KR20160138072A - 스펙트럼 감지 라디오 수신기 - Google Patents

스펙트럼 감지 라디오 수신기 Download PDF

Info

Publication number
KR20160138072A
KR20160138072A KR1020167026787A KR20167026787A KR20160138072A KR 20160138072 A KR20160138072 A KR 20160138072A KR 1020167026787 A KR1020167026787 A KR 1020167026787A KR 20167026787 A KR20167026787 A KR 20167026787A KR 20160138072 A KR20160138072 A KR 20160138072A
Authority
KR
South Korea
Prior art keywords
signal
gain
communication
band
adjustable
Prior art date
Application number
KR1020167026787A
Other languages
English (en)
Inventor
알렉산다르 미오드래그 티에이직
치우찬 나라통
구르칸왈 싱 사호타
쉬레니크 파텔
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20160138072A publication Critical patent/KR20160138072A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Transceivers (AREA)

Abstract

디바이스는, 통신 대역 내의 복수의 통신 채널들에 튜닝되도록 구성되는, 가변 이득 및 가변 대역폭을 갖는 재구성가능 수신기 프론트 엔드를 포함하며, 재구성가능 수신기 프론트 엔드는 신호 전력 레벨에 응답한다.

Description

스펙트럼 감지 라디오 수신기{SPECTRUM SENSING RADIO RECEIVER}
[0001] 본 개시내용은 일반적으로 전자분야에 관한 것으로, 더 구체적으로는, 송신기들 및 수신기들에 관한 것이다.
[0002] 라디오 주파수(RF) 트랜시버에서, 통신 신호는 통상적으로, 종종 수신 체인(chain)으로서 지칭되는 수신 회로에 의해 수신 및 하향변환된다. 수신 체인은 통상적으로, 통신 신호에 포함된 정보를 복원하기 위해, 수신 필터, 저 잡음 증폭기(LNA; low noise amplifier), 믹서, 로컬 오실레이터(LO; local oscillator), 전압 제어형 오실레이터(VCO; voltage controlled oscillator), 기저대역 필터, 및 다른 컴포넌트들을 포함한다. 트랜시버는 또한, 다른 트랜시버 내의 수신기로의 통신 신호의 송신을 가능하게 하는 회로를 포함한다. 트랜시버는, 통상적으로 주파수 대역들로 지칭되는 다수의 주파수 범위들에 걸쳐 동작하는 것이 가능할 수 있다. 또한, 동일한 주파수 대역에서 발생할 수 있지만 실제 주파수가 중첩하지 않을 수 있는 다수의 캐리어 신호들(비-인접(non-contiguous) 캐리어들로 지칭되는 어레인지먼트(arrangement))을 사용하여 동작하도록 단일 트랜시버가 구성될 수 있다.
[0003] 셀룰러 통신 환경에서, 최종-사용자(end-user)에게 할당되는 라디오 주파수(RF) 캐리어들의 수는 제한되는데, 이용가능한 스펙트럼을 결정하기가 어렵고 다양한 서비스 품질(QOS; quality of service) 의무(commitment)들을 충족시키기 위해 충분한 스펙트럼이 이용가능하게 남아있어야 하기 때문이다. 결과적으로, 종종 미사용 스펙트럼이 존재한다. 무선 서비스 제공자들은, 각각의 사용자 주변의 그리고 각각의 사용자 장비(UE) 주변의 이용가능한 스펙트럼에 대해 제한된 정보만을 갖는다. 모바일 텔레폰과 같은 UE에서의 수신기는 일반적으로, UE에 대해 이용가능한 라디오 스펙트럼의 주기적 분석을 허용하지 않는다.
[0004] 따라서, 주어진 시간에서 이용가능한 스펙트럼의 주기적 분석을 UE가 획득하기 위한 방법을 갖는 것이 바람직할 것이다.
[0005] 도면들에서, 동일한 참조 번호들은 달리 표시되지 않으면 다양한 뷰들 전체에 걸쳐 동일한 부분들을 지칭한다. "102a" 또는 "102b"와 같은 문자 기호 지정들을 갖는 참조 번호들에 대해, 문자 기호 지정들은 동일한 도면에 존재하는 2개의 동일한 부분들 또는 엘리먼트들을 구별할 수 있다. 참조 번호들에 대한 문자 기호 지정들은, 참조 번호가 모든 도면들에서 동일한 참조 번호를 갖는 부분들 전부를 포괄하는 것으로 의도되는 경우에는 생략될 수 있다.
[0006] 도 1은 무선 통신 시스템과 통신하는 무선 디바이스를 도시하는 도면이다.
[0007] 도 2a는 인접 인트라-대역 캐리어-어그리게이션(CA; carrier-aggregation)의 예를 도시하는 그래픽 도면이다.
[0008] 도 2b는 비-인접 인트라-대역 CA의 예를 도시하는 그래픽 도면이다.
[0009] 도 2c는 동일한 대역 그룹에서의 인터-대역 CA의 예를 도시하는 그래픽 도면이다.
[0010] 도 2d는 상이한 대역 그룹들에서의 인터-대역 CA의 예를 도시하는 그래픽 도면이다.
[0011] 도 3은, 도 1의 무선 디바이스의 예시적인 설계의 블록도이다.
[0012] 도 4는, 스펙트럼 감지 라디오의 수신기 프론트-엔드(front-end)의 예시적인 실시예를 예시하는 개략도이다.
[0013] 도 5는, 스펙트럼 감지 라디오의 수신기의 일 부분의 예시적인 실시예를 예시하는 개략도이다.
[0014] 도 6은, 도 5의 디지털 트랜시버의 광대역 및 협대역 회로 엘리먼트들을 예시하는 블록도이다.
[0015] 도 7은, 스펙트럼 감지 수신기에 의해 프로세싱되는 통신 스펙트럼의 그래픽 예시이다.
[0016] 도 8은, 조정가능 감쇠기 및 조정가능 LNA의 예시적인 실시예를 도시하는 개략도이다.
[0017] 도 9는, 인트라-대역 CA 동작에 대해 구성되는 수신기 프론트 엔드의 대안적인 실시예를 도시하는 개략도이다.
[0018] 도 10은, 인트라-대역 CA 동작에 대해 구성되는 수신기 프론트 엔드의 대안적인 실시예를 도시하는 개략도이다.
[0019] 도 11은, 비-인접 캐리어들을 프로세싱하기 위해 사용될 수 있는 재구성가능 캐리어-어그리게이션 수신기 및 필터의 예시적인 실시예의 동작을 설명하는 흐름도이다.
[0020] 단어 “예시적인”은, “예, 예증 또는 예시로서 기능하는” 것을 의미하도록 본원에서 사용된다. 본원에서 “예시적인” 것으로서 설명되는 어떠한 양상도 다른 양상들에 비해 바람직하거나 또는 유리한 것으로 해석될 필요는 없다.
[0021] 본 설명에서, 용어 "애플리케이션"은, 오브젝트 코드, 스크립트들, 바이트 코드, 마크업 언어 파일들, 및 패치(patch)들과 같은, 실행가능한 컨텐츠를 갖는 파일들을 또한 포함할 수 있다. 부가하여, 본원에서 지칭되는 "애플리케이션"은 또한, 열릴 필요가 있을 수 있는 문서들 또는 액세스될 필요가 있는 다른 데이터 파일들과 같이, 본래 실행가능하지 않은 파일들을 포함할 수 있다.
[0022] 용어 "컨텐츠"는 또한, 오브젝트 코드, 스크립트들, 바이트 코드, 마크업 언어 파일들, 및 패치들과 같은, 실행가능한 컨텐츠를 갖는 파일들을 포함할 수 있다. 부가하여, 본원에서 지칭되는 "컨텐츠"는 또한, 열릴 필요가 있을 수 있는 문서들 또는 액세스될 필요가 있는 다른 데이터 파일들과 같이, 본래 실행가능하지 않은 파일들을 포함할 수 있다.
[0023] 본원에 사용되는 바와 같이, 용어들 "간섭 신호", "잼머(jammer)", "잼머 신호" 및 "TX 잼머"는, 원하는 수신 신호를 검출하고 하향변환함에 있어 수신기의 성능을 열화(degrade)시킬 수 있는, 수신기에 존재하는 신호를 설명하기 위해 사용된다.
[0024] 본 개시내용의 예시적인 실시예들은, 단일 로컬 오실레이터(LO) 경로, 단일 전압 제어형 오실레이터(VCO), 및 단일 위상 고정 루프(PLL)를 사용하는 재구성가능 수신기를 이용하여 최대로 전체 수신 대역을 포함하는 하나 또는 그 초과의 통신 채널들을 하향변환하는 것을 허용하는 스펙트럼 감지 라디오를 지향한다. LO 주파수가 실질적으로 2개의 비-인접 캐리어들의 중간(halfway)에 로케이팅되는 경우, 단일 LO/VCO/PLL 경로가 2개의 비-인접 캐리어들을 하향변환하는데 사용될 수 있다.
[0025] 도 1은 무선 통신 시스템(120)과 통신하는 무선 디바이스(110)를 도시하는 도면이다. 무선 통신 시스템(120)은, 롱 텀 에볼루션(Long Term Evolution)(LTE) 시스템, 코드 분할 다중 액세스(CDMA) 시스템, GSM(Global System for Mobile Communications) 시스템, 무선 로컬 영역 네트워크(WLAN) 시스템, 또는 몇몇 다른 무선 시스템일 수 있다. CDMA 시스템은 광대역 CDMA(WCDMA), CDMA 1X, EVDO(Evolution-Data Optimized), 시간 분할 동기식 CDMA(TD-SCDMA), 또는 몇몇 다른 버전의 CDMA를 구현할 수 있다. 간략화를 위해, 도 1은, 2개의 기지국들(130 및 132) 및 하나의 시스템 제어기(140)를 포함하는 무선 통신 시스템(120)을 도시한다. 일반적으로, 무선 통신 시스템은 임의의 개수의 기지국들 및 임의의 세트의 네트워크 엔티티(entity)들을 포함할 수 있다.
[0026] 무선 디바이스(110)는, 사용자 장비(UE), 모바일 스테이션, 단말, 액세스 단말, 가입자 유닛, 스테이션 등으로서 또한 지칭될 수 있다. 무선 디바이스(110)는, 셀룰러 폰, 스마트폰, 태블릿, 무선 모뎀, 개인 휴대 정보 단말(PDA), 핸드헬드(handheld) 디바이스, 랩톱 컴퓨터, 스마트북, 넷북, 태블릿, 코드리스(cordless) 폰, 무선 로컬 루프(WLL) 스테이션, Bluetooth 디바이스 등일 수 있다. 무선 디바이스(110)는 무선 통신 시스템(120)과 통신할 수 있다. 무선 디바이스(110)는 또한, 브로드캐스트 스테이션들(예컨대, 브로드캐스트 스테이션(134))로부터의 신호들, 하나 또는 그 초과의 글로벌 내비게이션 위성 시스템들(GNSS)에서의 위성들(예를 들어, 위성(150))로부터의 신호들 등을 수신할 수 있다. 무선 디바이스(110)는, LTE, WCDMA, CDMA 1X, EVDO TD-SCDMA, GSM, 802.11 등과 같은 무선 통신을 위한 하나 또는 그 초과의 라디오 기술들을 지원할 수 있다.
[0027] 무선 디바이스(110)는 다수의 캐리어들 상의 동작인 캐리어 어그리게이션을 지원할 수 있다. 캐리어 어그리게이션은 또한 멀티-캐리어 동작으로 지칭될 수 있다. 무선 디바이스(110)는 1000 메가헤르츠(MHz) 보다 낮은 주파수들을 커버하는 저-대역(LB), 1000 MHz 내지 2300 MHz의 주파수들을 커버하는 중간-대역(MB) 및/또는 2300 MHz보다 높은 주파수들을 커버하는 고-대역(HB)에서 동작하는 것이 가능할 수 있다. 예를 들어, 저-대역은 698 MHz 내지 960 MHz를 커버할 수 있고, 중간-대역은 1475 MHz 내지 2170 MHz를 커버할 수 있고, 고-대역은 2300 MHz 내지 2690 MHz 및 3400 MHz 내지 3800 MHz를 커버할 수 있다. 저-대역, 중간-대역 및 고-대역은 대역들의 3개의 그룹들(또는 대역 그룹들)을 지칭하며, 각각의 대역 그룹은 다수의 주파수 대역들(또는 단순히 "대역들")을 포함한다. 각각의 대역은 200 MHz까지 커버할 수도 있고 하나 또는 그 초과의 캐리어들을 포함할 수 있다. 각각의 캐리어는 LTE에서 20 MHz까지 커버할 수 있다. LTE 릴리즈 11은, LTE/UMTS 대역들로서 지칭되고 3GPP TS 36.101에서 열거되는 35개의 대역들을 지원한다. 무선 디바이스(110)는, LTE 릴리즈 11에서의 하나 또는 2개의 대역들에서 5개까지의 캐리어들을 갖도록 구성될 수 있다.
[0028] 일반적으로, 캐리어 어그리게이션(CA)은 2개의 타입들, 즉 인트라-대역 CA 및 인터-대역 CA로 카테고리화될 수 있다. 인트라-대역 CA는 동일한 대역 내의 다수의 캐리어들 상의 동작을 지칭한다. 인터-대역 CA는 상이한 대역들의 다수의 캐리어들 상의 동작을 지칭한다.
[0029] 도 2a는 인접 인트라-대역 캐리어-어그리게이션(CA)의 예를 도시하는 그래픽 도면이다. 도 2a에 도시된 예에서, 무선 디바이스(110)는, 저-대역의 하나의 대역에서 4개의 인접 캐리어들을 갖도록 구성된다. 무선 디바이스(110)는, 동일한 대역 내의 4개의 인접 캐리어들을 통해 송신들을 전송하고 그리고/또는 수신할 수 있다.
[0030] 도 2b는 비-인접 인트라-대역 CA의 예를 도시하는 그래픽 도면이다. 도 2b에 도시된 예에서, 무선 디바이스(110)는, 저-대역의 하나의 대역에서 4개의 비-인접 캐리어들을 갖도록 구성된다. 캐리어들은 5 MHz, 10 MHz, 또는 몇몇 다른 양만큼 분리될 수 있다. 무선 디바이스(110)는, 동일한 대역 내의 4개의 비-인접 캐리어들을 통해 송신들을 전송하고 그리고/또는 수신할 수 있다.
[0031] 도 2c는 동일한 대역 그룹에서의 인터-대역 CA의 예를 도시하는 그래픽 도면이다. 도 2c에 도시된 예에서, 무선 디바이스(110)는, 저-대역의 2개의 대역에서 4개의 캐리어들을 갖도록 구성된다. 무선 디바이스(110)는, 동일한 대역 그룹에서의 상이한 대역들 내의 4개의 캐리어들을 통해 송신들을 전송하고 그리고/또는 수신할 수 있다.
[0032] 도 2d는 상이한 대역 그룹들에서의 인터-대역 CA의 예를 도시하는 그래픽 도면이다. 도 2d에 도시된 예에서, 무선 디바이스(110)는, 저-대역의 하나의 대역 내의 2개의 캐리어들 및 중간-대역의 다른 대역 내의 2개의 캐리어들을 포함하는, 상이한 대역 그룹들에서의 2개의 대역들 내의 4개의 캐리어들을 갖도록 구성된다. 무선 디바이스(110)는, 상이한 대역 그룹들에서의 상이한 대역들 내의 4개의 캐리어들을 통해 송신들을 전송하고 그리고/또는 수신할 수 있다.
[0033] 도 2a 내지 도 2d는 캐리어 어그리게이션의 4개의 예들을 도시한다. 캐리어 어그리게이션은 또한, 대역들 및 대역 그룹들의 다른 결합들에 대해 지원될 수 있다.
[0034] 도 3은, 본 개시내용의 예시적인 기술들이 구현될 수 있는 무선 통신 디바이스(300)를 도시하는 블록도이다. 도 3은 트랜시버(300)의 예를 도시한다. 일반적으로, 송신기(330) 및 수신기(350)에서 신호들을 컨디셔닝(conditioning)하는 것은, 증폭기, 필터, 상향변환기, 하향변환기 등의 하나 또는 그 초과의 스테이지들에 의해 수행될 수 있다. 이들 회로 블록들은 도 3에 도시된 구성과 상이하게 배열될 수 있다. 또한, 도 3에 도시되지 않은 다른 회로 블록들이 또한 송신기 및 수신기에서 신호들을 컨디셔닝하는데 사용될 수 있다. 달리 언급되지 않으면, 도 3, 또는 도면들에서의 임의의 다른 도해에서의 임의의 신호는, 싱글-엔드형(single-ended) 또는 차동형(differential) 중 어느 하나일 수 있다. 또한, 도 3에서의 일부 회로 블록들은 생략될 수 있다.
[0035] 도 3에 도시된 예에서, 무선 디바이스(300)는 일반적으로, 트랜시버(320) 및 데이터 프로세서(310)를 포함한다. 데이터 프로세서(310)는, 데이터 및 프로그램 코드들을 저장하기 위한 메모리(도시되지 않음)를 포함할 수 있고, 일반적으로, 아날로그 및 디지털 프로세싱 엘리먼트들을 포함할 수 있다. 트랜시버(320)는, 양-방향 통신을 지원하는 송신기(330) 및 수신기(350)를 포함한다. 일반적으로, 무선 디바이스(300)는, 임의의 개수의 통신 시스템들 및 주파수 대역들에 대한 임의의 개수의 송신기들 및/또는 수신기들을 포함할 수 있다. 트랜시버(320)의 일부 또는 그 전부는, 하나 또는 그 초과의 아날로그 집적 회로(IC)들, RF IC(RFIC)들, 믹싱된-신호 IC들 등 상에 구현될 수 있다.
[0036] 송신기 또는 수신기는, 슈퍼-헤테로다인(super-heterodyne) 아키텍쳐 또는 직접-변환 아키텍쳐로 구현될 수 있다. 슈퍼-헤테로다인 아키텍쳐에서, 신호는 다수의 스테이지들에서 라디오 주파수(RF)와 기저대역 사이에서 주파수-변환되는데, 예를 들어, 수신기의 경우, 하나의 스테이지에서 RF로부터 중간 주파수(IF)로, 그리고 그 후 다른 스테이지에서 IF로부터 기저대역으로 주파수-변환된다. 직접-변환 아키텍쳐에서, 신호는 하나의 스테이지에서 RF와 기저대역 사이에서 주파수 변환된다. 슈퍼-헤테로다인 및 직접-변환 아키텍쳐들은, 상이한 회로 블록들을 사용하고 그리고/또는 상이한 요건들을 가질 수 있다. 도 3에 도시된 예에서, 송신기(330) 및 수신기(350)는 직접-변환 아키텍쳐를 이용하여 구현된다.
[0037] 송신 경로에서, 데이터 프로세서(310)는 송신될 데이터를 프로세싱하고, 동상(in-phase)(I) 및 직교위상(quadrature)(Q) 아날로그 출력 신호들을 송신기(330)에 제공한다. 예시적인 실시예에서, 데이터 프로세서(310)는, 데이터 프로세서(310)에 의해 생성된 디지털 신호들을 I 및 Q 아날로그 출력 신호들, 예컨대, 추가적인 프로세싱을 위해 I 및 Q 출력 전류들로 변환하기 위한 디지털-아날로그-변환기(DAC; digital-to-analog-converter)들(314a 및 314b)을 포함한다.
[0038] 송신기(330) 내에서, 기저대역 필터들(332a 및 332b)은 I 및 Q 아날로그 송신 신호들을 각각 필터링하여 앞선 디지털-아날로그 변환에 의해 야기된 원하지 않은 이미지들을 제거한다. 기저대역 필터들(332a 및 332b)은 구현에 의존하여 저역통과 필터들 또는 대역통과 필터들일 수 있다. 증폭기(Amp)들(334a 및 334b)은, 각각 기저대역 필터들(332a 및 332b)로부터의 신호들을 증폭하고, I 및 Q 기저대역 신호들을 제공한다. 상향변환기(340)는, 송신(TX) 로컬 오실레이터(LO) 신호 생성기(390)로부터의 I 및 Q TX LO 신호들을 이용하여 I 및 Q 기저대역 신호들을 상향변환하고, 상향변환된 신호를 제공한다. 필터(342)는, 상향변환된 신호를 필터링하여, 주파수 상향변환에 의해 야기된 원하지 않은 이미지들 뿐만 아니라 수신 주파수 대역 내의 잡음을 제거한다. 전력 증폭기(PA)(344)는, 필터(342)로부터의 신호를 증폭하여 원하는 출력 전력 레벨을 획득하고, 송신 RF 신호를 제공한다. 송신 RF 신호는, 듀플렉서 또는 스위치(346)를 통해 라우팅(route)되고, 안테나(348)를 통해 송신된다.
[0039] 수신 경로에서, 안테나(348)는 통신 신호들을 수신하고, 수신된 RF 신호를 제공하며, 그 신호는 듀플렉서 또는 스위치(346)를 통해 라우팅되어 저 잡음 증폭기(LNA)(352)에 제공된다. 듀플렉서(346)는, RX 신호들이 TX 신호들과 격리되도록, 특정한 RX-TX(RX-to-TX) 듀플렉서 주파수 분리를 이용해 동작하도록 설계된다. 수신된 RF 신호가 LNA(352)에 의해 증폭되고 필터(354)에 의해 필터링되어, 원하는 RF 입력 신호가 획득된다. 하향변환 믹서들(361a 및 361b)은, 필터(354)의 출력을, 수신(RX) LO 신호 생성기(380)로부터의 I 및 Q RX LO 신호들(즉, LO_I 및 LO_Q)과 믹싱하여, I 및 Q 기저대역 신호들을 생성한다. I 및 Q 기저대역 신호들이 증폭기들(362a 및 362b)에 의해 증폭되고 기저대역 필터들(364a 및 364b)에 의해 추가로 필터링되어 I 및 Q 아날로그 입력 신호들이 획득되며, 이 신호들은 데이터 프로세서(310)에 제공된다. 기저대역 필터들(364a 및 364b)은 구현에 의존하여 저역통과 필터들 또는 대역통과 필터들일 수 있다. 도시된 예시적인 실시예에서, 데이터 프로세서(310)는, 아날로그 입력 신호들을 데이터 프로세서(310)에 의해 추가로 프로세싱될 디지털 신호들로 변환하기 위한 아날로그-디지털-변환기(ADC; analog-to-digital-converter)들(316a 및 316b)을 포함한다.
[0040] 도 3에서, TX LO 신호 생성기(390)는 주파수 상향변환에 사용되는 I 및 Q TX LO 신호들을 생성하지만, RX LO 신호 생성기(380)는 주파수 하향변환에 사용되는 I 및 Q RX LO 신호들을 생성한다. 각각의 LO 신호는 특정한 기본 주파수를 갖는 주기적 신호이다. 위상 고정 루프(PLL)(392)는 데이터 프로세서(310)로부터 타이밍 정보를 수신하고, LO 신호 생성기(390)로부터의 TX LO 신호들의 주파수 및/또는 위상을 조정하는데 사용되는 제어 신호를 생성한다. 유사하게, PLL(382)은 데이터 프로세서(310)로부터 타이밍 정보를 수신하고, LO 신호 생성기(380)로부터의 RX LO 신호들의 주파수 및/또는 위상을 조정하는데 사용되는 제어 신호를 생성한다.
[0041] 무선 디바이스(300)는 CA를 지원할 수 있고, (i) 상이한 주파수들에서 다수의 다운링크 캐리어들을 통해 하나 또는 그 초과의 셀들에 의해 송신되는 다수의 다운링크 신호들을 수신하고 그리고/또는 (ii) 다수의 업링크 캐리어들을 통해 하나 또는 그 초과의 셀들에 다수의 업링크 신호들을 송신할 수 있다. 예시적인 실시예에서, 무선 디바이스(300)는 인트라-캐리어 어그리게이션을 지원하며, 다수의 인트라-CA 수신 신호들을 하향변환하는데 단일 LO 신호를 사용할 수 있다.
[0042] 도 4는, 스펙트럼 감지 라디오의 수신기 프론트-엔드의 예시적인 실시예를 예시하는 개략도이다. 수신기 프론트-엔드(400)는, 조정가능 감쇠기(401), 및 2개의 비-인접 캐리어들 CA1 및 CA2를 수신하고 그리고 캐리어들 CA1 및 CA2를 믹서(404)에 제공하도록 구성되는 조정가능 저 잡음 증폭기(LNA)(402)를 포함한다. 2개의 비-인접 캐리어들이 예시되지만, 스펙트럼 감지 라디오 수신기는 단일 캐리어 및 다중-캐리어 동작에 적용가능하다. 믹서(404)는 동상(I) 믹서(405a) 및 직교위상(Q) 믹서(405b)를 포함한다. 믹서(404)는, (전압 제어형 오실레이터(VCO)(410)로서 지칭되는) 수신 LO 신호 생성기에 의해 생성되는 단일 로컬 오실레이터(LO) 신호를 수신한다. VCO(410)는 위상 고정 루프(PLL)(간략화를 위해 도시되지 않음)를 포함한다. 수신기 프론트-엔드(400)는 또한, 재구성가능 기저대역 필터(425)를 포함한다.
[0043] 기저대역 필터(425)는, 도 3에 도시된 기저대역 필터(364a) 및 기저대역 필터(364b)의 일 예시적인 실시예이다. 예시적인 실시예에서, 필터(425)는 싱글-엔드형 실시예로 도시되지만, 저 잡음 증폭기(LNA, 도 3), 믹서(361a 및 361b)(도 3) 및 증폭기들(362a 및 362b)(도 3)에 의해 제공되는 수신된 신호의 차동 동상(I+, I-) 및 차동 직교위상(Q+, Q-) 컴포넌트들을 수신하도록 구성된다. 예시적인 실시예에서, 차동 동상(I+, I-) 컴포넌트들은 제 1 필터 부분(410)에 의해 프로세싱되고, 차동 직교위상(Q+, Q-) 컴포넌트들은 제 2 필터 부분(450)에 의해 프로세싱된다. 예시적인 실시예에서, 기저대역 필터(425)의 하나 또는 그 초과의 컴포넌트들은, 하나 또는 그 초과의 제어 신호들에 기초하여 필터(425)의 응답을 조정하도록 조정가능할 수 있다.
[0044] 필터(425)는, 다수의 서브-필터들을 형성할 수 있는 다수의 모드들에서 동작하도록 구성될 수 있다. 다수의 모드들은 필터(425) 내의 상이한 컴포넌트들을 활용한다. 예를 들어, 제 1 필터 부분(410)을 참조하면, 제 1 모드는, 제 1 입력 저항(403), 제 1 동상(I) 증폭기 스테이지(406), 제 2 입력 저항(411), 및 제 2 I 증폭기 스테이지(407)를 사용하는 것을 포함한다. 예시적인 실시예에서, 제 1 I 증폭기 스테이지(406)는 트랜스임피던스 증폭기(TIA; transimpedance amplifier) 스테이지를 포함할 수 있고, 제 2 I 증폭기 스테이지(407)는 의사-밸런스형 증폭기(PBA; pseudo-balanced amplifier) 스테이지를 포함할 수 있다. 그러나, 다른 증폭 기술들 및 아키텍쳐들이 가능하다. 제 1 I 증폭기 스테이지(406)는, 스위치(408)를 통해 제 1 I 증폭기 스테이지(406)의 입력과 출력 사이에 연결되는 커패시턴스(412) 및 스위치(409)를 통해 제 1 I 증폭기 스테이지(406)의 입력과 출력 사이에 연결되는 저항(414)을 포함하는 저항성/용량성(resistive/capacitive)(RC) 피드백 네트워크를 포함한다. 제 2 I 증폭기 스테이지(407)는, 스위치(418)를 통해 제 2 I 증폭기 스테이지(407)의 입력과 출력 사이에 연결되는 커패시턴스(422) 및 스위치(419)를 통해 제 2 I 증폭기 스테이지(407)의 입력과 출력 사이에 연결되는 저항(424)을 포함하는 저항성/용량성(RC) 피드백 네트워크를 포함한다. 스위치들(408, 409, 418, 및 419)은, 다양한 트랜지스터 디바이스들 및 기술들 중 임의의 트랜지스터 디바이스 및 기술을 사용하여 제조될 수 있으며, 제어 로직(도시되지 않음)을 사용하여 전도성이 되게 또는 비-전도성이 되게 제어될 수 있다. 예시적인 실시예에서, 제 1 I 증폭기 스테이지(406) 및 제 2 I 증폭기 스테이지(407)는, 검출된 잼머 신호에 기초하여 현상(develop)될 수 있는 하나 또는 그 초과의 제어 신호들(도시되지 않음)에 기초하여 제 1 필터 부분(410)의 응답이 조정가능할 수 있다는 것을 나타내기 위해 조정가능한 것으로서 예시된다. 그러나, 제 1 I 증폭기 스테이지(406) 및 제 2 I 증폭기 스테이지(407)에 부가하여, 커패시턴스들(412 및 422) 중 일부 또는 그 전부, 및 저항들(414 및 424) 중 일부 또는 그 전부가 또한 조정가능할 수 있다.
[0045] 제 2 필터 부분(450)을 참조하면, 제 1 모드는, 제 1 입력 저항(451), 제 1 직교위상(Q) 증폭기 스테이지(452), 제 2 입력 저항(454), 및 제 2 Q 증폭기 스테이지(456)를 사용하는 것을 포함한다. 예시적인 실시예에서, 제 1 Q 증폭기 스테이지(452)는 트랜스임피던스 증폭기(TIA) 스테이지를 포함할 수 있고, 제 2 증폭기 스테이지(456)는 의사-밸런스형 증폭기(PBA) 스테이지를 포함할 수 있다. 그러나, 다른 증폭 기술들 및 아키텍쳐들이 가능하다. 제 1 Q 증폭기 스테이지(452)는, 스위치(458)를 통해 제 1 Q 증폭기 스테이지(452)의 입력과 출력 사이에 연결되는 커패시턴스(462) 및 스위치(459)를 통해 제 1 Q 증폭기 스테이지(452)의 입력과 출력 사이에 연결되는 저항(464)을 포함하는 저항성/용량성(RC) 피드백 네트워크를 포함한다.
[0046] 제 2 Q 증폭기 스테이지(456)는, 스위치(468)를 통해 제 2 Q 증폭기 스테이지(456)의 입력과 출력 사이에 연결되는 커패시턴스(472) 및 스위치(469)를 통해 제 2 Q 증폭기 스테이지(456)의 입력과 출력 사이에 연결되는 저항(474)을 포함하는 저항성/용량성(RC) 피드백 네트워크를 포함한다. 스위치들(458, 459, 468, 및 469)은, 다양한 트랜지스터 디바이스들 중 임의의 트랜지스터 디바이스를 사용하여 제조될 수 있으며, 제어 로직(도시되지 않음)을 사용하여 전도성이 되게 또는 비-전도성이 되게 제어될 수 있다.
[0047] 스위치들(408, 409, 458, 및 459)이 전도성인 경우, (제 1 I 증폭기 스테이지(406) 및 제 1 Q 증폭기 스테이지(452)에 대한 RC 피드백으로) 실수 극들을 갖는 1-스테이지 필터가 구성될 수 있다. 스위치들(408, 409, 418, 419, 458, 459, 468, 및 469)이 전도성인 경우, (제 1 I 증폭기 스테이지(406), 제 1 Q 증폭기 스테이지(452)에 대한 RC 피드백, 및 제 2 I 증폭기 스테이지(407) 및 제 2 Q 증폭기 스테이지(456)에 대한 RC 피드백으로) 실수 극들을 갖는 2-스테이지 필터가 구성될 수 있다. 실수 극들을 갖는 실수 필터는, 감소된 복잡도로 보통의 필터링을 제공한다. 예시적인 실시예에서, 제 1 Q 증폭기 스테이지(452) 및 제 2 Q 증폭기 스테이지(456)는, 검출된 잼머 신호에 기초하여 현상될 수 있는 하나 또는 그 초과의 제어 신호들(도시되지 않음)에 기초하여 제 2 필터 부분(450)의 응답이 조정가능할 수 있다는 것을 나타내기 위해 조정가능한 것으로서 예시된다. 그러나, 제 1 Q 증폭기 스테이지(452) 및 제 2 Q 증폭기 스테이지(456)에 부가하여, 커패시턴스들(462 및 472) 중 일부 또는 그 전부, 및 저항들(464 및 474) 중 일부 또는 그 전부가 또한 조정가능할 수 있다.
[0048] 위에 언급된 바와 같이, 응답에 대한 조정가능한 것에 부가하여, 필터(425)는 다수의 모드들에서 동작하도록 구성될 수 있다. 다수의 모드들은 필터(425) 내의 상이한 컴포넌트들을 활용한다. 제 1 필터 부분(410)을 계속 참조하면, 제 2 모드는, 제 2 I 증폭기(407)의 출력으로부터 저항(434)을 통과하고, 그리고 제 1 I 증폭기 스테이지(406)에 대한 입력과 저항(434) 사이에 커플링되는 스위치(436)를 통과하는 제 1 네거티브 피드백 경로(432)를 부가한다. 차동 애플리케이션에서, 피드백 경로(432)는, 제 2 I 증폭기 스테이지(407)의 포지티브 출력으로부터 제 1 I 증폭기 스테이지(406)의 네거티브 입력으로 그리고 제 2 I 증폭기 스테이지(407)의 네거티브 출력으로부터 제 1 I 증폭기 스테이지(406)의 포지티브 입력으로의 네거티브 피드백을 제공한다.
[0049] 유사하게, 제 2 필터 부분(450)을 계속 참조하면, 제 2 모드는, 제 2 Q 증폭기 스테이지(456)의 출력으로부터 저항(484)을 통과하고, 그리고 제 1 Q 증폭기 스테이지(452)에 대한 입력과 저항(484) 사이에 커플링되는 스위치(486)를 통과하는 제 2 네거티브 피드백 경로(482)를 부가한다. 차동 애플리케이션에서, 피드백 경로(482)는, 제 2 Q 증폭기 스테이지(456)의 포지티브 출력으로부터 제 1 Q 증폭기 스테이지(452)의 네거티브 입력으로 그리고 제 2 Q 증폭기 스테이지(456)의 네거티브 출력으로부터 제 1 Q 증폭기 스테이지(452)의 포지티브 입력으로의 네거티브 피드백을 제공한다. 스위치들(436 및 486)은 다양한 트랜지스터 디바이스들 중 임의의 트랜지스터 디바이스를 사용하여 제조될 수 있으며, 제어 로직(도시되지 않음)을 사용하여 전도성이 되게 또는 비-전도성이 되게 제어될 수 있다.
[0050] 스위치들(408, 409, 418, 419, 458, 459, 468, 및 469)이 전도성이면서 스위치들(436 및 486)이 전도성인 경우, 복소 극들을 갖는 실수 필터가 구성될 수 있다(제 1 I 증폭기 스테이지(402) 및 제 1 Q 증폭기 스테이지(452)에 대한 RC 피드백, 및 제 2 I 증폭기 스테이지(406) 및 제 2 Q 증폭기 스테이지(456)에 대한 RC 피드백과 함께, 제 1 네거티브 피드백 경로(432) 및 제 2 네거티브 피드백 경로(482)에 걸친 전체 네거티브 피드백을 포함함). 이러한 예시적인 실시예에서, 저역통과 필터 출력들은, 연결(435)을 통해 제 2 I 증폭기 스테이지(407)의 출력으로부터 그리고 연결(475)을 통해 제 2 Q 증폭기 스테이지(456)의 출력으로부터 취해진다. 이러한 필터 모드는, 증가된 복잡도의 대가로 샤프한 필터링을 제공한다.
[0051] 제 3 모드는 제 1 필터 부분(410)을 제 2 필터 부분(450)에 커플링시킨다. 제 1 I 증폭기 스테이지(406)의 출력은 저항(441)을 통해 스위치(442)를 거쳐 제 1 Q 증폭기 스테이지(452)의 입력에 커플링된다. 제 1 Q 증폭기 스테이지(452)의 출력은 저항(445)을 통해 스위치(444)를 거쳐 제 1 I 증폭기 스테이지(406)의 입력에 커플링된다. 이것은, 제 1 증폭기 스테이지(406)가 또한 제 1 Q 증폭기 스테이지(452)의 Q 출력을 통해 동작하게 하고, 그리고 제 1 Q 증폭기 스테이지(452)가 제 1 I 증폭기 스테이지(406)의 I 출력을 통해 동작하게 한다.
[0052] 제 2 I 증폭기 스테이지(407)의 출력은 저항(446)을 통해 스위치(447)를 거쳐 제 2 Q 증폭기 스테이지(456)의 입력에 커플링된다. 제 2 Q 증폭기 스테이지(456)의 출력은 저항(449)을 통해 스위치(448)를 거쳐 제 2 I 증폭기 스테이지(407)의 입력에 커플링된다. 이것은, 제 2 I 증폭기 스테이지(407)가 또한 제 2 Q 증폭기 스테이지(456)의 Q 출력을 통해 동작하게 하고, 그리고 제 2 Q 증폭기 스테이지(456)가 제 2 I 증폭기 스테이지(407)의 I 출력을 통해 동작하게 한다. 스위치들(442, 444, 447, 및 448)은, 다양한 트랜지스터 디바이스들 및 기술들 중 임의의 트랜지스터 디바이스 및 기술을 사용하여 제조될 수 있으며, 제어 로직(도시되지 않음)을 사용하여 전도성이 되게 또는 비-전도성이 되게 제어될 수 있다.
[0053] (스위치들(408, 409, 418, 419, 458, 459, 468, 및 469)이 전도성이고 그리고 스위치들(436 및 486)이 비-전도성이면서) 스위치들(442, 444, 447, 및 448)이 전도성인 경우, 복소 대역통과 필터가 구성될 수 있다. 대역통과 필터 출력들은, 연결(427)을 통해 제 1 I 증폭기 스테이지(406)의 출력으로부터 그리고 연결(477)을 통해 제 1 Q 증폭기 스테이지(452)의 출력으로부터 취해진다. 이러한 필터는, 보통의 이미지 제거(image rejection)를 통해 (I/Q 어레인지먼트에 의존하여) 포지티브 또는 네거티브 주파수들의 필터링을 제공한다.
[0054] 도 5는, 스펙트럼 감지 라디오의 수신기의 일 부분의 예시적인 실시예를 예시하는 개략도이다. 예시적인 실시예에서, 수신기 부분(500)은, 하나 또는 그 초과의 채널들을 수신하도록 구성되는 조정가능 감쇠기(501) 및 조정가능 저 잡음 증폭기(LNA)(502)를 포함한다. 조정가능 감쇠기(501) 및 조정가능 LNA(502)는, 다수의 상이한 이득 모드들에 기초하여 응답을 제공하도록 구성될 수 있다. 예시적인 실시예에서, 수신 스펙트럼에서의 신호 전력 레벨의 분석에 기초하여 상이한 이득 모드들이 선택될 수 있다. 예시적인 실시예에서, 조정가능 감쇠기(501) 및 조정가능 LNA(502)의 이득은, 수신 스펙트럼에서 검출되는 신호 전력의 양에 기초하여 조정된다. 믹서(504)는 동상(I) 믹서(505a) 및 직교위상(Q) 믹서(505b)를 포함한다. 믹서(504)는, (전압 제어형 오실레이터(VCO)(510)로서 지칭되는) 수신 LO 신호 생성기에 의해 생성되는 단일 로컬 오실레이터(LO) 신호를 수신한다. VCO(510)는 위상 고정 루프(PLL)(간략화를 위해 도시되지 않음)를 포함한다.
[0055] 수신기 부분(500)은 또한, 조정가능 기저대역 필터(525)의 예시적인 실시예를 포함한다. 조정가능 기저대역 필터(525)는 도 4의 기저대역 필터(425)의 예시적인 실시예이며, 원하는 필터 응답에 대해 조정될 수 있고, 그리고 위에 설명된 필터링 모드들을 제공하기 위한 다수의 상이한 서브-필터들로 구성될 수 있다. 예시적인 실시예에서, 기저대역 필터(425)는, 다수의 상이한 이득 모드들에 기초하여 응답 및 대역폭을 제공하도록 구성될 수 있다. 예시적인 실시예에서, 수신 스펙트럼에서의 신호 전력 레벨의 분석에 기초하여 상이한 이득 모드들이 선택될 수 있다. 예시적인 실시예에서, 기저대역 필터(425)의 대역폭은, 수신 스펙트럼에서 검출되는 신호 전력의 양에 기초하여 조정된다. 예시적인 실시예에서, 조정가능 감쇠기(501), 조정가능 LNA(502), 믹서(504), 및 조정가능 기저대역 필터(525)는, 수신기 프론트 엔드로서 지칭될 수 있다.
[0056] 수신기 부분(500)은 또한, 디지털 트랜시버(DTR; digital transceiver)(560)로서 지칭되는 프로세싱 회로에 의해 추가적으로 프로세싱될 디지털 신호들로 아날로그 입력 신호들을 변환하기 위한 아날로그-디지털 변환기(ADC)들(516a 및 516b)을 포함한다. 예시적인 실시예에서, DTR(560) 및 이득 스텝(step) 디코더(570)는, 도 3의 데이터 프로세서(310)의 일부일 수 있거나 또는 동작가능하게 그에 연결될 수 있다.
[0057] DTR(560)은, 디지털 하향변환(563) 및 디지털 필터링(564)을 비롯하여(그러나 이제 제한되지 않음), ADC(516a)의 I+ 및 I- 출력 및 ADC(516b)의 Q+ 및 Q- 출력 상에서 자동 이득 제어(AGC; automatic gain control) 프로세싱 기능을 수행하며, 광대역 신호 프로세싱 회로(510) 및 협대역 신호 프로세싱 회로(540)를 포함한다. DTR(560)은, 통신 스펙트럼 분석에 대한 하나 또는 그 초과의 반복(iteration)들을 수행하고, 연결(561)을 통해 이득 스텝 디코더(570)에 디지털 이득 제어 신호를 제공한다. 연결(561) 상의 신호는, 수신 통신 스펙트럼에서의 신호들의 전력 레벨들에 대한 결정요인(determinative)일 수 있는 광대역 전력 추정 신호 및 협대역 전력 추정 신호 중 하나 또는 그 초과를 포함할 수 있다. 예시적인 실시예에서, 수신 통신 스펙트럼에서의 잼머 신호들은 그들의 전력 레벨에 기초하여 결정될 수 있다. 예시적인 실시예에서, 이득 스텝 디코더(570)는, 연결(561) 상의 신호를, 잼머 전력 레벨에 기초하는 연결(571) 상의 이득 제어 신호로 변환한다. 연결(571) 상의 제어 신호는, 하나 또는 그 초과의 제어 파라미터들을 포함할 수 있고, 조정가능 감쇠기(501)의 이득, 조정가능 LNA(502)의 이득, 및 조정가능 기저대역 필터(525)의 이득을 제어하도록 구성될 수 있음으로써, 수신기 회로들을 포화(saturate)시킴이 없이 통신 신호가 수신될 수 있다.
[0058] 수신기 부분(500)을 갖는 통신 디바이스(사용자 장비(UE))는, 전체 대역에 주기적으로 튜닝되고 전체 대역을 한 번에(at a time) 수신하여, 전체 수신 대역 스펙트럼에서 이용가능한 채널들 및 스펙트럼 사용을 결정하는 것이 가능하다. 수신기 부분(500)은, 다수의 채널들을 수신하거나 또는 특정 채널에 튜닝되기 위해 가변 이득 및 가변 대역폭을 갖도록 튜닝될 수 있다.
[0059] 조정가능 감쇠기(501), 조정가능 LNA(502), 및 조정가능 기저대역 필터(525)는, 다양한 이득 조건들 및 수신 스펙트럼에 존재하는 신호들로 적응되도록 신속하게 재구성가능하다.
[0060] 예시적인 실시예에서, 수신기 부분(500)은, 조정가능 감쇠기(501)의 이득, 조정가능 LNA(502)의 이득, 및 조정가능 기저대역 필터(525)의 이득을 비롯하여(그러나 이에 제한되지 않음), 조정가능 감쇠기(501), 조정가능 LNA(502), 및 조정가능 기저대역 필터(525)의 파라미터들을 조정하기 위해 고속(fast) 피드백 제어 메커니즘을 이용한다.
[0061] 예시적인 실시예에서, 무선 통신 디바이스(300)(도 3)는, 이를테면, 다른 트랜시버들, 기지국들, 또는 임의의 다른 통신 디바이스와 같은 다른 디바이스들의 각각의 채널에 관련된 수신 전력을 송신하는 것이 가능하다.
[0062] 예시적인 실시예에서, 무선 통신 디바이스(300)(도 3)는, 이용가능한 스펙트럼을 결정하고 검출된 전력에 기초하여 자신의 수신기를 재구성할 수 있으며, 통신 세션 동안(예컨대, 데이터 통신 세션 동안, 텔레폰 호(call) 및 임의의 다른 통신 세션 동안을 포함함), 다른 통신 디바이스들에 수신 전력을 송신할 수 있다.
[0063] 도 6은, 도 5의 DTR(560)의 광대역 및 협대역 회로 스펙트럼 분석 컴포넌트들을 예시하는 블록도(600)이다. 블록도(600)의 컴포넌트들은 도 5의 DTR(560)의 컴포넌트들의 부분을 포함하며, 이에 의해, 블록도(600)의 컴포넌트들이 수신 대역의 부분들 및 전체 통신 수신 대역 중 임의의 수신 대역에 대한 광대역 및 협대역 스펙트럼 분석을 수행하는데 사용되어, 통신 수신 대역 내의 하나 또는 그 초과의 통신 채널들 및 전체 통신 수신 대역에서의 전력을 식별할 수 있다.
[0064] ADC(616)는, 수신 통신 신호의 I 및 Q 부분들을 표현하는 디지털 신호를 광대역 신호 프로세싱 회로(610)에 제공한다. 광대역 신호 프로세싱 회로(610)는, 광대역 전력 추정기(612), 신호 리샘플러(resampler)(614), 데시메이터(decimator)(615), 및 노치 필터(notch filter)(624)를 포함한다. 광대역 통신 스펙트럼을 표현하는 신호(잼머 신호 전력을 포함함)는, 연결(626)을 통해 제공된다.
[0065] 광대역 전력 추정기(612)는, ADC(616)에 의해 제공되고 잼머 신호 전력을 포함하는 신호의 전력 레벨을 결정한다. 리샘플러(614)는, ADC(616)에 의해 제공되는 신호의 샘플링 레이트(rate)를 조정한다.
[0066] 데시메이터(615)는, 리샘플러(614)에 의해 제공되는 신호의 샘플링 레이트를 감소시킨다.
[0067] 노치 필터(624)는, 데시메이터(615)에 의해 제공되는 신호를 필터링한다.
[0068] 연결(626) 상의 광대역 통신 스펙트럼 신호는, 협대역 신호 프로세싱 회로(640)에 제공된다. 협대역 신호 프로세싱 회로(640)는, 로테이터(rotator)(642), 데시메이터/필터 회로(644), 및 협대역 전력 추정기(648)를 포함한다. 협대역 통신 스펙트럼을 표현하는 신호는, 연결(656)을 통해 제공된다.
[0069] 로테이터(642)는, 연결(626) 상의 신호에 대한 최종 디지털 하향변환을 수행한다.
[0070] 데시메이터/필터 회로(644)는, 연결(656) 상의 협대역 신호 출력을 생성하기 위한 필터링을 제공한다.
[0071] 협대역 전력 추정기(648)는, 데시메이터/필터 회로(644)에 의해 제공되고 잼머 신호 전력을 포함하는 신호의 전력 레벨을 결정한다.
[0072] 연결(626) 상의 광대역 출력은, 광대역 신호 분석 이후의 통신 스펙트럼에서의 전력을 표현하는 신호를 포함한다. 연결(656) 상의 협대역 출력은, 협대역 신호 분석 이후의 통신 스펙트럼에서의 전력을 표현하는 신호를 포함한다. 연결(626) 상의 광대역 출력 및 연결(656) 상의 협대역 출력은, DTR(560)(도 5)에 의해 사용되어, 이득 스텝 디코더(570)에 제공되는 연결(561) 상의 제어 신호를 생성한다. 이득 스텝 디코더(570)는 연결(571) 상의 제어 신호를 생성한다. 연결(571) 상의 제어 신호는, 하나 또는 그 초과의 제어 파라미터들을 포함할 수 있고, 통신 스펙트럼의 검출된 전력에 기초하여, 조정가능 감쇠기(501)의 이득, 조정가능 LNA(502)의 이득, 및 조정가능 기저대역 필터(525)의 이득 및 대역폭과 같은 하나 또는 그 초과의 조정가능 파라미터들을 제어하도록 구성될 수 있다.
[0073] 도 7은, 스펙트럼 감지 수신기에 의해 프로세싱되는 통신 스펙트럼의 그래픽 예시이다. 수평 축(702)은 상대적인 주파수를 나타내고, 수직 축(704)은 상대적인 신호 전력을 나타낸다. 예시적인 로컬 오실레이터 주파수 fLO는, 축(702)의 대략적으로 중심에 도시된다.
[0074] 복수의 채널들 CH1 내지 CH10은 수평 축(702)을 따라 임의적으로 도시된다. 예시적인 실시예에서, 채널들 CH1 내지 CH10은 대략적으로 100 MHz의 통신 스펙트럼을 점유할 수 있으며, 여기서, 각각의 채널은 대략적으로 10 MHz의 대역폭을 포함한다. 예시적인 실시예에서, 채널들 중 몇몇은 동일한 전력 레벨을 갖는 하나 또는 그 초과의 신호들을 포함하고, 다른 채널들은 상이한 전력 레벨들을 갖는 하나 또는 그 초과의 신호들을 포함한다. 예시적인 실시예에서, 채널들 CH2, CH4, CH5, CH7, CH8 및 CH10은, 동일한 대략적인 상대적 전력 레벨들을 가진 신호들을 갖는 것으로 임의적으로 도시된다. 채널들 CH1, CH3, CH6 및 CH9는, 다른 임의적인 상대적 전력 레벨들을 갖는 것으로 도시된다.
[0075] 예시적인 실시예에서, 스펙트럼에서의 신호들의 존재를 식별하고 그리고 이용가능한 미사용 스펙트럼을 나타내는 스펙트럼 분석 결과들을 현상하도록 통신 스펙트럼을 분석하기 위해 DTR(560)(도 5 및 도 6)이 사용될 수 있다.
[0076] 예시적인 실시예에서, 광대역 신호 프로세싱 회로(610)는, 화살표(710)를 사용하여 도 7에 예시된 제 1 광대역 신호 스펙트럼 분석을 수행할 수 있다. 제 1 광대역 신호 스펙트럼 분석(710)은, 제 1 임의적 이득 레벨 G2에서 채널들 CH1 내지 CH10을 포함하는 전체 수신 대역을 포괄할 수 있다. 예시적인 실시예에서, 수신기 부분(500)에서 이용가능한 6개의 이득 레벨들 G0, G1, G2, G3, G4, 및 G5가 존재하며, 이득 레벨 G0이 가장 높은 이득이고 이득 레벨 G5가 가장 낮은 이득이다. 추가로, 조정가능 기저대역 필터(525)는, 전체 통신 스펙트럼이 분석되게 하는 대역폭 및 응답을 갖도록 조정될 수 있다.
[0077] 예시적인 실시예에서, DTR(560)은, 화살표(712)를 사용하여 도 7에 예시된 제 2 광대역 신호 스펙트럼 분석 및 화살표(714)를 사용하여 도 7에 예시된 제 3 광대역 신호 스펙트럼 분석을 수행할 수 있다. 제 2 광대역 신호 스펙트럼 분석(712) 및 제 3 광대역 신호 스펙트럼 분석(714) 각각은 전체 수신 대역의 대역폭보다 적은 대역폭을 포괄할 수 있으며, 여기서, 제 2 광대역 신호 스펙트럼 분석(712)은 임의적 이득 레벨 G3에서 채널들 CH1 내지 CH5를 갖는 스펙트럼의 부분을 포함할 수 있고, 여기서, 제 3 광대역 신호 스펙트럼 분석(714)은 임의적 이득 레벨 G3에서 채널들 CH6 내지 CH10을 갖는 스펙트럼의 부분을 포함할 수 있다. 조정가능 기저대역 필터(525)는, 분석될 탐색된 통신 스펙트럼의 부분에 기초하여 조정된다. 이득은, 제 1 광대역 신호 스펙트럼 분석(710)의 결과들에 기초하여 제 1 임의적 이득 레벨 G2로부터 제 2 이득 G3으로 변경된다. 예를 들어, 채널 CH1에 상당한 신호 에너지가 존재하기 때문에, 제 2 광대역 신호 스펙트럼 분석(712)을 수행하는 경우 이득은 G2로부터 G3으로 감소된다. 유사하게, 채널 CH6에 상당한 신호 에너지가 존재하기 때문에, 제 3 광대역 신호 스펙트럼 분석(714)을 수행하는 경우 이득은 G2로부터 G3으로 감소된다.
[0078] 일단 제 2 광대역 신호 스펙트럼 분석(712) 및 제 3 광대역 신호 스펙트럼 분석(714)이 완료되면, 분석의 결과들은 협대역 신호 프로세싱 회로(640)에 제공될 수 있다.
[0079] 예시적인 실시예에서, 협대역 신호 프로세싱 회로(640)는, 광대역 신호 프로세싱 회로(610)로부터 광대역 분석 결과들을 수신할 수 있으며, 제 2 광대역 신호 스펙트럼 분석(712)의 결과들에 대해 제 1 협대역 신호 스펙트럼 분석(716)을 수행할 수 있고, 그리고 제 3 광대역 신호 스펙트럼 분석(714)의 결과들에 대해 제 2 협대역 신호 스펙트럼 분석(718)을 수행할 수 있다. 위에 언급된 바와 같이, 조정가능 기저대역 필터(525)는, 분석될 탐색된 통신 스펙트럼의 부분에 기초하여 조정된다.
[0080] 제 1 협대역 신호 스펙트럼 분석(716)은, 예시적인 이득 모드 G3에서 5개의 예시적인 협대역 신호 스펙트럼 분석 인스턴스(instance)들(722, 724, 726, 727, 및 728)을 포함할 수 있다. 이러한 예시적인 실시예에서, 이득 모드는 제 1 협대역 신호 스펙트럼 분석(716) 동안 이득 모드 G3에서 유지되는데, 이득 변경을 보장(warrant)하기에 충분하지 않은 전력이 채널들 CH1, CH2, CH3, CH4, 및 CH5에 존재하기 때문이다. 예시적인 실시예에서, 채널들 CH1 및 CH3이 검출될 수 있다.
[0081] 제 2 협대역 신호 스펙트럼 분석(718)은, 예시적인 이득 모드 G5에서 5개의 예시적인 협대역 신호 스펙트럼 분석 인스턴스들(732, 734, 736, 737, 및 738)을 포함할 수 있다. 이러한 예시적인 실시예에서, 이득 모드는 제 2 협대역 신호 스펙트럼 분석(718) 동안 이득 모드 G5로 변경되는데, 수신기 부분(500)이 채널 CH6에서의 전력으로 포화되지 않도록 이득 변경을 보장하기 위한 충분한 전력이 채널 CH6에 존재하기 때문이다. 예시적인 실시예에서, 채널 CH6이 검출될 수 있다. 채널 CH6에 상당한 전력이 존재하기 때문에, 제 2 협대역 신호 스펙트럼 분석(718)에 대한 이득 모드가 이득 모드 G5로 낮춰짐으로써, 수신기 부분(500)은 채널 CH6에서의 전력으로 포화되지 않는다.
[0082] 예시적인 실시예에서, 협대역 신호 프로세싱 회로(640)는, 제 1 협대역 신호 스펙트럼 분석(716)에 의해 검출되지 않은 채널들이 존재할 수 있는 스펙트럼의 부분들 대해, 인스턴스들(744, 747, 및 748)을 포함하는 부가적인 협대역 신호 스펙트럼 분석(719)을 수행할 수 있다. 이러한 예시적인 실시예에서, 이득 모드는 부가적인 협대역 신호 스펙트럼 분석(719) 동안 이득 모드 G1로 변경되는데, 채널들 CH2, CH4, 및 CH5에 상대적으로 낮은 전력이 존재함으로써, 이득 모드에서의 증가가 그들 채널들 상의 전력을 결정하는데 사용될 수 있기 때문이다. 이러한 예시적인 실시예에서, 예시적인 이득 모드 G1에서 채널들 CH2, CH4, 및 CH5에서의 전력을 검출하기 위해 부가적인 협대역 신호 스펙트럼 분석 인스턴스들(744, 747, 및 748)이 사용된다. 이득은 부가적인 협대역 신호 스펙트럼 분석 인스턴스들(744, 747, 및 748)에 대해 이득 모드 G1로 증가되는데, 채널들 CH2, CH4, 및 CH5에 상대적은 낮은 신호 전력이 존재하기 때문이다.
[0083] 예시적인 실시예에서, 협대역 신호 프로세싱 회로(640)는, 제 2 협대역 신호 스펙트럼 분석(718)에 의해 검출되지 않은 채널들이 존재할 수 있는 스펙트럼의 부분들 대해, 인스턴스들(754, 756, 757, 및 758)을 포함하는 부가적인 협대역 신호 스펙트럼 분석(721)을 수행할 수 있다. 이러한 예시적인 실시예에서, 이득 모드는 부가적인 협대역 신호 스펙트럼 분석(721) 동안 이득 모드 G3으로 변경되는데, 채널들 CH7, CH8, CH9, 및 CH10에 상대적으로 낮은 전력이 존재함으로써, 이득 모드에서의 증가가 그들 채널들 상의 전력을 결정하는데 사용될 수 있기 때문이다. 이러한 예시적인 실시예에서, 예시적인 이득 모드 G3에서 채널들 CH7, CH8, CH9, 및 CH10에서의 전력을 검출하기 위해 부가적인 협대역 신호 스펙트럼 분석 인스턴스들(754, 756, 757, 및 758)이 사용된다. 이러한 예시적인 실시예에서, 기존 이득 셋팅 G3에서 오직 채널 CH9에서의 전력만이 검출된다.
[0084] 예시적인 실시예에서, 협대역 신호 프로세싱 회로(640)는, 부가적인 협대역 신호 스펙트럼 분석(721)에 의해 검출되지 않은 채널들이 존재할 수 있는 스펙트럼의 부분들 대해, 인스턴스들(764, 766, 및 768)을 포함하는 부가적인 협대역 신호 스펙트럼 분석(723)을 수행할 수 있다. 이러한 예시적인 실시예에서, 이득 모드는 부가적인 협대역 신호 스펙트럼 분석(723) 동안 이득 모드 G1로 변경되는데, 채널들 CH7, CH8, 및 CH10에 상대적으로 낮은 전력이 존재함으로써, 이득 모드에서의 증가가 그들 채널들 상의 전력을 결정하는데 사용될 수 있기 때문이다. 이러한 예시적인 실시예에서, 예시적인 이득 모드 G1에서 채널들 CH7, CH8, 및 CH10에서의 전력을 검출하기 위해 부가적인 협대역 신호 스펙트럼 분석 인스턴스들(764, 766, 및 768)이 사용된다.
[0085] 이득 레벨들에 관하여, DTR(560)은, 스펙트럼 분석기로서 동작하는 경우, 스펙트럼에서의 전력에 대한 이득 모드를 바이어싱함으로써, 큰 신호에 의해 포화되지 않으면서 가장 적절한 민감도를 제공하는 이득 모드로 재구성하도록, 수신기 부분(500) 내의 조정가능 컴포넌트들에 지시할 수 있다. 따라서, 신호들이 큰 경우(예컨대, CH6에서의 신호), 수신기는 저 이득 모드에 있어야 하는데, 그렇지 않으면, 그러한 큰 신호가 큰 증폭을 겪을 때 수신기가 포화될 수 있기 때문이다. 예시적인 실시예에서, 용어들 “높은” 및 “낮은” 신호 전력은 상대적이며, 예를 들어, 대략적으로 -100dBm 내지 대략적으로 -30dBm 사이의 범위에 있는 신호 전력을 지칭할 수 있으며, 각각의 수신기 이득 레벨(G0 내지 G5)은 대략적으로 10dB의 동적 범위를 커버한다.
[0086] 도 7에서, 예를 들어, 이득 모드들 G0, G1, G2, G3, 또는 G4에 비교할 경우 상대적으로 작은 양의 이득인 이득 모드 G5에 수신기가 있는 경우, CH6에서의 신호는, 상대적으로 작은 양의 수신 이득을 사용함으로써 수신기를 포화시키지 않으면서 추출될 수 있다.
[0087] 그러나, 다른 채널들(예컨대, CH7, CH8, CH9, 및 CH10)에서의 더 낮은 상대적인 전력을 갖는 신호들은, 그들의 개별적인 다른 신호-대-잡음 비가 불량할 것이기 때문에 동일한 G5 이득 모드를 사용하여 추출될 수 없다. 예를 들어, 그것은, CH7에서의 신호가 이득 모드 G1에서 추출되는 이유이다.
[0088] 광대역 신호 검출 및 협대역 신호 검출 사이에서 그리고 특정 채널들에서의 신호들의 전력 레벨에 의존하여 DTR(560)이 트랜지션(transition)하는 경우, 조정가능 기저대역 필터(525)는, 높은 전력 레벨을 갖는 신호로 수신기를 포화시키는 것을 회피하기 위해, 실수 저역 통과 필터 특성, 대역 통과 필터 특성, 고역 통과 필터 특성, 및 복소 대역 통과 필터 특성 중 임의의 특성을 제공하도록 재구성될 수 있다. 추가로, 로컬 오실레이터 신호 fLO의 주파수는, 분석되는 채널 및/또는 특정 수신 대역의 주파수에 의존하여 재튜닝(retune)될 수 있다.
[0089] 도 8은, 조정가능 감쇠기 및 조정가능 LNA의 예시적인 실시예를 도시하는 개략도이다. 연결(571) 상의 제어 신호는, 조정가능 감쇠기(801)에 의해 제공되는 감쇠의 양을 제어할 수 있다. 연결(571) 상의 제어 신호는 또한, 원하는 양의 증폭 또는 감쇠를 제공하도록 캐스코드(cascode) 디바이스들(805)을 선택적으로 인에이블링(enable) 및 디스에이블링(disable)함으로써, 조정가능 LNA(802)에 의해 제공되는 증폭의 양을 제어할 수 있다.
[0090] 도 9는, 인트라-대역 CA 동작에 대해 구성되는 수신기 프론트 엔드(900)의 대안적인 실시예를 도시하는 개략도(900)이다. 수신기 프론트 엔드는, LNA(702), 및 VCO(910)로부터 로컬 오실레이터 (fLO) 신호를 수신하도록 구성되는 믹서(904)를 포함한다.
[0091] 수신기 프론트 엔드(900)가 2개 또는 그 초과의 주파수들을 갖는 통신 신호를 수신하기 위해 CA 모드에서 동작하지 않는 경우, 인트라-대역 CA 모드가 인에이블링되어 잡음 지수(NF; noise figure) 및 이득의 중대한 손실 없이 착신 신호를 분할할 수 있다. 인트라-대역 CA 신호는, 대역 내의 스펙트럼을 캡쳐하기 위해, 대역의 중심에서 동작하는 CA2 LO에 의해 하향-변환될 수 있다. 인트라-대역 CA 수신기는, 전력 소모의 페널티(penalty) 없이 대역 내의 스펙트럼을 캡쳐하기 위해 주기적으로 턴 온(turn on)될 수 있다. 이러한 시스템을 추가로 개선하기 위해, 인트라-대역 CA 경로는, 신호를 동일하게 분할하지 않고 단지 작은 양의 신호를 인트라-대역 CA 경로로 블리딩(bleed)하여 메인 경로에 대한 영향을 최소화하도록 수정될 수 있다.
[0092] 도 10은, 인트라-대역 CA 동작에 대해 구성되는 수신기 프론트 엔드의 대안적인 실시예를 도시하는 개략도(1000)이다. 수신기 프론트 엔드는, LNA(1002), 및 VCO(1010)로부터 로컬 오실레이터 (fLO) 신호를 수신하도록 구성되는 믹서(1004)를 포함한다.
[0093] 예시적인 실시예에서, 수신기 프론트 엔드(1000)는, 피드백-수신기로서 구현되는 경우(즉, 매칭없는(matchless) 광-대역 입력을 가짐), 700MHz-2.7GHz로부터의 신호들을 수신하기 위해 사용될 수 있다. 그러한 수신기는, 수신기 내에 로케이팅된 송신기의 송신 전력을 측정하기 위해 이렇게 사용될 수 있다. 그러나, 이러한 수신기는 또한 전체 스펙트럼을 검출하기 위해 사용될 수 있다(하향-변환기는 폰이 사용되는 경우 인에이블링되고; 이러한 모드는 “온-라인 교정” 모드로서 지칭됨). 따라서, 온-라인 교정 모드는, 전력 증폭기의 출력을 측정하는 것에 부가하여 더 넓은 대역에 걸쳐 수신된 신호를 측정하기 위해 사용될 수 있다.
[0094] 도 11은, 스펙트럼 감지 라디오의 예시적인 실시예의 동작을 설명하는 흐름도(1100)이다. 블록(1102)에서, 제 1 수신기 이득 셋팅 및 제 1 대역폭에서 광대역 전력 추정을 사용하여 이용가능한 통신 스펙트럼이 검출된다. 블록(1104)에서, 광대역 전력 추정 및 검출된 스펙트럼에 기초하여 이득 스텝 디코더가 제어 신호를 생성한다. 블록(1106)에서, 제어 신호에 기초하여 수신기 이득 및 필터 대역폭이 조정된다.
[0001] 블록(1108)에서, 제 2 이득 셋팅 및 제 2 대역폭 셋팅에서 협대역 전력 추정을 사용하여 이용가능한 통신 스펙트럼이 검출된다.
[0002] 본원에 설명된 스펙트럼 감지 라디오 수신기는, 하나 또는 그 초과의 IC들, 아날로그 IC들, RFIC들, 믹싱된-신호(mixed-signal) IC들, AISC들, 인쇄 회로 보드(PCB)들, 전자 디바이스들 등 상에 구현될 수 있다. 스펙트럼 감지 라디오 수신기는 또한, 상보형 금속 산화물 반도체(CMOS), N-채널 MOS(NMOS), P-채널 MOS(PMOS), 바이폴라 접합 트랜지스터(BJT), 바이폴라-CMOS(BiCMOS), 실리콘-게르마늄(SiGe), 갈륨 비소(GaAs), 헤테로접합 바이폴라 트랜지스터(HBT)들, 고 전자 이동도 트랜지스터(high electron mobility transistor)(HEMT)들, SOI(silicon-on-insulator) 등과 같은 다양한 IC 프로세스 기술들을 이용하여 제조될 수 있다.
[0003] 본원에 설명된 스펙트럼 감지 라디오 수신기를 구현하는 장치는, 독립형(stand-alone) 디바이스일 수 있거나 또는 더 큰 디바이스의 일부일 수 있다. 디바이스는 (i) 독립형 IC, (ii) 데이터 및/또는 명령들을 저장하기 위한 메모리 IC들을 포함할 수 있는 하나 또는 그 초과의 IC들의 세트, (iii) RF 수신기(RFR) 또는 RF 송신기/수신기(RTR)와 같은 RFIC, (iv) 모바일 스테이션 모뎀(MSM)과 같은 ASIC, (v) 다른 디바이스들 내에 임베딩(embed)될 수 있는 모듈, (vi) 수신기, 셀룰러 폰, 무선 디바이스, 핸드셋, 또는 모바일 유닛, (vii) 기타 등등일 수 있다.
[0004] 하나 또는 그 초과의 예시적인 설계들에서, 설명된 기능들은 하드웨어, 소프트웨어, 펌웨어, 또는 이들의 임의의 결합으로 구현될 수 있다. 소프트웨어로 구현되면, 기능들은 컴퓨터-판독가능 매체 상에 하나 또는 그 초과의 명령들 또는 코드로서 저장되거나 이들을 통해 송신될 수 있다. 컴퓨터-판독가능 매체들은, 일 장소에서 다른 장소로의 컴퓨터 프로그램의 전달을 용이하게 하는 임의의 매체를 포함한 통신 매체들 및 컴퓨터 저장 매체들 양자 모두를 포함한다. 저장 매체들은 컴퓨터에 의해 액세스될 수 있는 임의의 이용가능한 매체들일 수 있다. 제한이 아닌 예로서, 그러한 컴퓨터-판독가능 매체들은 RAM, ROM, EEPROM, CD-ROM 또는 다른 광학 디스크 저장부, 자기 디스크 저장 또는 다른 자기 저장 디바이스들, 또는 명령들 또는 데이터 구조들의 형태로 원하는 프로그램 코드를 반송 또는 저장하는데 사용될 수 있고, 컴퓨터에 의해 액세스될 수 있는 임의의 다른 매체를 포함할 수 있다. 또한, 임의의 접속수단(connection)이 컴퓨터-판독가능 매체로 적절히 지칭된다. 예를 들어, 소프트웨어가 동축 케이블, 광섬유 케이블, 연선(twisted pair), 디지털 가입자 라인(DSL), 또는 (적외선, 라디오, 및 마이크로파와 같은) 무선 기술들을 사용하여 웹사이트, 서버, 또는 다른 원격 소스로부터 송신되면, 동축 케이블, 광섬유 케이블, 연선, DSL, 또는 (적외선, 라디오, 및 마이크로파와 같은) 무선 기술들이 매체의 정의에 포함된다. 본 명세서에 사용되는 바와 같이, 디스크(disk) 및 디스크(disc)는 컴팩트 디스크(disc)(CD), 레이저 디스크(disc), 광학 디스크(disc), 디지털 다목적 디스크(digital versatile disc)(DVD), 플로피 디스크(disk) 및 blu-Ray 디스크(disc)를 포함하며, 여기서 디스크(disk)들은 일반적으로 데이터를 자기적으로 재생하지만, 디스크(disc)들은 레이저들을 이용하여 광학적으로 데이터를 재생한다. 또한, 상기의 것들의 결합들은 컴퓨터-판독가능 매체들의 범위 내에 포함되어야 한다.
[0005] 본 설명에서 사용되는 바와 같이, 용어들 "컴포넌트", "데이터베이스", "모듈", "시스템" 등은, 컴퓨터 관련 엔티티, 즉 하드웨어, 펌웨어, 하드웨어 및 소프트웨어의 결합, 소프트웨어 또는 실행 소프트웨어 중 어느 하나를 지칭하도록 의도된다. 예를 들어, 컴포넌트는, 프로세서 상에서 실행되는 프로세스, 프로세서, 오브젝트, 실행가능한 것, 실행 스레드, 프로그램 및/또는 컴퓨터일 수 있지만 이들로 제한되는 것은 아니다. 예시로서, 컴퓨팅 디바이스 상에서 실행되는 애플리케이션 및 컴퓨팅 디바이스 둘 모두가 컴포넌트일 수 있다. 하나 또는 그 초과의 컴포넌트들은 프로세스 및/또는 실행 스레드 내에 상주할 수 있고, 컴포넌트는 하나의 컴퓨터 상에 로컬화될 수도 있고 그리고/또는 둘 또는 그 초과의 컴퓨터들 사이에 분산될 수 있다. 부가적으로, 이들 컴포넌트들은, 다양한 데이터 구조들이 저장된 다양한 컴퓨터 판독가능 매체들로부터 실행할 수 있다. 컴포넌트들은, 이를테면 하나 또는 그 초과의 데이터 패킷들(예컨대, 로컬 시스템에서, 분산 시스템에서 및/또는 신호에 의한 다른 시스템들과의 네트워크(이를테면, 인터넷)를 통해 다른 컴포넌트와 상호 작용하는 하나의 컴포넌트로부터의 데이터)을 갖는 신호에 따라 로컬 및/또는 원격 프로세스들을 통해 통신할 수 있다.
[0006] 선택된 양상들이 상세히 예시되고 설명되었지만, 다음의 청구항들에 의해 정의되는 바와 같은 본 발명의 사상 및 범위를 벗어나지 않으면서 선택된 양상들에서 다양한 치환들 및 변경들이 이루어질 수 있음이 이해될 것이다.

Claims (13)

  1. 디바이스로서,
    통신 세션 동안 통신 대역 내의 복수의 통신 채널들에 튜닝(tune)되도록 구성되는, 가변 이득 및 가변 대역폭을 갖는 재구성가능 수신기 프론트 엔드(front end) ― 상기 재구성가능 수신기 프론트 엔드는 신호 전력 레벨에 응답함 ―; 및
    상기 복수의 통신 채널들에서의 상기 신호 전력 레벨을 결정하기 위해 광대역 분석으로부터 협대역 분석까지 상기 통신 대역을 분석하도록 구성되는 디지털 트랜시버를 포함하며,
    상기 디지털 트랜시버는 추가로, 상기 통신 대역에서의 상기 복수의 통신 채널들 중 임의의 통신 채널에서의 결정된 신호 전력 레벨을 표현하는 신호를 다른 디바이스에 송신하도록 구성되는, 디바이스.
  2. 제 1 항에 있어서,
    상기 신호 전력 레벨은, 통신 대역 분석에 대해 상기 재구성가능 수신기 프론트 엔드의 조정가능 파라미터를 결정하는, 디바이스.
  3. 제 2 항에 있어서,
    상기 재구성가능 수신기 프론트 엔드는, 상기 복수의 통신 채널들 중 선택된 통신 채널에 튜닝되도록 구성되는, 디바이스.
  4. 제 1 항에 있어서,
    상기 재구성가능 수신기 프론트 엔드는, 상기 복수의 통신 채널들 중 선택된 통신 채널에서의 신호 전력 레벨에 응답하는, 디바이스.
  5. 제 1 항에 있어서,
    상기 재구성가능 수신기 프론트 엔드는, 조정가능 감쇠기(attenuator), 조정가능 저 잡음 증폭기, 및 조정가능 기저대역 필터를 포함하는, 디바이스.
  6. 제 5 항에 있어서,
    상기 조정가능 감쇠기의 이득 및 상기 저 잡음 증폭기의 이득은 상기 신호 전력 레벨에 기초하여 조정되는, 디바이스.
  7. 제 5 항에 있어서,
    상기 조정가능 기저대역 필터의 대역폭은 상기 신호 전력 레벨에 기초하여 조정되는, 디바이스.
  8. 방법으로서,
    신호 전력 레벨에 대한 응답으로, 통신 세션 동안, 통신 대역 내의 복수의 통신 채널들에 가변 이득 및 가변 대역폭을 갖는 수신기 프론트 엔드를 튜닝하는 단계;
    상기 복수의 통신 채널들에서의 상기 신호 전력 레벨을 결정하기 위해 광대역 분석으로부터 협대역 분석까지 상기 통신 대역을 디지털 방식으로 분석하는 단계; 및
    결정된 신호 전력 레벨을 표현하는 신호를 다른 디바이스에 송신하는 단계를 포함하는, 방법.
  9. 제 8 항에 있어서,
    상기 수신기 프론트 엔드와 연관된 조정가능 저 잡음 증폭기 및 조정가능 감쇠기의 이득을 조정하는 단계를 더 포함하는, 방법.
  10. 제 8 항에 있어서,
    상기 수신기 프론트 엔드와 연관된 조정가능 기저대역 필터의 대역폭을 조정하는 단계를 더 포함하는, 방법.
  11. 디바이스로서,
    신호 전력 레벨에 대한 응답으로, 통신 세션 동안, 통신 대역 내의 복수의 통신 채널들에 가변 이득 및 가변 대역폭을 갖는 수신기 프론트 엔드를 튜닝하기 위한 수단;
    상기 복수의 통신 채널들에서의 상기 신호 전력 레벨을 결정하기 위해 광대역 분석으로부터 협대역 분석까지 상기 통신 대역을 디지털 방식으로 분석하기 위한 수단; 및
    결정된 신호 전력 레벨을 표현하는 신호를 다른 디바이스에 송신하기 위한 수단을 포함하는, 디바이스.
  12. 제 11 항에 있어서,
    상기 수신기 프론트 엔드와 연관된 조정가능 저 잡음 증폭기 및 조정가능 감쇠기의 이득을 조정하기 위한 수단을 더 포함하는, 디바이스.
  13. 제 11 항에 있어서,
    상기 수신기 프론트 엔드와 연관된 조정가능 기저대역 필터의 대역폭을 조정하기 위한 수단을 더 포함하는, 디바이스.
KR1020167026787A 2014-03-31 2015-03-27 스펙트럼 감지 라디오 수신기 KR20160138072A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/231,103 2014-03-31
US14/231,103 US10033343B2 (en) 2014-03-31 2014-03-31 Spectrum sensing radio receiver
PCT/US2015/022884 WO2015153311A1 (en) 2014-03-31 2015-03-27 Spectrum sensing radio receiver

Publications (1)

Publication Number Publication Date
KR20160138072A true KR20160138072A (ko) 2016-12-02

Family

ID=53005642

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167026787A KR20160138072A (ko) 2014-03-31 2015-03-27 스펙트럼 감지 라디오 수신기

Country Status (6)

Country Link
US (1) US10033343B2 (ko)
EP (1) EP3127243A1 (ko)
JP (1) JP2017515356A (ko)
KR (1) KR20160138072A (ko)
CN (1) CN106134087A (ko)
WO (1) WO2015153311A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9681307B2 (en) * 2014-09-22 2017-06-13 Illinois Institute Of Technology System and method for determining and sharing spectrum availability
US9991875B2 (en) * 2016-08-12 2018-06-05 Qualcomm Incorporated Reconfigurable radio frequency (RF) bandstop/intermediate frequency (IF) bandpass filter
EP3301975B1 (en) 2016-09-28 2019-05-01 Intel IP Corporation Apparatuses and methods for measuring neighboring inter-frequency or inter-rat cells
US20190305803A1 (en) * 2018-03-30 2019-10-03 Sequans Communications S.A. Carrier Aggregation
KR102468797B1 (ko) 2018-04-04 2022-11-18 삼성전자주식회사 반송파 집성을 지원하기 위한 증폭 동작을 수행하는 rf 집적회로 및 이를 포함하는 수신기
US10630328B2 (en) 2018-08-08 2020-04-21 Qualcomm Incorporated Current-mode filtering using current steering
US10567093B1 (en) 2018-11-28 2020-02-18 Motorola Solutions, Inc. Combined parallel processing of spectral information for a radio frequency environment
WO2021039279A1 (ja) * 2019-08-30 2021-03-04 ソニーセミコンダクタソリューションズ株式会社 増幅器および信号処理装置
US11356851B2 (en) * 2019-12-03 2022-06-07 Harris Global Communications, Inc. Communications system having multiple carriers with selectively transmitted real information and fake information and associated methods
CN111427016B (zh) * 2020-04-21 2020-12-08 北京航天长征飞行器研究所 基于虚拟信道化的多雷达对抗方法和系统
TWI753437B (zh) 2020-05-22 2022-01-21 四零四科技股份有限公司 接收裝置和動態調整接收信號之衰減值之方法
US11962278B2 (en) 2020-06-29 2024-04-16 Qualcomm Incorporated Programmable baseband filter for selectively coupling with at least a portion of another filter
KR20230030345A (ko) * 2021-08-25 2023-03-06 삼성전자주식회사 통신 장치, 및 이의 동작 방법
US11569865B1 (en) * 2021-09-24 2023-01-31 Qualcomm Incorporated Reconfigurable baseband filter

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100222404B1 (ko) 1997-06-21 1999-10-01 윤종용 혼변조 왜곡 성분을 억압하는 수신장치 및 방법
US6498926B1 (en) * 1997-12-09 2002-12-24 Qualcomm Incorporated Programmable linear receiver having a variable IIP3 point
US6107878A (en) * 1998-08-06 2000-08-22 Qualcomm Incorporated Automatic gain control circuit for controlling multiple variable gain amplifier stages while estimating received signal power
FR2824986B1 (fr) * 2001-05-18 2003-10-31 St Microelectronics Sa Composant electronique permettant le decodage d'un canal de transmission radiofrequence vehiculant des informations numeriques codees, en particulier pour la telediffusion numerique par satellite
TW200518450A (en) * 2003-11-26 2005-06-01 Niigata Seimitsu Co Ltd Automatic gain control device
US20060222115A1 (en) * 2005-03-30 2006-10-05 Silicon Laboratories, Inc. Television receiver with automatic gain control (AGC)
US8000302B2 (en) 2005-06-23 2011-08-16 Qualcomm Incorporated Adaptive multi-channel modem
US8149896B2 (en) 2006-01-04 2012-04-03 Qualcomm, Incorporated Spur suppression for a receiver in a wireless communication system
US8150351B2 (en) 2006-04-17 2012-04-03 Entropic Communications, Inc. Receiver with tuner front end using tracking filters and calibration
US7653368B2 (en) * 2006-06-14 2010-01-26 Intel Corporation Radio receiver and a method thereof
US8145167B2 (en) * 2006-08-03 2012-03-27 Nxp B.V. Automatic gain control of radio devices
US7711334B2 (en) * 2007-03-23 2010-05-04 Newport Media, Inc. High linearity, low noise figure, front end circuit with fine step gain control
US8718559B2 (en) 2008-04-07 2014-05-06 Nokia Corporation Method, apparatus and computer program for sensing spectrum in a cognitive radio environment
US8417204B2 (en) 2008-05-07 2013-04-09 Broadcom Corporation Method and system for on-demand signal notching in a receiver
ES2556975T3 (es) 2008-05-16 2016-01-21 Telefonaktiebolaget Lm Ericsson (Publ) Método para un receptor de espectro agregado de radio único, programa informático, receptor y terminal
US8494470B2 (en) 2008-11-25 2013-07-23 Silicon Laboratories Inc. Integrated receivers and integrated circuit having integrated inductors
KR101201207B1 (ko) * 2008-12-02 2012-11-15 한국전자통신연구원 다중밴드 ofdm 시스템의 수신기에서 이득 제어 장치 및방법
US8223889B2 (en) 2009-01-09 2012-07-17 Empire Technology Development, Llc Opportunistic radio frequency communications
US20100197257A1 (en) * 2009-02-04 2010-08-05 Qualcomm Incorporated Adjustable receive filter responsive to frequency spectrum information
US9231630B2 (en) 2009-05-05 2016-01-05 San Diego, CA Radio device having dynamic intermediate frequency scaling
US8655299B2 (en) 2010-06-03 2014-02-18 Broadcom Corporation Saw-less receiver with RF frequency translated BPF
US8804536B2 (en) 2010-08-16 2014-08-12 Qualcomm Incorporated Method and apparatus for facilitating sensing in cognitive radio communications
US8594121B2 (en) 2011-04-20 2013-11-26 Qualcomm Incorporated Cognitive radio spectrum sensor employing peak-to-average ratio as the signal feature
US9002309B2 (en) 2011-05-27 2015-04-07 Qualcomm Incorporated Tunable multi-band receiver
JP2013038509A (ja) * 2011-08-04 2013-02-21 Sony Corp 自動ステップ可変減衰器および無線通信装置
US8706071B2 (en) 2011-08-24 2014-04-22 Aviacomm Inc. Reconfigurable wideband receiver
WO2013057358A1 (en) 2011-10-19 2013-04-25 Nokia Corporation Method and apparatus for spectrum sensing
CN202309692U (zh) 2011-11-17 2012-07-04 四川蓝讯宝迩电子科技有限公司 一种用于数字信道化接收机的接收前端
US9001941B2 (en) * 2012-01-31 2015-04-07 Analog Devices, Inc. Method and apparatus to independently control front end gain and baseband gain
US10063266B2 (en) * 2012-02-06 2018-08-28 Maxlinear, Inc. Method and system for a baseband cross-bar
US9118439B2 (en) 2012-04-06 2015-08-25 Qualcomm Incorporated Receiver for imbalanced carriers
US9288776B2 (en) 2013-11-05 2016-03-15 Qualcomm Incorporated Apparatus and method of wideband automatic gain control algorithm supporting multiple carriers with possibly different air interface technologies

Also Published As

Publication number Publication date
US10033343B2 (en) 2018-07-24
WO2015153311A1 (en) 2015-10-08
CN106134087A (zh) 2016-11-16
EP3127243A1 (en) 2017-02-08
US20150280673A1 (en) 2015-10-01
JP2017515356A (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
US10033343B2 (en) Spectrum sensing radio receiver
US9118439B2 (en) Receiver for imbalanced carriers
US8886149B2 (en) Detection and mitigation of interference in a multimode receiver using variable bandwidth filter
US9450665B2 (en) Diversity receiver for wireless communication
US9306603B2 (en) Tunable radio frequency (RF) front-end architecture using filter having adjustable inductance and capacitance
KR20160101042A (ko) 재구성가능 캐리어-어그리게이션 수신기 및 필터
KR101672340B1 (ko) 저 잡음 증폭기(lna) 비-선형 2차 생성물들에 대한 왜곡 상쇄
US9602144B2 (en) Method and apparatus for processing multiple wireless communication services
US9496905B2 (en) Detection and mitigation of interference in a receiver
CA2947886C (en) Carrier aggregation amplifier with dual gain control
WO2015183847A1 (en) Dual stage carrier-aggregation (ca) low noise amplifier (lna) having harmonic rejection and high linearity
WO2015183843A1 (en) Distortion cancellation for dual stage carrier-aggregation (ca) low noise amplifier (lna) non-linear second order products
KR20160122191A (ko) 전류-효율형 저잡음 증폭기(lna)
US20150358041A1 (en) Calibration and tuning for a tunable filter having adjustable inductance and capacitance
KR101062804B1 (ko) 다중 무선 통신 서비스 처리 방법 및 장치
WO2015088934A1 (en) Common gate buffer having adjustable current consumption in a receiver
Spiridon et al. Making homodyne receivers ready for monolithic integration in multi-standard wireless transceivers