KR20160133922A - - -xylosidase expression system for producing xylobiose - Google Patents

- -xylosidase expression system for producing xylobiose Download PDF

Info

Publication number
KR20160133922A
KR20160133922A KR1020150067110A KR20150067110A KR20160133922A KR 20160133922 A KR20160133922 A KR 20160133922A KR 1020150067110 A KR1020150067110 A KR 1020150067110A KR 20150067110 A KR20150067110 A KR 20150067110A KR 20160133922 A KR20160133922 A KR 20160133922A
Authority
KR
South Korea
Prior art keywords
xylosidase
seq
xylobiose
nucleotide sequence
sequence
Prior art date
Application number
KR1020150067110A
Other languages
Korean (ko)
Other versions
KR101728600B1 (en
Inventor
경명옥
조성은
이경선
서승우
정상원
최근범
김근필
박근희
윤상욱
Original Assignee
대한제당 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한제당 주식회사 filed Critical 대한제당 주식회사
Priority to KR1020150067110A priority Critical patent/KR101728600B1/en
Publication of KR20160133922A publication Critical patent/KR20160133922A/en
Application granted granted Critical
Publication of KR101728600B1 publication Critical patent/KR101728600B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01037Xylan 1,4-beta-xylosidase (3.2.1.37)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention provides a beta-xylosidase expression system for producing xylobiose. The beta-xylosidase expression system according to the present invention provides beta-xylosidase with a high conversion rate of xylobiose from xylose, and enables mass production of xylobiose with high yield in a short time. Accordingly, a large amount of new sugar supplement materials can be secured, and the beta-xylosidase expression system can be helpfully used not only in the functional sugar industry but also in health food materials, medicines and cosmetic materials.

Description

자일로비오스 생산을 위한 β-자일로시다아제 발현 시스템 {β-xylosidase expression system for producing xylobiose}The present invention relates to a β-xylosidase expression system for producing xylobiose,

본 발명은 자일로스를 자일로비오스로 전환하는 β-자일로시다아제를 포함하는 자일로비오스 생산용 조성물, 이를 제조하기 위한 발현 컨스트럭트 및 재조합 균주, 자일로스로부터 자일로비오스를 제조하는 방법에 관한 것이다.The present invention relates to a composition for producing xylobiose comprising β-xylosidase which converts xylose to xylobiose, an expression construct and a recombinant strain for producing the composition, a method for producing xylobiose from xylose .

자일로-올리고사카라이드(Xylo-oligosaccharide, XOS)는 올리고당의 일종으로 자일로스(xylose)가 β-(1,4)-linkage에 의해 결합된 형태이며, 이는 인체의 소화효소에 의해 분해되지 않아 대장까지 흡수되지 않고 도달한다. 자일로-올리고사카라이드(Xylo-oligosaccharide, XOS)는 장내 유익미생물인 Bifidobateria에 의해 분해되어 선택적으로 Bifidobacteria의 증식을 유도하는 것으로 알려져 있으며, 항암 활성, 정균 활성 등의 건강 기능성을 나타내는 것이 알려져 있다. 또한, 우수한 보습 효과를 가짐으로써, 이를 화장품에 적용하려는 시도가 이루어지고 있다.Xylo-oligosaccharide (XOS) is a type of oligosaccharide in which xylose is bound by β- (1,4) -linkage, which is not degraded by the digestive enzymes of the human body Reaches the colon without being absorbed. Xylo-oligosaccharide (XOS) is known to be selectively degraded by Bifidobateria, a beneficial microorganism of the intestine, to induce the proliferation of Bifidobacteria. It is known that it exhibits health functions such as anticancer activity and bacteriostatic activity. In addition, with an excellent moisturizing effect, attempts have been made to apply it to cosmetics.

이러한 자일로-올리고사카라이드의 상업적 생산을 위해서는 목재, 면실각, 옥수수심 등에 물리화학적인 전처리 과정을 거친 후 엔도-자일라나제(endo-xylanase)와 β-자일로시다아제에 의한 자일란의 분해를 거쳐야한다. 그런데, 자일로-올리고사카라이드 생산 과정 중 전처리 과정은 많은 양의 화학물질 사용을 필요로 하기 때문에, 공정에서 폐수 등의 다량의 오염물질이 발생하는 문제점이 존재한다. Commercial production of such xylo-oligosaccharides requires a physico-chemical pretreatment of wood, cotton wool, cornstarch and the like, followed by the decomposition of xylenes by endo-xylanase and? -Xylosidase . However, since the pretreatment process of the xylo-oligosaccharide production process requires the use of a large amount of chemical substances, a large amount of pollutants such as wastewater is generated in the process.

한편, 시판되는 자일로-올리고사카라이드 제품들은 일반적으로 혼합물 형태의 자일로-올리고사카라이드로 제공된다. 즉, 자일로-올리고사카라이드에서 자일로비오스만을 분리, 정제하는데는 어려운 점이 많기 때문에, 시판되는 물질로써 고순도의 자일로비오스 제품은 없다. On the other hand, commercially available xylo-oligosaccharide products are generally provided as xylo-oligosaccharides in the form of mixtures. In other words, there are many difficulties in separating and purifying xylobiose from xylo-oligosaccharides, so there is no high-purity xylobiose product as a commercially available substance.

그런데, 자일로-올리고사카라이드의 중합도가 높은 경우에는 착색 경향이 낮아지고 Bifidobateria 등에 의한 자화성이 좋지 못하기 때문에, 자일로비오스(xylobiose)와 같은 중합도가 낮은 물질을 선택적으로 생산할 필요성이 있다. However, when the polymerization degree of xylo-oligosaccharide is high, the coloring tendency is low and the magnetization property by Bifidobateria is poor, so it is necessary to selectively produce a substance having low polymerization degree such as xylobiose.

또한, 보존 중에서의 미생물 증식을 방지하기 위해서나, 식품의 본래의 조성을 손상시키지 않기 위해서나, 수송 비용을 저감시키기 위하여, 가능한 고농도의 시럽이 바람직하다. 또한, 분말화한 자일로올리고사카라이드를 제조할 때에 분무 건조시키려면 농축시킨 액체를 사용하는 것이 바람직하다. In order to prevent the growth of microorganisms in the preservation and to prevent the inherent composition of the food from being impaired, syrup of high concentration as high as possible is preferable in order to reduce transportation costs. Further, it is preferable to use a concentrated liquid for spray drying when preparing a powdered xyloglucaride.

하지만, 현재까지 알려진 방법으로 순도가 높은 자일로비오스를 생산하기 어려우며, 이에 따라 자일란에 효소 처리를 통해 고순도 자일로비오스(xylobiose) 시럽을 생산하려는 다양한 시도가 있었으나, 아직까지 관련 성과가 이루어진 것이 없다. However, it is difficult to produce high purity xylobiose by the method known to date, and accordingly, various attempts have been made to produce high purity xylobiose syrup through enzyme treatment in xylan, but no related achievement has been made yet .

이러한 배경 하에, 자일로-올리고사카라이드가 가지는 모든 생리 활성의 주요인으로 알려진 자일로비오스(xylobiose)를 고순도로 얻기 위한 연구개발이 필요하며, 특히 고부가가치 신규 기능성 감미소재인 자일로비오스(xylobiose) 생산을 위한 효과적인 자일로비오스 생산 공정에 대한 연구 개발이 이루어져야 한다. Under these circumstances, it is necessary to research and develop xylobiose to obtain high purity, which is known to be the main cause of all the physiological activities of xylo-oligosaccharides. In particular, xylobiose, a high- Research and development of an effective xylobiose production process for production should be made.

본 발명은 자일로스를 자일로비오스로 전환하는 활성을 가지는 신규 β-자일로시다아제를 포함하는 자일로비오스 생산용 조성물을 제공한다. The present invention provides a composition for producing xylobiose comprising a novel? -Xylosidase having an activity of converting xylose to xylobiose.

본 발명은 또한 신규 β-자일로시다아제를 제조하는 방법 또는 신규 β-자일로시다아제를 제조하기 위해 필요한 다양한 요소들을 제공한다. The present invention also provides various methods for producing novel? -Xylosidase or for preparing novel? -Xylosidase.

본 발명은 또한 자일로스로부터 자일로비오스를 제조하는 방법 또는 자일로스로부터 자일로비오스를 제조하기 위해 필요한 다양한 요소들을 제공하는데 있다.The present invention also provides a method for producing xylobiose from xylose or various elements necessary for producing xylobiose from xylose.

본 발명자들은 건강기능성 당류인 자일로비오스(xylobiose)의 효과적인 생산을 위하여, 상업적으로 이용이 가능한 β-자일로시다아제 발현 시스템 및 자일로비오스 생산 방법 기술을 개발하고자 예의 노력한 결과 신규 β-자일로시다아제를 이용하여 자일로스를 자일로비오스로 대량 전환하는데 성공하여 본 발명을 완성하였다. The present inventors have made intensive efforts to develop commercially available β-xylosidase expression system and xylobiose production method technology for effective production of xylobiose, which is a health functional saccharide, and as a result, The present invention succeeded in mass conversion of xylose to xylobiose using sodium lauryl sulfate, thus completing the present invention.

본 발명은 서열번호 1의 아미노산 서열로 이루어진 β-자일로시다아제를 포함하는 자일로비오스 생산용 조성물을 제공한다. The present invention provides a composition for producing xylobiose, which comprises? -Xylosidase consisting of the amino acid sequence of SEQ ID NO: 1.

본 발명에 따른 자일로비오스 생산용 조성물은 자일로스를 자일로비오스로 전환시킬 수 있는 신규 β-자일로시다아제에 관한 것으로, 자일로스의 자일로비오스로의 전환에 대한 최대 활성을 가지고, 짧은 시간 동안에 높은 수율로 자일로비오스의 대량 생산이 가능하다. 상기 β-자일로시다아제는 바실러스 퍼밀러스 (Bacillus pumilus) 유전체 DNA에 존재하는 DNA 중 특정 DNA을 중합효소반응에 의해 증폭시키고, 증폭된 특정 DNA를 발현 컨스트럭트에 삽입하여 재조합 발현 컨스트럭트를 제조한 후, 상기 재조합 발현 컨스트럭트로 숙주 균주를 형질전환시켜 재조합 균주를 제조한 후, 상기 재조합 균주를 배양하여 발현시키는 방법으로 얻어질 수 있다. 보다 바람직하게는 서열번호 12의 바실러스 퍼밀러스 (Bacillus pumilus) IPO xynB 유전자를 합성하고, 이로부터 서열번호 2의 β-자일로시다아제 염기서열을 얻어, 이를 발현 컨스트럭트에 삽입하여 재조합 발현 컨스트럭트를 제조한 후, 상기 재조합 발현 컨스트럭트로 숙주 균주를 형질전환시켜 재조합 균주를 제조한 후, 상기 재조합 균주를 배양하여 발현시키는 방법으로 얻어질 수 있다.The composition for producing xylobiose according to the present invention relates to a novel? -Xylosidase capable of converting xylose to xylobiose and has a maximum activity for the conversion of xylose to xylobiose, and has a short It is possible to mass-produce xylobiose with high yield during the time. The β-xylosidase is obtained by amplifying a specific DNA among DNA present in Bacillus pumilus genomic DNA by a polymerase reaction, inserting the amplified specific DNA into the expression construct, , Transforming the host strain with the recombinant expression construct to produce a recombinant strain, and culturing the recombinant strain to express the recombinant strain. More preferably, the Bacillus pumilus IPO xynB gene of SEQ ID NO: 12 is synthesized, and the β-xylosidase base sequence of SEQ ID NO: 2 is obtained therefrom and inserted into the expression construct, And then transforming the host strain with the recombinant expression construct to produce a recombinant strain, followed by culturing and expressing the recombinant strain.

상기 재조합 균주의 숙주 균주는 식품학적으로 안전한 균주인 것이 바람직하다. 상기 식품학적으로 안전한 균주는 일반적으로 안전한 것으로 인정되는 GRAS(generally accepted as safe)급 균주를 의미하며, 예를 들어 사카로마이세스속 균주(Saccharomyces sp.), 바실러스속 균주(Bacillus sp.), 코리네박테리움속 균주(Corynebacterium sp.) 등에서 선택될 수 있다. 상기 균주들은 사료, 의약품 및 식품 등의 분야에서 다양한 용도를 갖는 화학물질을 생산하는 산업용 미생물이다. 이러한 균주들은 유전자 조작 및 대량 배양에 용이하거나, 다양한 공정 조건에서 높은 안정성을 가지는 균주이다. 또한, 이러한 균주들은 다른 세균에 비하여 상대적으로 단단한 세포막 구조를 보유하고 있기 때문에 높은 당 농도 등에 의한 삼투압의 영향 하에서도 균체가 안정적인 상태로 존재하는 생물학적 특성을 보인다. 상기 GRAS(generally accepted as safe)급 균주의 구체적인 예로는 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 바실러스 서브틸리스(bacillus subtilis), 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 등이 있으며, 바람직하게 사카로마이세스 세레비지애(Saccharomyces cerevisiae)이다.The host strain of the recombinant strain is preferably a food-stable strain. The foodstuff-safe strains generally refer to GRAS (generally accepted as safe) strains which are considered to be safe. Examples include strains of Saccharomyces sp., Bacillus sp. Corynebacterium sp., And the like. The strains are industrial microorganisms that produce chemicals with diverse uses in fields such as feed, medicine, and food. These strains are easy to genetically manipulate and mass culture or have high stability under various process conditions. In addition, since these strains have a relatively rigid cell membrane structure as compared with other bacteria, they exhibit biological characteristics that the cells remain in a stable state even under the influence of osmotic pressure due to high sugar concentration and the like. Specific examples of the GRAS (generally accepted as safe) strain include Saccharomyces cerevisiae , bacillus subtilis , and Corynebacterium glutamicum . It is preferably Saccharomyces cerevisiae .

본 발명에 따른 β-자일로시다아제는 바람직하게는 분자량이 55 내지 60 kDa이고 최적 활성 온도가 40~60℃, 바람직하게 45 내지 55 ℃의 범위이고, 최적 활성 pH가 5.0~8.0, 바람직하게 6.0 내지 7.0의 범위이다. 본 발명에 따른 β-자일로시다아제는 서열번호 1의 아미노산 서열로 이루어지나, 본 발명에 따른 β-자일로시다아제의 균등 범위는 이에 한정되지 않는다. 예를 들어, 본 발명에 따른 β-자일로시다아제의 균등 범위는 자일로스를 자일로비오스로 전환하는 활성이 유지되는 한, 서열번호 1의 아미노산 중 일부가 치환, 삽입 및/또는 결실된 것일 수 있다.The? -Xylosidase according to the present invention preferably has a molecular weight of 55 to 60 kDa and an optimum activity temperature of 40 to 60 ° C, preferably 45 to 55 ° C, an optimum active pH of 5.0 to 8.0, 6.0 to 7.0. The? -Xylosidase according to the present invention comprises the amino acid sequence of SEQ ID NO: 1, but the equivalent range of? -Xylosidase according to the present invention is not limited thereto. For example, the homogeneous range of β-xylosidase according to the present invention is one in which some of the amino acids of SEQ ID NO: 1 are substituted, inserted and / or deleted as long as the activity of converting xylose to xylobiose is maintained .

상기 아미노산의 치환은 바람직하게는 단백질의 특성이 바뀌지 않는 보존적 아미노산 치환(conservative amino acid replacement)에 의해 이루어지는 것이 바람직하다. 또한, 상기 아미노산의 변형은 글리코실화, 아세틸화, 포스포릴화 등에 의해 이루어질 수 있다. 또한, 본 발명에 따른 β-자일로시다아제의 균등 범위는 아미노산 서열상의 변이 또는 수식에 의해서 열, pH 등에 대한 구조적 안정성이 증가하거나 자일로스의 자일로비오스로의 전환에 대한 활성이 증가한 단백질을 포함할 수 있다. 또한, 본 발명에 따른 β-자일로시다아제의 균등 범위는 서열번호 1의 아미노산 서열과 70% 이상, 80% 이상, 90% 이상, 95% 이상, 또는 99% 이상의 상동성을 갖는 아미노산 서열을 포함하는 것일 수 있다. The substitution of the amino acid is preferably carried out by conservative amino acid replacement in which the property of the protein is not changed. Further, the modification of the amino acid may be carried out by glycosylation, acetylation, phosphorylation, and the like. In addition, the equivalent range of β-xylosidase according to the present invention is a protein having increased structural stability against heat, pH or the like due to mutation or modification of amino acid sequence or increased activity for conversion of xylose to xylobiose . In addition, the equivalent range of? -Xylosidase according to the present invention is an amino acid sequence having 70% or more, 80% or more, 90% or more, 95% or more, or 99% or more homology with the amino acid sequence of SEQ ID NO: May include.

본 발명은 또한, 자일로스를 서열번호 1의 아미노산 서열로 이루어진 β-자일로시다아제 또는 β-자일로시다아제를 포함하는 조성물과 반응시키는 단계를 포함하는 자일로비오스 생산 방법을 제공한다. The present invention also provides a method for producing xylobiose comprising the step of reacting xylose with a composition comprising? -Xylosidase or? -Xylosidase consisting of the amino acid sequence of SEQ ID NO: 1.

상기 β-자일로시다아제를 포함하는 조성물은 서열번호 1의 아미노산 서열로 이루어진 β-자일로시다아제를 코딩하는 폴리뉴클레오티드로 형질전환되거나 서열번호 1의 아미노산 서열로 이루어진 β-자일로시다아제를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 컨스트럭트에 의해 형질전환된 재조합 균주, 상기 재조합 균주의 배양물 또는 상기 재조합 균주의 파쇄물을 포함한다. 이때, 상기 β-자일로시다아제 또는 β-자일로시다아제를 포함하는 조성물의 반응 온도는 40 내지 60 ℃, 바람직하게 45 내지 55 ℃이고, 반응 pH는 5.0 내지 8.0, 바람직하게 6.0 내지 7.0일 수 있으며, 반응을 위한 자일로스 농도는 400 g/L 내지 1000 g/L, 바람직하게 500 내지 800 g/L일 수 있으나, 농도는 특별히 제한되지 않는다. Wherein the composition comprising the? -Xylosidase is transformed with a polynucleotide encoding? -Xylosidase consisting of the amino acid sequence of SEQ ID NO: 1 or a? -Xylosidase consisting of the amino acid sequence of SEQ ID NO: 1 A recombinant strain transformed by a recombinant construct comprising the polynucleotide encoding the recombinant strain, a culture of the recombinant strain, or a lysate of the recombinant strain. At this time, the reaction temperature of the composition comprising? -Xylosidase or? -Xylosidase is 40 to 60 ° C, preferably 45 to 55 ° C, and the reaction pH is 5.0 to 8.0, preferably 6.0 to 7.0 And the concentration of xylose for the reaction may be 400 g / L to 1000 g / L, preferably 500 to 800 g / L, but the concentration is not particularly limited.

본 발명은 또한, 서열번호 2의 β-자일로시다아제 염기 서열, GPD 프로모터 염기 서열, His-tag 염기 서열 및 delta 염기 서열을 포함하는 β-자일로시다아제 발현 컨스트럭트를 제공한다. 본 발명의 β-자일로시다아제 발현 컨스트럭트는 형질전환체에서 신규 β-자일로시다아제를 고효율로 발현할 수 있어 저비용으로 대량의 β-자일로시다아제를 생산할 수 있다. The present invention also provides a β-xylosidase expression construct comprising the β-xyloεidase base sequence, the GPD promoter base sequence, the His-tag base sequence and the delta base sequence of SEQ ID NO: 2. The β-xylosidase expression construct of the present invention can express new β-xylosidase in a transformant with high efficiency, and can produce a large amount of β-xylosidase at low cost.

본 발명에 따른 β-자일로시다아제 발현 컨스트럭트는 GPD promoter를 통해 강력하게 β-자일로시다아제가 발현되며, transposon 기능을 가진 delta 서열을 포함하여 세포 내의 지속적인 발현이 가능하며, His-tag 서열을 포함하여 분리 정제가 용이하다. The β-xylosidase expression construct according to the present invention strongly expresses β-xyloidesidase through the GPD promoter and can express the gene in the cell including the delta sequence having the transposon function. The His-tag It is easy to separate and purify including sequence.

본 발명에 있어서, 발현 컨스트럭트는 세포 내에서 단백질 발현을 위한 최소의 엘리먼트(elemnet)만을 포함하는 핵산분자를 의미한다. 바람직하게는 본 발명의 발현 컨스트럭트는 상기 언급된 구성요소들을 최소의 필수 구성요소로 포함한다.In the present invention, an expression construct means a nucleic acid molecule containing only a minimal element (elemnet) for protein expression in a cell. Preferably, the expression constructs of the present invention comprise the above-mentioned components as a minimum essential component.

본 발명의 발현 컨스트럭트는 재조합 벡터일 수 있다. 바람직하게, 당업계에 알려진 벡터 재조합 방법에 따라 GPD 프로모터 염기 서열을 His-tag 염기 서열이 첨가된 서열번호 2의 β-자일로시다아제 염기 서열 상류에 연결하고, delta 염기 서열을 포함하는 재조합 벡터일 수 있다. 여기서, 상기 GPD 프로모터 염기 서열은 서열번호 3의 염기서열을 포함할 수 있으며, His- tag 염기 서열은 서열번호 4의 염기서열을 포함할 수 있으며, delta 염기서열은 서열번호 5의 염기 서열을 포함할 수 있다. The expression construct of the present invention may be a recombinant vector. Preferably, according to the vector recombinant method known in the art, the GPD promoter base sequence is ligated upstream of the β-xylosidase base sequence of SEQ ID NO: 2 to which the His-tag base sequence is added, and a recombinant vector containing the delta base sequence Lt; / RTI > Herein, the GPD promoter base sequence may include the nucleotide sequence of SEQ ID NO: 3, the His-tag nucleotide sequence may include the nucleotide sequence of SEQ ID NO: 4, and the delta nucleotide sequence may include the nucleotide sequence of SEQ ID NO: can do.

또한, 본 발명에 따른 발현 컨스트럭트는 서열번호 6의 2-micron 염기 서열, 서열번호 7의 암피실린 저항성 유전자 염기 서열, 서열번호 8의 CYC.1 터미네이터 염기 서열 및 서열번호 9의 TRP 염기 서열 중 어느 하나 이상을 더 포함하는 β-자일로시다아제 발현 컨스트럭트이다. In addition, the expression construct according to the present invention comprises a 2-micron nucleotide sequence of SEQ ID NO: 6, an ampicillin resistance gene sequence of SEQ ID NO: 7, a CYC.1 terminator nucleotide sequence of SEQ ID NO: 8 and a TRP nucleotide sequence of SEQ ID NO: And a β-xylosidase expression construct further comprising one or more.

상기 언급된 염기서열들은 기능적으로 동등한 성질을 가지는 이상, 상기 각각의 염기 서열과 70% 이상, 80% 이상, 90% 이상, 95%이상, 또는 99% 이상의 상동성을 가지는 염기서열을 본 발명의 범주에 포함하는 것이다. Since the above-mentioned nucleotide sequences are functionally equivalent, a nucleotide sequence having 70% or more, 80% or more, 90% or more, 95% or more, or 99% or more homology with each of the above nucleotide sequences, Category.

예컨대, 본원 발명에 따른 β-자일로시다아제 발현 컨스트럭트는 2-micron, 암피실린 저항성 유전자, GPD 프로모터, His-Tag, CYC.1 터미네이터, Delta 및 TRP1 서열을 가지는 발현벡터에 서열번호 2의 β-자일로시다아제 염기 서열이 삽입된 것으로, 도 1에 기재된 재조합 발현 벡터 구조를 가진다. 재조합 벡터의 모식도는 도 1에 나타내었다. 상기 β-자일로시다아제 삽입을 위한 컨스트럭트는 서열번호 10의 염기서열을 가질 수 있다. 또한, 일실시예에 따르면, β-자일로시다아제 발현 컨스트럭트는 서열번호 11의 염기서열을 가진다. For example, the β-xylosidase expression construct according to the present invention may be inserted into an expression vector having a 2-micron, an ampicillin resistance gene, a GPD promoter, a His-Tag, a CYC.1 terminator, a Delta and a TRP1 sequence, - xylosidase nucleotide sequence inserted therein, and has the recombinant expression vector structure described in Fig. A schematic diagram of the recombinant vector is shown in Fig. The construct for β-xylosidase insertion may have the nucleotide sequence of SEQ ID NO: 10. Also, according to one embodiment, the β-xylosidase expression construct has the nucleotide sequence of SEQ ID NO: 11.

본 발명은 또한, β-자일로시다아제 발현 컨스트럭트를 포함하는 β-자일로시다아제 생산용 형질전환 균주를 제공한다. 상기 재조합 균주의 숙주 균주는 식품학적으로 안전한 균주인 것이 바람직하다. 식품학적으로 안전한 균주는 일반적으로 안전한 것으로 인정되는 GRAS(generally accepted as safe)급 균주를 의미하며, 예를 들어 사카로마이세스속 균주(Saccharomyces sp.), 바실러스속 균주(Bacillus sp.), 코리네박테리움속 균주(Corynebacterium sp.) 등에서 선택될 수 있다. 구체적인 예로는 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 바실러스 서브틸리스(bacillus subtilis), 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 등이 있으며, 바람직하게 사카로마이세스 세레비지애(Saccharomyces cerevisiae)이다. 가장 바람직하게 본 발명에 따른 β-자일로시다아제 생산용 형질전환 균주는 기탁번호 KCTC 18382P로 2015년 4월 29일 자에 한국생명공학 연구원 미생물자원센터에 기탁된 형질전환 사카로마이세스 세레비지애(Saccharomyces cerevisiae) pTSY01-XynB이다. The present invention also provides a transformant strain for the production of [beta] -xylosidase comprising a β-xylosidase expression construct. The host strain of the recombinant strain is preferably a food-stable strain. Food-stable strains generally refer to GRAS (generally accepted as safe) strains which are considered to be safe. Examples include strains of Saccharomyces sp., Bacillus sp. Corynebacterium sp., And the like. Specific examples include Saccharomyces cerevisiae , bacillus subtilis , Corynebacterium glutamicum , and the like, preferably Saccharomyces cerevisiae, cerevisiae . Most preferably, the transformant strain for producing [beta] -xylosidase according to the present invention is the transformed Saccharomyces cerevisiae deposited on Apr. 29, 2015 with the deposit number KCTC 18382P deposited at the microbiological resource center of the Korea Research Institute of Bioscience & Saccharomyces cerevisiae pTSY01-XynB.

본 발명에 있어서, 상기 β-자일로시다아제 발현 컨스트럭트를 균주에 형질전환하는 방법은 당업계에 공지된 형질전환하는 방법을 이용할 수 있으며, 예를 들어, 미세 주입법, 칼슘 포스페이트 침전법, 전기 천공법, 리포좀-매개 형질감염법, DEAE-덱스트란 처리 법, 유전자 밤바드먼트, 초산-리튬 DMSO법 등을 포함한다.In the present invention, the method for transforming the β-xylosidase expression construct into a strain may be a transformation method known in the art. For example, microinjection, calcium phosphate precipitation, Electroporation, liposome-mediated transfection, DEAE-dextran treatment, gene bombardment, acetic acid-lithium DMSO, and the like.

본 발명은 또한, (a) β-자일로시다아제 생산용 형질전환 균주를 배지 총 중량에 대하여 0.5 내지2 중량 %의 효모 추출물(yeast extract), 1 내지 3 중량 %의 펩톤(peptone) 및 1 내지 4 중량 %의 글루코즈를 포함하는 YPD 배지에 접종하는 단계; (A) a transformant strain for producing β-xylosidase, which comprises 0.5 to 2% by weight of yeast extract, 1 to 3% by weight of peptone and 1 To 4% by weight of glucose;

(b) 반응 온도 25 내지 35 ℃ 및 반응 pH 7.5 내지 8.5로 배양하는 단계; 및 (b) culturing at a reaction temperature of from 25 to 35 DEG C and a reaction pH of from 7.5 to 8.5; And

(c) 상기 (b) 단계의 배양액으로부터 β-자일로시다아제를 분리하는 단계를 포함하는 β-자일로시다아제의 제조방법을 제공한다. (c) separating β-xylosidase from the culture medium of step (b).

본 발명에 따른 β-자일로시다아제의 제조방법은 (a) β-자일로시다아제 생산용 형질전환 균주를 배지 총 중량에 대하여 0.5 내지2 중량 %의 효모 추출물(yeast extract), 1 내지 3 중량 %의 펩톤(peptone) 및 1 내지 4 중량 %의 글루코즈를 포함하는 YPD 배지에 접종하는 단계를 포함한다. 본 발명에 있어서, YPD 배지는 상기 함량 범위의 효모 추출물, 펩톤 및 글루코즈를 포함하여 배양시에 균주의 빠른 성장 및 β-자일로시다아제 생산에 효과를 보인다. 본 발명에 따른 형질전환 균주는 바람직하게 형질전환 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 보다 바람직하게 기탁번호 KCTC 18382P의 형질전환 사카로마이세스 세레비지애(Saccharomyces cerevisiae) pTSY01-XynB이다.The method for producing β-xylosidase according to the present invention comprises the steps of: (a) culturing a transformant strain for producing β-xylosidase in an amount of 0.5 to 2% by weight of yeast extract, To a YPD medium containing 1% to 4% by weight of peptone and 1 to 4% by weight of glucose. In the present invention, the YPD medium contains the yeast extract, the peptone and the glucose in the above-mentioned content range, and shows the effect on the rapid growth of the strain and the production of β-xylosidase when cultured. Transformant strain according to the invention is preferably a transgenic Saccharomyces my three Levy process jiae (Saccharomyces cerevisiae), and more preferably the deposit number KCTC 18382P of a transgenic Saccharomyces My process three Levy jiae (Saccharomyces cerevisiae ) pTSY01-XynB.

본 발명에 따른 β-자일로시다아제의 제조방법은 (b) 반응 온도 25 내지 35 ℃, 바람직하게 28 내지 32 ℃ 및 반응 pH 7.5 내지 8.5, 바람직하게 pH 7.8 내지 8.2로 배양하는 단계를 포함한다. 본 발명에 있어서, 상기 배양은 100 rpm 내지 400 rpm의 조건하에서 수행하는 것이 바람직하며, 상기 온도 및 pH 조건 하에서 빠른 성장 및 β-자일로시다아제 생산에 효과를 보인다.The method for producing beta -xylosidase according to the present invention comprises (b) culturing at a reaction temperature of 25 to 35 DEG C, preferably 28 to 32 DEG C, and a reaction pH of 7.5 to 8.5, preferably pH 7.8 to 8.2 . In the present invention, the culturing is preferably performed under the condition of 100 rpm to 400 rpm, and is effective for rapid growth and production of beta -xylosidase under the temperature and pH conditions.

본 발명에 따른 β-자일로시다아제의 제조방법은 (c) 상기 (b) 단계의 배양액으로부터 β-자일로시다아제를 분리하는 단계를 포함하는 β-자일로시다아제의 제조방법을 제공한다. 상기 β-자일로시다아제를 분리하는 단계는 동결-해동 반복, 초음파 처리, 기계적 파괴 또는 세포 분해제와 같은 다양한 물질적 또는 화학적 수단에 의해 파괴될 수 있으며, 통상적인 생화학 분리 기술에 의해서 분리 또는 정제가 가능하다. 예를 들어, 균주에 의해 발현된 단백질의 분리 또는 정제방법으로는 전기영동, 원심분리, 겔 여과, 침전, 투석, 크로마토그래피(이온교환크로마토그래피, 친화성 크로마토그래피, 면역흡착 친화력 크로마토그래피, 역상 HPLC, 겔 침투 HPLC), 등전성 포커스 및 이의 다양한 변화 또는 복합 방법을 포함하나, 이에 국한되지 않는다. 한편, 본 발명에서 형질전환 균주의 파쇄물로부터 β-자일로시다아제를 분리하는 것은 바람직하게는 펩티드 태그를 이용한 친화성 크로마토그래피(affinity chromatography)에 의해 수행될 수 있다. 상기 펩티드 태그로는 HA 태그, FLAG 태그, His 태그, BCCP (biotin carboxyl carrier protein), c-myc 태그, V5 태그, 글루타티온-S-트랜스퍼라아제 (GST) 또는 MBP(maltose binding protein) 등과 같이 공지의 다양한 태그를 사용할 수 있으며, 이중 His 태그인 것이 바람직하다. His-태깅된 단백질은 Ni-NTA(니켈-니트릴로트리아세트산) 수지의 칼럼 상에 특이적으로 트랩핑되어 분리가능하다. 또한, 상기 분리된 β-자일로시다아제는 사용을 위하여 투석 후 농축시키는 단계가 더 수행될 수 있다. The method for producing β-xylosidase according to the present invention provides (c) a method for producing β-xyloidesidase, which comprises separating β-xylosidase from the culture medium of step (b) . The step of isolating the β-xylosidase may be destroyed by various physical or chemical means such as freeze-thaw cycling, ultrasonication, mechanical destruction or cell disruption, and separation or purification by conventional biochemical separation techniques Is possible. For example, a method for separating or purifying a protein expressed by a strain includes electrophoresis, centrifugation, gel filtration, precipitation, dialysis, chromatography (ion exchange chromatography, affinity chromatography, immuno adsorption affinity chromatography, HPLC, gel permeation HPLC), isometric focus, and various variations or combinations thereof. On the other hand, in the present invention, the separation of β-xylosidase from the lysate of the transformant strain can be preferably carried out by affinity chromatography using a peptide tag. The peptide tag may be a known tag such as HA tag, FLAG tag, His tag, BCCP (biotin carboxyl carrier protein), c-myc tag, V5 tag, glutathione-S-transferase (GST) or MBP (maltose binding protein) , And a double His tag is preferable. The His-tagged protein is specifically trapped on a column of Ni-NTA (nickel-nitrilotriacetic acid) resin and is separable. Further, the separated? -Xylosidase may be further subjected to a step of concentrating after dialysis for use.

본 발명에 따른 β-자일로시다아제 발현 시스템은 자일로스로부터 자일로비오스로의 생전환율이 높은 β-자일로시다아제를 제공하며, 짧은 시간 동안에 높은 수율로 자일로비오스의 대량 생산이 가능하게 한다. 이에 따라, 신규 설탕 보완재의 대량 확보가 가능하며, 기능성 당 산업뿐만 아니라 이를 이용한 건강식품 소재, 의약용, 화장품용 소재 등에 유용하게 사용될 수 있다.The β-xylosidase expression system according to the present invention provides β-xylosidase with a high conversion rate from xylose to xylobiose and enables mass production of xylobiose at a high yield in a short time do. Accordingly, it is possible to secure a large amount of new sugar supplement materials, and it can be used not only in the functional sugar industry but also in health food materials, medicines, cosmetic materials and the like.

도 1은 β-자일로시다아제 발현 컨스트럭트의 일모식도를 나타낸다.
도 2는 온도 조건에 따른 β-자일로시다아제 발현 최적화 조건 확인 결과를 나타낸다.
도 3은 pH 조건에 따른 β-자일로시다아제 발현 최적화 조건 확인 결과를 나타낸다.
도 4는 탄소원 조건에 따른 β-자일로시다아제 발현 최적화 조건 확인 결과를 나타낸다.
도 5는 자일로스 600 g/L 및 β-자일로시다아제 1 U 처리시 자일로비오스 생합성 전환율 결과를 나타낸다.
도 6은 자일로스 600 g/L 및 β-자일로시다아제 2 U 처리시 자일로비오스 생합성 전환율 결과를 나타낸다.
도 7은 자일로스 700 g/L 및 β-자일로시다아제 1 U 처리시 자일로비오스 생합성 전환율 결과를 나타낸다.
Figure 1 shows a schematic diagram of a β-xylosidase expression construct.
FIG. 2 shows the results of β-xylosidase expression optimization conditions according to temperature conditions.
FIG. 3 shows the results of confirming the conditions for optimizing the expression of β-xylosidase according to pH conditions.
Fig. 4 shows the results of confirming conditions for optimizing expression of? -Xylosidase according to the carbon source condition.
Fig. 5 shows the results of xylobiose biosynthesis conversion results when treating 600 g / L xylose and 1-U-xylosidase.
Figure 6 shows the results of xylobiose biosynthesis conversion results at 600 g / L of xylose and 2 U of beta -xylosidase.
Fig. 7 shows the results of xylobiose biosynthesis conversion at the treatment of xylose 700 g / L and? -Xylosidase 1 U. Fig.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims.

<실시예 1> β-자일로시다아제 (&Lt; Example 1 > Synthesis of β-xylosidase ( XynBXynB ) 발현 벡터 클로닝 및 발현 시스템 제작) Expression vector cloning and expression system production

서열번호 12의 Bacillus pumilus IPO xynB의 DNA (2,201 bp)를 합성한 후, 제한효소 자리가 첨가된 primer를 제작하여 PCR을 통해 β-자일로시다아제 DNA를 제조하였다. The DNA of Bacillus pumilus IPO xynB of SEQ ID NO: 12 was synthesized (2,201 bp), and a primer to which a restriction enzyme site was added was prepared, and β-xylosidase DNA was prepared by PCR.

발아 효모에서 강력하게 발현되는 GPD promoter를 포함하는 벡터(pTSY01)에 β-자일로시다아제를 삽입하기 위하여 합성된 double-stranded β-자일로시다아제 DNA를 template로 하여 다음의 서열을 가진 primer set로 PCR을 수행하였다. 상기 GPD promoter를 포함하는 벡터는 서열번호 13의 염기 서열을 가진다. A double-stranded β-xylosidase DNA synthesized to insert β-xylosidase into a vector (pTSY01) containing a GPD promoter that is strongly expressed in germ yeast was used as a template and a primer set PCR was performed. The vector comprising the GPD promoter has the nucleotide sequence of SEQ ID NO: 13.

Figure pat00001
Figure pat00001

상기, PCR기법으로 amplification한 XynB를 pTSY01 내 삽입하기 위하여 BamHI, XhoI으로 double enzyme cutting을 수행하였다. 벡터에 삽입되는 β-자일로시다아제 서열은 서열번호 2의 염기 서열을 가진다. 또한, pTSY01 벡터 역시 같은 제한효소로 cutting을 수행하였다. Cutting한 XynB와 pTSY01를 gel elution을 통해 정제한 뒤, T4 ligase를 이용하여 ligation을 수행하였다. Ligation한 DNA 샘플을 E.coli에 transformation한 뒤, ampicillin-resistant colony를 선별하고, 다음의 primer set을 이용한 DNA sequencing을 통해 XynB의 염기서열에 대한 서열 분석을 정확히 수행하였다. Double enzyme digestion with Bam HI and Xho I was performed to insert XynB amplified by PCR in pTSY01. Beta -xylosidase &lt; / RTI &gt; The sequence has the nucleotide sequence of SEQ ID NO: 2. In addition, the pTSY01 vector was also cut with the same restriction enzyme. After cutting XynB and pTSY01 were purified by gel elution, ligation was performed using T4 ligase. After ligation of the DNA sample into E. coli , the ampicillin-resistant colony was screened and DNA sequencing using the following primer set was performed to ensure the sequencing of the nucleotide sequence of XynB .

Figure pat00002
Figure pat00002

또한, GPD promoter를 통해 강력하게 발현되는 XynB의 발아효모 세포 내의 지속적인 발현을 위해 transposon 기능을 가진 delta sequence를 삽입하기 위하여 발아효모의 gDNA를 template으로 하여 다음의 서열을 가진 primer set으로 PCR을 수행하였다. In addition, for the continuous expression of XynB in the germline yeast cells expressing strongly by the GPD promoter, PCR was performed using the gDNA of germination yeast as a template and a primer set having the following sequence in order to insert a delta sequence having a transposon function .

Figure pat00003
Figure pat00003

PCR기법으로 amplification한 delta sequence를 pTSY01-XynB 내 삽입을 위하여 NgoMIV로 enzyme cutting을 수행하였다. 동시에, pTSY01-XynB 역시 같은 제한효소로 cutting을 진행하였다. Cutting한 delta sequence와 pTSY01-XynB를 gel elution을 통해 정제한 뒤, T4 ligase를 이용하여 ligation을 진행하였다. Ligation한 DNA 샘플을 E.coli에 transformation한 뒤, ampicillin-resistant colony를 선별하고, 다음의 primer set을 이용한 DNA sequencing을 통해 delta의 삽입여부를 확인하고 β-자일로시다아제 (XynB) 발현 벡터를 완성하였다. β-자일로시다아제 발현 벡터의 모식도는 도 1에 나타내었으며, 서열번호 11의 염기서열을 가진다. The amplification delta sequence was amplified by PCR and inserted into pTSY01- XynB by enzyme digestion with Ngo MIV. At the same time, pTSY01- XynB was also cut with the same restriction enzyme. The cleaved delta sequence and pTSY01- XynB were purified by gel elution followed by ligation using T4 ligase. After ligation of the DNA sample into E. coli , the ampicillin-resistant colony was selected. DNA sequencing was performed using the following primer set to confirm the insertion of delta, and a β- xylosidase ( XynB ) expression vector Completed. A schematic diagram of the? -xylosidase expression vector is shown in FIG. 1 and has the nucleotide sequence of SEQ ID NO: 11.

Figure pat00004
Figure pat00004

<실시예 2>&Lt; Example 2 > β-자일로시다아제beta -xylosidase 생산 production Saccharomyces cerevisiae Saccharomyces cerevisiae 재조합 균주 제조 Production of recombinant strains

상기 제조된 β-자일로시다아제 (XynB) 발현 벡터는 하기 방법에 의해 Saccharomyces cerevisiae SK1 균주에 형질전환되었다. The β- xylosidase ( XynB ) expression vector prepared above was transformed into Saccharomyces cerevisiae SK1 strain by the following method.

30 ℃ 조건, 밤샘으로 YPG 플레이트에서 Saccharomyces cerevisiae SK1 균주를 배양하고, 5 ml YPD배지에 콜로니를 접종한 후 30 ℃에서 밤샘으로 배양하였다. 1: 50으로 10 ml YPD배지에 희석하고 4시간 동안 30 ℃에서 배양한 다음, 세포를 수거하여 3,000 rpm으로 5분간 원심분리를 수행하였다. 세포 펠렛은 1 ml 증류수에 현탁되고 3,000 rpm으로 5분간 원심분리를 수행하였다. 세포 펠렛은 10 mM LiAc 1 ml에 현탁되고 다시 3,000 rpm으로 5분간 원심분리를 수행하였다. 배지는 제거되고 세포에 50% PEG 480 ul, 100mM LiAc 72ul, 2mg/ml single-stranded salmon sperm DNA 50ul 및 transforming plasmid DNA 1.0ug이 첨가되었다. 그 후 30분 동안 42 ℃에서 Heat shock 처리하고 0.7 ml 증류수가 첨가되었다. 세포는 5분간 3,000 rpm으로 원심분리되어 수거되었다. 배지는 제거되고 1 ml YPD에 세포 펠렛은 현탁된 후 추가의 1 ml YPD를 포함하는 유리 배양 튜브에 옮겨졌다. 4시간 동안 30 ℃에서 더 배양한 후 세포는 수거되었다. 세포는 300 ul 증류수에서 현탁된 후 selective plate에서 30 ℃ 조건으로 3 내지 4일간 배양되었다. Saccharomyces cerevisiae SK1 strain was cultured on a YPG plate overnight at 30 ° C, and colonies were inoculated in 5 ml of YPD medium and cultured overnight at 30 ° C. Diluted in 10 ml of YPD medium at 1: 50 and cultured for 4 hours at 30 ° C. Then, the cells were harvested and centrifuged at 3,000 rpm for 5 minutes. The cell pellet was suspended in 1 ml of distilled water and centrifuged at 3,000 rpm for 5 minutes. The cell pellet was suspended in 1 ml of 10 mM LiAc and centrifuged again at 3,000 rpm for 5 minutes. The medium was removed and cells were supplemented with 480 ul of 50% PEG, 72 ul of 100 mM LiAc, 50 ul of 2 mg / ml single-stranded salmon sperm DNA and 1.0 ug of transforming plasmid DNA. Heat shock treatment was then performed at 42 ° C for 30 minutes and 0.7 ml of distilled water was added. The cells were centrifuged at 3,000 rpm for 5 minutes and collected. The medium was removed and the cell pellet was suspended in 1 ml YPD and transferred to a glass culture tube containing an additional 1 ml YPD. After further incubation at 30 ° C for 4 hours, the cells were harvested. Cells were suspended in 300 μl of distilled water and incubated on a selective plate at 30 ° C for 3 to 4 days.

제조된 균주는 한국생명공학연구원 미생물자원센터에 수탁번호 KCTC18382P으로 2015년 4월 29일자에 자에 기탁되었다. The prepared strain was deposited on April 29, 2015 with the accession number KCTC18382P to the Microbiological Resource Center of the Korea Biotechnology Research Institute.

<실시예 3> &Lt; Example 3 > S.cerevisiaeS.cerevisiae 재조합 균주의 β-자일로시다아제 발현 최적화 배양 조건 확립 Optimization of β-xylosidase expression of recombinant strains Establishment of culture conditions

상기 S.cerevisiae 재조합 균주의 β-자일로시다아제 발현 최적화 배양 조건 확립을 위하여 온도, pH, 탄소원 조건을 달리하면서 배양을 수행하였다. Optimization of Expression of β- xylosidase by the S. cerevisiae Recombinant Strain Culture was carried out under different conditions of temperature, pH and carbon source in order to establish the culture conditions.

β-자일로시다아제 활성 검정은 다음 방법을 통해 수행되었다. The β-xylosidase activity assay was performed by the following method.

1 mM p-nitrophenyl-β-D-xylopyranoside 200 uL와 β-자일로시다아제 200 uL를 넣고, 37℃에서 10분 동안 반응시킨 후 400mM sodium bicarbonate 400 uL를 넣어 반응을 종료하였다. p-nitrophenol을 표준물질로 사용하여 405 nm에서 흡광도 측정을 통해 효소의 활성을 측정하고, 1 Unit은 1 분에 p-nitrophenyl-β-D-xylopyranoside로부터 1 uM의 p-nitrophenol을 생성하는데 필요한 β-자일로시다아제의 양으로 정의하였다. 200 μL of 1 mM p-nitrophenyl-β-D-xylopyranoside and 200 μL of β-xylopyranoside were added and reacted at 37 ° C. for 10 minutes, and then 400 μL of 400 mM sodium bicarbonate was added to terminate the reaction. The activity of the enzyme was measured at 405 nm using p-nitrophenol as a standard, and 1 unit was used to measure 1 μM p-nitrophenol from p-nitrophenyl-β-D-xylopyranoside - Defined as the quantity of xylostadase.

YPD 배지 (1 % yeast extract, 2 % peptone, 2 % glucose)에서 온도, pH, 탄소원 조건에 따른 β-자일로시다아제 발현 변화 결과를 도 2 내지 도 4에 나타내었다. The results of β-xylosidase expression changes according to temperature, pH and carbon source conditions in YPD medium (1% yeast extract, 2% peptone, 2% glucose) are shown in FIGS. 2 to 4.

도 2는 온도 조건에 따른 β-자일로시다아제 발현 최적화 조건 확인 결과를 나타내며, 약 30 ℃ 정도에서 가장 높은 발현 효율을 보이는 것이 확인되었다. Fig. 2 shows the results of the β-xylosidase expression optimization conditions according to the temperature conditions, and it was confirmed that the highest expression efficiency was obtained at about 30 ° C.

도 3은 pH 조건에 따른 β-자일로시다아제 발현 최적화 조건 확인 결과를 나타내며, 약 pH 8 정도에서 가장 높은 발현 효율을 보이는 것이 확인되었다. FIG. 3 shows the results of confirming the optimization conditions of β-xylosidase expression under pH conditions, and it was confirmed that the highest expression efficiency was obtained at about pH 8.

도 4는 탄소원 조건에 따른 β-자일로시다아제 발현 최적화 조건 확인 결과를 나타내며, 배양 4 시간 시점에 기본 배지에 1 % 탄소원을 첨가하여 발현 결과를 확인한 것이다. 그 결과, 글루코스 사용시 가장 높은 발현 효율을 보이는 것이 확인되었다. FIG. 4 shows the result of confirming the β-xylosidase expression optimization conditions according to the carbon source condition. At 4 hours after the culture, 1% carbon source was added to the basic medium to confirm the expression results. As a result, it was confirmed that the highest expression efficiency was obtained when glucose was used.

상기 결과로부터, YPD 배지 (1 % yeast extract, 2 % peptone, 2 % glucose)에 4 % 접종 후 30 ℃, 200 rpm, pH 8로 22 시간 동안의 본 배양 조건을 확립하였다. From the above results, 4% inoculation was performed on YPD medium (1% yeast extract, 2% peptone, 2% glucose) and the culture conditions were maintained at 30 ° C, 200 rpm, pH 8 for 22 hours.

<실시예 4> <Example 4> S.cerevisiaeS.cerevisiae 재조합 균주로부터 β-자일로시다아제 정제 From the recombinant strain,? -Xylosidase purified

상기 S.cerevisiae 재조합 균주로부터 자일로비오스 생산을 위한 β-자일로시다아제를 정제하였다. Β-xylosidase for xylobiose production was purified from the S. cerevisiae recombinant strain.

상기 실시예 3의 본 배양 조건에서 배양된 세포를 회수하여 50 mM Tri-HCl buffer (pH 7)를 넣고 cell을 균질화 하였다. 초음파 세포파쇄기를 이용하여 세포벽을 파쇄하고 cell extract를 얻었다. 다음으로, Ni-NTA column을 이용하여 효소를 정제하고, 정제한 효소는 50 mM sodium phosphate buffer (pH 7)를 사용하여 투석한 후 농축함으로써 β-자일로시다아제를 얻었다. The cells cultured under the present culture conditions of Example 3 were collected and 50 mM Tri-HCl buffer (pH 7) was added to homogenize the cells. The cell wall was disrupted using an ultrasonic cell crusher and cell extract was obtained. Next, the enzyme was purified using a Ni-NTA column. The purified enzyme was dialyzed with 50 mM sodium phosphate buffer (pH 7) and concentrated to obtain β-xylosidase.

<실시예 5> β-자일로시다아제의 자일로비오스 생합성 반응Example 5: Xylobiose biosynthesis reaction of? -Xylosidase

상기 실시예 4에서 제조된 β-자일로시다아제를 상업적으로 판매하는 Megazyme의 효소인 xynB(E-BXSEBP)와 대비하여 자일로비오스 생합성 효율을 확인하였다. The efficiency of xylobiose biosynthesis was confirmed in comparison with xynB (E-BXSEBP), which is an enzyme of Megazyme, which commercially obtains β-xylosidase prepared in Example 4 above.

비교를 위해 각각 반응액의 최종 농도가 1 U 또는 2 U이 되도록 첨가하고, Xylose 농도는 각각 600 g/L, 700 g/L으로 하고, 50 mM sodium phosphate buffer (pH 7), 온도 50℃에서 반응을 시키며 배양 3, 6, 9, 24 시간에 샘플링을 수행하였다. 샘플링한 시료는 반응한 후 99℃, 10 분 동안 효소를 불활성화 시킨 후 생성된 자일로비오스의 농도를 Sugar-Pak I Column (Waters, USA)을 이용하여 HPLC로 정량 분석하였다. For comparison, the final concentration of the reaction solution was 1 U or 2 U, and the concentration of Xylose was 600 g / L and 700 g / L, respectively, and 50 mM sodium phosphate buffer (pH 7) Sampling was performed at 3, 6, 9, and 24 hours after incubation. After the sample was reacted, the enzyme was inactivated at 99 ° C for 10 minutes, and the concentration of xylobiose produced was quantified by HPLC using a Sugar-Pak I column (Waters, USA).

그 결과를 도 5 내지 도 7 및 표 1 내지 3에 나타내었다. The results are shown in Figs. 5 to 7 and Tables 1 to 3.

도 5 및 표 1은 자일로스 600 g/L 및 β-자일로시다아제 1 U 처리시의 결과를 나타낸다. Figure 5 and Table 1 show the results of treatment with 600 g / L xylose and 1 U of xylosidase.

[표 1] 자일로비오스 생합성 전환율 (Xylose 600 g/L, 효소 1U 처리)[Table 1] Conversion rate of xylobiose biosynthesis (Xylose 600 g / L, treated with 1 U of enzyme)

Figure pat00005
Figure pat00005

Xylose 600 g/L 조건에서 효소를 1U으로 처리하여 24 시간 동안 자일로비오스 생합성 전환율을 평가한 결과 pTSY01-XynB 발현 효소(Y_1U)는 8.1%의 전환율을 나타내었다. 반면, 시약으로 판매되는 상용 효소인 (M_1U)는 6.3%의 전환율만을 나타내, 본원 발명에 따른 β-자일로시다아제가 시약으로 판매되는 상용효소(M_1U) 대비 약 130% 높은 생합성 전환율을 보이는 것을 확인하였다. The conversion rate of xylobiose biosynthesis was evaluated for 24 hours by treating the enzyme with 1 U of Xylose 600 g / L, and the conversion rate of pTSY01-XynB expression enzyme (Y_1U) was 8.1%. On the other hand, the commercial enzyme (M_1U), which is a commercial enzyme sold as a reagent, showed a conversion rate of only 6.3%, indicating that the β-xylosidase according to the present invention exhibited about 130% higher biosynthetic conversion rate than the commercial enzyme (M_1U) Respectively.

도 6 및 표 2는 자일로스 600 g/L 및 β-자일로시다아제 2 U 처리시의 결과를 나타낸다. Figures 6 and Table 2 show the results of treatment with 600 g / L xylose and 2-U xylosidase.

[표 2] 자일로비오스 생합성 전환율 (Xylose 600 g/L, 효소 2U 처리)[Table 2] Conversion rate of xylobiose biosynthesis (Xylose 600 g / L, treated with 2 U of enzyme)

Figure pat00006
Figure pat00006

Xylose 600 g/L 조건에서 효소를 2U으로 처리하여 24 시간 동안 자일로비오스 생합성 전환율을 평가한 결과 pTSY01-XynB 발현 효소(Y_2U)는 9.0%의 전환율을 나타내었다. 반면, 시약으로 판매되는 상용 효소인 (M_2U)는 5.8 %의 전환율만을 나타내 본원 발명에 따른 β-자일로시다아제가 시약으로 판매되는 상용효소(M_2U) 대비 약 156% 높은 생합성 전환율을 보이는 것을 확인하였다. The conversion rate of xylobiose biosynthesis was evaluated for 24 hours by treating the enzyme with 2 U at 600 g / L. As a result, the conversion rate of pTSY01-XynB expression enzyme (Y_2U) was 9.0%. On the other hand, it was confirmed that β-xylosidase according to the present invention exhibited about 156% higher biosynthetic conversion rate than the commercial enzyme (M_2U) sold as a reagent, while the commercial enzyme (M_2U) Respectively.

도 7 및 표 3은 자일로스 700 g/L 및 β-자일로시다아제 1 U 처리시의 결과를 나타낸다. 7 and Table 3 show the results of treatment with xylose 700 g / L and 1-xylosidase 1 U. FIG.

[표 3] 자일로비오스 생합성 전환율 (Xylose 700 g/L, 효소 1 U 처리)[Table 3] Conversion rate of xylobiose biosynthesis (Xylose 700 g / L, treated with 1 U of enzyme)

Figure pat00007
Figure pat00007

Xylose 700 g/L 조건에서 효소를 1 U으로 처리하여 24 시간 동안 자일로비오스 생합성 전환율을 평가한 결과 pTSY01-XynB 발현 효소(Y_1U)는 10.5%의 전환율을 나타내었다. 반면, 시약으로 판매되는 상용 효소인 (M_1U)는 5.6 %의 전환율만을 나타내 본원 발명에 따른 β-자일로시다아제가 시약으로 판매되는 상용효소(M_1U) 대비 약 186% 높은 생합성 전환율을 보이는 것을 확인하였다. The conversion rate of xylobiose biosynthesis for 24 hours was evaluated by treating the enzyme with 1 U at 700 g / L. As a result, the conversion rate of pTSY01-XynB expression enzyme (Y_1U) was 10.5%. On the other hand, it was confirmed that β-xylosidase according to the present invention exhibited about 186% higher biosynthetic conversion rate than the commercial enzyme (M_1U), which is a commercial enzyme sold as a reagent (M_1U) Respectively.

상기 결과로부터 본원 발명의 β-자일로시다아제가 타 효소와 대비하여 우수한 자일로비오스 생합성 전환율을 보이는 것을 확인하였다.From the above results, it was confirmed that the β-xylosidase of the present invention exhibits excellent xylobiose biosynthesis conversion ratio as compared with other enzymes.

한국생명공학연구원Korea Biotechnology Research Institute KCTC18382PKCTC18382P 2015042920150429

<110> TS Corporation <120> Beta xylosidase expression system for producing xylobiose <130> P15-071-DHJ <160> 21 <170> KopatentIn 2.0 <210> 1 <211> 535 <212> PRT <213> Artificial Sequence <220> <223> beta xylosidase <400> 1 Met Lys Ile Thr Asn Pro Val Leu Lys Gly Phe Asn Pro Asp Pro Ser 1 5 10 15 Ile Cys Arg Ala Gly Glu Asp Tyr Tyr Met Ala Val Ser Thr Phe Glu 20 25 30 Trp Phe Pro Gly Val Gln Ile Tyr His Ser Lys Asp Leu Ile His Trp 35 40 45 Arg Leu Ala Ala Arg Pro Leu Gln Lys Thr Ser Gln Leu Asp Met Lys 50 55 60 Gly Asn Pro Asp Ser Gly Gly Val Trp Ala Pro Cys Leu Ser Tyr Ala 65 70 75 80 Asp Gly Gln Phe Trp Leu Ile Tyr Ser Asp Ile Lys Val Val Asp Gly 85 90 95 Pro Phe Lys Asp Gly His Asn Tyr Leu Val Thr Ala Asp Ala Val Asp 100 105 110 Gly Glu Trp Ser Asp Pro Val Arg Leu Asn Ser Ser Gly Phe Asp Pro 115 120 125 Ser Leu Phe His Asp Pro Ser Gly Lys Lys Tyr Val Leu Asn Met Leu 130 135 140 Trp Asp His Arg Glu Lys His His Ser Phe Ala Gly Ile Ala Leu Gln 145 150 155 160 Glu Tyr Ser Val Ser Glu Lys Lys Leu Val Gly Glu Arg Lys Val Ile 165 170 175 Phe Lys Gly Thr Pro Ile Lys Leu Thr Glu Ala Pro His Leu Tyr Tyr 180 185 190 Ile Asn Asp Val Tyr Tyr Leu Leu Thr Ala Glu Gly Gly Thr Arg Tyr 195 200 205 Glu His Ala Ala Thr Ile Ala Arg Ser Ser Arg Ile Asp Gly Pro Tyr 210 215 220 Glu Val His Pro Asp Asn Pro Ile Leu Thr Ala Phe His Ala Pro Ser 225 230 235 240 His Pro Leu Gln Lys Cys Gly His Ala Ser Ile Val Gln Thr His Thr 245 250 255 Asn Glu Trp Tyr Leu Ala His Leu Thr Gly Arg Pro Ile His Ser Ser 260 265 270 Lys Glu Ser Ile Phe Gln Gln Arg Gly Trp Cys Pro Leu Gly Arg Glu 275 280 285 Thr Ala Ile Gln Lys Leu Glu Trp Lys Asp Gly Trp Pro Tyr Val Val 290 295 300 Gly Gly Lys Glu Gly Leu Leu Glu Val Glu Ala Pro Ala Met Ser Val 305 310 315 320 Lys Glu Phe Ser Pro Thr Tyr His Ile Val Asp Glu Phe Lys Asp Ser 325 330 335 Ser Leu Asn Arg His Phe Gln Thr Leu Arg Ile Pro Phe Thr Asp Gln 340 345 350 Ile Gly Ser Val Thr Glu Asn Pro His His Leu Arg Leu Tyr Gly Gln 355 360 365 Glu Ser Leu Thr Ser Lys Phe Thr Gln Ala Phe Val Ala Arg Arg Trp 370 375 380 Gln Ser Phe Tyr Phe Glu Ala Glu Thr Ala Val Ser Phe Phe Pro Lys 385 390 395 400 Asn Phe Gln Gln Ala Ala Gly Leu Val Asn Tyr Tyr Asn Thr Glu Asn 405 410 415 Trp Thr Ala Leu Gln Val Thr Tyr Asp Asp Ala Leu Gly Arg Ile Leu 420 425 430 Glu Leu Ser Val Cys Glu Asn Leu Ala Phe Ser Gln Pro Leu Ile Lys 435 440 445 Lys Ile Ile Ile Pro Asp Glu Ile Pro Tyr Val Tyr Leu Lys Val Thr 450 455 460 Val Gln Arg Glu Thr Tyr Thr Tyr Ser Tyr Ser Phe Asp Gln Gln Glu 465 470 475 480 Trp Glu Lys Ile Asp Val Pro Leu Glu Ser Thr His Leu Ser Asp Asp 485 490 495 Phe Ile Arg Gly Gly Gly Phe Phe Thr Gly Ala Phe Val Gly Met Gln 500 505 510 Cys Gln Asp Thr Ser Gly Glu Arg Leu Pro Ala Asp Phe Lys Tyr Phe 515 520 525 Arg Tyr Glu Glu Thr Thr Glu 530 535 <210> 2 <211> 1608 <212> DNA <213> Artificial Sequence <220> <223> beta xylosidase <400> 2 ttgaagatta ctaatccagt gctcaaagga tttaaccctg acccaagtat ttgccgtgcg 60 ggagaggact attacatggc ggtttctaca tttgaatggt tcccgggggt gcaaatttat 120 cactcgaagg atctcatcca ttggcggctc gccgcgcgtc ccttgcaaaa aacttctcaa 180 ctcgatatga aaggaaatcc tgattccggc ggggtatggg caccgtgttt aagttatgcg 240 gatggtcagt tttggctcat ctattcagat attaaagtag tagatggtcc gtttaaggat 300 ggtcataatt atttggtcac agctgatgca gtagatggtg agtggagcga tccggttcgg 360 ctcaatagtt ctgggtttga tccttccttg ttccatgatc caagcggaaa gaaatacgtg 420 ttgaatatgc tgtgggacca tcgagaaaaa catcactcct ttgcaggtat agccttgcag 480 gaatatagtg tatctgaaaa aaaactggtc ggtgagcgga aggtcatttt taaaggcacg 540 ccaatcaaac tcacagaagc cccgcatctt tattacatca atgatgtcta ttatttatta 600 acagctgaag ggggaacacg ttacgaacat gcagccacaa tcgcccgttc ctcgcgtatt 660 gatgggccgt acgaggttca tcctgacaac ccaattttaa cggcttttca cgcgcctagc 720 catccactac aaaaatgcgg gcatgcttcc attgtacaaa cgcatacaaa tgaatggtat 780 ttggctcatc tgactggccg cccaattcat tcaagtaagg aatccatttt tcagcaaaga 840 ggctggtgcc ctttaggaag agagacagcc atacaaaagc ttgaatggaa agatggctgg 900 ccgtatgtgg taggcggaaa agaggggctc ctagaggttg aagcgcctgc gatgagcgta 960 aaagagttct ctccaaccta tcacatagtc gatgaattta aagattcatc gttaaataga 1020 catttccaaa cattaagaat cccatttacg gatcagattg gttcagtgac ggaaaatcct 1080 catcatttaa ggctgtatgg gcaggaatct ttaacgtcta aatttaccca agcgtttgtt 1140 gcgaggcgct ggcaaagctt ttattttgaa gcagagacag cggtttcctt ctttccgaaa 1200 aactttcagc aagcggcagg tcttgtgaat tattataata cggaaaattg gactgcactt 1260 caggtgactt atgacgatgc gcttggccgt atccttgagt tatctgtgtg tgaaaacctg 1320 gccttttctc agccgctaat taaaaaaatc atcatcccag acgagattcc gtatgtgtat 1380 ttaaaagtga ccgttcagag agagacgtac acgtattctt attcttttga tcaacaagag 1440 tgggaaaaaa tagatgtacc gcttgaatcg acccatttgt cagatgattt tattcgagga 1500 ggggggttct ttacaggggc ttttgttgga atgcagtgcc aagacacaag cggtgaacgt 1560 ctgcctgccg attttaagta ttttcgatac gaagaaacaa ctgaataa 1608 <210> 3 <211> 673 <212> DNA <213> Artificial Sequence <220> <223> GPD promoter <400> 3 acaaaagctg gagctcagtt tatcattatc aatactcgcc atttcaaaga atacgtaaat 60 aattaatagt agtgattttc ctaactttat ttagtcaaaa aattagcctt ttaattctgc 120 tgtaacccgt acatgcccaa aatagggggc gggttacaca gaatatataa catcgtaggt 180 gtctgggtga acagtttatt cctggcatcc actaaatata atggagcccg ctttttaagc 240 tggcatccag aaaaaaaaag aatcccagca ccaaaatatt gttttcttca ccaaccatca 300 gttcataggt ccattctctt agcgcaacta cagagaacag gggcacaaac aggcaaaaaa 360 cgggcacaac ctcaatggag tgatgcaacc tgcctggagt aaatgatgac acaaggcaat 420 tgacccacgc atgtatctat ctcattttct tacaccttct attaccttct gctctctctg 480 atttggaaaa agctgaaaaa aaaggttgaa accagttccc tgaaattatt cccctacttg 540 actaataagt atataaagac ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa 600 cttcttaaat tctactttta tagttagtct tttttttagt tttaaaacac cagaacttag 660 tttcgacgga ttc 673 <210> 4 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> His tag <400> 4 atgggcagca gccatcatca tcatcatcac agcagcggcc at 42 <210> 5 <211> 332 <212> DNA <213> Artificial Sequence <220> <223> Delta <400> 5 gagaattggg tgaatgttga gataattgtt gggattccat ttttaataag gcaataatat 60 taggtatgta gaatgtacta gaagttctcc tcgaggattt aggaatccat aaaagggaat 120 ctgcaattct acacaattct ataaatatta ttatcatcat tttatatgtt aatattcatt 180 gatcctatta cattatcaat ccttgcgttt cagcttccac taatttagat gactatttct 240 catcatttgc gtcatcttct aacaccgtat atgataatat actagtaacg taaatactag 300 ttagtagatg atagttgatt tctattccaa ca 332 <210> 6 <211> 1337 <212> DNA <213> Artificial Sequence <220> <223> 2-micron <400> 6 caaaggaaat gatagcattg aaggatgaga ctaatccaat tgaggagtgg cagcatatag 60 aacagctaaa gggtagtgct gaaggaagca tacgataccc cgcatggaat gggataatat 120 cacaggaggt actagactac ctttcatcct acataaatag acgcatataa gtacgcattt 180 aagcataaac acgcactatg ccgttcttct catgtatata tatatacagg caacacgcag 240 atataggtgc gacgtgaaca gtgagctgta tgtgcgcagc tcgcgttgca ttttcggaag 300 cgctcgtttt cggaaacgct ttgaagttcc tattccgaag ttcctattct ctagaaagta 360 taggaacttc agagcgcttt tgaaaaccaa aagcgctctg aagacgcact ttcaaaaaac 420 caaaaacgca ccggactgta acgagctact aaaatattgc gaataccgct tccacaaaca 480 ttgctcaaaa gtatctcttt gctatatatc tctgtgctat atccctatat aacctaccca 540 tccacctttc gctccttgaa cttgcatcta aactcgacct ctacattttt tatgtttatc 600 tctagtatta ctctttagac aaaaaaattg tagtaagaac tattcataga gtgaatcgaa 660 aacaatacga aaatgtaaac atttcctata cgtagtatat agagacaaaa tagaagaaac 720 cgttcataat tttctgacca atgaagaatc atcaacgcta tcactttctg ttcacaaagt 780 atgcgcaatc cacatcggta tagaatataa tcggggatgc ctttatcttg aaaaaatgca 840 cccgcagctt cgctagtaat cagtaaacgc gggaagtgga gtcaggcttt ttttatggaa 900 gagaaaatag acaccaaagt agccttcttc taaccttaac ggacctacag tgcaaaaagt 960 tatcaagaga ctgcattata gagcgcacaa aggagaaaaa aagtaatcta agatgctttg 1020 ttagaaaaat agcgctctcg ggatgcattt ttgtagaaca aaaaagaagt atagattctt 1080 tgttggtaaa atagcgctct cgcgttgcat ttctgttctg taaaaatgca gctcagattc 1140 tttgtttgaa aaattagcgc tctcgcgttg catttttgtt ttacaaaaat gaagcacaga 1200 ttcttcgttg gtaaaatagc gctttcgcgt tgcatttctg ttctgtaaaa atgcagctca 1260 gattctttgt ttgaaaaatt agcgctctcg cgttgcattt ttgttctaca aaatgaagca 1320 cagatgcttc gttcagg 1337 <210> 7 <211> 931 <212> DNA <213> Artificial Sequence <220> <223> Ampicillin resistance gene (amp) <400> 7 ttcaataata ttgaaaaagg aagagtatga gtattcaaca tttccgtgtc gcccttattc 60 ccttttttgc ggcattttgc cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa 120 aagatgctga agatcagttg ggtgcacgag tgggttacat cgaactggat ctcaacagcg 180 gtaagatcct tgagagtttt cgccccgaag aacgttttcc aatgatgagc acttttaaag 240 ttctgctatg tggcgcggta ttatcccgta ttgacgccgg gcaagagcaa ctcggtcgcc 300 gcatacacta ttctcagaat gacttggttg agtactcacc agtcacagaa aagcatctta 360 cggatggcat gacagtaaga gaattatgca gtgctgccat aaccatgagt gataacactg 420 cggccaactt acttctgaca acgatcggag gaccgaagga gctaaccgct tttttgcaca 480 acatggggga tcatgtaact cgccttgatc gttgggaacc ggagctgaat gaagccatac 540 caaacgacga gcgtgacacc acgatgcctg tagcaatggc aacaacgttg cgcaaactat 600 taactggcga actacttact ctagcttccc ggcaacaatt aatagactgg atggaggcgg 660 ataaagttgc aggaccactt ctgcgctcgg cccttccggc tggctggttt attgctgata 720 aatctggagc cggtgagcgt gggtctcgcg gtatcattgc agcactgggg ccagatggta 780 agccctcccg tatcgtagtt atctacacga cggggagtca ggcaactatg gatgaacgaa 840 atagacagat cgctgagata ggtgcctcac tgattaagca ttggtaactg tcagaccaag 900 tttactcata tatactttag attgatttaa a 931 <210> 8 <211> 261 <212> DNA <213> Artificial Sequence <220> <223> CYC1 Terminator <400> 8 cgagtcatgt aattagttat gtcacgctta cattcacgcc ctccccccac atccgctcta 60 accgaaaagg aaggagttag acaacctgaa gtctaggtcc ctatttattt ttttatagtt 120 atgttagtat taagaacgtt atttatattt caaatttttc ttttttttct gtacagacgc 180 gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg acgctcgaag 240 gctttaattt gcggccggta c 261 <210> 9 <211> 1015 <212> DNA <213> Artificial Sequence <220> <223> TRP <400> 9 tctgtgcggt atttcacacc gcatagatcg gcaagtgcac aaacaatact taaataaata 60 ctactcagta ataacctatt tcttagcatt tttgacgaaa tttgctattt tgttagagtc 120 ttttacacca tttgtctcca cacctccgct tacatcaaca ccaataacgc catttaatct 180 aagcgcatca ccaacatttt ctggcgtcag tccaccagct aacataaaat gtaagctttc 240 ggggctctct tgccttccaa cccagtcaga aatcgagttc caatccaaaa gttcacctgt 300 cccacctgct tctgaatcaa acaagggaat aaacgaatga ggtttctgtg aagctgcact 360 gagtagtatg ttgcagtctt ttggaaatac gagtctttta ataactggca aaccgaggaa 420 ctcttggtat tcttgccacg actcatctcc atgcagttgg acgatatcaa tgccgtaatc 480 attgaccaga gccaaaacat cctccttagg ttgattacga aacacgccaa ccaagtattt 540 cggagtgcct gaactatttt tatatgcttt tacaagactt gaaattttcc ttgcaataac 600 cgggtcaatt gttctctttc tattgggcac acatataata cccagcaagt cagcatcgga 660 atctagagca cattctgcgg cctctgtgct ctgcaagccg caaactttca ccaatggacc 720 agaactacct gtgaaattaa taacagacat actccaagct gcctttgtgt gcttaatcac 780 gtatactcac gtgctcaata gtcaccaatg ccctccctct tggccctctc cttttctttt 840 ttcgaccgaa ttaattctta atcggcaaaa aaagaaaagc tccggatcaa gattgtacgt 900 aaggtgacaa gctatttttc aataaagaat atcttccact actgccatct ggcgtcataa 960 ctgcaaagta cacatatatt acgatgctgt ctattaaatg cttcctatat tatat 1015 <210> 10 <211> 6836 <212> DNA <213> Artificial Sequence <220> <223> expression construct <400> 10 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagtatga tccaatatca aaggaaatga tagcattgaa ggatgagact aatccaattg 120 aggagtggca gcatatagaa cagctaaagg gtagtgctga aggaagcata cgataccccg 180 catggaatgg gataatatca caggaggtac tagactacct ttcatcctac ataaatagac 240 gcatataagt acgcatttaa gcataaacac gcactatgcc gttcttctca tgtatatata 300 tatacaggca acacgcagat ataggtgcga cgtgaacagt gagctgtatg tgcgcagctc 360 gcgttgcatt ttcggaagcg ctcgttttcg gaaacgcttt gaagttccta ttccgaagtt 420 cctattctct agaaagtata ggaacttcag agcgcttttg aaaaccaaaa gcgctctgaa 480 gacgcacttt caaaaaacca aaaacgcacc ggactgtaac gagctactaa aatattgcga 540 ataccgcttc cacaaacatt gctcaaaagt atctctttgc tatatatctc tgtgctatat 600 ccctatataa cctacccatc cacctttcgc tccttgaact tgcatctaaa ctcgacctct 660 acatttttta tgtttatctc tagtattact ctttagacaa aaaaattgta gtaagaacta 720 ttcatagagt gaatcgaaaa caatacgaaa atgtaaacat ttcctatacg tagtatatag 780 agacaaaata gaagaaaccg ttcataattt tctgaccaat gaagaatcat caacgctatc 840 actttctgtt cacaaagtat gcgcaatcca catcggtata gaatataatc ggggatgcct 900 ttatcttgaa aaaatgcacc cgcagcttcg ctagtaatca gtaaacgcgg gaagtggagt 960 caggcttttt ttatggaaga gaaaatagac accaaagtag ccttcttcta accttaacgg 1020 acctacagtg caaaaagtta tcaagagact gcattataga gcgcacaaag gagaaaaaaa 1080 gtaatctaag atgctttgtt agaaaaatag cgctctcggg atgcattttt gtagaacaaa 1140 aaagaagtat agattctttg ttggtaaaat agcgctctcg cgttgcattt ctgttctgta 1200 aaaatgcagc tcagattctt tgtttgaaaa attagcgctc tcgcgttgca tttttgtttt 1260 acaaaaatga agcacagatt cttcgttggt aaaatagcgc tttcgcgttg catttctgtt 1320 ctgtaaaaat gcagctcaga ttctttgttt gaaaaattag cgctctcgcg ttgcattttt 1380 gttctacaaa atgaagcaca gatgcttcgt tcaggtggca cttttcgggg aaatgtgcgc 1440 ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 1500 taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc 1560 cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa 1620 acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 1680 ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg ttttccaatg 1740 atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa 1800 gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc 1860 acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 1920 atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 1980 accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag 2040 ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca 2100 acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca acaattaata 2160 gactggatgg aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc 2220 tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca 2280 ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca 2340 actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg 2400 taactgtcag accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa 2460 tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt 2520 gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 2580 cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg 2640 gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga 2700 gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca cttcaagaac 2760 tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt 2820 ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag 2880 cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc 2940 gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag 3000 gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca 3060 gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt 3120 cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc 3180 tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc 3240 cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc 3300 cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa 3360 ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac 3420 tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt acctcactca ttaggcaccc 3480 caggctttac actttatgct tccggctcct atgttgtgtg gaattgtgag cggataacaa 3540 tttcacacag gaaacagcta tgaccatgat tacgccaagc gcgcaattaa ccctcactaa 3600 agggaacaaa agctggagct cagtttatca ttatcaatac tcgccatttc aaagaatacg 3660 taaataatta atagtagtga ttttcctaac tttatttagt caaaaaatta gccttttaat 3720 tctgctgtaa cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg 3780 taggtgtctg ggtgaacagt ttattcctgg catccactaa atataatgga gcccgctttt 3840 taagctggca tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac 3900 catcagttca taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca 3960 aaaaacgggc acaacctcaa tggagtgatg caacctgcct ggagtaaatg atgacacaag 4020 gcaattgacc cacgcatgta tctatctcat tttcttacac cttctattac cttctgctct 4080 ctctgatttg gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct 4140 acttgactaa taagtatata aagacggtag gtattgattg taattctgta aatctatttc 4200 ttaaacttct taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa 4260 cttagtttcg acggattcta gaactagtgg atccatgggc agcagccatc atcatcatca 4320 tcacagcagc ggccatctcg agtcatgtaa ttagttatgt cacgcttaca ttcacgccct 4380 ccccccacat ccgctctaac cgaaaaggaa ggagttagac aacctgaagt ctaggtccct 4440 atttattttt ttatagttat gttagtatta agaacgttat ttatatttca aatttttctt 4500 ttttttctgt acagacgcgt gtacgcatgt aacattatac tgaaaacctt gcttgagaag 4560 gttttgggac gctcgaaggc tttaatttgc ggccggtacc caattcgccc tatagtgagt 4620 cgtattacgc gcgctcactg gccgtcgttt tacaacgtcg tgactgggaa aaccctggcg 4680 ttacccaact taatcgcctt gcagcacatc cccctttcgc cagctggcgt aatagcgaag 4740 aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa tggcgcgacg 4800 cgccctgtag cggcgcatta agcgcggcgg gtgtggtggt tacgcgcagc gtgaccgcta 4860 cacttgccag cgccctagcg cccgctcctt tcgctttctt cccttccttt ctcgccacgt 4920 tcgccggctg agaattgggt gaatgttgag ataattgttg ggattccatt tttaataagg 4980 caataatatt aggtatgtag aatgtactag aagttctcct cgaggattta ggaatccata 5040 aaagggaatc tgcaattcta cacaattcta taaatattat tatcatcatt ttatatgtta 5100 atattcattg atcctattac attatcaatc cttgcgtttc agcttccact aatttagatg 5160 actatttctc atcatttgcg tcatcttcta acaccgtata tgataatata ctagtaacgt 5220 aaatactagt tagtagatga tagttgattt ctattccaac agccggcttt ccccgtcaag 5280 ctctaaatcg ggggctccct ttagggttcc gatttagtgc tttacggcac ctcgacccca 5340 aaaaacttga ttagggtgat ggttcacgta gtgggccatc gccctgatag acggtttttc 5400 gccctttgac gttggagtcc acgttcttta atagtggact cttgttccaa actggaacaa 5460 cactcaaccc tatctcggtc tattcttttg atttataagg gattttgccg atttcggcct 5520 attggttaaa aaatgagctg atttaacaaa aatttaacgc gaattttaac aaaatattaa 5580 cgtttacaat ttcctgatgc ggtattttct ccttacgcat ctgtgcggta tttcacaccg 5640 catagatcgg caagtgcaca aacaatactt aaataaatac tactcagtaa taacctattt 5700 cttagcattt ttgacgaaat ttgctatttt gttagagtct tttacaccat ttgtctccac 5760 acctccgctt acatcaacac caataacgcc atttaatcta agcgcatcac caacattttc 5820 tggcgtcagt ccaccagcta acataaaatg taagctttcg gggctctctt gccttccaac 5880 ccagtcagaa atcgagttcc aatccaaaag ttcacctgtc ccacctgctt ctgaatcaaa 5940 caagggaata aacgaatgag gtttctgtga agctgcactg agtagtatgt tgcagtcttt 6000 tggaaatacg agtcttttaa taactggcaa accgaggaac tcttggtatt cttgccacga 6060 ctcatctcca tgcagttgga cgatatcaat gccgtaatca ttgaccagag ccaaaacatc 6120 ctccttaggt tgattacgaa acacgccaac caagtatttc ggagtgcctg aactattttt 6180 atatgctttt acaagacttg aaattttcct tgcaataacc gggtcaattg ttctctttct 6240 attgggcaca catataatac ccagcaagtc agcatcggaa tctagagcac attctgcggc 6300 ctctgtgctc tgcaagccgc aaactttcac caatggacca gaactacctg tgaaattaat 6360 aacagacata ctccaagctg cctttgtgtg cttaatcacg tatactcacg tgctcaatag 6420 tcaccaatgc cctccctctt ggccctctcc ttttcttttt tcgaccgaat taattcttaa 6480 tcggcaaaaa aagaaaagct ccggatcaag attgtacgta aggtgacaag ctatttttca 6540 ataaagaata tcttccacta ctgccatctg gcgtcataac tgcaaagtac acatatatta 6600 cgatgctgtc tattaaatgc ttcctatatt atatatatag taatgtcgtt tatggtgcac 6660 tctcagtaca atctgctctg atgccgcata gttaagccag ccccgacacc cgccaacacc 6720 cgctgacgcg ccctgacggg cttgtctgct cccggcatcc gcttacagac aagctgtgac 6780 cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca tcaccgaaac gcgcga 6836 <210> 11 <211> 8444 <212> DNA <213> Artificial Sequence <220> <223> beta xylosidase expression construct <400> 11 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagtatga tccaatatca aaggaaatga tagcattgaa ggatgagact aatccaattg 120 aggagtggca gcatatagaa cagctaaagg gtagtgctga aggaagcata cgataccccg 180 catggaatgg gataatatca caggaggtac tagactacct ttcatcctac ataaatagac 240 gcatataagt acgcatttaa gcataaacac gcactatgcc gttcttctca tgtatatata 300 tatacaggca acacgcagat ataggtgcga cgtgaacagt gagctgtatg tgcgcagctc 360 gcgttgcatt ttcggaagcg ctcgttttcg gaaacgcttt gaagttccta ttccgaagtt 420 cctattctct agaaagtata ggaacttcag agcgcttttg aaaaccaaaa gcgctctgaa 480 gacgcacttt caaaaaacca aaaacgcacc ggactgtaac gagctactaa aatattgcga 540 ataccgcttc cacaaacatt gctcaaaagt atctctttgc tatatatctc tgtgctatat 600 ccctatataa cctacccatc cacctttcgc tccttgaact tgcatctaaa ctcgacctct 660 acatttttta tgtttatctc tagtattact ctttagacaa aaaaattgta gtaagaacta 720 ttcatagagt gaatcgaaaa caatacgaaa atgtaaacat ttcctatacg tagtatatag 780 agacaaaata gaagaaaccg ttcataattt tctgaccaat gaagaatcat caacgctatc 840 actttctgtt cacaaagtat gcgcaatcca catcggtata gaatataatc ggggatgcct 900 ttatcttgaa aaaatgcacc cgcagcttcg ctagtaatca gtaaacgcgg gaagtggagt 960 caggcttttt ttatggaaga gaaaatagac accaaagtag ccttcttcta accttaacgg 1020 acctacagtg caaaaagtta tcaagagact gcattataga gcgcacaaag gagaaaaaaa 1080 gtaatctaag atgctttgtt agaaaaatag cgctctcggg atgcattttt gtagaacaaa 1140 aaagaagtat agattctttg ttggtaaaat agcgctctcg cgttgcattt ctgttctgta 1200 aaaatgcagc tcagattctt tgtttgaaaa attagcgctc tcgcgttgca tttttgtttt 1260 acaaaaatga agcacagatt cttcgttggt aaaatagcgc tttcgcgttg catttctgtt 1320 ctgtaaaaat gcagctcaga ttctttgttt gaaaaattag cgctctcgcg ttgcattttt 1380 gttctacaaa atgaagcaca gatgcttcgt tcaggtggca cttttcgggg aaatgtgcgc 1440 ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 1500 taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc 1560 cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa 1620 acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 1680 ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg ttttccaatg 1740 atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa 1800 gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc 1860 acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 1920 atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 1980 accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag 2040 ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca 2100 acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca acaattaata 2160 gactggatgg aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc 2220 tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca 2280 ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca 2340 actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg 2400 taactgtcag accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa 2460 tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt 2520 gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 2580 cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg 2640 gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga 2700 gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca cttcaagaac 2760 tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt 2820 ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag 2880 cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc 2940 gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag 3000 gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca 3060 gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt 3120 cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc 3180 tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc 3240 cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc 3300 cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa 3360 ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac 3420 tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt acctcactca ttaggcaccc 3480 caggctttac actttatgct tccggctcct atgttgtgtg gaattgtgag cggataacaa 3540 tttcacacag gaaacagcta tgaccatgat tacgccaagc gcgcaattaa ccctcactaa 3600 agggaacaaa agctggagct cagtttatca ttatcaatac tcgccatttc aaagaatacg 3660 taaataatta atagtagtga ttttcctaac tttatttagt caaaaaatta gccttttaat 3720 tctgctgtaa cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg 3780 taggtgtctg ggtgaacagt ttattcctgg catccactaa atataatgga gcccgctttt 3840 taagctggca tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac 3900 catcagttca taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca 3960 aaaaacgggc acaacctcaa tggagtgatg caacctgcct ggagtaaatg atgacacaag 4020 gcaattgacc cacgcatgta tctatctcat tttcttacac cttctattac cttctgctct 4080 ctctgatttg gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct 4140 acttgactaa taagtatata aagacggtag gtattgattg taattctgta aatctatttc 4200 ttaaacttct taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa 4260 cttagtttcg acggattcta gaactagtgg atccatgggc agcagccatc atcatcatca 4320 tcacagcagc ggccatttga agattactaa tccagtgctc aaaggattta accctgaccc 4380 aagtatttgc cgtgcgggag aggactatta catggcggtt tctacatttg aatggttccc 4440 gggggtgcaa atttatcact cgaaggatct catccattgg cggctcgccg cgcgtccctt 4500 gcaaaaaact tctcaactcg atatgaaagg aaatcctgat tccggcgggg tatgggcacc 4560 gtgtttaagt tatgcggatg gtcagttttg gctcatctat tcagatatta aagtagtaga 4620 tggtccgttt aaggatggtc ataattattt ggtcacagct gatgcagtag atggtgagtg 4680 gagcgatccg gttcggctca atagttctgg gtttgatcct tccttgttcc atgatccaag 4740 cggaaagaaa tacgtgttga atatgctgtg ggaccatcga gaaaaacatc actcctttgc 4800 aggtatagcc ttgcaggaat atagtgtatc tgaaaaaaaa ctggtcggtg agcggaaggt 4860 catttttaaa ggcacgccaa tcaaactcac agaagccccg catctttatt acatcaatga 4920 tgtctattat ttattaacag ctgaaggggg aacacgttac gaacatgcag ccacaatcgc 4980 ccgttcctcg cgtattgatg ggccgtacga ggttcatcct gacaacccaa ttttaacggc 5040 ttttcacgcg cctagccatc cactacaaaa atgcgggcat gcttccattg tacaaacgca 5100 tacaaatgaa tggtatttgg ctcatctgac tggccgccca attcattcaa gtaaggaatc 5160 catttttcag caaagaggct ggtgcccttt aggaagagag acagccatac aaaagcttga 5220 atggaaagat ggctggccgt atgtggtagg cggaaaagag gggctcctag aggttgaagc 5280 gcctgcgatg agcgtaaaag agttctctcc aacctatcac atagtcgatg aatttaaaga 5340 ttcatcgtta aatagacatt tccaaacatt aagaatccca tttacggatc agattggttc 5400 agtgacggaa aatcctcatc atttaaggct gtatgggcag gaatctttaa cgtctaaatt 5460 tacccaagcg tttgttgcga ggcgctggca aagcttttat tttgaagcag agacagcggt 5520 ttccttcttt ccgaaaaact ttcagcaagc ggcaggtctt gtgaattatt ataatacgga 5580 aaattggact gcacttcagg tgacttatga cgatgcgctt ggccgtatcc ttgagttatc 5640 tgtgtgtgaa aacctggcct tttctcagcc gctaattaaa aaaatcatca tcccagacga 5700 gattccgtat gtgtatttaa aagtgaccgt tcagagagag acgtacacgt attcttattc 5760 ttttgatcaa caagagtggg aaaaaataga tgtaccgctt gaatcgaccc atttgtcaga 5820 tgattttatt cgaggagggg ggttctttac aggggctttt gttggaatgc agtgccaaga 5880 cacaagcggt gaacgtctgc ctgccgattt taagtatttt cgatacgaag aaacaactga 5940 ataactcgag tcatgtaatt agttatgtca cgcttacatt cacgccctcc ccccacatcc 6000 gctctaaccg aaaaggaagg agttagacaa cctgaagtct aggtccctat ttattttttt 6060 atagttatgt tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac 6120 agacgcgtgt acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc 6180 tcgaaggctt taatttgcgg ccggtaccca attcgcccta tagtgagtcg tattacgcgc 6240 gctcactggc cgtcgtttta caacgtcgtg actgggaaaa ccctggcgtt acccaactta 6300 atcgccttgc agcacatccc cctttcgcca gctggcgtaa tagcgaagag gcccgcaccg 6360 atcgcccttc ccaacagttg cgcagcctga atggcgaatg gcgcgacgcg ccctgtagcg 6420 gcgcattaag cgcggcgggt gtggtggtta cgcgcagcgt gaccgctaca cttgccagcg 6480 ccctagcgcc cgctcctttc gctttcttcc cttcctttct cgccacgttc gccggctgag 6540 aattgggtga atgttgagat aattgttggg attccatttt taataaggca ataatattag 6600 gtatgtagaa tgtactagaa gttctcctcg aggatttagg aatccataaa agggaatctg 6660 caattctaca caattctata aatattatta tcatcatttt atatgttaat attcattgat 6720 cctattacat tatcaatcct tgcgtttcag cttccactaa tttagatgac tatttctcat 6780 catttgcgtc atcttctaac accgtatatg ataatatact agtaacgtaa atactagtta 6840 gtagatgata gttgatttct attccaacag ccggctttcc ccgtcaagct ctaaatcggg 6900 ggctcccttt agggttccga tttagtgctt tacggcacct cgaccccaaa aaacttgatt 6960 agggtgatgg ttcacgtagt gggccatcgc cctgatagac ggtttttcgc cctttgacgt 7020 tggagtccac gttctttaat agtggactct tgttccaaac tggaacaaca ctcaacccta 7080 tctcggtcta ttcttttgat ttataaggga ttttgccgat ttcggcctat tggttaaaaa 7140 atgagctgat ttaacaaaaa tttaacgcga attttaacaa aatattaacg tttacaattt 7200 cctgatgcgg tattttctcc ttacgcatct gtgcggtatt tcacaccgca tagatcggca 7260 agtgcacaaa caatacttaa ataaatacta ctcagtaata acctatttct tagcattttt 7320 gacgaaattt gctattttgt tagagtcttt tacaccattt gtctccacac ctccgcttac 7380 atcaacacca ataacgccat ttaatctaag cgcatcacca acattttctg gcgtcagtcc 7440 accagctaac ataaaatgta agctttcggg gctctcttgc cttccaaccc agtcagaaat 7500 cgagttccaa tccaaaagtt cacctgtccc acctgcttct gaatcaaaca agggaataaa 7560 cgaatgaggt ttctgtgaag ctgcactgag tagtatgttg cagtcttttg gaaatacgag 7620 tcttttaata actggcaaac cgaggaactc ttggtattct tgccacgact catctccatg 7680 cagttggacg atatcaatgc cgtaatcatt gaccagagcc aaaacatcct ccttaggttg 7740 attacgaaac acgccaacca agtatttcgg agtgcctgaa ctatttttat atgcttttac 7800 aagacttgaa attttccttg caataaccgg gtcaattgtt ctctttctat tgggcacaca 7860 tataataccc agcaagtcag catcggaatc tagagcacat tctgcggcct ctgtgctctg 7920 caagccgcaa actttcacca atggaccaga actacctgtg aaattaataa cagacatact 7980 ccaagctgcc tttgtgtgct taatcacgta tactcacgtg ctcaatagtc accaatgccc 8040 tccctcttgg ccctctcctt ttcttttttc gaccgaatta attcttaatc ggcaaaaaaa 8100 gaaaagctcc ggatcaagat tgtacgtaag gtgacaagct atttttcaat aaagaatatc 8160 ttccactact gccatctggc gtcataactg caaagtacac atatattacg atgctgtcta 8220 ttaaatgctt cctatattat atatatagta atgtcgttta tggtgcactc tcagtacaat 8280 ctgctctgat gccgcatagt taagccagcc ccgacacccg ccaacacccg ctgacgcgcc 8340 ctgacgggct tgtctgctcc cggcatccgc ttacagacaa gctgtgaccg tctccgggag 8400 ctgcatgtgt cagaggtttt caccgtcatc accgaaacgc gcga 8444 <210> 12 <211> 2201 <212> DNA <213> Artificial Sequence <220> <223> Bacillus pumilus IPO xynB <400> 12 ctgcagggag tattacagca ggtgcttaca tgtgggcact cattcctgaa accgttgaat 60 atggcgaata taaaacaggg aaaagaatgg gtggactgat ttacgcagtg attggcttct 120 tctttaaatt tgggatggcc ttaggcggca tcgttccagg gcttgtcctt gaccgatttg 180 gttatattgc aaatcaagtg caaacaccag aagctttact gggcatttta atcacgacaa 240 cggtgattcc tgtatgctta ctcattttag cgatggttga tattaatttt tataacctag 300 atgaagaaaa acataaaaaa gtcatacgag agcttgagaa tagagacaag gtgtatatcg 360 atcatatgga cgattttaaa atgtagttct ctgaaagagg aggaagttca attgaagatt 420 actaatccag tgctcaaagg atttaaccct gacccaagta tttgccgtgc gggagaggac 480 tattacatgg cggtttctac atttgaatgg ttcccggggg tgcaaattta tcactcgaag 540 gatctcatcc attggcggct cgccgcgcgt cccttgcaaa aaacttctca actcgatatg 600 aaaggaaatc ctgattccgg cggggtatgg gcaccgtgtt taagttatgc ggatggtcag 660 ttttggctca tctattcaga tattaaagta gtagatggtc cgtttaagga tggtcataat 720 tatttggtca cagctgatgc agtagatggt gagtggagcg atccggttcg gctcaatagt 780 tctgggtttg atccttcctt gttccatgat ccaagcggaa agaaatacgt gttgaatatg 840 ctgtgggacc atcgagaaaa acatcactcc tttgcaggta tagccttgca ggaatatagt 900 gtatctgaaa aaaaactggt cggtgagcgg aaggtcattt ttaaaggcac gccaatcaaa 960 ctcacagaag ccccgcatct ttattacatc aatgatgtct attatttatt aacagctgaa 1020 gggggaacac gttacgaaca tgcagccaca atcgcccgtt cctcgcgtat tgatgggccg 1080 tacgaggttc atcctgacaa cccaatttta acggcttttc acgcgcctag ccatccacta 1140 caaaaatgcg ggcatgcttc cattgtacaa acgcatacaa atgaatggta tttggctcat 1200 ctgactggcc gcccaattca ttcaagtaag gaatccattt ttcagcaaag aggctggtgc 1260 cctttaggaa gagagacagc catacaaaag cttgaatgga aagatggctg gccgtatgtg 1320 gtaggcggaa aagaggggct cctagaggtt gaagcgcctg cgatgagcgt aaaagagttc 1380 tctccaacct atcacatagt cgatgaattt aaagattcat cgttaaatag acatttccaa 1440 acattaagaa tcccatttac ggatcagatt ggttcagtga cggaaaatcc tcatcattta 1500 aggctgtatg ggcaggaatc tttaacgtct aaatttaccc aagcgtttgt tgcgaggcgc 1560 tggcaaagct tttattttga agcagagaca gcggtttcct tctttccgaa aaactttcag 1620 caagcggcag gtcttgtgaa ttattataat acggaaaatt ggactgcact tcaggtgact 1680 tatgacgatg cgcttggccg tatccttgag ttatctgtgt gtgaaaacct ggccttttct 1740 cagccgctaa ttaaaaaaat catcatccca gacgagattc cgtatgtgta tttaaaagtg 1800 accgttcaga gagagacgta cacgtattct tattcttttg atcaacaaga gtgggaaaaa 1860 atagatgtac cgcttgaatc gacccatttg tcagatgatt ttattcgagg aggggggttc 1920 tttacagggg cttttgttgg aatgcagtgc caagacacaa gcggtgaacg tctgcctgcc 1980 gattttaagt attttcgata cgaagaaaca actgaataaa aaaagacaac actctaaagg 2040 ctgtctctct ttaacatgta ttccatcatg gtgaaggcgt gacatcacgc aaaaaagctt 2100 cagtgacaag agatgtcatc cctaaggctg gtgcgttttg tcctaatgat gaaggaagca 2160 gctccacccg tgagctgaat tgtgcatcca ttctagaatt c 2201 <210> 13 <211> 6504 <212> DNA <213> Artificial Sequence <220> <223> pTSY01 expression construct <400> 13 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagtatga tccaatatca aaggaaatga tagcattgaa ggatgagact aatccaattg 120 aggagtggca gcatatagaa cagctaaagg gtagtgctga aggaagcata cgataccccg 180 catggaatgg gataatatca caggaggtac tagactacct ttcatcctac ataaatagac 240 gcatataagt acgcatttaa gcataaacac gcactatgcc gttcttctca tgtatatata 300 tatacaggca acacgcagat ataggtgcga cgtgaacagt gagctgtatg tgcgcagctc 360 gcgttgcatt ttcggaagcg ctcgttttcg gaaacgcttt gaagttccta ttccgaagtt 420 cctattctct agaaagtata ggaacttcag agcgcttttg aaaaccaaaa gcgctctgaa 480 gacgcacttt caaaaaacca aaaacgcacc ggactgtaac gagctactaa aatattgcga 540 ataccgcttc cacaaacatt gctcaaaagt atctctttgc tatatatctc tgtgctatat 600 ccctatataa cctacccatc cacctttcgc tccttgaact tgcatctaaa ctcgacctct 660 acatttttta tgtttatctc tagtattact ctttagacaa aaaaattgta gtaagaacta 720 ttcatagagt gaatcgaaaa caatacgaaa atgtaaacat ttcctatacg tagtatatag 780 agacaaaata gaagaaaccg ttcataattt tctgaccaat gaagaatcat caacgctatc 840 actttctgtt cacaaagtat gcgcaatcca catcggtata gaatataatc ggggatgcct 900 ttatcttgaa aaaatgcacc cgcagcttcg ctagtaatca gtaaacgcgg gaagtggagt 960 caggcttttt ttatggaaga gaaaatagac accaaagtag ccttcttcta accttaacgg 1020 acctacagtg caaaaagtta tcaagagact gcattataga gcgcacaaag gagaaaaaaa 1080 gtaatctaag atgctttgtt agaaaaatag cgctctcggg atgcattttt gtagaacaaa 1140 aaagaagtat agattctttg ttggtaaaat agcgctctcg cgttgcattt ctgttctgta 1200 aaaatgcagc tcagattctt tgtttgaaaa attagcgctc tcgcgttgca tttttgtttt 1260 acaaaaatga agcacagatt cttcgttggt aaaatagcgc tttcgcgttg catttctgtt 1320 ctgtaaaaat gcagctcaga ttctttgttt gaaaaattag cgctctcgcg ttgcattttt 1380 gttctacaaa atgaagcaca gatgcttcgt tcaggtggca cttttcgggg aaatgtgcgc 1440 ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 1500 taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc 1560 cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa 1620 acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 1680 ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg ttttccaatg 1740 atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa 1800 gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc 1860 acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 1920 atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 1980 accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag 2040 ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca 2100 acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca acaattaata 2160 gactggatgg aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc 2220 tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca 2280 ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca 2340 actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg 2400 taactgtcag accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa 2460 tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt 2520 gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 2580 cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg 2640 gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga 2700 gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca cttcaagaac 2760 tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt 2820 ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag 2880 cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc 2940 gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag 3000 gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca 3060 gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt 3120 cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc 3180 tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc 3240 cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc 3300 cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa 3360 ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac 3420 tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt acctcactca ttaggcaccc 3480 caggctttac actttatgct tccggctcct atgttgtgtg gaattgtgag cggataacaa 3540 tttcacacag gaaacagcta tgaccatgat tacgccaagc gcgcaattaa ccctcactaa 3600 agggaacaaa agctggagct cagtttatca ttatcaatac tcgccatttc aaagaatacg 3660 taaataatta atagtagtga ttttcctaac tttatttagt caaaaaatta gccttttaat 3720 tctgctgtaa cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg 3780 taggtgtctg ggtgaacagt ttattcctgg catccactaa atataatgga gcccgctttt 3840 taagctggca tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac 3900 catcagttca taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca 3960 aaaaacgggc acaacctcaa tggagtgatg caacctgcct ggagtaaatg atgacacaag 4020 gcaattgacc cacgcatgta tctatctcat tttcttacac cttctattac cttctgctct 4080 ctctgatttg gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct 4140 acttgactaa taagtatata aagacggtag gtattgattg taattctgta aatctatttc 4200 ttaaacttct taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa 4260 cttagtttcg acggattcta gaactagtgg atccatgggc agcagccatc atcatcatca 4320 tcacagcagc ggccatctcg agtcatgtaa ttagttatgt cacgcttaca ttcacgccct 4380 ccccccacat ccgctctaac cgaaaaggaa ggagttagac aacctgaagt ctaggtccct 4440 atttattttt ttatagttat gttagtatta agaacgttat ttatatttca aatttttctt 4500 ttttttctgt acagacgcgt gtacgcatgt aacattatac tgaaaacctt gcttgagaag 4560 gttttgggac gctcgaaggc tttaatttgc ggccggtacc caattcgccc tatagtgagt 4620 cgtattacgc gcgctcactg gccgtcgttt tacaacgtcg tgactgggaa aaccctggcg 4680 ttacccaact taatcgcctt gcagcacatc cccctttcgc cagctggcgt aatagcgaag 4740 aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa tggcgcgacg 4800 cgccctgtag cggcgcatta agcgcggcgg gtgtggtggt tacgcgcagc gtgaccgcta 4860 cacttgccag cgccctagcg cccgctcctt tcgctttctt cccttccttt ctcgccacgt 4920 tcgccggctg ccggctttcc ccgtcaagct ctaaatcggg ggctcccttt agggttccga 4980 tttagtgctt tacggcacct cgaccccaaa aaacttgatt agggtgatgg ttcacgtagt 5040 gggccatcgc cctgatagac ggtttttcgc cctttgacgt tggagtccac gttctttaat 5100 agtggactct tgttccaaac tggaacaaca ctcaacccta tctcggtcta ttcttttgat 5160 ttataaggga ttttgccgat ttcggcctat tggttaaaaa atgagctgat ttaacaaaaa 5220 tttaacgcga attttaacaa aatattaacg tttacaattt cctgatgcgg tattttctcc 5280 ttacgcatct gtgcggtatt tcacaccgca tagatcggca agtgcacaaa caatacttaa 5340 ataaatacta ctcagtaata acctatttct tagcattttt gacgaaattt gctattttgt 5400 tagagtcttt tacaccattt gtctccacac ctccgcttac atcaacacca ataacgccat 5460 ttaatctaag cgcatcacca acattttctg gcgtcagtcc accagctaac ataaaatgta 5520 agctttcggg gctctcttgc cttccaaccc agtcagaaat cgagttccaa tccaaaagtt 5580 cacctgtccc acctgcttct gaatcaaaca agggaataaa cgaatgaggt ttctgtgaag 5640 ctgcactgag tagtatgttg cagtcttttg gaaatacgag tcttttaata actggcaaac 5700 cgaggaactc ttggtattct tgccacgact catctccatg cagttggacg atatcaatgc 5760 cgtaatcatt gaccagagcc aaaacatcct ccttaggttg attacgaaac acgccaacca 5820 agtatttcgg agtgcctgaa ctatttttat atgcttttac aagacttgaa attttccttg 5880 caataaccgg gtcaattgtt ctctttctat tgggcacaca tataataccc agcaagtcag 5940 catcggaatc tagagcacat tctgcggcct ctgtgctctg caagccgcaa actttcacca 6000 atggaccaga actacctgtg aaattaataa cagacatact ccaagctgcc tttgtgtgct 6060 taatcacgta tactcacgtg ctcaatagtc accaatgccc tccctcttgg ccctctcctt 6120 ttcttttttc gaccgaatta attcttaatc ggcaaaaaaa gaaaagctcc ggatcaagat 6180 tgtacgtaag gtgacaagct atttttcaat aaagaatatc ttccactact gccatctggc 6240 gtcataactg caaagtacac atatattacg atgctgtcta ttaaatgctt cctatattat 6300 atatatagta atgtcgttta tggtgcactc tcagtacaat ctgctctgat gccgcatagt 6360 taagccagcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc 6420 cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt 6480 caccgtcatc accgaaacgc gcga 6504 <210> 14 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> KK510(BamH1) primer <400> 14 atatggatcc atgggcagca gccatcatca tcatcatcac agcagcggcc atttgaagat 60 tactaatcca gtgct 75 <210> 15 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> KK511(Xho1) primer <400> 15 atatctcgag ttattcagtt gtttcttcgt at 32 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KK518 primer <400> 16 agccccgcat ctttattaca 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KK519 primer <400> 17 ctcttttccg cctaccacat 20 <210> 18 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> KK563(NgoMIV) primer <400> 18 atatgccggc tgttggaata gaaatcaact atcat 35 <210> 19 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> KK564(NgoMIV) primer <400> 19 atatgccggc tgagaattgg gtgaatgttg agata 35 <210> 20 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> KK484 primer <400> 20 atatagatct tgagaattgg gtgaatgttg agata 35 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> KK485 primer <400> 21 atatcatatg tgttggaata gaaatcaact atcat 35 <110> TS Corporation <120> Beta xylosidase expression system for producing xylobiose <130> P15-071-DHJ <160> 21 <170> Kopatentin 2.0 <210> 1 <211> 535 <212> PRT <213> Artificial Sequence <220> <223> beta xylosidase <400> 1 Met Lys Ile Thr Asn Pro Val Leu Lys Gly Phe Asn Pro Asp Pro Ser   1 5 10 15 Ile Cys Arg Ala Gly Glu Asp Tyr Tyr Met Ala Val Ser Thr Phe Glu              20 25 30 Trp Phe Pro Gly Val Gln Ile Tyr His Ser Lys Asp Leu Ile His Trp          35 40 45 Arg Leu Ala Ala Arg Pro Leu Gln Lys Thr Ser Gln Leu Asp Met Lys      50 55 60 Gly Asn Pro Asp Ser Gly Gly Val Trp Ala Pro Cys Leu Ser Tyr Ala  65 70 75 80 Asp Gly Gln Phe Trp Leu Ile Tyr Ser Asp Ile Lys Val Val Asp Gly                  85 90 95 Pro Phe Lys Asp Gly His Asn Tyr Leu Val Thr Ala Asp Ala Val Asp             100 105 110 Gly Glu Trp Ser Asp Pro Val Arg Leu Asn Ser Ser Gly Phe Asp Pro         115 120 125 Ser Leu Phe His Asp Pro Ser Gly Lys Lys Tyr Val Leu Asn Met Leu     130 135 140 Trp Asp His Arg Glu Lys His His Ser Phe Ala Gly Ile Ala Leu Gln 145 150 155 160 Glu Tyr Ser Val Ser Glu Lys Lys Leu Val Gly Glu Arg Lys Val Ile                 165 170 175 Phe Lys Gly Thr Pro Ile Lys Leu Thr Glu Ala Pro His Leu Tyr Tyr             180 185 190 Ile Asn Asp Val Tyr Tyr Leu Leu Thr Ala Glu Gly Gly Thr Arg Tyr         195 200 205 Glu His Ala Ala Thr Ile Ala Arg Ser Ser Arg Ile Asp Gly Pro Tyr     210 215 220 Glu Val His Pro Asp Asn Pro Ile Leu Thr Ala Phe His Ala Pro Ser 225 230 235 240 His Pro Leu Gln Lys Cys Gly His Ala Ser Ile Val Gln Thr His Thr                 245 250 255 Asn Glu Trp Tyr Leu Ala His Leu Thr Gly Arg Pro Ile His Ser Ser             260 265 270 Lys Glu Ser Ile Phe Gln Gln Arg Gly Trp Cys Pro Leu Gly Arg Glu         275 280 285 Thr Ala Ile Gln Lys Leu Glu Trp Lys Asp Gly Trp Pro Tyr Val Val     290 295 300 Gly Gly Lys Glu Gly Leu Leu Glu Val Glu Ala Pro Ala Met Ser Val 305 310 315 320 Lys Glu Phe Ser Pro Thr Tyr His Ile Val Asp Glu Phe Lys Asp Ser                 325 330 335 Ser Leu Asn Arg His Phe Gln Thr Leu Arg Ile Pro Phe Thr Asp Gln             340 345 350 Ile Gly Ser Val Thr Glu Asn Pro His His Leu Arg Leu Tyr Gly Gln         355 360 365 Glu Ser Leu Thr Ser Lys Phe Thr Gln Ala Phe Val Ala Arg Arg Trp     370 375 380 Gln Ser Phe Tyr Phe Glu Ala Glu Thr Ala Val Ser Phe Phe Pro Lys 385 390 395 400 Asn Phe Gln Gln Ala Ala Gly Leu Val Asn Tyr Tyr Asn Thr Glu Asn                 405 410 415 Trp Thr Ala Leu Gln Val Thr Tyr Asp Asp Ala Leu Gly Arg Ile Leu             420 425 430 Glu Leu Ser Val Cys Glu Asn Leu Ala Phe Ser Gln Pro Leu Ile Lys         435 440 445 Lys Ile Ile Pro Asp Glu Ile Pro Tyr Val Tyr Leu Lys Val Thr     450 455 460 Val Gln Arg Glu Thr Tyr Thr Tyr Ser Tyr Ser Phe Asp Gln Gln Glu 465 470 475 480 Trp Glu Lys Ile Asp Val Pro Leu Glu Ser Thr His Leu Ser Asp Asp                 485 490 495 Phe Ile Arg Gly Gly Gly Phe Phe Thr Gly Ala Phe Val Gly Met Gln             500 505 510 Cys Gln Asp Thr Ser Gly Glu Arg Leu Pro Ala Asp Phe Lys Tyr Phe         515 520 525 Arg Tyr Glu Glu Thr Thr Glu     530 535 <210> 2 <211> 1608 <212> DNA <213> Artificial Sequence <220> <223> beta xylosidase <400> 2 ttgaagatta ctaatccagt gctcaaagga tttaaccctg acccaagtat ttgccgtgcg 60 ggagaggact attacatggc ggtttctaca tttgaatggt tcccgggggt gcaaatttat 120 cactcgaagg atctcatcca ttggcggctc gccgcgcgtc ccttgcaaaa aacttctcaa 180 ctcgatatga aaggaaatcc tgattccggc ggggtatggg caccgtgttt aagttatgcg 240 gatggtcagt tttggctcat ctattcagat attaaagtag tagatggtcc gtttaaggat 300 ggtcataatt atttggtcac agctgatgca gtagatggtg agtggagcga tccggttcgg 360 ctcaatagtt ctgggtttga tccttccttg ttccatgatc caagcggaaa gaaatacgtg 420 ttgaatatgc tgtgggacca tcgagaaaaa catcactcct ttgcaggtat agccttgcag 480 gaatatagtg tatctgaaaa aaaactggtc ggtgagcgga aggtcatttt taaaggcacg 540 ccaatcaaac tcacagaagc cccgcatctt tattacatca atgatgtcta ttatttatta 600 acagctgaag ggggaacacg ttacgaacat gcagccacaa tcgcccgttc ctcgcgtatt 660 gatgggccgt acgaggttca tcctgacaac ccaattttaa cggcttttca cgcgcctagc 720 catccactac aaaaatgcgg gcatgcttcc attgtacaaa cgcatacaaa tgaatggtat 780 ttggctcatc tgactggccg cccaattcat tcaagtaagg aatccatttt tcagcaaaga 840 ggctggtgcc ctttaggaag agagacagcc atacaaaagc ttgaatggaa agatggctgg 900 ccgtatgtgg taggcggaaa agaggggctc ctagaggttg aagcgcctgc gatgagcgta 960 aaagagttct ctccaaccta tcacatagtc gatgaattta aagattcatc gttaaataga 1020 catttccaaa cattaagaat cccatttacg gatcagattg gttcagtgac ggaaaatcct 1080 catcatttaa ggctgtatgg gcaggaatct ttaacgtcta aatttaccca agcgtttgtt 1140 gcgaggcgct ggcaaagctt ttattttgaa gcagagacag cggtttcctt ctttccgaaa 1200 aactttcagc aagcggcagg tcttgtgaat tattataata cggaaaattg gactgcactt 1260 caggtgactt atgacgatgc gcttggccgt atccttgagt tatctgtgtg tgaaaacctg 1320 gccttttctc agccgctaat taaaaaaatc atcatcccag acgagattcc gtatgtgtat 1380 ttaaaagtga ccgttcagag agagacgtac acgtattctt attcttttga tcaacaagag 1440 tgggaaaaaa tagatgtacc gcttgaatcg acccatttgt cagatgattt tattcgagga 1500 ggggggttct ttacaggggc ttttgttgga atgcagtgcc aagacacaag cggtgaacgt 1560 ctgcctgccg attttaagta ttttcgatac gaagaaacaa ctgaataa 1608 <210> 3 <211> 673 <212> DNA <213> Artificial Sequence <220> <223> GPD promoter <400> 3 acaaaagctg gagctcagtt tatcattatc aatactcgcc atttcaaaga atacgtaaat 60 aattaatagt agtgattttc ctaactttat ttagtcaaaa aattagcctt ttaattctgc 120 tgtaacccgt acatgcccaa aatagggggc gggttacaca gaatatataa catcgtaggt 180 gtctgggtga acagtttatt cctggcatcc actaaatata atggagcccg ctttttaagc 240 tggcatccag aaaaaaaaag aatcccagca ccaaaatatt gttttcttca ccaaccatca 300 gttcataggt ccattctctt agcgcaacta cagagaacag gggcacaaac aggcaaaaaa 360 cgggcacaac ctcaatggag tgatgcaacc tgcctggagt aaatgatgac acaaggcaat 420 tgacccacgc atgtatctat ctcattttct tacaccttct attaccttct gctctctctg 480 atttggaaaa agctgaaaaa aaaggttgaa accagttccc tgaaattatt cccctacttg 540 actaataagt atataaagac ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa 600 cttcttaaat tctactttta tagttagtct tttttttagt tttaaaacac cagaacttag 660 tttcgacgga ttc 673 <210> 4 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> His tag <400> 4 atgggcagca gccatcatca tcatcatcac agcagcggcc at 42 <210> 5 <211> 332 <212> DNA <213> Artificial Sequence <220> <223> Delta <400> 5 gagaattggg tgaatgttga gataattgtt gggattccat ttttaataag gcaataatat 60 taggtatgta gaatgtacta gaagttctcc tcgaggattt aggaatccat aaaagggaat 120 ctgcaattct acacaattct ataaatatta ttatcatcat tttatatgtt aatattcatt 180 gatcctatta cattatcaat ccttgcgttt cagcttccac taatttagat gactatttct 240 catcatttgc gtcatcttct aacaccgtat atgataatat actagtaacg taaatactag 300 ttagtagatg atagttgatt tctattccaa ca 332 <210> 6 <211> 1337 <212> DNA <213> Artificial Sequence <220> <223> 2-micron <400> 6 caaaggaaat gatagcattg aaggatgaga ctaatccaat tgaggagtgg cagcatatag 60 aacagctaaa gggtagtgct gaaggaagca tacgataccc cgcatggaat gggataatat 120 cacaggaggt actagactac ctttcatcct acataaatag acgcatataa gtacgcattt 180 aagcataaac acgcactatg ccgttcttct catgtatata tatatacagg caacacgcag 240 atataggtgc gacgtgaaca gtgagctgta tgtgcgcagc tcgcgttgca ttttcggaag 300 cgctcgtttt cggaaacgct ttgaagttcc tattccgaag ttcctattct ctagaaagta 360 taggaacttc agagcgcttt tgaaaaccaa aagcgctctg aagacgcact ttcaaaaaac 420 caaaaacgca ccggactgta acgagctact aaaatattgc gaataccgct tccacaaaca 480 ttgctcaaaa gtatctcttt gctatatatc tctgtgctat atccctatat aacctaccca 540 tccacctttc gctccttgaa cttgcatcta aactcgacct ctacattttt tatgtttatc 600 tctagtatta ctctttagac aaaaaaattg tagtaagaac tattcataga gtgaatcgaa 660 aacaatacga aaatgtaaac atttcctata cgtagtatat agagacaaaa tagaagaaac 720 cgttcataat tttctgacca atgaagaatc atcaacgcta tcactttctg ttcacaaagt 780 atgcgcaatc cacatcggta tagaatataa tcggggatgc ctttatcttg aaaaaatgca 840 cccgcagctt cgctagtaat cagtaaacgc gggaagtgga gtcaggcttt ttttatggaa 900 gagaaaatag acaccaaagt agccttcttc taaccttaac ggacctacag tgcaaaaagt 960 tatcaagaga ctgcattata gagcgcacaa aggagaaaaa aagtaatcta agatgctttg 1020 ttagaaaaat agcgctctcg ggatgcattt ttgtagaaca aaaaagaagt atagattctt 1080 tgttggtaaa atagcgctct cgcgttgcat ttctgttctg taaaaatgca gctcagattc 1140 tttgtttgaa aaattagcgc tctcgcgttg catttttgtt ttacaaaaat gaagcacaga 1200 ttcttcgttg gtaaaatagc gctttcgcgt tgcatttctg ttctgtaaaa atgcagctca 1260 gattctttgt ttgaaaaatt agcgctctcg cgttgcattt ttgttctaca aaatgaagca 1320 cagatgcttc gttcagg 1337 <210> 7 <211> 931 <212> DNA <213> Artificial Sequence <220> <223> Ampicillin resistance gene (amp) <400> 7 ttcaataata ttgaaaaagg aagagtatga gtattcaaca tttccgtgtc gcccttattc 60 ccttttttgc ggcattttgc cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa 120 aagatgctga agatcagttg ggtgcacgag tgggttacat cgaactggat ctcaacagcg 180 gtaagatcct tgagagtttt cgccccgaag aacgttttcc aatgatgagc acttttaaag 240 ttctgctatg tggcgcggta ttatcccgta ttgacgccgg gcaagagcaa ctcggtcgcc 300 gcatacacta ttctcagaat gacttggttg agtactcacc agtcacagaa aagcatctta 360 cggatggcat gacagtaaga gaattatgca gtgctgccat aaccatgagt gataacactg 420 cggccaactt acttctgaca acgatcggag gaccgaagga gctaaccgct tttttgcaca 480 acatggggga tcatgtaact cgccttgatc gttgggaacc ggagctgaat gaagccatac 540 caaacgacga gcgtgacacc acgatgcctg tagcaatggc aacaacgttg cgcaaactat 600 taactggcga actacttact ctagcttccc ggcaacaatt aatagactgg atggaggcgg 660 ataaagttgc aggaccactt ctgcgctcgg cccttccggc tggctggttt attgctgata 720 aatctggagc cggtgagcgt gggtctcgcg gtatcattgc agcactgggg ccagatggta 780 agccctcccg tatcgtagtt atctacacga cggggagtca ggcaactatg gatgaacgaa 840 atagacagat cgctgagata ggtgcctcac tgattaagca ttggtaactg tcagaccaag 900 tttactcata tatactttag attgatttaa a 931 <210> 8 <211> 261 <212> DNA <213> Artificial Sequence <220> <223> CYC1 Terminator <400> 8 cgagtcatgt aattagttat gtcacgctta cattcacgcc ctccccccac atccgctcta 60 accgaaaagg aaggagttag acaacctgaa gtctaggtcc ctatttattt ttttatagtt 120 atgttagtat taagaacgtt atttatattt caaatttttc ttttttttct gtacagacgc 180 gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg acgctcgaag 240 gctttaattt gcggccggta c 261 <210> 9 <211> 1015 <212> DNA <213> Artificial Sequence <220> <223> TRP <400> 9 tctgtgcggt atttcacacc gcatagatcg gcaagtgcac aaacaatact taaataaata 60 ctactcagta ataacctatt tcttagcatt tttgacgaaa tttgctattt tgttagagtc 120 ttttacacca tttgtctcca cacctccgct tacatcaaca ccaataacgc catttaatct 180 aagcgcatca ccaacatttt ctggcgtcag tccaccagct aacataaaat gtaagctttc 240 ggggctctct tgccttccaa cccagtcaga aatcgagttc caatccaaaa gttcacctgt 300 cccacctgct tctgaatcaa acaagggaat aaacgaatga ggtttctgtg aagctgcact 360 gagtagtatg ttgcagtctt ttggaaatac gagtctttta ataactggca aaccgaggaa 420 ctcttggtat tcttgccacg actcatctcc atgcagttgg acgatatcaa tgccgtaatc 480 attgaccaga gccaaaacat cctccttagg ttgattacga aacacgccaa ccaagtattt 540 cggagtgcct gaactatttt tatatgcttt tacaagactt gaaattttcc ttgcaataac 600 cgggtcaatt gttctctttc tattgggcac acatataata cccagcaagt cagcatcgga 660 atctagagca cattctgcgg cctctgtgct ctgcaagccg caaactttca ccaatggacc 720 agaactacct gtgaaattaa taacagacat actccaagct gcctttgtgt gcttaatcac 780 gtatactcac gtgctcaata gtcaccaatg ccctccctct tggccctctc cttttctttt 840 ttcgaccgaa ttaattctta atcggcaaaa aaagaaaagc tccggatcaa gattgtacgt 900 aaggtgacaa gctatttttc aataaagaat atcttccact actgccatct ggcgtcataa 960 ctgcaaagta cacatatatt acgatgctgt ctattaaatg cttcctatat tatat 1015 <210> 10 <211> 6836 <212> DNA <213> Artificial Sequence <220> <223> expression construct <400> 10 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagtatga tccaatatca aaggaaatga tagcattgaa ggatgagact aatccaattg 120 aggagtggca gcatatagaa cagctaaagg gtagtgctga aggaagcata cgataccccg 180 catggaatgg gataatatca caggaggtac tagactacct ttcatcctac ataaatagac 240 gcatataagt acgcatttaa gcataaacac gcactatgcc gttcttctca tgtatatata 300 tatacgca acacgcagat ataggtgcga cgtgaacagt gagctgtatg tgcgcagctc 360 gcgttgcatt ttcggaagcg ctcgttttcg gaaacgcttt gaagttccta ttccgaagtt 420 cctattctct agaaagtata ggaacttcag agcgcttttg aaaaccaaaa gcgctctgaa 480 gacgcacttt caaaaaacca aaaacgcacc ggactgtaac gagctactaa aatattgcga 540 ataccgcttc cacaaacatt gctcaaaagt atctctttgc tatatatctc tgtgctatat 600 ccctatataa cctacccatc cacctttcgc tccttgaact tgcatctaaa ctcgacctct 660 acatttttta tgtttatctc tagtattact ctttagacaa aaaaattgta gtaagaacta 720 ttcatagagt gaatcgaaaa caatacgaaa atgtaaacat ttcctatacg tagtatatag 780 agacaaaata gaagaaaccg ttcataattt tctgaccaat gaagaatcat caacgctatc 840 actttctgtt cacaaagtat gcgcaatcca catcggtata gaatataatc ggggatgcct 900 ttatcttgaa aaaatgcacc cgcagcttcg ctagtaatca gtaaacgcgg gaagtggagt 960 caggcttttt ttatggaaga gaaaatagac accaaagtag ccttcttcta accttaacgg 1020 acctacagtg caaaaagtta tcaagagact gcattataga gcgcacaaag gagaaaaaaa 1080 gtaatctaag atgctttgtt agaaaaatag cgctctcggg atgcattttt gtagaacaaa 1140 aaagaagtat agattctttg ttggtaaaat agcgctctcg cgttgcattt ctgttctgta 1200 aaaatgcagc tcagattctt tgtttgaaaa attagcgctc tcgcgttgca tttttgtttt 1260 acaaaaatga agcacagatt cttcgttggt aaaatagcgc tttcgcgttg catttctgtt 1320 ctgtaaaaat gcagctcaga ttctttgttt gaaaaattag cgctctcgcg ttgcattttt 1380 gttctacaaa atgaagcaca gatgcttcgt tcaggtggca cttttcgggg aaatgtgcgc 1440 ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 1500 taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc 1560 cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa 1620 acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 1680 ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg ttttccaatg 1740 atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa 1800 gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc 1860 acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 1920 atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 1980 accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag 2040 ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca 2100 acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca acaattaata 2160 gctggatgg aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc 2220 tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca 2280 ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca 2340 actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg 2400 taactgtcag accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa 2460 tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt 2520 gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 2580 cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg 2640 gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga 2700 gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca cttcaagaac 2760 tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt 2820 ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag 2880 cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc 2940 gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag 3000 gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca 3060 gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt 3120 cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc 3180 tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc 3240 cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc 3300 cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa 3360 ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac 3420 tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt acctcactca ttaggcaccc 3480 caggctttac actttatgct tccggctcct atgttgtgtg gaattgtgag cggataacaa 3540 tttcacacag gaaacagcta tgaccatgat tacgccaagc gcgcaattaa ccctcactaa 3600 agggaacaaa agctggagct cagtttatca ttatcaatac tcgccatttc aaagaatacg 3660 taaataatta atagtagtga ttttcctaac tttatttagt caaaaaatta gccttttaat 3720 tctgctgtaa cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg 3780 taggtgtctg ggtgaacagt ttattcctgg catccactaa atataatgga gcccgctttt 3840 taagctggca tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac 3900 catcagttca taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca 3960 aaaaacgggc acaacctcaa tggagtgatg caacctgcct ggagtaaatg atgacacaag 4020 gcaattgacc cacgcatgta tctatctcat tttcttacac cttctattac cttctgctct 4080 ctctgatttg gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct 4140 acttgactaa taagtatata aagacggtag gtattgattg taattctgta aatctatttc 4200 ttaaacttct taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa 4260 cttagtttcg acggattcta gaactagtgg atccatgggc agcagccatc atcatcatca 4320 tcacagcagc ggccatctcg agtcatgtaa ttagttatgt cacgcttaca ttcacgccct 4380 ccccccacat ccgctctaac cgaaaaggaa ggagttagac aacctgaagt ctaggtccct 4440 atttattttt ttatagttat gttagtatta agaacgttat ttatatttca aatttttctt 4500 ttttttctgt acagacgcgt gtacgcatgt aacattatac tgaaaacctt gcttgagaag 4560 gtttgggac gctcgaaggc tttaatttgc ggccggtacc caattcgccc tatagtgagt 4620 cgtattacgc gcgctcactg gccgtcgttt tacaacgtcg tgactgggaa aaccctggcg 4680 ttacccaact taatcgcctt gcagcacatc cccctttcgc cagctggcgt aatagcgaag 4740 aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa tggcgcgacg 4800 cgccctgtag cggcgcatta agcgcggcgg gtgtggtggt tacgcgcagc gtgaccgcta 4860 cacttgccag cgccctagcg cccgctcctt tcgctttctt cccttccttt ctcgccacgt 4920 tcgccggctg agaattgggt gaatgttgag ataattgttg ggattccatt tttaataagg 4980 caataatatt aggtatgtag aatgtactag aagttctcct cgaggattta ggaatccata 5040 aaagggaatc tgcaattcta cacaattcta taaatattat tatcatcatt ttatatgtta 5100 atattcattg atcctattac attatcaatc cttgcgtttc agcttccact aatttagatg 5160 actatttctc atcatttgcg tcatcttcta acaccgtata tgataatata ctagtaacgt 5220 aaatactagt tagtagatga tagttgattt ctattccaac agccggcttt ccccgtcaag 5280 ctctaaatcg ggggctccct ttagggttcc gatttagtgc tttacggcac ctcgacccca 5340 aaaaacttga ttagggtgat ggttcacgta gtgggccatc gccctgatag acggtttttc 5400 gccctttgac gttggagtcc acgttcttta atagtggact cttgttccaa actggaacaa 5460 cactcaaccc tatctcggtc tattcttttg atttataagg gattttgccg atttcggcct 5520 attggttaaa aaatgagctg atttaacaaa aatttaacgc gaattttaac aaaatattaa 5580 cgtttacaat ttcctgatgc ggtattttct ccttacgcat ctgtgcggta tttcacaccg 5640 catagatcgg caagtgcaca aacaatactt aaataaatac tactcagtaa taacctattt 5700 cttagcattt ttgacgaaat ttgctatttt gttagagtct tttacaccat ttgtctccac 5760 acctccgctt acatcaacac caataacgcc atttaatcta agcgcatcac caacattttc 5820 tggcgtcagt ccaccagcta acataaaatg taagctttcg gggctctctt gccttccaac 5880 ccagtcagaa atcgagttcc aatccaaaag ttcacctgtc ccacctgctt ctgaatcaaa 5940 caagggaata aacgaatgag gtttctgtga agctgcactg agtagtatgt tgcagtcttt 6000 tggaaatacg agtcttttaa taactggcaa accgaggaac tcttggtatt cttgccacga 6060 ctcatctcca tgcagttgga cgatatcaat gccgtaatca ttgaccagag ccaaaacatc 6120 ctccttaggt tgattacgaa acacgccaac caagtatttc ggagtgcctg aactattttt 6180 atatgctttt acaagacttg aaattttcct tgcaataacc gggtcaattg ttctctttct 6240 attgggcaca catataatac ccagcaagtc agcatcggaa tctagagcac attctgcggc 6300 ctctgtgctc tgcaagccgc aaactttcac caatggacca gaactacctg tgaaattaat 6360 aacagacata ctccaagctg cctttgtgtg cttaatcacg tatactcacg tgctcaatag 6420 tcaccaatgc cctccctctt ggccctctcc ttttcttttt tcgaccgaat taattcttaa 6480 tcggcaaaaa aagaaaagct ccggatcaag attgtacgta aggtgacaag ctatttttca 6540 ataaagaata tcttccacta ctgccatctg gcgtcataac tgcaaagtac acatatatta 6600 cgatgctgtc tattaaatgc ttcctatatt atatatatag taatgtcgtt tatggtgcac 6660 tctcagtaca atctgctctg atgccgcata gttaagccag ccccgacacc cgccaacacc 6720 cgctgacgcg ccctgacggg cttgtctgct cccggcatcc gcttacagac aagctgtgac 6780 cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca tcaccgaaac gcgcga 6836 <210> 11 <211> 8444 <212> DNA <213> Artificial Sequence <220> <223> beta xylosidase expression construct <400> 11 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagtatga tccaatatca aaggaaatga tagcattgaa ggatgagact aatccaattg 120 aggagtggca gcatatagaa cagctaaagg gtagtgctga aggaagcata cgataccccg 180 catggaatgg gataatatca caggaggtac tagactacct ttcatcctac ataaatagac 240 gcatataagt acgcatttaa gcataaacac gcactatgcc gttcttctca tgtatatata 300 tatacgca acacgcagat ataggtgcga cgtgaacagt gagctgtatg tgcgcagctc 360 gcgttgcatt ttcggaagcg ctcgttttcg gaaacgcttt gaagttccta ttccgaagtt 420 cctattctct agaaagtata ggaacttcag agcgcttttg aaaaccaaaa gcgctctgaa 480 gacgcacttt caaaaaacca aaaacgcacc ggactgtaac gagctactaa aatattgcga 540 ataccgcttc cacaaacatt gctcaaaagt atctctttgc tatatatctc tgtgctatat 600 ccctatataa cctacccatc cacctttcgc tccttgaact tgcatctaaa ctcgacctct 660 acatttttta tgtttatctc tagtattact ctttagacaa aaaaattgta gtaagaacta 720 ttcatagagt gaatcgaaaa caatacgaaa atgtaaacat ttcctatacg tagtatatag 780 agacaaaata gaagaaaccg ttcataattt tctgaccaat gaagaatcat caacgctatc 840 actttctgtt cacaaagtat gcgcaatcca catcggtata gaatataatc ggggatgcct 900 ttatcttgaa aaaatgcacc cgcagcttcg ctagtaatca gtaaacgcgg gaagtggagt 960 caggcttttt ttatggaaga gaaaatagac accaaagtag ccttcttcta accttaacgg 1020 acctacagtg caaaaagtta tcaagagact gcattataga gcgcacaaag gagaaaaaaa 1080 gtaatctaag atgctttgtt agaaaaatag cgctctcggg atgcattttt gtagaacaaa 1140 aaagaagtat agattctttg ttggtaaaat agcgctctcg cgttgcattt ctgttctgta 1200 aaaatgcagc tcagattctt tgtttgaaaa attagcgctc tcgcgttgca tttttgtttt 1260 acaaaaatga agcacagatt cttcgttggt aaaatagcgc tttcgcgttg catttctgtt 1320 ctgtaaaaat gcagctcaga ttctttgttt gaaaaattag cgctctcgcg ttgcattttt 1380 gttctacaaa atgaagcaca gatgcttcgt tcaggtggca cttttcgggg aaatgtgcgc 1440 ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 1500 taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc 1560 cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa 1620 acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 1680 ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg ttttccaatg 1740 atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa 1800 gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc 1860 acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 1920 atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 1980 accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag 2040 ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca 2100 acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca acaattaata 2160 gctggatgg aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc 2220 tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca 2280 ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca 2340 actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg 2400 taactgtcag accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa 2460 tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt 2520 gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 2580 cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg 2640 gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga 2700 gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca cttcaagaac 2760 tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt 2820 ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag 2880 cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc 2940 gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag 3000 gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca 3060 gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt 3120 cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc 3180 tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc 3240 cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc 3300 cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa 3360 ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac 3420 tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt acctcactca ttaggcaccc 3480 caggctttac actttatgct tccggctcct atgttgtgtg gaattgtgag cggataacaa 3540 tttcacacag gaaacagcta tgaccatgat tacgccaagc gcgcaattaa ccctcactaa 3600 agggaacaaa agctggagct cagtttatca ttatcaatac tcgccatttc aaagaatacg 3660 taaataatta atagtagtga ttttcctaac tttatttagt caaaaaatta gccttttaat 3720 tctgctgtaa cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg 3780 taggtgtctg ggtgaacagt ttattcctgg catccactaa atataatgga gcccgctttt 3840 taagctggca tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac 3900 catcagttca taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca 3960 aaaaacgggc acaacctcaa tggagtgatg caacctgcct ggagtaaatg atgacacaag 4020 gcaattgacc cacgcatgta tctatctcat tttcttacac cttctattac cttctgctct 4080 ctctgatttg gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct 4140 acttgactaa taagtatata aagacggtag gtattgattg taattctgta aatctatttc 4200 ttaaacttct taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa 4260 cttagtttcg acggattcta gaactagtgg atccatgggc agcagccatc atcatcatca 4320 tcacagcagc ggccatttga agattactaa tccagtgctc aaaggattta accctgaccc 4380 aagtatttgc cgtgcgggag aggactatta catggcggtt tctacatttg aatggttccc 4440 gggggtgcaa atttatcact cgaaggatct catccattgg cggctcgccg cgcgtccctt 4500 gcaaaaaact tctcaactcg atatgaaagg aaatcctgat tccggcgggg tatgggcacc 4560 gtgtttaagt tatgcggatg gtcagttttg gctcatctat tcagatatta aagtagtaga 4620 tggtccgttt aaggatggtc ataattattt ggtcacagct gatgcagtag atggtgagtg 4680 gagcgatccg gttcggctca atagttctgg gtttgatcct tccttgttcc atgatccaag 4740 cggaaagaaa tacgtgttga atatgctgtg ggaccatcga gaaaaacatc actcctttgc 4800 aggtatagcc ttgcaggaat atagtgtatc tgaaaaaaaa ctggtcggtg agcggaaggt 4860 catttttaaa ggcacgccaa tcaaactcac agaagccccg catctttatt acatcaatga 4920 tgtctattat ttattaacag ctgaaggggg aacacgttac gaacatgcag ccacaatcgc 4980 ccgttcctcg cgtattgatg ggccgtacga ggttcatcct gacaacccaa ttttaacggc 5040 ttttcacgcg cctagccatc cactacaaaa atgcgggcat gcttccattg tacaaacgca 5100 tacaaatgaa tggtatttgg ctcatctgac tggccgccca attcattcaa gtaaggaatc 5160 catttttcag caaagaggct ggtgcccttt aggaagagag acagccatac aaaagcttga 5220 atggaaagat ggctggccgt atgtggtagg cggaaaagag gggctcctag aggttgaagc 5280 gcctgcgatg agcgtaaaag agttctctcc aacctatcac atagtcgatg aatttaaaga 5340 ttcatcgtta aatagacatt tccaaacatt aagaatccca tttacggatc agattggttc 5400 agtgacggaa aatcctcatc atttaaggct gtatgggcag gaatctttaa cgtctaaatt 5460 tacccaagcg tttgttgcga ggcgctggca aagcttttat tttgaagcag agacagcggt 5520 ttccttcttt ccgaaaaact ttcagcaagc ggcaggtctt gtgaattatt ataatacgga 5580 aaattggact gcacttcagg tgacttatga cgatgcgctt ggccgtatcc ttgagttatc 5640 tgtgtgtgaa aacctggcct tttctcagcc gctaattaaa aaaatcatca tcccagacga 5700 gattccgtat gtgtatttaa aagtgaccgt tcagagagag acgtacacgt attcttattc 5760 ttttgatcaa caagagtggg aaaaaataga tgtaccgctt gaatcgaccc atttgtcaga 5820 tgattttatt cgaggagggg ggttctttac aggggctttt gttggaatgc agtgccaaga 5880 cacaagcggt gaacgtctgc ctgccgattt taagtatttt cgatacgaag aaacaactga 5940 ataactcgag tcatgtaatt agttatgtca cgcttacatt cacgccctcc ccccacatcc 6000 gctctaaccg aaaaggaagg agttagacaa cctgaagtct aggtccctat ttattttttt 6060 atagttatgt tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac 6120 agacgcgtgt acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc 6180 tcgaaggctt taatttgcgg ccggtaccca attcgcccta tagtgagtcg tattacgcgc 6240 gctcactggc cgtcgtttta caacgtcgtg actgggaaaa ccctggcgtt acccaactta 6300 atcgccttgc agcacatccc cctttcgcca gctggcgtaa tagcgaagag gcccgcaccg 6360 atcgcccttc ccaacagttg cgcagcctga atggcgaatg gcgcgacgcg ccctgtagcg 6420 gcgcattaag cgcggcgggt gtggtggtta cgcgcagcgt gaccgctaca cttgccagcg 6480 ccctagcgcc cgctcctttc gctttcttcc cttcctttct cgccacgttc gccggctgag 6540 aattgggtga atgttgagat aattgttggg attccatttt taataaggca ataatattag 6600 gtatgtagaa tgtactagaa gttctcctcg aggatttagg aatccataaa agggaatctg 6660 caattctaca caattctata aatattatta tcatcatttt atatgttaat attcattgat 6720 cctattacat tatcaatcct tgcgtttcag cttccactaa tttagatgac tatttctcat 6780 catttgcgtc atcttctaac accgtatatg ataatatact agtaacgtaa atactagtta 6840 gtagatgata gttgatttct attccaacag ccggctttcc ccgtcaagct ctaaatcggg 6900 ggctcccttt agggttccga tttagtgctt tacggcacct cgaccccaaa aaacttgatt 6960 agggtgatgg ttcacgtagt gggccatcgc cctgatagac ggtttttcgc cctttgacgt 7020 tggagtccac gttctttaat agtggactct tgttccaaac tggaacaaca ctcaacccta 7080 tctcggtcta ttcttttgat ttataaggga ttttgccgat ttcggcctat tggttaaaaa 7140 atgagctgat ttaacaaaaa tttaacgcga attttaacaa aatattaacg tttacaattt 7200 cctgatgcgg tattttctcc ttacgcatct gtgcggtatt tcacaccgca tagatcggca 7260 agtgcacaaa caatacttaa ataaatacta ctcagtaata acctatttct tagcattttt 7320 gacgaaattt gctattttgt tagagtcttt tacaccattt gtctccacac ctccgcttac 7380 atcaacacca ataacgccat ttaatctaag cgcatcacca acattttctg gcgtcagtcc 7440 accagctaac ataaaatgta agctttcggg gctctcttgc cttccaaccc agtcagaaat 7500 cgagttccaa tccaaaagtt cacctgtccc acctgcttct gaatcaaaca agggaataaa 7560 cgaatgaggt ttctgtgaag ctgcactgag tagtatgttg cagtcttttg gaaatacgag 7620 tcttttaata actggcaaac cgaggaactc ttggtattct tgccacgact catctccatg 7680 cagttggacg atatcaatgc cgtaatcatt gaccagagcc aaaacatcct ccttaggttg 7740 attacgaaac acgccaacca agtatttcgg agtgcctgaa ctatttttat atgcttttac 7800 aagacttgaa attttccttg caataaccgg gtcaattgtt ctctttctat tgggcacaca 7860 tataataccc agcaagtcag catcggaatc tagagcacat tctgcggcct ctgtgctctg 7920 caagccgcaa actttcacca atggaccaga actacctgtg aaattaataa cagacatact 7980 ccaagctgcc tttgtgtgct taatcacgta tactcacgtg ctcaatagtc accaatgccc 8040 tccctcttgg ccctctcctt ttcttttttc gaccgaatta attcttaatc ggcaaaaaaa 8100 gaaaagctcc ggatcaagat tgtacgtaag gtgacaagct atttttcaat aaagaatatc 8160 ttccactact gccatctggc gtcataactg caaagtacac atatattacg atgctgtcta 8220 ttaaatgctt cctatattat atatatagta atgtcgttta tggtgcactc tcagtacaat 8280 ctgctctgat gccgcatagt taagccagcc ccgacacccg ccaacacccg ctgacgcgcc 8340 ctgacgggct tgtctgctcc cggcatccgc ttacagacaa gctgtgaccg tctccgggag 8400 ctgcatgtgt cagaggtttt caccgtcatc accgaaacgc gcga 8444 <210> 12 <211> 2201 <212> DNA <213> Artificial Sequence <220> <223> Bacillus pumilus IPO xynB <400> 12 ctgcagggag tattacagca ggtgcttaca tgtgggcact cattcctgaa accgttgaat 60 atggcgaata taaaacaggg aaaagaatgg gtggactgat ttacgcagtg attggcttct 120 tctttaaatt tgggatggcc ttaggcggca tcgttccagg gcttgtcctt gaccgatttg 180 gttatattgc aaatcaagtg caaacaccag aagctttact gggcatttta atcacgacaa 240 cggtgattcc tgtatgctta ctcattttag cgatggttga tattaatttt tataacctag 300 atgaagaaaa acataaaaaa gtcatacgag agcttgagaa tagagacaag gtgtatatcg 360 atcatatgga cgattttaaa atgtagttct ctgaaagagg aggaagttca attgaagatt 420 actaatccag tgctcaaagg atttaaccct gacccaagta tttgccgtgc gggagaggac 480 tattacatgg cggtttctac atttgaatgg ttcccggggg tgcaaattta tcactcgaag 540 gatctcatcc attggcggct cgccgcgcgt cccttgcaaa aaacttctca actcgatatg 600 aaaggaaatc ctgattccgg cggggtatgg gcaccgtgtt taagttatgc ggatggtcag 660 ttttggctca tctattcaga tattaaagta gtagatggtc cgtttaagga tggtcataat 720 tatttggtca cagctgatgc agtagatggt gagtggagcg atccggttcg gctcaatagt 780 tctgggtttg atccttcctt gttccatgat ccaagcggaa agaaatacgt gttgaatatg 840 ctgtgggacc atcgagaaaa acatcactcc tttgcaggta tagccttgca ggaatatagt 900 gtatctgaaa aaaaactggt cggtgagcgg aaggtcattt ttaaaggcac gccaatcaaa 960 ctcacagaag ccccgcatct ttattacatc aatgatgtct attatttatt aacagctgaa 1020 gggggaacac gttacgaaca tgcagccaca atcgcccgtt cctcgcgtat tgatgggccg 1080 tacgaggttc atcctgacaa cccaatttta acggcttttc acgcgcctag ccatccacta 1140 caaaaatgcg ggcatgcttc cattgtacaa acgcatacaa atgaatggta tttggctcat 1200 ctgactggcc gcccaattca ttcaagtaag gaatccattt ttcagcaaag aggctggtgc 1260 cctttaggaa gagagacagc catacaaaag cttgaatgga aagatggctg gccgtatgtg 1320 gtaggcggaa aagaggggct cctagaggtt gaagcgcctg cgatgagcgt aaaagagttc 1380 tctccaacct atcacatagt cgatgaattt aaagattcat cgttaaatag acatttccaa 1440 acattaagaa tcccatttac ggatcagatt ggttcagtga cggaaaatcc tcatcattta 1500 aggctgtatg ggcaggaatc tttaacgtct aaatttaccc aagcgtttgt tgcgaggcgc 1560 tggcaaagct tttattttga agcagagaca gcggtttcct tctttccgaa aaactttcag 1620 caagcggcag gtcttgtgaa ttattataat acggaaaatt ggactgcact tcaggtgact 1680 tatgacgatg cgcttggccg tatccttgag ttatctgtgt gtgaaaacct ggccttttct 1740 cagccgctaa ttaaaaaaat catcatccca gacgagattc cgtatgtgta tttaaaagtg 1800 accgttcaga gagagacgta cacgtattct tattcttttg atcaacaaga gtgggaaaaa 1860 atagatgtac cgcttgaatc gacccatttg tcagatgatt ttattcgagg aggggggttc 1920 tttacagggg cttttgttgg aatgcagtgc caagacacaa gcggtgaacg tctgcctgcc 1980 gattttaagt attttcgata cgaagaaaca actgaataaa aaaagacaac actctaaagg 2040 ctgtctctct ttaacatgta ttccatcatg gtgaaggcgt gacatcacgc aaaaaagctt 2100 cagtgacaag agatgtcatc cctaaggctg gtgcgttttg tcctaatgat gaaggaagca 2160 gctccacccg tgagctgaat tgtgcatcca ttctagaatt c 2201 <210> 13 <211> 6504 <212> DNA <213> Artificial Sequence <220> <223> pTSY01 expression construct <400> 13 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagtatga tccaatatca aaggaaatga tagcattgaa ggatgagact aatccaattg 120 aggagtggca gcatatagaa cagctaaagg gtagtgctga aggaagcata cgataccccg 180 catggaatgg gataatatca caggaggtac tagactacct ttcatcctac ataaatagac 240 gcatataagt acgcatttaa gcataaacac gcactatgcc gttcttctca tgtatatata 300 tatacgca acacgcagat ataggtgcga cgtgaacagt gagctgtatg tgcgcagctc 360 gcgttgcatt ttcggaagcg ctcgttttcg gaaacgcttt gaagttccta ttccgaagtt 420 cctattctct agaaagtata ggaacttcag agcgcttttg aaaaccaaaa gcgctctgaa 480 gacgcacttt caaaaaacca aaaacgcacc ggactgtaac gagctactaa aatattgcga 540 ataccgcttc cacaaacatt gctcaaaagt atctctttgc tatatatctc tgtgctatat 600 ccctatataa cctacccatc cacctttcgc tccttgaact tgcatctaaa ctcgacctct 660 acatttttta tgtttatctc tagtattact ctttagacaa aaaaattgta gtaagaacta 720 ttcatagagt gaatcgaaaa caatacgaaa atgtaaacat ttcctatacg tagtatatag 780 agacaaaata gaagaaaccg ttcataattt tctgaccaat gaagaatcat caacgctatc 840 actttctgtt cacaaagtat gcgcaatcca catcggtata gaatataatc ggggatgcct 900 ttatcttgaa aaaatgcacc cgcagcttcg ctagtaatca gtaaacgcgg gaagtggagt 960 caggcttttt ttatggaaga gaaaatagac accaaagtag ccttcttcta accttaacgg 1020 acctacagtg caaaaagtta tcaagagact gcattataga gcgcacaaag gagaaaaaaa 1080 gtaatctaag atgctttgtt agaaaaatag cgctctcggg atgcattttt gtagaacaaa 1140 aaagaagtat agattctttg ttggtaaaat agcgctctcg cgttgcattt ctgttctgta 1200 aaaatgcagc tcagattctt tgtttgaaaa attagcgctc tcgcgttgca tttttgtttt 1260 acaaaaatga agcacagatt cttcgttggt aaaatagcgc tttcgcgttg catttctgtt 1320 ctgtaaaaat gcagctcaga ttctttgttt gaaaaattag cgctctcgcg ttgcattttt 1380 gttctacaaa atgaagcaca gatgcttcgt tcaggtggca cttttcgggg aaatgtgcgc 1440 ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 1500 taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc 1560 cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa 1620 acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 1680 ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg ttttccaatg 1740 atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa 1800 gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc 1860 acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 1920 atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 1980 accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag 2040 ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca 2100 acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca acaattaata 2160 gctggatgg aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc 2220 tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca 2280 ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca 2340 actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg 2400 taactgtcag accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa 2460 tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt 2520 gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 2580 cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg 2640 gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga 2700 gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca cttcaagaac 2760 tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt 2820 ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag 2880 cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc 2940 gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag 3000 gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca 3060 gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt 3120 cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc 3180 tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc 3240 cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc 3300 cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa 3360 ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac 3420 tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt acctcactca ttaggcaccc 3480 caggctttac actttatgct tccggctcct atgttgtgtg gaattgtgag cggataacaa 3540 tttcacacag gaaacagcta tgaccatgat tacgccaagc gcgcaattaa ccctcactaa 3600 agggaacaaa agctggagct cagtttatca ttatcaatac tcgccatttc aaagaatacg 3660 taaataatta atagtagtga ttttcctaac tttatttagt caaaaaatta gccttttaat 3720 tctgctgtaa cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg 3780 taggtgtctg ggtgaacagt ttattcctgg catccactaa atataatgga gcccgctttt 3840 taagctggca tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac 3900 catcagttca taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca 3960 aaaaacgggc acaacctcaa tggagtgatg caacctgcct ggagtaaatg atgacacaag 4020 gcaattgacc cacgcatgta tctatctcat tttcttacac cttctattac cttctgctct 4080 ctctgatttg gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct 4140 acttgactaa taagtatata aagacggtag gtattgattg taattctgta aatctatttc 4200 ttaaacttct taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa 4260 cttagtttcg acggattcta gaactagtgg atccatgggc agcagccatc atcatcatca 4320 tcacagcagc ggccatctcg agtcatgtaa ttagttatgt cacgcttaca ttcacgccct 4380 ccccccacat ccgctctaac cgaaaaggaa ggagttagac aacctgaagt ctaggtccct 4440 atttattttt ttatagttat gttagtatta agaacgttat ttatatttca aatttttctt 4500 ttttttctgt acagacgcgt gtacgcatgt aacattatac tgaaaacctt gcttgagaag 4560 gtttgggac gctcgaaggc tttaatttgc ggccggtacc caattcgccc tatagtgagt 4620 cgtattacgc gcgctcactg gccgtcgttt tacaacgtcg tgactgggaa aaccctggcg 4680 ttacccaact taatcgcctt gcagcacatc cccctttcgc cagctggcgt aatagcgaag 4740 aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa tggcgcgacg 4800 cgccctgtag cggcgcatta agcgcggcgg gtgtggtggt tacgcgcagc gtgaccgcta 4860 cacttgccag cgccctagcg cccgctcctt tcgctttctt cccttccttt ctcgccacgt 4920 tcgccggctg ccggctttcc ccgtcaagct ctaaatcggg ggctcccttt agggttccga 4980 tttagtgctt tacggcacct cgaccccaaa aaacttgatt agggtgatgg ttcacgtagt 5040 gggccatcgc cctgatagac ggtttttcgc cctttgacgt tggagtccac gttctttaat 5100 agtggactct tgttccaaac tggaacaaca ctcaacccta tctcggtcta ttcttttgat 5160 ttataaggga ttttgccgat ttcggcctat tggttaaaaa atgagctgat ttaacaaaaa 5220 tttaacgcga attttaacaa aatattaacg tttacaattt cctgatgcgg tattttctcc 5280 ttacgcatct gtgcggtatt tcacaccgca tagatcggca agtgcacaaa caatacttaa 5340 ataaatacta ctcagtaata acctatttct tagcattttt gacgaaattt gctattttgt 5400 tagagtcttt tacaccattt gtctccacac ctccgcttac atcaacacca ataacgccat 5460 ttaatctaag cgcatcacca acattttctg gcgtcagtcc accagctaac ataaaatgta 5520 agctttcggg gctctcttgc cttccaaccc agtcagaaat cgagttccaa tccaaaagtt 5580 cacctgtccc acctgcttct gaatcaaaca agggaataaa cgaatgaggt ttctgtgaag 5640 ctgcactgag tagtatgttg cagtcttttg gaaatacgag tcttttaata actggcaaac 5700 cgaggaactc ttggtattct tgccacgact catctccatg cagttggacg atatcaatgc 5760 cgtaatcatt gaccagagcc aaaacatcct ccttaggttg attacgaaac acgccaacca 5820 agtatttcgg agtgcctgaa ctatttttat atgcttttac aagacttgaa attttccttg 5880 caataaccgg gtcaattgtt ctctttctat tgggcacaca tataataccc agcaagtcag 5940 catcggaatc tagagcacat tctgcggcct ctgtgctctg caagccgcaa actttcacca 6000 atggaccaga actacctgtg aaattaataa cagacatact ccaagctgcc tttgtgtgct 6060 taatcacgta tactcacgtg ctcaatagtc accaatgccc tccctcttgg ccctctcctt 6120 ttcttttttc gaccgaatta attcttaatc ggcaaaaaaa gaaaagctcc ggatcaagat 6180 tgtacgtaag gtgacaagct atttttcaat aaagaatatc ttccactact gccatctggc 6240 gtcataactg caaagtacac atatattacg atgctgtcta ttaaatgctt cctatattat 6300 atatatagta atgtcgttta tggtgcactc tcagtacaat ctgctctgat gccgcatagt 6360 taagccagcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc 6420 cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt 6480 caccgtcatc accgaaacgc gcga 6504 <210> 14 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> KK510 (BamH1) primer <400> 14 atatggatcc atgggcagca gccatcatca tcatcatcac agcagcggcc atttgaagat 60 tactaatcca gtgct 75 <210> 15 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> KK511 (Xho1) primer <400> 15 atatctcgag ttattcagtt gtttcttcgt at 32 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KK518 primer <400> 16 agccccgcat ctttattaca 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KK519 primer <400> 17 ctcttttccg cctaccacat 20 <210> 18 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> KK563 (NgoMIV) primer <400> 18 atatgccggc tgttggaata gaaatcaact atcat 35 <210> 19 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> KK564 (NgoMIV) primer <400> 19 atatgccggc tgagaattgg gtgaatgttg agata 35 <210> 20 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> KK484 primer <400> 20 atatagatct tgagaattgg gtgaatgttg agata 35 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> KK485 primer <400> 21 atatcatatg tgttggaata gaaatcaact atcat 35

Claims (14)

서열번호 1의 아미노산 서열로 이루어진 β-자일로시다아제를 포함하는 자일로비오스 생산용 조성물. 1. A composition for producing xylobiose comprising? -Xylosidase consisting of the amino acid sequence of SEQ ID NO: 1. 제1항에 있어서, 상기 β-자일로시다아제는 서열번호 2의 염기서열로 이루어진 폴리뉴클레오티드에 의해 코딩되는 것인 자일로비오스 생산용 조성물. 2. The composition for producing xylobiose according to claim 1, wherein said beta -xylosidase is encoded by a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 2. 자일로스를 서열번호 1의 아미노산 서열로 이루어진 β-자일로시다아제 또는 β-자일로시다아제를 포함하는 조성물과 반응시키는 단계를 포함하는 자일로비오스 생산 방법. Comprising reacting xylose with a composition comprising? -Xylosidase or? -Xylosidase consisting of the amino acid sequence of SEQ ID NO: 1. 제3항에 있어서, 상기 β-자일로시다아제는 서열번호 2의 염기서열로 이루어진 폴리뉴클레오티드에 의해 코딩되는 것인 자일로비오스 생산 방법.4. The method for producing xylobiose according to claim 3, wherein the beta -xylosidase is encoded by a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 2. 제3항 또는 제4항에 있어서, 상기 반응 온도는 40 내지 60 ℃이고, 반응 pH는 5.0 내지 8.0인 자일로비오스 생산 방법. The production method of xylobiose according to claim 3 or 4, wherein the reaction temperature is 40 to 60 DEG C and the reaction pH is 5.0 to 8.0. 제3항 또는 제4항에 있어서, 상기 자일로스 농도는 400 g/L 내지 1000 g/L인 자일로비오스 생산 방법. The production method of xylobiose according to claim 3 or 4, wherein the xylose concentration is 400 g / L to 1000 g / L. 서열번호 2의 β-자일로시다아제 염기 서열, GPD 프로모터 염기 서열, His-tag 염기 서열, 및 delta 염기 서열을 포함하는 β-자일로시다아제 발현 컨스트럭트. A β-xylosidase expression construct comprising the β-xyloεidase base sequence of SEQ ID NO: 2, the GPD promoter base sequence, the His-tag base sequence, and the delta base sequence. 제7항에 있어서, 상기 GPD 프로모터 염기 서열은 서열번호 3의 염기서열로 이루어지며, His-tag 염기 서열은 서열번호 4의 염기서열로 이루어지며, delta 염기서열은 서열번호 5의 염기 서열로 이루어지는 β-자일로시다아제 발현 컨스트럭트. [Claim 7] The polynucleotide according to claim 7, wherein the GPD promoter base sequence comprises the nucleotide sequence of SEQ ID NO: 3, the His-tag nucleotide sequence comprises the nucleotide sequence of SEQ ID NO: 4 and the delta nucleotide sequence comprises the nucleotide sequence of SEQ ID NO: β-xylosidase expression construct. 제7항에 있어서, 서열번호 6의 2-micron 염기 서열, 서열번호 7의 암피실린 저항성 유전자 염기 서열, 서열번호 8의 CYC1 터미네이터 염기 서열 및 서열번호 9의 TRP 염기 서열을 더 포함하는 β-자일로시다아제 발현 컨스트럭트. 8. The recombinant vector according to claim 7, which comprises a 2-micron nucleotide sequence of SEQ ID NO: 6, an ampicillin resistance gene sequence of SEQ ID NO: 7, a CYC1 terminator nucleotide sequence of SEQ ID NO: 8 and a TRP nucleotide sequence of SEQ ID NO: Syidase expression construct. 제7항 내지 제9항 중 어느 한 항에 따른 β-자일로시다아제 발현 컨스트럭트를 포함하는 β-자일로시다아제 생산용 형질전환 균주. 9. A transformant strain for the production of beta -xylosidase comprising a beta -xylosidase expression construct according to any one of claims 7 to 9. 제10항에 있어서, 상기 균주는 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 바실러스 서브틸리스(bacillus subtilis) 또는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 중 선택된 어느 하나인 β-자일로시다아제 생산용 형질전환 균주.11. The method according to claim 10, wherein the strain is selected from the group consisting of Saccharomyces cerevisiae , bacillus subtilis , or Corynebacterium glutamicum , Transformational strains for producing cidase. 제11항에 있어서, 상기 형질전환 균주는 기탁번호 KCTC 18382P의 사카로마이세스 세레비지애(Saccharomyces cerevisiae) pTSY01-XynB인 β-자일로시다아제 형질전환 균주.12. The method of claim 11, wherein the transformed strain is Saccharomyces &lt; RTI ID = 0.0 &gt; S. cerevisiae ) pTSY01-XynB-β-xylosidase transformant strain. (a) 제10항에 따른 β-자일로시다아제 생산용 형질전환 균주를 배지 총 중량에 대하여 0.5 내지2 중량 %의 효모 추출물(yeast extract), 1 내지 3 중량 %의 펩톤(peptone) 및 1 내지 4 중량 %의 글루코즈를 포함하는 YPD 배지에 접종하는 단계;
(b) 반응 온도 25 내지 35 ℃ 및 반응 pH 7.5 내지 8.5로 배양하는 단계; 및
(c) 상기 (b) 단계의 배양액으로부터 β-자일로시다아제를 분리하는 단계를 포함하는 β-자일로시다아제의 제조방법.
(a) a transformant strain for producing β-xylosidase according to claim 10, comprising 0.5 to 2% by weight of yeast extract, 1 to 3% by weight of peptone and 1 To 4% by weight of glucose;
(b) culturing at a reaction temperature of from 25 to 35 DEG C and a reaction pH of from 7.5 to 8.5; And
(c) separating β-xylosidase from the culture medium of step (b).
제13항에 있어서, 상기 β-자일로시다아제 생산용 형질전환 균주는 기탁번호 KCTC 18382P의 사카로마이세스 세레비지애(Saccharomyces cerevisiae) pTSY01-XynB인 β-자일로시다아제의 제조방법. 14. The method of claim 13, let azepin transformant strain for the production of xylene is in the β- accession number KCTC 18382P saccharide as MY process three Levy jiae (Saccharomyces of cerevisiae ) pTSY01-XynB.
KR1020150067110A 2015-05-14 2015-05-14 - -xylosidase expression system for producing xylobiose KR101728600B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150067110A KR101728600B1 (en) 2015-05-14 2015-05-14 - -xylosidase expression system for producing xylobiose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150067110A KR101728600B1 (en) 2015-05-14 2015-05-14 - -xylosidase expression system for producing xylobiose

Publications (2)

Publication Number Publication Date
KR20160133922A true KR20160133922A (en) 2016-11-23
KR101728600B1 KR101728600B1 (en) 2017-05-02

Family

ID=57541854

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150067110A KR101728600B1 (en) 2015-05-14 2015-05-14 - -xylosidase expression system for producing xylobiose

Country Status (1)

Country Link
KR (1) KR101728600B1 (en)

Also Published As

Publication number Publication date
KR101728600B1 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
CN102421895B (en) Chrysosporium lucknowense protein production systems
US20040253704A1 (en) Surface expression vectors having pgsbca the gene coding poly-gamma-glutamate synthetase, and a method for expression of target protein at the surface of microorganism using the vector
CN112501101B (en) High-yield strain of natural herbicide thaxtomins as well as preparation method and application thereof
NZ582045A (en) A pharmaceutical composition comprising at least 10mg/mL of alfa mannosidase and less that 5% total protein aggregates
CN108977454A (en) A kind of Escherichia coli synthesis squalene plasmid pTsqs and its preparation and application
CN101410408A (en) A process for concentration of a polypeptide
CN108949599A (en) A kind of production alpha, beta-lonone genetic engineering bacterium and its construction method and application
CN111187785B (en) Cloning expression and application of serpentis grass tryptophan decarboxylase gene OpTDC2
KR101728600B1 (en) - -xylosidase expression system for producing xylobiose
AU2023241362A1 (en) Chimeric opsin GPCR proteins
CN101985477A (en) Fusion protein for evaluating HCV NS3/4A serine proteinase inhibitor and application thereof
KR101856260B1 (en) Process for production and purification of recombinant lysosomal alpha-mannosidase
CN106497960A (en) A kind of efficient shuttle plasmid for Escherichia coli riemerella anatipestifer
CN112877228B (en) Saccharomyces cerevisiae engineering bacterium for high yield of bisabolene and application thereof
CN101948866A (en) Construction of bacillus subtilis integrated vector capable of being cloned by using homologous recombination and application thereof
KR102163667B1 (en) Composite containing gene and gene delivery system for prevent or treatment of inflammatory disease
CN114196712B (en) Method for producing L-ornithine by immobilized enzyme method
CN108949795B (en) Plasmid pCDSP for increasing squalene content in escherichia coli and preparation and use methods thereof
CN114214353B (en) Method for producing human recombinant arginase I by fermentation
CN115029378B (en) Method for creating flower-spot ornamental poplar by PtrDJ1C gene
CN114350698B (en) Human recombinant arginase I production strain and construction method thereof
CN108085325B (en) Glyphosate-resistant gene and cultivation method of transgenic glyphosate-resistant tobacco
CN114350721B (en) Method for producing L-ornithine by microbial enzyme method
CN114085861B (en) Arginine decarboxylase producing strain and construction method thereof
KR20190027616A (en) Recombinant transition vector for enhancement of foreign protein exression

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant