였다.
도 3a 및 3b는 이식 2주 후, 결함 부위의 삼차 μCT 이미지(a) 및 골재생율, 골부피 및 두개골 두께(b)를 나타낸다.
도 3c는 이식 2주 후, 무기질화 된 골을 가시화하기 위한 랫트 두개골 섹션의 Masson's 트리크롬 염색를 도시한다.
도 3d는 이식 2주 후, 무기질화 된 골에서 랫트 두개골 섹션의 조골세포와 그 수를 도시한다. 붉은색 및 검정색의 삼각형은 상처의 가장자리를 나타낸다. 스케일바는 1.0 mm을 나타낸다.
도 3e는 이식 2주 후, 랫트 두개골 섹션에서 골 형성 마커의 발현 수준을 qRT-PCR로 분석한 결과를 도시한다. 결과를 평균 ± S.D. 로 나타내었다(n = 4). * P < 0.01.
도 4a 내지 도4i는 BMMs에서 M-CSF 및 RANKL에 의해 유도된 파골세포 형성 및 파골세포형성-관련 유전자의 발현 수준에 대한 VnP-16의 영향을 보여주는 도이고, 도 4a 내지 4d는 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL의 존재하에서 비히클(DMSO), 비트로넥틴(0.23 ㎍/㎠), SP(9.1 ㎍/㎠) 또는 VnP-16(9.1 ㎍/㎠)으로 미리 코팅한 플레이트에서 BMMs을 배양하였다.
도 4a는 배양 후 세포를 고정하고, TRAP으로 염색한 결과를 도시한다. 스케일바는 200 ㎛를 나타낸다.
도 4b는 파골세포로 간주한 세 개 혹은 그 이상의 핵을 포함하는 TRAP-양성 다핵 세포의 수를 도시한다.
도 4c는 40x로 촬영한 TRAP-양성 세포에서 다핵세포의 직경을 측정하여 알아낸 파골세포의 크기를 도시한다.
도 4d는 VnP-16에 의한 F-액틴 매개 세포골격 조직의 억제를 도시한다. 비히클(DMSO), SP(9.1 ㎍/㎠) 또는 VnP-16(9.1 ㎍/㎠)으로 미리 코팅한 유리 슬라이드 위에 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL이 있는 상태로 BMMs을 6일 동안 배양하였다. 그 후, DAPI 및 로다민-팔로이딘(rhodamine-phalloidin; red)으로 면역염색하였다. 스케일바는 200 ㎛를 나타낸다.
도 4e 및 4f는 파골세포의 골흡수활성에 대한 VnP-16의 효과를 도시한다. BMMs을 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL의 존재하에서 비히클(DMSO), 비트로넥틴(0.23 ㎍/㎠) 또는 합성펩타이드(9.1 ㎍/㎠)로 미리 코팅한 Osteo Assay Surface 플레이트에서 6일 동안 배양하였다.
도 4e는 세포를 제거한 이후 촬영한 흡수공의 이미지이다. 파란색의 화살표가 파골세포에 의해 형성된 흡수공을 가리킨다. 스케일바는 200 ㎛를 나타낸다.
도 4f는 흡수공의 면적을 측정함으로써 평가한 골흡수 정도를 나타내는 그래프이다.
도 4g는 파골세포의 분화를 방해하는 VnP-16의 농도(9.1 ㎍/㎠)에서, BMMs의 세포 분화 및 생존능을 도시한다.
도 4h는 파골세포형성-관련 유전자의 면역블롯 어세이를 도시한다. 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL 존재 하에, 1일, 2일 또는 3일 동안 SP 또는 VnP-16(9.1 ㎍/㎠)을 먼저 처리한 플레이트에서 BMMs을 배양하였다.
도 4i는 MAPKs의 면역블롯 어세이를 도시한다. SP 또는 VnP-16(9.1 ㎍/㎠)이 미리 코팅된 플레이트에서 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL로 3일 동안, 혈청이 없는 상태로 3시간 동안 BMMs을 배양하고, 표시한 시간 동안 M-CSF(30 ng/㎖) 및 RANKL(100 ng/㎖)으로 자극하였다. 전체 세포 용해물을 표시한 항체로 웨스턴블롯을 수행하였다.
도 5a 내지 도 5e는 골수유래 대식세포(BMMs), 전-파골세포 및 성숙한 파골세포에서 M-CSF 및 RANKL에 의해 유도된 c-Src 및 PYK2의 활성화에 대한 VnP-16의 효과를 보여주는 도이다.
도 5a는 골수유래 대식세포에서 c-Src, PYK2 및 CREB의 면역블롯 분석을 도시한다. SP 또는 VnP-16(9.1 ㎍/㎠)으로 미리 코팅한 플레이트에서 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL로 1일 동안, 혈청이 없는 상태로 3시간 동안 BMMs을 배양하였고, 표시한 시간 동안 M-CSF(30 ng/㎖) 및 RANKL(100 ng/㎖)으로 자극하였다.
도 5b는 전-파골세포에서 c-Src, PYK2 및 CREB의 면역블롯 분석을 도시한다. SP 또는 VnP-16(9.1 ㎍/㎠)으로 미리 코팅한 플레이트에서 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL로 3일 동안, 혈청이 없는 상태로 3시간 동안 BMMs을 배양하였고, 표시한 시간 동안 M-CSF(30 ng/㎖) 및 RANKL(100 ng/㎖)으로 자극하였다.
도 5c는 성숙한 파골세포에서 c-Src, PYK2 및 CREB의 면역블롯 어세이를 도시한다. SP 또는 VnP-16(9.1 ㎍/㎠)으로 미리 코팅한 플레이트에 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL로 1일 동안, 혈청이 없는 상태로 3시간 동안 성숙한 파골세포를 배양하였고, 표시한 시간 동안 M-CSF 및 RANKL로 자극하였다.
도 5d는 골수유래 대식세포에서 활성 GTP-bound Rac1의 면역블롯 어세이를 도시한다. 표시된 시간을 제외한 어세이 조건은 도 5a에 기재된 내용과 동일하다. 세포를 용해하고, 4℃에서 PAK1 PBD 아가로스 비드와 1시간 동안 반응시켰다. 활성화 GTP-bound Rac1 단백질을 항-Rac1 항체를 이용한 면역블롯 분석을 통해 밝혀내었다.
도 5e는 전-파골세포에서 활성 GTP-bound Rac1의 면역블롯 어세이를 도시한다. 표시된 시간을 제외한 어세이 조건은 도 5b에 기재된 내용과 동일하다. 세포를 용해하고, 4℃에서 PAK1 PBD 아가로스 비드와 1시간 동안 반응시켰다. 활성화 GTP-bound Rac1 단백질을 항-Rac1 항체를 이용한 면역블롯 분석을 통해 밝혀내었다.
도 6a 내지 6h은 인비트로에서의 골 흡수 활성 및 인비보에서의 IL-1-유도 골 파괴에 대한 Vn-P16의 영향을 보여주는 도이다.
도 6a 및 6b는 비히클(DMSO), 비트로넥틴(0.23 ㎍/㎠), SP(9.1 ㎍/㎠) 또는 VnP-16(9.1 ㎍/㎠)으로 미리 코팅된 Osteo Assay Surface 플레이트에서, 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL의 존재 하에 BMMs을 6일 동안 배양한 실험에 대한 결과를 나타낸다.
도 6a는 세포를 제거한 후, 촬영한 흡수공을 도시한다. 파란색 화살표는 파골세포에 의해 형성된 흡수공을 가리키고, 스케일바는 200 ㎛를 나타낸다.
도 6b는 흡수공의 면적을 측정함으로써 평가한 골 흡수를 도시한다.
도 6c 내지 6h는 비히클(DMSO), IL-1(2 ㎍), 합성 펩타이드(SP 및 VnP-16, 125 ㎍), 또는 합성 펩타이드(125 ㎍)와 동시에 IL-1(2 ㎍)를 처리한 콜라겐 스펀지(직경 4 mm)를 5주령 ICR 마우스의 두개골 위에 이식하여 분석한 결과를 도시한다.
도 6c는 전체 두개관의 3차원 μCT 이미지 및 TRAP 염색을 도시하고, 검은 점은 침식 표면을 도시한다.
도 6d는 μCT 분석으로 측정한 두개골 부피를 도시한다.
도 6e는 μCT 분석으로 측정한 골 미네랄 함량을 도시한다.
도 6f는 헤마톡실린(hematoxylin) 및 에오신(eosin)으로 염색하거나, TRAP으로 조직화학적 염색을 수행한 두개골 뼈의 조직학적 섹션을 도시한다.
도 6g는 조직형태학적 분석을 통해 확인한 파골 세포의 수를 나타내는 그래프이다.
도 6h는 조직형태학적 분석을 통해 확인한 파골 세포의 표면 면적을 나타내는 그래프이다.
이때, 도 6b, 6d 및 6e의 결과는 평균 ± S.D.로 나타내었다(n = 4). * P < 0.01 및 ** P < 0.05.
도 7a 내지 7d는 SDS-PAGE 및 원편광 이색성 분광법(CD)에 의한 정제된 재조합 인간 비트로넥틴(rVn) 단편의 분석을 보여주는 도이다.
도 7a는 rVn 단편의 개략도이다. 아미노산(aa) 크기를 위에 표시하였고, 비트로넥틴의 도메인 구조를 오픈 컬럼으로 나타내었다. 검은 컬럼 및 닫힌 바는 각각 신호 펩타이드 및 재조합 단백질의 위치를 나타낸다. 전체 길이 단백질에 관련된 재조합 단편의 아미노산 부위는 괄호 안의 숫자에 대응된다.
도 7b는 rVn 단편의 개략도와 rVn 단편의 SDS-PAGE 분석을 도시한다. 각 rVn 단편을 His6-표지된 융합 단백질로 나타내었다. 정제한 rVn 단편을 SDS-PAGE 분석(10% 폴리아크릴아마이드젤, 환원상태)에 사용하였고, 쿠마시(Coomassie) 염색으로 가시화하였다.
도 7c는 디티오트레이톨(DTT)을 처리한 정제된 rVn 단편의 젤 이동성을 도시한다. 단백질을 12.5%의 SDS-PAGE 젤에서 분리함으로써 DTT를 처리하지 않은 rVn 단편과 이동성을 비교하였다.
도 7d는 PBS, pH 3.0, 23℃에서, rVn 단편의 CD 분석을 도시한다.
도 8a 내지 8d는 rVn 단편의 세포 기능을 도시한다.
도 8a는 혈청이 없는 배지에서 rVn에 대해 용량-의존적으로 부착한 조골세포를 도시한다.
도 8b는 rVn에 대한 조골세포의 부착을 도시한다. 1시간 동안 혈청이 없는 배지에서 비트로넥틴(0.23 ㎍/㎠) 및 rVn(5.7 ㎍/㎠)으로 미리 코팅된 플레이트에 세포를 시딩하였다.
도 8c는 비트로넥틴 및 rVn 단편의 유도에 의한 세포 확산을 도시한다. 3시간 동안 혈청이 없는 배지에서 비트로넥틴 또는 rVn으로 미리 코팅된 플레이트에 세포를 시딩하였다(n = 4).
도 8d는 비트로넥틴 및 rVn 단편에 의해 유도된 조골세포의 이동을 도시한다. 24시간 동안 비트로넥틴 또는 rVn 단편으로 코팅된 트랜스웰 필터의 상위 챔버에 조골세포를 시딩하였다(n = 4). ND: 탐지되지 않음. * P < 0.01.
도 9는 PSIPRED 단백질 구조 예측 서버를 통해 173 잔기(아미노산 150-322)로 구성된 rVn-FII 단편의 예측된 구조를 보여주는 도이다. 구조의 계산을 통해 rVn-FII 단편은 하나의 α-나선 및 아홉 개의 β-가닥을 갖는다고 예측하였다.
도 10a 내지 10e는 인간 포피로부터 SKPs의 단계적 분리 및 SKPs에서 중간엽세포 전구체 및 골 형성세포로의 직접 분화와 그의 특징을 나타내는 도이다.
도 10a는 디자인한 실험(위)의 개략도이고, 인비트로에서 확장시킨 7, 14 및 21일 후의 구-형성 SKPs(아래)의 대표 이미지를 도시한다. 초기 정제 후, 현탁액에 존재하는 구의 형태로 자란 SKPs를 단일 세포로 분리하였고, 1주일에 걸쳐 구로 재생산하였다. SKPs를 혈청에 노출시켜 중간엽세포 전구체로 재빨리 전환시켰다. 스케일바는 50 ㎛를 나타낸다.
도 10b는 SKP-유래 중간엽세포 전구체의 표면 마커 프로파일의 형광-활성 세포 분류 분석을 도시한다.
도 10c는 골 형성 조건하에서 2주 동안 분화한 SKP- 유래 중간엽세포 전구체의 단층 배양의 촬영 후, 알리자린 레드 S(Alizarin red S)를 이용하여 염색한 무기질의 침착을 도시한다. 스케일바는 50 ㎛를 나타낸다.
도 10d 및 10e는 ALP, RUNX2, BSP 및 오스테오칼신(osteocalcin)을 포함한 골 형성 마커의 발현을 qRT-PCR(d) 및 RT-PCR(e)로 분석한 결과를 도시한다. 첫 줄은 들어간 핵산 없이 반응시킨 음성 대조군을 나타낸다. 결과를 평균 ± S.D.로 나타내었다(n = 4). * P < 0.01.
도 11은 성숙한 파골세포에서 F-액틴-유도된 세포골격 조직에 대한 VnP-16의 영향을 도시한다. 30 ng/ml의 M-CSF 및 100 ng/ml의 RANKL이 존재하거나, 존재하지 않는 조건에서, 비히클(DMSO), SP(9.1 ㎍/㎠) 또는 VnP-16(9.1 ㎍/㎠)으로 미리 코팅되어있던 플레이트에서 파골세포를 1일 동안 배양하였다. 세포를 DAPI(파란색) 및 로다민-팔로이딘(rhodamine-phalloidin, 빨간색)으로 면역염색하였다. 스케일바는 200 ㎛를 나타낸다.
도 12a 내지 12c는 골흡수 활성 및 성숙한 파골세포의 생존에 대한 VnP-16의 영향을 도시하며, 성숙한 파골세포를 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL의 존재하에서, 비히클(DMSO), SP, 또는 VnP-16(9.1 ㎍/㎠)으로 미리 코팅한 Osteo Assay Surface 플레이트에서 24시간 동안 배양하였다.
도 12a는 세포를 제거한 이후에 촬영한 흡수공(파란색의 화살표로 표시됨)의 이미지이다. 스케일바는 200 ㎛를 나타낸다.
도 12b는 흡수공의 면적을 측정함으로써 골흡수를 평가한 그래프이다.
도 12c는 TRAP 염색 이후, 생존한 파골세포의 수를 나타내는 그래프이다. 도 12b 및 12c의 결과는 평균 ± S.D.로 나타내었다(n = 4). * P < 0.01 및 ** P < 0.05.
이하, 본 발명을 실시예에 의해 보다 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시 예에 한정되는 것은 아니다.
실시예 1. 펩타이드(peptide) 및 시약의 사용
본 발명의 모든 펩타이드(peptide)는 Pioneer 펩타이드 합성기(Applied Biosystems)에서 C-말단에 아마이드(amide)와 Fmoc(9-fluorenylmethoxycarbonyl)-기반 고체상 방법을 이용하여 합성하였다. 펩트론(Peptron)으로 펩타이드를 정제하고, 특징을 파악하였다. 본 발명에 사용된 모든 펩타이드의 순도를 고성능액체크로마토그래피로 확인한 결과, 상기 펩타이드의 순도는 95% 이상이었다. 인간 비트로넥틴(vitronectin)은 Millipore에서 구입하였다. 사용한 펩타이드 및 단백질은 하기 표 1에 정리한 바와 같다.
본 발명에 사용한 펩타이드 및 단백질
펩타이드 서열
VnP-16 RVYFFKGKQYWE (서열번호 17)
rVn-FI DQESCKGRCT EGFNVDKKCQ CDELCSYYQS CCTDYTAECK PQVTRGDVFT MPEDEYTVYD DGEEKNNATV HEQVGGPSLT SDLQAQSKGN PEQTPVLKPE EEAPAPEVGA SKPEGIDSRP ETLHPGRPQP (서열번호 18)
rVn-FII PAEEELCSGK PFDAFTDLKN GSLFAFRGQY CYELDEKAVR PGYPKLIRDV WGIEGPIDAA FTRINCQGKT YLFKGSQYWR FEDGVLDPDY PRNISDGFDG IPDNVDAALA LPAHSYSGRE RVYFFKGKQY WEYQFQHQPS QEECEGSSLS AVFEHFAMMQ RDSWEDIFEL LFW
(서열번호 19)
rVn-FIII GRTSAGT RQPQFISRDW HGVPGQVDAA MAGRIYISGM APRPSLAKKQ RFRHRNRKGY RSQRGHSRGR NQNSRRPSRA TWLSLFSSEE SNLGANNYDD YRMDWLVPAT CEPIQSVFFF SGDKYYRVNL RTRRVDTVDP PYPRSIAQYW LGCPAPGHL (서열번호 20)
VnP-15 AHSYSGRERVYF (서열번호 21)
VnP-17 QYWEYQFQHQPS (서열번호 22)
망가진 펩타이드(Scrambled peptide; SP) FVWRQFYKYEKG (서열번호 23)
실시예 2. rVn-FII및 VnP-16의 이차 구조 결정
rVn-FII단편 및 VnP-16 펩타이드의 이차 구조를 PSIPRED(Psi-blast based secondary structure prediction) 방법과 컴퓨터 구조 예측인 Ab initio로 분석하였다.
실시예 3. 세포의 준비 및 조골 세포에서 SKPs (skin-derived precursors)로의 직접 분화
이식가능한 래트(rat) 갈색세포종에서 유래한 PC12 세포주를 American Type Culture Collection(ATCC)에서 구입하였고, 상기 세포주를 10% FBS가 포함된 RPMI 1640 배지에서 배양하였다. 마우스 배아 섬유아세포 세포주 NIH/3T3, 일반 아프리카 녹색원숭이 신장 섬유아세포 세포주 CV-1 및 마우스 조골 MC3T3-E1 세포주를 ATCC에서 구입하였고, 상기 세포주를 10% FBS가 포함된 DMEM에서 배양하였다. 조골세포의 분화를 위해, MC3T3-E1 세포를 0.1 μM 덱사메타손(dexamethasone), 173 μM 아스코르브산(ascorbic acid), 10 mM β-글리세롤 인산염(glycerol phosphate) 및 10% FBS가 보충된 α-MEM에서 2주 동안 배양하였다. 이틀마다 배지를 교체하였고, 계대배양 하지 않고, 2주 동안 유지하였다. 일차 일반 표피 각질형성세포(NHEKs), 일반 인간 구강 각질형성세포(NHOKs), 일반 인간 피부 섬유아세포(NHDFs) 및 일반 인간 구강 섬유아세포(NHOFs)를 기존문헌(Yeo, I.S. et al. Biomacromolecules, 9, 1106-1116 (2008) 및 Min, B.M. et al. Biomaterials , 25, 1289-1297 (2004))에서 서술한 바에 따라 준비하고 유지하였다.
다능성 SKPs는 수술을 받은 환자(1-3세)의 인간 포피에서 분리하여 수득하였다. 표피 및 진피로 구성된 피부 샘플을 절개하여 여러 조각으로 잘랐고, 칼슘과 마그네슘이 없는 Hanks' balanced 염 용액에서 0.1% 트립신-EDTA(trypsin-EDTA)로 37℃에서 60분 동안 분해하였다. 부분적으로 분해한 피부 조직들을 기계적으로 분리하여 40 ㎛의 세포 strainer(BD Biosciences)에 여과하였다. 여과한 세포를 세척, 재현탁하여 T25 배양 플라스크에 두었다. 1X B-27(Invitrogen), 20 ng/㎖의 섬유아세포 성장인자2(FGF2), 20 ng/㎖의 표피 성장인자(EGF, PeproTech) 및 10 ng/㎖의 백혈병 억제인자(LIF)가 보충된 DMEM/F12(vol/vol, 1:1) 배지에서 세포를 1주일 동안 배양하였고, 배지의 교체 없이 이틀마다 성장인자를 보충하였다.
일련의 구형성 어세이를 위해 아큐타제(accutase, Innovative Cell Technologies)를 이용하여 구를 분리한 후, 3주 동안 일주일에 한 번 계대 배양을 수행하였다.
다음으로, SKPs를 중간엽세포로 분화시켰다. 3차원적 구를 아큐타제를 이용하여 단일 세포로 분리하였고, 10% FBS가 보충된 α-MEM에서 배양하였다. 부착된 세포를 세포 군집이 80%에 도달할 때까지 계대배양하였고, 세 번째 계대된 세포를 SKP-유래 중간엽세포로 사용하였다. 조골세포의 분화를 위해 SKP-유래 중간엽세포를 10 μM 덱사메타손, 200 μM 아스코르브산, 10 mM β-글리세롤 인산염 및 10% FBS가 보충된 α-MEM에서 2주 동안 배양하였다. 이틀마다 배지를 교체하였고, 계대배양하지 않고 2주 동안 유지하였다. 인간 조직 샘플을 얻기 위한 모든 절차는 서울대학교 치과 병원 윤리 위원회의 가이드라인에 따라 수행하였다.
실시예 4. BMMs(bone marrow-derived macrophage)의 준비
BMMs(bone marrow-derived macrophages)을 얻기 위해 6주령 수컷 C57BL/6 마우스(Orient)의 경골 및 대퇴골에서 플러싱(flushing)을 통해 골수 세포를 모았고, ACK 버퍼(0.01 mM EDTA, 0.011 M KHCO3 및 0.155 M NH4Cl, pH 7.3)를 이용하여 적혈구 세포를 제거한 후, M-CSF(10 ng/㎖)가 존재하는 조건의 100 mm 크기 배양접시에서 10% FBS(Invitrogen), 100 U/㎖의 페니실린 및 100 ㎍/㎖의 스트렙토마이신이 포함된 α-MEM 완전 배지로 상기 골수 세포를 배양하였다. 배양 접시에 부착하지 않은 세포는 30 ng/㎖ 마우스 M-CSF와 함께 3일 동안 추가로 배양하였고, 부착한 세포를 BMMs으로 사용하였다.
실시예 5. 파골세포 분화 어세이
BMM의 배양으로부터 파골세포를 만들기 위해 30 ng/㎖의 M-CSF 및 100 ng/㎖의 마우스 수용성 RANKL이 존재하는 조건의 비히클(vehicle, DMSO), 비트로넥틴(0.23 ㎍/㎠) 및 VnP-16 펩타이드(9.1 ㎍/㎠)로 코팅한 48-웰 배양 접시에서 BMMs(2 × 105 세포/웰)을 6일 동안 배양하였다. 배양 3일과 5일째, 완전 배지를 교체하였다. 배양 후에 세포를 고정하였고, 파골세포의 마커(marker) 효소인 타르트레이트 내성산 인산화효소(TRAP)로 염색하였다.
실시예 6. 세포 부착 및 확산 어세이
48-웰 배양 접시를 인간 혈장 비트로넥틴(0.23 ㎍/㎠) 또는 rVn- II(5.7 ㎍/㎠)로 코팅하여 4℃에서 18시간 동안 배양하였다. VnP-16 펩타이드(9.1 ㎍/㎠)를 실온에서 18시간 동안 건조하여 플레이트 위에 흡착시켰다. 재조합 단백질 및 합성 펩타이드의 농도를 용량-반응 곡선으로부터 결정하였고, 인간 조골세포의 최대 부착을 달성하는데 필요한 가장 최소의 농도를 사용하였다. 제조자의 지시에 따라 인간 혈장 비트로넥틴의 농도를 결정하였다. 상기 기질로 코팅한 플레이트를 37℃에서 1시간 동안 PBS에 녹아있는 1% 열-불활성화 BSA로 막았고, PBS로 세척하였다. 조골세포를 트립신/EDTA로 분리하였고, 혈청이 없는 배양 배지에 재현탁하였다. 세포(5 × 104 세포/250 ㎕)를 각 접시에 넣고 37℃에서 1시간 동안 배양하였다. 배양 후, 부착되지 않은 세포를 PBS로 두 번 헹궈서 제거하였다. 부착한 세포를 15분 동안 10% 포르말린(formalin)으로 고정하였고, 1시간 동안 0.5% 크리스탈 바이올렛(crystal violet)으로 염색하였다. 세포를 DDW로 세 번 부드럽게 세척하였고, SDS를 이용하여 5분 동안 각 웰의 내용물을 가용화하였다. 마이크로플레이트리더(microplate reader, BioRad)를 이용하여 570 nm에서 흡광도를 측정하였다. NHEKs(passage 2), NHOKs(passage 2), NHDFs(passage 4), NHOFs(passage 4), PC-12, MC3T3-E1, CV-1 또는 NIH/3T3 세포에서도 VnP-16 모티프(9.1 ㎍/㎠)를 이용한 비슷한 세포 부착 어세이를 수행하였다. 세포 확산 어세이를 위해 상기 각 기질이 코팅된 플레이트 위에 세포(3 × 104 세포/250 ㎕)를 넣었고, 37℃에서 3시간 동안 배양하였다. 부착한 세포를 10% 포르말린으로 고정하였고, 1시간 동안 0.5% 크리스탈 바이올렛으로 염색하였다. 플레이트를 PBS로 세 번 부드럽게 세척하였다. 세포 확산을 Image-Pro Plus 소프트웨어(Version 4.5; Media Cybernetics)를 이용하여 세포의 표면 면적을 측정하여 평가하였다.
실시예 7. 세포 생존 어세이
인간 조골 세포의 생존능을 EZ-Cytox 세포 생존능 어세이 키트(수용성 테트리졸리움염(WST) 방법; Daeillab)를 이용하여 분석하였다. 조골세포(3 × 103 세포/100 ㎕)를 96-웰 마이크로플레이트 위에 시딩하였고, 48시간 동안 적응시킨 뒤, 37℃에서 24시간 또는 48시간 동안 50, 100 또는 200 ㎍/㎖의 VnP-16을 처리하였다. WST 시약 용액(10 ㎕)을 100 ㎕의 세포가 포함된 각 96-웰 마이크로플레이트에 첨가하였다. 그 후, 플레이트를 37℃에서 2시간 동안 배양하였다. 마이크로플레이트 리더(BioRad)를 이용하여 450nm에서 흡광도를 측정하였다.
실시예 8. 접착 저해 어세이
세포(5 × 104 세포/250 ㎕)를 인테그린 α1(FB12), α2(P1E6), α3(P1B5), α4(P4C2), α5(P1D6), α6(NKI-GoH3), β3(B3A; Chemicon), αv(AV1), β1(6S6; Millipore) 또는 β3 (B3A) 서브유닛(subunits)에 대한 10 ㎍/㎖의 기능-저해 활성 항체와 500 μM의 MnCl2 및 100 ㎍/㎖의 헤파린과 함께 37℃에서 15분 동안 먼저 배양하였다. 배양한 세포를 VnP-16(9.1 ㎍/㎠)이 미리 코팅된 플레이트로 옮겼고, 37℃에서 1시간 동안 배양하였다. 부착한 세포를 실시예 6에서 서술한 바에 따라 정량하였다.
실시예 9. 풀다운 어세이(Pull-down assay)
비오틴화 VnP-16 펩타이드를 이용한 풀다운 어세이는 공지된 방법(Bottcher, R.T., Bio-protocol 3, e962 (2013))에 따라 수행하였다. 세포를 트립신/EDTA를 사용하여 탈착시켰고, 0.1% BSA가 포함된 무혈청 배지에 재현탁하였다. 비오틴-접합 VnP-16이 코팅된 100 mm 크기의 배양 접시에 세포를 3 × 106의 수로 분주하여 3시간 동안 배양하였고, 차가운 PBS로 두 번 세척하였다. 이후, 500 ㎕의 용해 버퍼(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Na-deoxycholate, 1% Triton X-100, 프로테아제 및 포스파타제 저해제 칵테일 타블렛)를 이용하여 세포를 긁어낸 후, 상기 세포 파쇄물을 26.5-guage needle에 15번 통과시켰다. 이후, 4℃, 17,000 × g에서 10분 동안 원심분리하였다. 상기 세포 파쇄물의 상등액을 4℃에서 60 ㎕의 스트렙타비딘-아가로스 비드(streptavidin-agarose beads, Thermo Fisher Scientific, Waltham, MA)와 함께 16시간 동안 배양하였고, 4℃, 1,500 × g에서 2분 동안 원심분리하였다. 용해 버퍼로 상기 비드를 4번 헹군 뒤, 침전된 단백질을 8% SDS-PAGE로 분리하여 면역블롯팅(immunoblotting)으로 분석하였다.
실시예 10. 조골세포의 조직학적 염색
무기질의 침착을 시각화하기 위해 세포를 -20℃에서 30분 동안 차가운 95% 에탄올로 고정하였고, 40 mM의 알리자린 레드 S(Alizarin red S) 용액(pH 4.2)으로 1시간 동안 염색하였다. 염색한 세포를 DDW로 다섯 번 세척하였고, PBS로 15분 동안 헹구었다.
실시예 11. RT-PCR 및 qRT-PCR
특정한 마커 유전자의 mRNA 수준을 정량적-실시간 PCR(qRT-PCR)을 이용하여 분석하였다. 전체 RNA를 RNeasy® 미니 키트(Qiagen)를 이용하여 분리하였다. RNA를 70℃에서 10분 동안 두어 변성시켰고, 5분 동안 얼음 위에서 보관하였다. cDNA를 역전사효소(Invitrogen) 및 임의의 헥사머(hexamer)를 이용하여 준비하였고, 최종 농도가 300 nM인 각 프라이머(표 1)와 전체 RNA의 133 ng에 해당하는 cDNA의 양을 이용하여 특정한 마커 유전자의 PCR 앰플리콘으로 사용하였다. 95℃에서 2분 동안 둔 후, 30 사이클의 95℃에서 20초, 60℃에서 10초 및 70℃에서 4초로 구성된 조건에서 PCR을 수행하였다. 반응 생성물을 1.5% 아가로스 젤 전기영동을 이용하여 분석하였고, 에티디움브로마이드(ethidium bromide) 염색을 이용하여 가시화하였다. 본 PCR에서 사용한 프라이머는 하기 표 2에 정리하였다.
세포 분화의 평가를 위해 RT-PCR 및 qRT-PCR에서 사용한 특이적 마커 유전자의 프라이머
유전자
(NCBI ID)
포워드 프라이머 리버스 프라이머 생성물의 크기, bp

ALP
(NM_000478.3)
5'- CCCACGTCGATTGCATCTCT -3'
(서열번호 1)
5'- AGTAAGGCAGGTGCCAATGG -3'
(서열번호 2)

100
UNX2 (NM_001024630.1) 5'- GCCTTCAAGGTGGTAGCCC -3'
(서열번호 3)
5' - CGTTACCCGCCATGACAGTA -3'
(서열번호 4)

67
Bone sialoprotein (NM_004967.3) 5'- AAGGCTACGATGGCTATGATGGT -3'
(서열번호 5)
5'- AATGGTAGCCGGATGCAAAG -3'
(서열번호 6)

100
Osteocalcin (NM_199173.3) 5'- GAAGCCCAGCGGTGCA -3'
(서열번호 7)
5'- CACTACCTCGCTGCCCTCC -3'
(서열번호 8)

70

GAPDH (NM_002046.3)
5'- CCATCTTCCAGGAGCGAGATC -3'
(서열번호 9)
5'- GCCTTCTCCATGGTGGTGAA -3'
(서열번호 10)

100
qRT-PCR을 7500 실시간 PCR 시스템(Applied Biosystems)을 이용하여 수행하였다. Primer Express® 소프트웨어 버전 3.0(Applied Biosystems)을 이용하여 프라이머 서열을 디자인하였다. 역전사효소 및 임의의 헥사머를 이용하여 cDNA를 준비하였고, qRT-PCR의 증폭에 이용하였다. 최종 농도가 200 nM인 각 프라이머(표 1)와 전체 RNA의 33 ng에 해당하는 cDNA의 양을 포함한 SYBR® Premix Ex TaqTM(Takara)을 이용하여 상기 qRT-PCR을 수행하였다. 95℃에서 30초 동안 둔 후, 40사이클의 95 ℃에서 15초, 60℃에서 20초, 및 72℃에서 34초로 구성된 조건에서 PCR을 수행하였다. 상기 결과를 분석하기 위해 Sequenced 감지 소프트웨어 버전 1.3(Applied Biosystems)을 이용하여 자동화된 기준 분석으로 사이클 역치를 결정하였고, 상기 계산된 사이클 역치는 분석을 위해 Microsoft Excel로 내보내었다. 각 타겟 mRNA의 상대적인 발현을 제조자의 절차(Applied Biosystems)에 따라 비교 사이클 역치 방법을 이용하여 계산하였다.
실시예 12. FAK 인산화 어세이 및 웨스턴블롯팅
비트로넥틴(1 ㎍/㎖) 또는 합성펩타이드(50 ㎍/㎖)가 미리 코팅되어 있던 60 mm 크기의 접시에 인간조골세포(1 × 106)를 부착시키기 위해 3시간 동안 두었다. 상기 세포를 차가운 PBS로 씻어내었고, 프로테아제 저해제가 포함된 150 ㎕의 RIPA 버퍼(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 mM PMSF, 2 mM Na3VO4, 및 1 mM 글리세롤인산염)로 용해하였다. 상기 RIPA 용해물 내의 상기 단백질은 SDS 샘플 버퍼를 이용하여 변성시켰고, SDS-PAGE로 분리하여 니트로셀룰로오스 멤브레인에 전기적 블롯을 수행하였다. 상기 멤프레인은 FAK (Upstate Biotechnology), FAK [pY397], [pY407], [pY576], [pY577] 및 [pY861] (Invitrogen), 또는 액틴(Sigma-Aldrich)에 대한 일차 항체로 면역블롯되었다. 후에, 모든 블롯은 항-토끼홀스라디쉬 퍼옥시다제-결합 이차 항체(Cell Signaling Technology)로 배양되었다. 신호는 전기화학발광(iNtRON Biotechnology)을 이용하여 측정하였다.
실시예 13. 형질주입
인간 FAK(Sigma-Aldrich) 또는 β1 인테그린(Santa Cruz Biotechnology) 및 비특이적 대조군 siRNAs(Invitrogen)에 대한 siRNA를 유전자 침묵(silencing)에 사용하였다. 인간 조골 세포를 100 mm 크기의 배양접시 당 1.5 × 105 세포의 밀도로 두었고, 하루 동안 배양한 후, 15 ㎕의 리포펙타민 RNAiMAX 형질주입 시약(Invitrogen)을 이용하여 0, 50 또는 100 nM의 FAK siRNA 또는 100 nM의 대조군 siRNA로, 또는 10 nM의 β1 인테그린 siRNA 또는 10 nM의 대조군 siRNA로 상기 세포를 형질주입하였다. 3일 후에, 형질주입한 세포를 모아 웨스턴블롯 및 상기 기재된 바에 따른 세포 부착 어세이로 분석하였다.
실시예 14. TRAP 염색
백혈구 산 인산분해효소(Leukocyte Acid Phosphatase) 어세이 키트(Sigma-Aldrich)를 이용하여 TRAP 어세이를 수행하였다. 배양액에 있는 세포를 세척하고, 10% 포르말린으로 고정한 후, 40 mM 주석산나트륨(sodium tartrate)으로 염색하였다. 3개 이상의 핵을 포함한 TRAP-양성 다핵세포를 파골세포로 간주하였다.
실시예 15. 골 흡수 어세이
기존문헌(Lee, J.H., et al., J. Biol . Chem ., 284, 13725-13734 (2009))에서 설명한 바에 따라 콜라겐 젤을 코팅한 배양 접시 위에서 골수세포와 일차 조골세포의 공동배양을 통해 성숙한 파골세포를 준비하였다. 골 흡수 어세이를 위해 BMMs 및 성숙한 파골세포를 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL이 존재하는 상태로, 비히클(DMSO), 비트로넥틴(0.23 ㎍/㎠) 또는 합성펩타이드(9.1 ㎍/㎠)로 미리 코팅한 Osteo Assay Surface 플레이트에서 각각 6일 또는 12시간 동안 배양하였다. 10% Clorox(0.56% NaOCl)를 이용하여 세포를 제거하였고, Image Pro-Plus 프로그램(버전 4.0, Media Cybernetics)을 이용하여 세포공을 촬영하고, 분석하였다.
실시예 16. 동물 실험
임계 크기의 두개골 결함을 위해 8주령 수컷 Sprague-Dawley 랫트(n = 5 rats/ group)를 사용하였다. VnP-16을 DDW 및 DMSO의 SP(5 mg/㎖)에 용해하였고, DDW로 희석하였다. 흡수성 콜라겐 스펀지(Bioland)에 인간 재조합 BMP-2(4 ㎍/㎠, 15 ㎕의 부피; PeproTech), 합성 펩타이드(1 및 2 mg/㎠, 15 ㎕의 부피) 또는 비히클(10 ㎕의 DMSO 및 5 ㎕의 DDW)를 흡수시켰다. 정수리 뼈에 8 mm의 원형 결함을 만들고, 콜라겐 스펀지를 이식하기 위한 수술적 과정은 기존문헌(Lee, J.H. et al., Biomaterials, 31, 3512-3519 (2010))에서 설명한 바에 따라 수행하였다. 랫트를 수술 2주 후에 안락사하였고, 전체 두개골을 4℃에서 24시간 동안 4% 포름알데히드로 고정하여 μCT 스캔으로 분석하였다. μCT 스캔의 상세 설명은 하기에 나타내었다.
조직형태학적 분석을 위해 4주 동안 12% EDTA에서 절편의 칼슘을 제거하였고, 파라핀 안에 끼워 넣었다. 파라핀에 박힌 샘플을 4 ㎛의 두께로 박편하였고, Masson's 트리크롬으로 염색하였다. IL-1-유도 마우스 두개골 손실에 대한 VnP-16의 효과를 조사하기 위해 IL-1과 접합한 비히클(DMSO), IL-1(2 ㎍), 합성 펩타이드(SP 및 VnP-16; 125 ㎍) 또는 합성 펩타이드를 흡수한 건조된 스펀지를 5주령 수컷 ICR 마우스(n = 5 per group)의 두개골 위에 이식하였다. 마우스를 7일째에 희생시켰고, 부드러운 조직을 제거한 전체 두개골을 박편하여 4℃에서 24시간 동안 4% 파라포름알데히드로 고정하였고, TRAP 염색을 수행한 후, μCT 스캔으로 분석하였다. μCT은 Micro-CT Skyscan 1172 시스템(70 kV, 141 μA, 및 38 분의 통합 시간; Skyscan)으로 수행하였다. 3D voxel 이미지(2000 x 1048 픽셀 매트릭스)에 스캔을 통합하였다. 골 이미지를 NRecon 버전 1.6.9.8 프로그램(Bruker-microCT)으로 재구성하였다. 두개골 뼈의 침식 표면을 명확히 하기 위해 Blue pseudo 색을 μCT 이미지에 덮어씌웠다. 재생된 골부피 및 골 무기질화 정도를 CT 분석기 버전 1.14.4.1(Bruker-microCT)로 계산하였다. 골 회복 비율(%) 및 두개골 두께(mm)를 표준화된 방법에 따라 CT 분석기 버전 1.14.4.1로 분석하였다. 헤마톡실린(Hematoxylin) 및 에오신(eosin) 및 TRAP 염색을 5 ㎛의 파라핀 섹션으로 수행하였다. 파골세포 표면의 비율 및 파골세포의 수를 표준화된 방법에 따라 OsteoMeasure XP 버전 1.01(OsteoMetrics)로 계산하였다. 모든 동물 과정은 서울대학교의 실험 동물 자원 연구소의 동물 관리위원회에 의해 검토 및 승인받았다.
실시예 17. 크기 측정
DP72 CCD 카메라 및 CellSens Dimension(버전 1.6) 분석 시스템이 포함된 Olympus BX51 현미경을 이용하여 40x 현미경사진을 촬영하여 다핵(multinucleated) 및 TRAP-양성 세포의 직경을 측정하여 파골세포의 크기를 구하였다. 세포 크기를 네 개의 사진에서 발견되는 20개의 가장 큰 세포의 평균 직경 ± S.D.로 나타내었다.
실시예 18. 통계학적 분석
모든 데이터를 평균 ± S.D.로 나타내었다. 결과의 통계학적 분석은 STATISTICA 6.0 소프트웨어 패키지(StatSoft)를 이용하여 수행하였다. 분산 테스트의 분석을 이용하여 결과를 비교하였다. 중요한 차이점이 발견되었을 때, Scheffe's 조정을 이용하여 쌍으로 비교를 수행하였다. Two-tailed Student's t-테스트를 이용하여 통계학적 유의성을 계산하였다. 0.05 미만의 P 값의 차이는 통계적으로 유의한 것으로 간주하였다.
실시예 19. 인간 비트로넥틴 단편의 구성, 발현 및 정제
인간 비트로넥틴 cDNA를 Superscript II 역전사효소를 이용하여 RT-PCR로 클로닝하였다. Hep G2 세포에서 분리한 mRNA를 주형으로 사용하였다. 비트로넥틴 cDNA를 주형으로 사용하여 인간 비트로넥틴의 모든 세 단편(Vn-FI, Vn-FII, 및 Vn-FIII)을 PCR로 증폭하였고, pGEM-T Easy 벡터(Promega)안으로 서브클로닝하였다.
상기 PCR에 사용한 프라이머를 표 3으로 정리하였다.
세 단편의 증폭을 위해 RT-PCR에서 사용한 프라이머
단편 센스 프라이머 안티센스 프라이머
Vn-FI 5'-GGATCCGACCAAGAGTCATGCAAG-3'
(서열번호 11)
5'-GAATTCTCAGGGCTGAGGTCTCC-3'
(서열번호 12)
Vn-FII 5'-GGATCCCCAGCAGAGGAGGAGC-3'
(서열번호 13)
5'-GAATTCTCACCAGAAGAGAAGCTCGAAG-3'
(서열번호 14)
Vn-FIII 5'-GGATCCGGCAGAACCTCTG-3'
(서열번호 15)
5'-GAATTCTCACAGATGGCCAGGAGCTG-3'
(서열번호 16)
얻은 단편을 적절한 제한 효소를 이용하여 해방시켰고, 적절한 박테리아 발현 플라스미드 벡터의 BamHI 및 EcoRI 위치 안에 클로닝하였다. pET-32a(+)(frVn-FI 및 rVn-FIII를 위한; Novagen) 또는 pRSET(rVn-FII를 위한; Invitrogen) 모두를 재조합 발현에 사용하였다. 올바른 삽입 방향을 DNA 서열 분석으로 확인하였다. 단편 I(rVn-FI), rVn-FII 및 rVn-FIII을 포함하는 비트로넥틴의 절단된 버전의 재조합 발현 및 정제를 기존문헌(Kim, J.M., et al., Exp. Cell. Res., 304, 317-327 (2005))에 기재된 바에 따른 방법으로 수행하였다. 간단하게, 대장균 세포(BL21 균주)에서 재조합 단백질의 발현은 37℃에서 5시간 동안 1 mM 이소프로필-β-D-티오갈락토피라노시드(isopropyl-β-D-thiogalactopyranoside)로 유도하였다. 단백질의 발현 이후에 10분 동안 6,000 × g에서 원심분리하여 세포를 모았다. rVn-FII 및 rVn-FIII을 얻기 위해 세포 펠렛(Cell pellets)을 용해 버퍼(rVn-FI을 위해 50 mM의 NaH2PO4와 300 mM의 NaCl, pH 8.0; rVn-FII와 rVn-FIII을 위해 8 M의 요소, 10 mM의 Tris-HCl, pH 8.0, 100 mM의 NaH2PO4와 1 mM의 페닐메틸술포닐 플루오리드(PMSF))에서 재현탁하였다. 재조합 rVn-FI을 Ni2 +-NTA-아가로스 컬럼(Qiagen)을 이용하여 정제하였다. 정제된 재조합 His6-표지 단편(rVn-FII및 rVn-FIII)을 pH 3.0에서 3, 2, 1 및 0.5 M 요소에서 차례대로 추가로 투석하였다. 상기 단백질들을 1 mM PMSF가 포함된 PBS(pH 3.0)에서 마지막으로 투석하였다. Bradford 시약(BioRad)을 이용하여 단백질 농도를 측정하였다.
실시예 20. 원편광2색성(Circular dichroism, CD) 스펙트럼
재조합 rVn 단백질을 PBS에서 준비하였고, 0.2 mg/㎖로 희석하였다. Jasco 분광 편광계(model J-715; Jasco International)로 CD 스펙트럼을 기록하였다. 단백질 샘플을 23℃에서 2 mm의 세포 통로 길이로 180에서 300 nm까지 분석하였다. 이항식 커프 여과로 세 번의 반복적인 검사의 평균을 잡았고, 부드럽게 하였다. 각 rVn 단백질의 단백질 농도 및 분자량에 따라 몰 타원율(degrees·㎠·dmol-1 에서)을 계산하였다.
실시예 21. 이동 어세이
트랜스웰(transwell) 이동 챔버(구멍 크기 8 ㎛; Corning)를 이용하여 이동 어세이를 수행하였다. 각 트랜스웰 필터의 낮은 부분을 4℃에서 18시간 동안 비트로넥틴(0.23 ㎍/㎠) 또는 rVn-FI, rVn-FII또는 rVn-FIII(5.7 ㎍/㎠)로 코팅하였고, 37℃에서 1시간 동안 PBS에 포함된 1% BSA로 차단하였다. 세포(2 × 105 세포/㎖)를 0.5% FBS 및 0.1% BSA가 포함된 DMEM에 재현탁하였다. 상기 부유물을(100 ㎕) 트랜스웰 필터의 상위 챔버에 시딩한 후, 37℃에서 24시간 동안 둠으로써 세포를 이동하게 하였다. 10% 포르말린으로 15분 동안 세포를 고정하였고, 0.5% 크리스탈 바이올렛으로 염색하였다. 트랜스웰 필터의 상편에 남아 있는 움직이지 않은 세포를 면봉으로 제거하고, 현미경으로 세포의 수를 세었다. 필터를 통과하여 이동한 세포의 수를 셈으로써 세포 이동을 정량하였다.
실시예 22. 유동세포계수법(Flow cytometry)
SKP-유래 중간엽세포를 트립신처리를 통해 분리하였고, 1.0 × 106 세포의 분주를 5 ㎖의 원형 바닥 시험관에 준비하였다. 2% FBS가 포함된 PBS로 헹군 후, 세포를 원심분리하고, 1% BSA 및 0.2% FBS가 포함된 PBS로 4℃에서 30분 동안 차단하였다. 세포를 CD29(1:50; Chemicon), CD44(1:25; BD Pharmingen), CD73(1:40; BD Pharmingen), CD133(1:50; Abcam), CD146(1:1000; Abcam) 및 Stro-1(1:17; Santa Cruz Biotechnology)의 일차 항체와 1시간 동안 얼음에서 반응시켰다. 0.2% FBS가 포함된 PBS로 세척한 후, 얼음에서 1시간 동안 플루오레세인이소티오시안산염(fluorescein isothiocyanate)-표지된 이차 항체와 반응시켰다. 세포를 FACS Calibur 유동세포계수법(Becton-Dickinson)으로 분석하였다.
이상, 상기 실시예를 통해 확인한 내용을 하기 실험예로 정리하였다.
실험예 1. 섬유아세포 계통 세포의 결합 서열인 RVYFFKGKQYWE 모티프(motif)
비트로넥틴에 의해 발휘되어 세포 기능을 부여하는 생물학적 활성 도메인을 식별하기 위해, 관심 있는 인간 비트로넥틴 단편을 재조합적으로 발현하여 세 개의 구성체를 제조하였다(rVn-FI, rVn-FII 및 rVn-FIII). 해당하는 비트로넥틴 단편을 대장균에서 각각 발현시켰고, 발현된 rVn 단편의 특징 및 세포 기능을 도 7 및 도 8에 나타내었다. rVn-FII는 rVn-FI(도 8a 및 8b)보다 세포 부착 활성이 낮았지만, rVn-FI 내에 RGD 모티프가 없는 펩타이드는 세포 기능을 갖지 않았기 때문에, rVn-FII의 활성에 필요한 생물활성 세포 결합 서열을 밝히는데 초점을 맞추었다.
rVn-FII 단편은 긴 폴리펩타이드 사슬(173 잔기의 길이)로 구성되고, 컴퓨터 구조 예측으로 분석했을 때, 네 개의 β-가닥을 포함하기 때문에(도 9), rVn-FII의 아미노산 230-322를 포함하는 11개의 중복하는 12-머 펩타이드를 합성하였다(도 1a). 재조합 비트로넥틴 단편 및 합성한 펩타이드의 세포 기능 및 골유도 활성을 테스트하기 위하여 인간 조골 세포를 이용하였다. 조골 세포를 준비하기 위해 인간 포피에서 피부-유래 전구체(SKPs)를 분리하였고, 중간엽세포를 조골 세포로 직접 분화시켰다(도 10). 도 1b 및 1c에서 보듯이, VnP-16(RVYFFKGKQYWE, 서열번호 17, 잔기 270-281)은 조골 세포의 세포 부착 활성을 용량-의존적인 방법으로 크게 촉진시켰고, 세포 부착 활성은 VnP-16의 코팅 농도인 ~9.1 ㎍/㎠에서 최대 수준에 달하였다.
또한, 망가진 펩타이드(scrambled peptide; SP)는 세포 확산을 효과적으로 촉진하지 못했던 반면, VnP-16은 비트로넥틴에 필적할 정도로 세포 확산을 유도하였다(도 1d). 또한, VnP-16은 테스트한 세포 또는 세포주의 생존율에 영향을 미치지 않았고(도 1e), 상기 결과를 통해 VnP-16이 세포 생존율의 저하 없이 세포에 양립함을 알 수 있었다. VnP-16이 조골 세포에서 세포 부착 활성을 보였기 때문에, VnP-16이 다른 세포의 부착을 매개하는지 여부를 추가로 조사하였다. 흥미롭게도, VnP-16은 정상적인 인간 피부 섬유아세포(NHDFs), 정상적인 인간 구강 섬유아세포(NHOFs), MC3T3-E1 및 NIH/3T3을 포함하는 섬유아세포 계통의 일차 섬유아세포에서만 세포 부착 활성을 보였다(도 1f). 상기 결과를 통해, VnP-16이 섬유아세포 계열에 특이적인 부착 메커니즘을 통해 작용한다는 것을 알 수 있었다.
다음으로, VnP-16의 접힘을 예측하기 위해 PSIPRED 단백질 구조 예측 서버(http://bioinf.cs.ucl.ac.uk/psipred/)를 사용하였다. VnP-16 도데카펩타이드(dodecapeptide) 구조의 분석은 두 개의 β-사슬(strands)을 갖는다고 예측하였다(도 1g). 상기 결과를 통해, 이차 구조를 포함하는 VnP-16은 케라틴 세포가 아닌 섬유아세포 계통 세포에서 활성을 갖는 생물 활성 세포 결합 서열이라는 것을 알 수 있었다.
실험예 2. VnP-16-유도 세포 기능을 매개하는 β1 인테그린(integrin)
VnP-16이 어느 수용체에 결합하여 조골 세포의 세포 부착을 매개하는지 밝혀내었다. VnP-16 세포 부착은 헤파린(heparin)에 의해 저해되지 않았고(도 2a), 상기 결과를 통해 세포 표면 프로테오글리칸(proteoglycan) 수용체는 VnP-16의 수용체가 아니라는 것을 알 수 있었다.
인테그린(integrin) 및 알파-디스트로글리칸(α-dystroglycan)은 리간드(ligand)에 결합하기 위해 Ca2 + 또는 Mn2 + 같은 이가(divalent) 양이온을 필요로하기 때문에, VnP-16에 세포가 부착하는 것에 대하여 금속 킬레이트(chelate) 시약인 EDTA의 영향을 조사하였다. 그 결과, 대조군 세포에 비해 EDTA가 미리 처리된 조골 세포에서는 세포 부착이 완전히 억제됨을 확인하였고, 이와 대조적으로 Mn2 +의 처리는 세포 부착을 상당히 향상시킴을 확인하였다(도 2a).
VnP-16에 세포 부착에 대한 인테그린 서브유닛-블로킹 항체의 영향을 더 조사하였다. β1-블로킹 항체를 처리했을 때, 세포 부착은 거의 저해되었다(클론 6S6; 도 2b). 그러나, β3 인테그린은 세포 부착 및 이동에 중요한 역할을 하지만, 조골 세포의 VnP-16-매개 부착과는 관련이 없음을 확인하였다. 또한, β1 인테그린 작은 간섭 RNA(siRNA; 도 2c)의 형질주입에 의해 발현된 β1 인테그린은 대조군 siRNA-형질주입 세포에 비해 VnP-16에 세포가 부착하는 것을 상당히 저해하였다(도 2d).
이에 따라, VnP-16이 β1 인테그린에 직접 결합하여 β1 인테그린을 활성화시키는지 확인하기 위하여, 조골 세포와 조골 세포의 일종인 HOS 세포를 비오틴화(biotinylated) VnP-16로 코팅한 배양 접시에서 3시간 동안 배양하였고, 이어서 VnP-16에 결합한 β1 인테그린을 스트렙타비딘 비드 및 면역블롯팅으로 선택적으로 풀다운(pulldown) 시킨 후, 그 양을 측정하였다. 그 결과, 도 2e에서 나타낸 풀다운 어세이의 결과에서 볼 수 있듯이, 상기 두 세포주 모두에서, β1 인테그린은 스트렙타비딘 비드 단독에는 결합하지 않으며, 비오틴화 VnP-16에 선택적으로 결합한 것을 확인할 수 있었다.
상기 결과를 통해, β1 인테그린이 조골 세포에서 VnP-16의 주요한 표면 수용체로 작용한다는 것을 알 수 있었다.
실험예 3. VnP -16-매개 신호전달 및 조골세포 분화에 필수적인 FAK (focal adhesion kinase) 활성
조골세포에서 VnP-16/β1 인테그린에 의해 매개된 세포 기능에 의해 활성화된 하위 신호 전달 경로를 조사하기 위해, 세포의 VnP-16 결합이 FAK 활성화에 의한 것인지 여부를 조사하였다.
VnP-16-매개 부착 및 조골세포의 확산 후, FAK의 Tyr397 인산화 수준은 비히클-처리 또는 SP-처리 대조군에 비해 확실히 증가함을 확인하였지만, 이와 대조적으로 인산화된 FAK의 Tyr-407, -576, -577 및 -861의 수준은 기본 수준에 머무름을 확인하였다(도 2f).
FAK의 Tyr397이 c-Src 또는 Fyn의 상호작용을 촉진하는 자가 인산화(autophosphorylation) 부위이기 때문에 인산화 c-Src의 발현을 테스트하였다. 인산화 c-Src의 Tyr416 인산화 수준은 비히클-처리 또는 SP-처리 대조군과 비교하여 명백하게 증가하였지만, Akt의 Ser473 인산화 및 PKCδ의 Thr505 인산화는 증가하지 않았고(도 2f), 상기 결과를 통해 FAK의 Tyr397 인산화 및 c-Src의 Tyr416 인산화는 VnP-16/β1 인테그린-매개 신호전달과 관련 있다는 것을 알 수 있었다. 추가로, FAK의 Tyr397 인산화를 저해하는 FAK 저해제 PF-573228를 전처리하여 FAK의 Tyr397 인산화를 억제한 경우에는, VnP-16에 세포 부착이 용량-의존적인 방법으로 상당하게 저해됨을 확인하였다(도 2g 및 2h).
다음으로, 조골세포 분화에 대한 FAK의 Tyr397 인산화의 역할을 조사하기 위해 PF-573228가 포함된 VnP-16을 처리한 골분화 배지에서 조골세포 전구체 및 조골 세포를 배양하였다. PF-573228는 테스트한 조골세포 전구체에서 칼슘 축적을 감소시켰고, 동시에 알칼리인산화효소(ALP) 활성을 확실하게 약화시켰다(도 2i). 상기 결과를 통해, PF-573228 전-처리에 의한 FAK 인산화 억제는 조골세포 분화를 저해한다는 것을 알 수 있었다. 또한, VnP-16 세포 부착에 대한 PF-573228-매개 저해가 일반적인 세포 독성을 야기한다는 가능성을 제외하면, PF-573228은 본 발명에 사용된 농도 및 배양 시간에 영향을 미치지 않음을 알 수 있었다. 추가로, FAK siRNA-형질주입 세포에서 FAK 발현의 억제는 siRNA-형질주입 세포에 비해 VnP-16 세포 부착을 상당히 저해함을 확인하였다(도 2j 및 2k). 상기 결과를 통해, FAK의 Tyr397 인산화는 VnP-16/β1 인테그린-매개 신호전달 및 조골세포 분화에 필수적이라는 것을 알 수 있었다.
실험예 4. 새로운 골 형성을 촉진하는 VnP-16
인비보에서 골결함을 보완할 수 있는 골형성 능력에 대한 VnP-16의 효과를 조사하기 위해, 임계 크기의 두개골 결함을 갖는 랫트 모델을 사용하였다.
두개골 결함의 마이크로 계산된 단층 촬영(μCT) 이미지를 통해, VnP-16-처리 그룹은 상당한 골 치유를 보였던 반면, 비히클-처리 및 SP-처리 대조군 그룹은 수술 2주 후 결함의 가장자리에서만 제한적인 골형성을 보임을 확인하였다(도 3a, 상단). 또한, VnP-16-처리 그룹에서 새로 형성된 골의 양은 뼈형성단백질 2(BMP-2)-처리 그룹과 유사함을 확인하였다. 두개골 결함의 또 다른 μCT 이미지(도 3a, 하단), 두개골 부피 및 두개골 두께에 대한 정량적인 조직 형태(도 3b), 및 콜라겐 증착을 알아보는 Masson's 트리크롬으로 염색된 조직학적 섹션(도 3c)의 이미지를 통해, 대부분 섬유 결합 조직 및/또는 뼈대로 사용되는 흡수 가능한 콜라겐 스펀지의 분해되고 남은 것들로 채워진 비히클-처리 및 SP-처리 그룹보다 VnP-16-처리 그룹에서 골 재생의 양이 더 많다는 것을 알 수 있었다(도 3c).
새로 생성된 골에 존재하는 조골세포를 탐지하기 위해 Masson's 트리크롬으로 염색된 조직학적 섹션을 사용하였다. 비히클-처리 또는 SP 처리 대조군 그룹에 비해 VnP-16 처리 그룹에서 조골세포의 수가 유의하게 증가하였고, 상기 조골세포의 수는 BMP-2-처리 그룹의 발현양과 비슷함을 확인하였다(도 3d). 추가로, VnP-16-처리 그룹은 비히클-처리 또는 SP 처리 대조군 그룹에 비해 조골 마커(marker)의 발현이 상당히 증가함을 확인하였다(도 3e). 상기 결과를 통해, 조골세포 분화 촉진에 의한 골 형성에 대해 VnP-16는 강한 동화적 효과(anabolic effect)를 나타냄을 알 수 있었다.
실험예 5. JNK -c- Fos - NFATc1 신호전달 경로의 억제를 통해 RANKL -유도 파골세포 분화를 제한하는 VnP-16
VnP-16이 파골세포 전구체 세포에 직접 작용하여 파골세포 분화를 제한할 수 있는지 여부를 조사하였다. M-CSF 및 RANKL은 골수-유래 대식세포로부터 많은 수의 TRAP-양성 다핵파골세포(BMMs)를 유도함을 확인하였다(도 4a). VnP-16은 비히클 및 SP 대조군에 비해 M-CSF 및 RANKL-유도 파골세포형성을 거의 완전히 억제하였다(도 4a 내지 4c). 또한, VnP-16은 F-액틴 매개 세포골격 조직화도 억제하였다(도 4d).
아울러, 파골세포의 골흡수활성에 대한 VnP-16의 효과를 평가하였다. 파골세포를 제거한 이후 촬영한 흡수공의 이미지와 측정한 흡수공의 면적을 통해 VnP-16은 파골세포의 골흡수활성 또한 억제함을 알 수 있었다(도 4e 및 4f)
또한, VnP-16은 파골세포형성을 막는 농도(9.1 ㎍/㎠)에서 BMMs의 세포분열 및 생존능에 영향을 미치지 않았고(도 4g), 상기 결과를 통해, VnP-16의 억제 효과가 세포 독성 또는 세포분열 때문이 아니라는 것을 알 수 있었다.
M-CSF 및 RANKL-유도 파골세포 분화에 대한 VnP-16의 저해 효과를 기본으로 하는 분자 메커니즘을 추가로 판단하기 위해, 파골세포 분화에 중요한 기본적 전사인자인 c-Fos 및 NFATc1의 발현 수준을 처음으로 조사하였다. 두 전사인자의 결핍은 파골세포 발달에 결함을 야기하는데, BMMs에 VnP-16의 처리한 결과, c-Fos 및 NFATc1의 M-CSF 및 RANKL에 의해 유도된 발현이 저해됨을 확인하였다(도 4h).
때문에, VnP-16이 M-CSF 및 RANKL에 의해 유도된 c-Fos 및 NFATc1의 발현을 어떠한 기작으로 억제하는지 분석하고자 미토겐 활성화 단백질 인산화효소(MAPKs)의 활성에 대한 VnP-16의 효과를 확인하였다. 상기 RANK의 하위 신호전달이 c-Fos와 NFATc1의 발현 및 파골세포 분화와 관련이 있다는 것은 알려져 있다. VnP-16은 야누스 N-말단 인산화효소(Janus N-terminal kinase, JNK)의 기본 발현 수준에는 영향을 미치지 않았지만, RANKL-자극 JNK 인산화를 억제하였고(도 4i), VnP-16은 RANKL-유도 Erk 인산화 또는 p38 인산화 둘 모두에 영향을 미치지 않음을 확인하였다(도 4i). 상기 결과를 통해, 파골세포 분화에 부정적인 조절을 유도하는 VnP-16은 JNK 인산화를 억제하였고, c-Fos 및 NFATc1 발현의 감소를 야기함을 알 수 있었다.
실험예 6. Src-PYK2 신호전달을 억제하는 VnP-16
αvβ3 인테그린-리간드(integrin-ligand)의 점유(occupancy)는 인산화 Tyr416에 의해 c-Src를 활성화시키고, 이에 따라 액틴 세포골격은 조직화된다. 덧붙여, Src 및 PYK2와 αvβ3 인테그린의 결합에 의한 Src-PYK2 신호전달은 성숙한 파골세포의 흡수기능과 관련이 있다고 알려져 있다. PYK2 및 Src는 파골세포의 세포골격을 조직하는데 필요한 단백질 분자이다. αvβ3 인테그린에 리간드가 결합하면 Tyr416의 인산화에 의해 c-Src가 활성화되고, 그에 따라 액틴 세포골격의 조직화가 이루어진다. 이후, αvβ3 인테그린과 c-Src 및 PYK2의 결합은 성숙한 파골세포의 흡수 기능에 관련한다. M-CSF 및 RANKL-유도 파골세포의 평균 세포 크기는 VnP-16에 의해 감소하였기 때문에(도 4c), 본 발명자들은 αvβ3 인테그린 신호전달이 VnP-16에 의한 M-CSF 및 RANKL-유도 골흡수 기능의 저해에 관련이 있을 것이라고 가정하였고, αvβ3 인테그린 신호전달과 관련된 단백질 분자의 발현 수준에 대한 VnP-16의 영향을 조사하였다.
결과적으로, Tyr416에서의 Src 및 Tyr402에서의 PYK2의 인산화(M-CSF와 RANKL에 의해 유도됨)를 VnP-16가 억제한다는 것을 BMMs에서 확인하였다(도 5a). 유사하게, VnP-16은 전-파골세포 및 성숙한 파골세포 각각에서 상기 단백질의 인산화를 저해하고, 억제하였다(도 5b 및 5c). 나아가, VnP-16은 BMMs에서 M-CSF 및 RANKL-유도 파골세포형성 동안에 αvβ3 인테그린 신호전달의 최종 분자적 영향자인, GTP-결합 Rac1의 발현 수준을 바꾼다는 것을 확인하였다(도 5d). 대조군으로 사용한 SP와는 다르게, VnP-16은 전파골세포에서 GTP-결합 Rac1의 발현을 억제하였다(도 5e). 상기 결과를 통해, VnP-16은 M-CSF 및 RANKL-유도 골흡수 동안에 αvβ3 인테그린 신호전달과 관련한 단백질 분자의 발현을 억제함으로써 파골세포의 세포골격의 조직화를 저해한다는 것을 알 수 있었다.
실험예 7. 인비트로에서 골 흡수를 억제하고, 인비보에서 IL-1-유도 골 파괴를 방지하는 VnP-16
인비트로에서 기존 파골세포의 골흡수 활성을 평가하기 위해 M-CSF 및 RANKL이 존재하는 조건에서, 비히클, 비트로넥틴, SP 또는 VnP-16으로 미리 코팅된 Osteo Assay Surface 플레이트에서 성숙한 파골세포를 배양하였다. 12시간 후, 비히클 및 SP를 처리한 대조군에서는 파골세포에 의해 많은 흡수공이 형성되었지만, VnP-16은 상기 흡수공의 면적을 상당히 감소시킴을 확인하였다(도 6a 및 6b). 배양 24시간 후, 흡수공의 면적에 대한 VnP-16의 영향은 12시간 동안 배양한 후의 파골세포에서 관찰된 흡수공의 면적과 비슷하였다(도 12a 및 12b). 다만, VnP-16은 파골세포의 생존에는 영향을 미치지 않음을 알 수 있었다(도 12c).
인비보에서 골흡수에 대한 VnP-16의 생물학적 효능을 알아보기 위해, 마우스에서 인터루킨-1(interleukin-1; IL-1)-유도 골 파괴에 대한 VnP-16의 영향을 조사하였다. 전체 두개관의 TRAP 염색 및 μCT 이미지를 통해 IL-1의 처리는 심각한 골 파괴를 야기한다는 것을 확인하였다(도 6c). IL-1과 SP를 동시에 처리한 그룹에 비해, IL-1과 VnP-16을 동시에 처리한 그룹에서 골파괴가 유의하게 감소함을 확인하였고(도 6c), IL-1은 골부피 및 골밀도를 감소시켰지만, VnP-16을 처리한 그룹은 SP를 처리한 그룹에 비해 상기 골부피 및 골밀도의 감소를 확실하게 예방함을 확인하였다(도 6d 및 6e). 또한, 두개골 뼈의 조직학적 및 조직형태학적 분석을 통해, IL-1은 TRAP-양성 파골 세포의 수와 표면 면적을 증가시키지만, VnP-16은 IL-1에 의하여 유도된 상기 파라미터들을 감소시킴을 확인하였다(도 6f 내지 6h).
실험예 8. rVn truncations의 특성
인간 비트로넥틴의 다른 부위에 의해 발휘되는 세포 기능을 확인하고, 상기 기능적 활성을 부여하는 생물활성 서열을 정확하게 정의하기 위해, 인간 비트로넥틴 단편(rVn-FI to rVn-FIII)을 재조합적으로 발현하여 세 구성체를 만들었다. 인간 간세포 암종 세포주 Hep G2로부터 얻은 RNA를 이용하여 RT-PCR을 통해 코딩 서열을 클로닝하였고, 상기 서열과 상응하는 비트로넥틴 단편을 대장균에서 각각 발현하였다. 가장자리의 아미노산 위치를 포함하는 비트로넥틴의 rVn 단편을 보여주는 개략도를 도 7a에 나타내었다.
단백질의 확인 및 식별 어세이를 위한 편리한 조작법을 제공하기 위해, 모든 rVn 단편을 히스티딘 6-표지(histidine 6 (His6)-tagged) 융합 단백질로 발현시켰다(도 7b). 세 개의 모든 rVn 단편을 환원 조건에서 Ni2 +-NTA 아가로스를 이용하여 근접한 동질성을 갖도록 정제하였고, SDS-폴리아크릴아마이드 젤의 쿠마시(Coomassie) 염색으로 상기 단백질 단편을 확인하였다(도 7b). rVn-FI이 대장균 용해물의 수용성 분획에서 주로 탐지되는 동안, rVn-FII 및 rVn-FIII은 주로 불용성 분획에서 발견되었다. 때문에 rVn-FI은 Ni2 +-NTA 친화성 크로마토그래피를 통해 바로 정제되었지만, rVn-FII 및 rVn-FIII의 정제는 추가적인 재접힘 과정이 필요하였다. rVn-FI, rVn-FII 및 rVn-FIII의 예측된 분자량은 각각 32, 23 및 35 kDa이었으나, rVn-FI 및 rVn-FII은 예측된 분자량보다 더 느리게 이동하였다(도 7b). 상기 결과는 rVn 단편의 예측된 움직임과 관찰된 움직임 사이에 다른점을 개시하고 있는 기존문헌(Kamikubo, Y., Okumura, Y. & Loskutoff, D.J., J. Biol . Chem ., 277, 27109-27119 (2002))의 연구내용과 일치함을 알 수 있었다. Vn1-97 단편은 42 kDa의 분자량과 함께 이동하였지만, 질량 분석법 데이터에 기반한 실제 크기는 27,908 Da이었다. 이러한 불일치는 아미노산 조성 및 SDS-PAGE 분석에서는 전하-질량 비율의 불일치 같은 단백질 이동에 영향을 미치는 많은 요인에 의해 야기됨을 알 수 있었다.
rVn 단편이 분자 내 이황화결합을 형성하는지 여부를 판단하기 위해 환원 또는 비환원 조건에서 SDS-PAGE로 정제된 재조합 단백질을 사용하고, 움직임에 다른 차이점이 관찰되는지 여부를 조사하였다. SDS-PAGE 수행 전에 세 rVn 단편에 처리한 100 mM의 디티오트레이톨(dithiothreitol)은 작지만 재현되는 움직임을 야기하였고, 상기 결과를 통해 세 재조합 단백질 모두가 분자 내 이황화결합을 갖는다는 것을 알 수 있었다(도 7c).
다음으로, 박테리아에서 발현된 rVn 단편의 접힘을 평가하기 위해 이차 구조를 CD 분광학으로 평가하였다. His6-rVn 단편의 CD 스펙트럼은 각각 208, 212 및 216 nm에서 타원율이 최소였다(도 7d). 상기 값은 β- 구조가 풍부한 단백질의 특성이므로, 박테리아에서 발현된 rVn 단편이 충분히 접히고, 세포 기능에 적절한 영향을 미칠 수 있다는 것을 알 수 있었다.
실험예 9. rVn 단편의 세포 기능
비트로넥틴은 다양한 종류의 조골세포-유사 세포에서 세포 부착을 매개한다는 것이 알려져 있기 때문에, rVn 단편 각각의 세포 부착 활성을 조사하였다.
인간 조골 세포는 rVn-FI 및 rVn-FII에 용량-의존적으로 부착하였지만, rVn-FIII에는 부착하지 않고, 이러한 조골 세포의 세포 부착 활성은 rVn-FI 및 rVn-FII의 코팅농도 ~5.7 ㎍/㎠에서 최대 수준에 도달함을 확인하였다(도 8a). 또한, 인간 혈장 비트로넥틴은 조골 세포에서 세포 부착(도 8b), 확산(도 8c) 및 이동(도 8d)을 강하게 촉진시킴을 확인하였다. 전체 길이의 비트로넥틴보다 낮은 정도이지만, BSA 대조군과 비교하여 rVn-FI 및 rVn-FII 모두 세포 부착을 촉진시킴을 확인하였다(도 8b). 또한, rVn-FII 및 rVn-FIII은 세포 확산과 이동을 유도하지 않는 반면에, rVn-FI은 BSA 대조군에 비해 세포 확산과 이동을 유도하였다(도 8c 및 8d). 상기 결과를 통해, 세 재조합 단편 중에 rVn-FI가 생물학적으로 가장 활성이 좋은 단백질이라는 것을 알 수 있었다. 또한, rVn-FI에서 관찰한 활성보다 낮았지만, rVn-FII도 상당한 세포 부착 활성을 갖는다는 것을 알 수 있었다.
실험예 10. SKPs에서 중간엽세포를 거쳐 조골세포로의 직접 분화
인간 포피에서 SKPs를 분리하기 위해 표피와 진피로 구성된 피부 샘플을 분리하여 FGF2, EGF 및 LIF가 포함된 제한배지에서 배양하였다. 배양 접시에 부착한 대부분의 세포는 3일 이내에 죽었지만, 떠다니는 세포들은 작은 구(shpere)를 형성하였다. 상기 구를 분리하여, 원심분리하고, 정확한 처리를 통해 단일 세포로 분리하였으며, 초기 배양 후 7일 내에 새로운 플라스크로 옮겼다. 많은 세포는 서로 접착하였지만, 떠다니는 구는 더 큰 구를 형성하기 위해 분열하였다(도 10a). 상기 구를 배양 7일 후에 분리하였고, 성장 인자를 보충한 새로운 배지에서 배양하였다. 선택적 부착의 방법을 이용하여 얻은 떠다니는 구의 정제된 집단은 3주 동안 세 번의 계대배양을 하였다(도 10a). 각 계대배양마다, 구를 단일 세포로 분리하였고, 세포는 새로운 구를 형성하기 위해 분열하였다. 인간 포피로부터 중간엽세포의 분리 및 확장 후에, 동종 인간 중간엽 세포의 분리한 집단을 확인하였다. 배양 상태에서 SKP-유래 중간엽 세포가 부착했을 때의 증식 능력, 잘 퍼지는 형태(도 10a) 및 상기 세포 표면 위의 마커 단백질의 여부(도 10b)를 통해 특징을 확인하였다. 확장하고 부착하는 SKP-유래 중간엽 세포는 CD29, CD44, CD73, CD133, CD146 및 Stro-1를 포함하는 많은 표면 단백질에 대해 균일하게 양성이었다(도 10b). 상기 결과를 통해, 인간 SKPs는 기재한 배양 조건 하에서 SKP-유래 중간엽 세포로 분화할 수 있다는 것을 알 수 있었다.
조골세포의 분화를 10% FBS와 β-글리세롤 인산염, 덱사메타손 및 아스코르브산의 처리를 통해 SKP-유래 중간엽 세포 배양으로부터 유도하였다. 분화한 조골세포는 응집체 또는 혹을 형성하고, 칼슘 축적은 2주 후에 생긴다. 알리자린 레드 S(Alizarin red S) 염색은 무기질 침착이 상기 몇몇 혹과 관련 있다는 것을 암시한다. 무기질 침착은 2주째에 풍부하였고, 혹에 위치하는 세포 및 단층에서 자라는 세포 모두에 무기질 침착이 유도됨을 확인하였다(도 10c). qRT-PCR 분석을 통해 SKP-유래 중간엽 세포에 비해 분화한 조골세포에서 ALP 유전자의 발현이 ~81배 증가한다는 것을 확인하였다(도 10d).
다음으로, 조골의 초기 또는 후기 마커인 RUNX2, BSP 및 오스테오칼신(osteocalcin)을 포함한 조골 특이적 마커의 발현을 평가하였다. 분화한 조골세포에서는 RUNX2, BSP 및 오스테오칼신의 발현 수준이 증가하는 것을 확인하였다(도 10d). 또한, RT-PCR을 통해 조골 특이적 마커의 발현 수준을 추가로 확인한 결과, 조골 특이적 마커의 발현 수준은 qRT-PCR 분석의 결과와 비슷함을 확인하였다(도 10e). 상기 결과를 통해, SKP-유래 중간엽 세포는 조골 계통으로 분화한다는 것을 알 수 있었다.
실험예 11. 성숙한 파골세포에서 F- 액틴 -매개 세포골격 조직화에 대한 VnP -16의 영향
30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL이 존재하는 상태에서, 비히클(vehicle; DMSO), SP(9.1 ㎍/㎠) 또는 VnP-16(9.1 ㎍/㎠)으로 미리 코팅한 플레이트에서 파골세포를 하루 동안 배양하였다. DAPI(파란색) 및 로다민-팔로이딘(빨간색)으로 면역염색하여 세포를 관찰하였다.
그 결과, 전-파골세포에서 VnP-16의 F-액틴-매개 세포골격 조직화 억제 능력을 통해 항-파골세포형성에 대한 VnP-16의 영향을 확인하였고(도 4d), VnP-16은 성숙한 파골세포에서는 상기 영향을 미치지 않는 것을 확인하였다(도 11).
실험예 12. 골흡수 활성 및 성숙한 파골세포의 생존에 대한 VnP-16의 영향
성숙한 파골세포를 30 ng/㎖의 M-CSF 및 100 ng/㎖의 RANKL의 존재하에서, 비히클(vehicle; DMSO), SP 또는 VnP-16(9.1 ㎍/㎠)으로 미리 코팅한 Osteo Assay Surface 플레이트에서 24시간 동안 배양하였다.
흡수공의 면적에 대한 VnP-16의 영향을 조사한 결과, 배양 24시간 후에 파골세포에서 관찰되는 흡수공의 면적은 12시간 배양한 파골세포에서 관찰되는 흡수공의 면적과 비슷함을 확인하였다(도 12a 및 12b). 그러나, VnP-16은 파골세포의 생존에는 영향을 미치지 않음을 확인하였다(도 12c).
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<110> Seoul National University R&DB Foundation <120> A peptide for promoting bone formation or inhibiting bone resorption and use thereof <130> KPA150263-KR-P1 <150> KR 10-2015-0086779 <151> 2015-06-18 <160> 23 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for ALP <400> 1 cccacgtcga ttgcatctct 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for ALP <400> 2 agtaaggcag gtgccaatgg 20 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UNX2 <400> 3 gccttcaagg tggtagccc 19 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UNX2 <400> 4 cgttacccgc catgacagta 20 <210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> forward primer for Bone sialoprotein <400> 5 aaggctacga tggctatgat ggt 23 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for Bone sialoprotein <400> 6 aatggtagcc ggatgcaaag 20 <210> 7 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> forward primer for Osteocalcin <400> 7 gaagcccagc ggtgca 16 <210> 8 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for Osteocalcin <400> 8 cactacctcg ctgccctcc 19 <210> 9 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for GAPDH <400> 9 ccatcttcca ggagcgagat c 21 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for GAPDH <400> 10 gccttctcca tggtggtgaa 20 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> sense primer for Vn-FI <400> 11 ggatccgacc aagagtcatg caag 24 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> antisense primer for Vn-FI <400> 12 gaattctcag ggctgaggtc tcc 23 <210> 13 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> sense primer for Vn-FII <400> 13 ggatccccag cagaggagga gc 22 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> antisense primer for Vn-FII <400> 14 gaattctcac cagaagagaa gctcgaag 28 <210> 15 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> sense primer for Vn-FIII <400> 15 ggatccggca gaacctctg 19 <210> 16 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> antisense primer for Vn-FIII <400> 16 gaattctcac agatggccag gagctg 26 <210> 17 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> VnP-16 <400> 17 Arg Val Tyr Phe Phe Lys Gly Lys Gln Tyr Trp Glu 1 5 10 <210> 18 <211> 130 <212> PRT <213> Artificial Sequence <220> <223> rVn-FI <400> 18 Asp Gln Glu Ser Cys Lys Gly Arg Cys Thr Glu Gly Phe Asn Val Asp 1 5 10 15 Lys Lys Cys Gln Cys Asp Glu Leu Cys Ser Tyr Tyr Gln Ser Cys Cys 20 25 30 Thr Asp Tyr Thr Ala Glu Cys Lys Pro Gln Val Thr Arg Gly Asp Val 35 40 45 Phe Thr Met Pro Glu Asp Glu Tyr Thr Val Tyr Asp Asp Gly Glu Glu 50 55 60 Lys Asn Asn Ala Thr Val His Glu Gln Val Gly Gly Pro Ser Leu Thr 65 70 75 80 Ser Asp Leu Gln Ala Gln Ser Lys Gly Asn Pro Glu Gln Thr Pro Val 85 90 95 Leu Lys Pro Glu Glu Glu Ala Pro Ala Pro Glu Val Gly Ala Ser Lys 100 105 110 Pro Glu Gly Ile Asp Ser Arg Pro Glu Thr Leu His Pro Gly Arg Pro 115 120 125 Gln Pro 130 <210> 19 <211> 173 <212> PRT <213> Artificial Sequence <220> <223> rVn-FII <400> 19 Pro Ala Glu Glu Glu Leu Cys Ser Gly Lys Pro Phe Asp Ala Phe Thr 1 5 10 15 Asp Leu Lys Asn Gly Ser Leu Phe Ala Phe Arg Gly Gln Tyr Cys Tyr 20 25 30 Glu Leu Asp Glu Lys Ala Val Arg Pro Gly Tyr Pro Lys Leu Ile Arg 35 40 45 Asp Val Trp Gly Ile Glu Gly Pro Ile Asp Ala Ala Phe Thr Arg Ile 50 55 60 Asn Cys Gln Gly Lys Thr Tyr Leu Phe Lys Gly Ser Gln Tyr Trp Arg 65 70 75 80 Phe Glu Asp Gly Val Leu Asp Pro Asp Tyr Pro Arg Asn Ile Ser Asp 85 90 95 Gly Phe Asp Gly Ile Pro Asp Asn Val Asp Ala Ala Leu Ala Leu Pro 100 105 110 Ala His Ser Tyr Ser Gly Arg Glu Arg Val Tyr Phe Phe Lys Gly Lys 115 120 125 Gln Tyr Trp Glu Tyr Gln Phe Gln His Gln Pro Ser Gln Glu Glu Cys 130 135 140 Glu Gly Ser Ser Leu Ser Ala Val Phe Glu His Phe Ala Met Met Gln 145 150 155 160 Arg Asp Ser Trp Glu Asp Ile Phe Glu Leu Leu Phe Trp 165 170 <210> 20 <211> 156 <212> PRT <213> Artificial Sequence <220> <223> rVn-FIII <400> 20 Gly Arg Thr Ser Ala Gly Thr Arg Gln Pro Gln Phe Ile Ser Arg Asp 1 5 10 15 Trp His Gly Val Pro Gly Gln Val Asp Ala Ala Met Ala Gly Arg Ile 20 25 30 Tyr Ile Ser Gly Met Ala Pro Arg Pro Ser Leu Ala Lys Lys Gln Arg 35 40 45 Phe Arg His Arg Asn Arg Lys Gly Tyr Arg Ser Gln Arg Gly His Ser 50 55 60 Arg Gly Arg Asn Gln Asn Ser Arg Arg Pro Ser Arg Ala Thr Trp Leu 65 70 75 80 Ser Leu Phe Ser Ser Glu Glu Ser Asn Leu Gly Ala Asn Asn Tyr Asp 85 90 95 Asp Tyr Arg Met Asp Trp Leu Val Pro Ala Thr Cys Glu Pro Ile Gln 100 105 110 Ser Val Phe Phe Phe Ser Gly Asp Lys Tyr Tyr Arg Val Asn Leu Arg 115 120 125 Thr Arg Arg Val Asp Thr Val Asp Pro Pro Tyr Pro Arg Ser Ile Ala 130 135 140 Gln Tyr Trp Leu Gly Cys Pro Ala Pro Gly His Leu 145 150 155 <210> 21 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> VnP-15 <400> 21 Ala His Ser Tyr Ser Gly Arg Glu Arg Val Tyr Phe 1 5 10 <210> 22 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> VnP-17 <400> 22 Gln Tyr Trp Glu Tyr Gln Phe Gln His Gln Pro Ser 1 5 10 <210> 23 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Scrambled peptide <400> 23 Phe Val Trp Arg Gln Phe Tyr Lys Tyr Glu Lys Gly 1 5 10

Claims (16)

  1. 서열번호 19의 아미노산 서열 내의 서열번호 17의 아미노산 서열(RVYFFKGKQYWE)을 포함하는 연속하는 12개 내지 173개의 아미노산으로 이루어진, 골 형성 또는 골 흡수 조절용 펩타이드.
  2. 서열번호 17의 아미노산 서열(RVYFFKGKQYWE)을 포함하는 골 형성 또는 골 흡수 조절용 펩타이드.
  3. 제2항에 있어서, 상기 서열번호 17의 아미노산 서열은 서열번호 17의 아미노산 서열로부터 1 또는 2 이상의 아미노산이 치환, 결실 또는 삽입되는 것인 펩타이드.
  4. 제2항에 있어서, 상기 서열번호 17의 아미노산 서열은 서열번호 17의 아미노산 서열 또는 이와 70% 이상의 상동성을 가지는 아미노산 서열을 갖는 것인 펩타이드.
  5. 제2항에 있어서, 상기 펩타이드는 인간 비트로넥틴(vitronectin) 유래인 것인 펩타이드.
  6. 제2항에 있어서, 상기 펩타이드는 골 형성 촉진 활성을 갖는 것인 펩타이드.
  7. 제6항에 있어서, 상기 펩타이드는 조골세포 분화를 촉진하는 것인 펩타이드.
  8. 제6항에 있어서, 상기 펩타이드는 FAK 인산화에 의한 신호전달 경로를 활성화하여 상기 조골세포의 분화를 유도하는 것인 펩타이드.
  9. 제2항에 있어서, 상기 펩타이드는 골 파괴 억제 활성을 갖는 것인 펩타이드.
  10. 제9항에 있어서, 상기 펩타이드는 파골세포 분화 또는 골 흡수를 저해하는 것인 펩타이드.
  11. 제9항에 있어서, 상기 펩타이드는 JNK-c-Fos-NFATc1 신호전달 경로를 억제하여 상기 파골세포 분화 또는 골 흡수를 저해하는 것인 펩타이드.
  12. 제9항에 있어서, 상기 펩타이드는 Src-PYK2 신호전달 경로를 억제하여 상기 파골세포 분화 또는 골 흡수를 저해하는 것인 펩타이드.
  13. 제2항의 펩타이드를 코딩하는 폴리뉴클레오티드.
  14. 제13항의 폴리뉴클레오티드를 포함하는 재조합 벡터.
  15. 제2항 내지 제12항 중 어느 한 항의 펩타이드, 상기 펩타이드를 코딩하는 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 유효성분으로 포함하는 골 질환의 예방 또는 치료용 약학적 조성물.
  16. 제15항에 있어서, 상기 골 질환은 골다공증, 파제트병, 골절, 골 형성부전증, 치주질환 또는 골관절염으로 이루어진 군에서 선택되는 하나 이상의 질환인 것인, 조성물.
KR1020160075873A 2015-06-18 2016-06-17 골 형성 촉진 또는 골 흡수 억제용 펩타이드 및 이의 용도 KR101896762B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150086779 2015-06-18
KR1020150086779 2015-06-18

Publications (2)

Publication Number Publication Date
KR20160150279A true KR20160150279A (ko) 2016-12-29
KR101896762B1 KR101896762B1 (ko) 2018-09-11

Family

ID=57546678

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160075873A KR101896762B1 (ko) 2015-06-18 2016-06-17 골 형성 촉진 또는 골 흡수 억제용 펩타이드 및 이의 용도

Country Status (4)

Country Link
US (1) US10588946B2 (ko)
EP (1) EP3312191B1 (ko)
KR (1) KR101896762B1 (ko)
WO (1) WO2016204545A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230094067A (ko) * 2021-12-20 2023-06-27 서울대학교산학협력단 척추관절염 치료용 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087809A2 (en) * 2004-03-15 2005-09-22 Università Degli Studi Di Padova Peptides from vitronectin and their therapeutic exploitation for osteoblast adhesion
KR20060118447A (ko) * 2003-10-21 2006-11-23 데이진 화-마 가부시키가이샤 신규 단백질 및 그의 제조 방법 및 용도
KR20120105248A (ko) * 2011-03-15 2012-09-25 서울대학교산학협력단 세포 부착, 퍼짐, 이동 및 신경돌기 성장을 촉진하는 인간 라미닌 α2 사슬의 LG3 도메인 및 활성 펩티드

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770565A (en) * 1994-04-13 1998-06-23 La Jolla Cancer Research Center Peptides for reducing or inhibiting bone resorption
JP3895792B2 (ja) * 1995-12-08 2007-03-22 プロスケリア・エス・ア・エス 骨形成促進剤
AU5390699A (en) * 1998-07-24 2000-02-14 Pharmacal Biotechnologies, Inc. Osseous tissue reconstruction system and method
US7833270B2 (en) * 2006-05-05 2010-11-16 Warsaw Orthopedic, Inc Implant depots to deliver growth factors to treat osteoporotic bone
US9133266B2 (en) * 2011-05-06 2015-09-15 Wisconsin Alumni Research Foundation Vitronectin-derived cell culture substrate and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060118447A (ko) * 2003-10-21 2006-11-23 데이진 화-마 가부시키가이샤 신규 단백질 및 그의 제조 방법 및 용도
WO2005087809A2 (en) * 2004-03-15 2005-09-22 Università Degli Studi Di Padova Peptides from vitronectin and their therapeutic exploitation for osteoblast adhesion
KR20120105248A (ko) * 2011-03-15 2012-09-25 서울대학교산학협력단 세포 부착, 퍼짐, 이동 및 신경돌기 성장을 촉진하는 인간 라미닌 α2 사슬의 LG3 도메인 및 활성 펩티드

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NCBI REFERENCE SEQUENCE: XP_011796165.1 (2015.03.30.) *
S.Y. JUNG et al., INTERNATIONAL ASSOCIATION FOR DENTAL RESEARCH, 1075 Non-RGD peptides within vitronectin mediate cellular activity through FAK activation (2014.06.27.) *
민병무 등, ‘세포활성을 조절하는 ECM 펩티드가 조직재생에 미치는 영향’에 대한 중견연구자지원사업(핵심연구) 최종보고서, 기초연구사업, 교육과학기술부, 2013, 서울대학교 치의학대학원 치의학과 (2013.04.05.)* *

Also Published As

Publication number Publication date
EP3312191B1 (en) 2020-11-25
KR101896762B1 (ko) 2018-09-11
US10588946B2 (en) 2020-03-17
US20180193428A1 (en) 2018-07-12
EP3312191A1 (en) 2018-04-25
EP3312191A4 (en) 2019-03-13
WO2016204545A1 (ko) 2016-12-22

Similar Documents

Publication Publication Date Title
JP2022084933A (ja) 組織形成誘導用化合物及びその使用
JP6311935B2 (ja) 2型tnf受容体の発現を抑制する合成ペプチド及びその利用
US20190224279A1 (en) Pharmaceutical association comprising a growth factor receptor agonist conjugated to a bioactive carrier for converting a neoplastic cell into a non-neoplastic cell and uses thereof
US20220273759A1 (en) Pharmaceutical association for converting a neoplastic cell into a non-neoplastic cell and uses thereof
KR20180042387A (ko) 조직 형성 유도용 화합물 및 그것의 용도
WO2013179910A1 (ja) 抗癌剤に起因する末梢性神経障害性疼痛の予防及び/又は治療剤
IL258131B2 (en) A drug combination that includes at least one compound that binds growth factor receptors for use in the treatment, prevention or diagnosis of neoplastic disease
IL256980B2 (en) Compounds for inducing tissue formation and their uses
KR101896762B1 (ko) 골 형성 촉진 또는 골 흡수 억제용 펩타이드 및 이의 용도
CA2998455A1 (en) Pharmaceutical association for converting a neoplastic cell into a non-neoplastic cell and uses thereof
JP2005510463A (ja) 細胞の分化、増殖、再生、可塑性及び生存に影響を及ぼすことができる化合物
WO2016017844A1 (ko) 파골세포 분화 및 활성 억제능을 갖는 펩타이드 및 이의 용도
WO2017046226A2 (en) Pharmaceutical association for converting a neoplastic cell into a non-neoplastic cell and uses thereof.
US6809175B1 (en) Cadherin derived growth factor and its use
KR101055319B1 (ko) 세포부착을 촉진하는 인간 라미닌 α2사슬의 LG1 도메인 및 활성 펩티드
EP4032901A1 (en) Recombinant human neuregulin derivatives and use thereof
KR20240086944A (ko) 연골 재생용 펩타이드 및 이의 용도
KR20170017519A (ko) miR 218-2를 유효성분으로 함유하는 염증성 뼈 질환 예방 또는 치료용 약학조성물
KR20240086941A (ko) 연골 재생용 펩타이드 및 이의 용도
KR20240094145A (ko) 연골 재생용 펩타이드 및 이의 용도
JP6292451B2 (ja) 1型tnf受容体と2型tnf受容体の存在バランスを調節する合成ペプチド及びその利用
KR20240087877A (ko) 연골 재생용 펩타이드 및 이의 용도
KR20230167535A (ko) 피브릴린 재조합 단백질을 포함하는 줄기세포의 평활근세포로의 분화 촉진용 조성물
KR20240086945A (ko) 연골 재생용 펩타이드 및 이의 용도
CN112500493A (zh) 重组人神经调节蛋白衍生物及其用途

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant