CN115029378B - Method for creating flower-spot ornamental poplar by PtrDJ1C gene - Google Patents

Method for creating flower-spot ornamental poplar by PtrDJ1C gene Download PDF

Info

Publication number
CN115029378B
CN115029378B CN202210718436.9A CN202210718436A CN115029378B CN 115029378 B CN115029378 B CN 115029378B CN 202210718436 A CN202210718436 A CN 202210718436A CN 115029378 B CN115029378 B CN 115029378B
Authority
CN
China
Prior art keywords
poplar
protein
sequence
ptrdj1c
leaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210718436.9A
Other languages
Chinese (zh)
Other versions
CN115029378A (en
Inventor
王鑫伟
肖建伟
邵春雪
栗慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei North University
Original Assignee
Hebei North University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei North University filed Critical Hebei North University
Priority to CN202210718436.9A priority Critical patent/CN115029378B/en
Publication of CN115029378A publication Critical patent/CN115029378A/en
Application granted granted Critical
Publication of CN115029378B publication Critical patent/CN115029378B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

The application discloses a method for creating a flower-spotted ornamental poplar by using PtrDJ1C genes. The present application provides the use of a substance that reduces the activity or content of a protein PtrDJ1C or a substance that inhibits the expression of a nucleic acid molecule encoding said protein PtrDJ1C in any of the following: changing the green leaves of poplar into the flower spot leaves; cultivating poplar with flower spot leaves; inhibiting the development of poplar leaf chloroplasts; inhibit development of chloroplast thylakoid membrane of poplar leaf. The application has important significance in the aspects of directional breeding of the ornamental character of the flower spots of the gardening tree species such as poplar, improving the breeding efficiency and the like, and has extremely high commercial value and scientific research value.

Description

Method for creating flower-spot ornamental poplar by PtrDJ1C gene
Technical Field
The application belongs to the technical field of biology, and particularly relates to a method for creating a flower-spot ornamental poplar by using PtrDJ1C genes.
Background
The ornamental value of the gardening landscape tree is mainly reflected in the aspects of tree shape, color and the like. Poplar is used as a most common ornamental tree species, has the advantages of high and straight property, beautiful tree shape, developed root system, wind prevention, sand fixation and the like, and is widely used in landscaping, street trees and other scenes. However, the method is sometimes limited by greening space, and poplar trees are used as landscape plants and need to be frequently trimmed to adapt to the overall landscape layout and space requirements; in addition, poplar color is also more single. Therefore, how to seek a method for improving the ornamental value of poplar gardening from both tree shape and color becomes a key problem to be solved urgently.
Leaf spot plants have green and non-green (yellow or white) portions on the same leaf, which can lead to slow plant growth due to reduced overall photosynthesis while providing different leaf-color ornamental traits. Plaque is formed because the green tissue contains normal chloroplasts, while tissue in the yellow or white region contains dysplastic chloroplasts. The method solves the problem that poplar tree forms and color expression need to be changed, and is an important research direction for cultivating ornamental poplar trees in the future.
The plaque mutant in the nature is only used for cultivation and planting of colorful flowers and green plants in a small amount at present, and the mechanism of generating the plaque is not clear yet. Therefore, the molecular design breeding and gene editing technology are combined, so that the creation of the plaque mutant is carried out on gardening ornamental trees such as poplar, and the method has extremely important significance for the enrichment of gardening species resources and the yield increase and income creation of under-forest economy.
The genetic transformation technology of woody plants including poplar trees is difficult, so that transgenic plants are difficult to obtain, and meanwhile, the problems of long period, low transformation rate and the like exist, so that the research of obtaining target poplar trees by a transgenic means is relatively slow.
Disclosure of Invention
It is an object of the present application to provide the use of a substance that reduces the activity or content of a protein PtrDJ1C or a substance that inhibits the expression of a nucleic acid molecule encoding said protein PtrDJ 1C.
The application provides the application of a substance for reducing the activity or content of protein PtrDJ1C or a substance for inhibiting the expression of nucleic acid molecules encoding the protein PtrDJ1C in any one of the following A-F;
A. changing the color of poplar leaves;
B. changing the green leaves of poplar into the flower spot leaves;
C. cultivating poplar with flower spot leaves;
D. inhibiting the development of poplar leaf chloroplasts;
E. inhibiting development of a chloroplast thylakoid membrane of the poplar leaf;
F. reducing the expression quantity of proteins related to chloroplast development or photosynthesis in poplar leaves;
the expression amounts of the proteins D1, psaA, cytf, CF1 α, rbcL and ATPase related to chloroplast development or photosynthesis were verified in the examples of the present application as described above.
The protein PtrDJ1C is as follows (1) or (2) or (3):
(1) A protein consisting of an amino acid sequence shown as a sequence 1 in a sequence table;
(2) A protein formed by adding a tag sequence at the tail end of an amino acid sequence shown in a sequence 1 in a sequence table;
(3) And (3) the protein which is derived from the (1) or (2) and has the same function and is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 1 in the sequence table.
In the application, the substance is a CRISPR/Cas9 system;
the CRISPR/Cas9 system comprises 1) or 2) as follows:
1) The target point of the sgRNA is 146 th to 165 th positions of a sequence 4;
2) A CRISPR/Cas9 vector expressing the sgRNA;
the above system further comprises Cas9 protein or mRNA thereof or a nucleic acid molecule encoding Cas9 protein or a plasmid expressing Cas9 protein.
In an embodiment of the present application, the carrier may specifically be: the linearized sgRNA expression cassette and the pYLCRISPR/Cas9Pubi-H plasmid were ligated using the Golden Gate method (restriction enzyme Bsa I was used) to obtain the recombinant plasmid. The linearized sgRNA expression cassette is shown as a sequence 4 in a sequence table. The plasmid contains a target sequence (146 th to 165 th positions of a sequence 4), and the expressed specific sgRNA is shown as a sequence 5 in a sequence table.
The Cas9 protein is a protein coded by Cas9 genes.
The Cas9 gene is specifically shown as 724 th-4926 th nucleotide in sequence 7 of a sequence table.
It is another object of the present application to provide a method of growing poplar with non-green leaves.
The method provided by the application is as follows 1), 2) or 3):
1) The method comprises the following steps: firstly, reducing the activity or content of protein PtrDJ1C in poplar with green leaf phenotype to obtain transgenic plants, and selecting the plants with non-green leaf phenotype, namely the poplar plants with non-green leaf phenotype;
2) The method comprises the following steps: firstly, inhibiting the expression of nucleic acid molecules of coding protein PtrDJ1C in poplar with green leaf phenotype to obtain transgenic plants, and selecting plants with non-green leaf phenotype, namely poplar plants with non-green leaf phenotype;
3) The method comprises the following steps: performing gene editing on nucleic acid molecules for encoding the protein PtrDJ1C in poplar with green leaf phenotype to terminate protein translation in advance to obtain a gene editing plant, and selecting a plant with a non-green leaf phenotype, namely a poplar plant with a non-green leaf;
the protein PtrDJ1C is as follows (1) or (2) or (3):
(1) A protein consisting of an amino acid sequence shown as a sequence 1 in a sequence table;
(2) A protein formed by adding a tag sequence at the tail end of an amino acid sequence shown in a sequence 1 in a sequence table;
(3) And (3) the protein which is derived from the (1) or (2) and has the same function and is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 1 in the sequence table.
Plants with leaf phenotypes selected as non-green as described above: plants with leaf phenotypes other than green can be selected by naked eye identification; sequencing can be further carried out, and a plant edited by the homozygous gene is selected as a plant with a leaf phenotype of non-green.
The homozygous gene-edited plants were all subjected to gene editing for PtrDJ1C genes on 2 homologous chromosomes.
In the above method, the gene editing is achieved by: introducing a CRISPR/Cas9 system into the plant of interest;
the CRISPR/Cas9 system comprises 1) or 2) as follows:
1) The target point of the sgRNA is 146 th to 165 th positions of a sequence 4;
2) CRISPR/Cas9 vectors expressing the sgrnas.
The above CRISPR/Cas9 system further comprises Cas9 protein or mRNA thereof or a nucleic acid molecule encoding Cas9 protein or a plasmid expressing Cas9 protein.
It is a further object of the present application to provide a material that alters the color of poplar leaves.
The present application provides a substance that reduces the activity or content of a protein PtrDJ1C or inhibits the expression of a nucleic acid molecule encoding the protein PtrDJ 1C.
The substance is a CRISPR/Cas9 system;
the CRISPR/Cas9 system comprises 1) or 2) as follows:
1) The target point of the sgRNA is 146 th to 165 th positions of a sequence 4;
2) CRISPR/Cas9 vectors expressing the sgrnas.
In the above, the color of the poplar leaves is changed into a green leaf of the poplar; the non-green (non-pure green) leaves are in particular white leaves or flower-spot leaves.
The application of the PtrDJ1C protein or the coding gene thereof in regulating and controlling the flower spot phenotype of poplar leaves is also the protection scope of the application;
the protein PtrDJ1C is as follows (1) or (2) or (3):
(1) A protein consisting of an amino acid sequence shown as a sequence 1 in a sequence table;
(2) A protein formed by adding a tag sequence at the tail end of an amino acid sequence shown in a sequence 1 in a sequence table;
(3) And (3) the protein which is derived from the (1) or (2) and has the same function and is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 1 in the sequence table.
The application of the PtrDJ1C protein or the coding gene thereof in regulation and control of the development of poplar chloroplasts is also the protection scope of the application;
the protein PtrDJ1C is as follows (1) or (2) or (3):
(1) A protein consisting of an amino acid sequence shown as a sequence 1 in a sequence table;
(2) A protein formed by adding a tag sequence at the tail end of an amino acid sequence shown in a sequence 1 in a sequence table;
(3) And (3) the protein which is derived from the (1) or (2) and has the same function and is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 1 in the sequence table.
Any of the above poplar is dicotyledonous. The dicotyledonous poplar is of the family Salicaceae. The poplar of the salicaceae is poplar of the genus populus. The populus can be populus pie populus, such as 84K populus.
The plant having a mosaic phenotype as described above may be a leaf plant having a mosaic phenotype.
Any of the above poplar with a mosaic phenotype may be a leaf poplar with a mosaic phenotype.
According to the application, the PtrDJ1C gene is subjected to gene editing by a CRISPR/Cas9 gene editing technology, the PtrDJ1C homozygous mutant shows an obvious white-green plaque phenotype, and chloroplast development at a whitened tissue is affected, but the life cycle of the whole plant is not affected. PtrDJ1C protein is positioned in chloroplast, plays an important role in plastid gene transcription and plastid ribosomal RNA (rRNA) shearing processes, and PtrDJ1C deletion causes chloroplast development to be affected, so that chlorophyll-deleted albino spots are generated.
In actual production, the application can obtain the flower-spotted phenotype poplar, and provides theoretical and technical support for landscaping and colorful flower culture. The application has very important theoretical and practical significance on the aspects of directionally, rapidly and efficiently cultivating the plaque ornamental poplar, improving the breeding efficiency and the like, and has extremely high commercial value and scientific research value.
Drawings
FIG. 1 shows the sequencing results of the target region.
FIG. 2 is an exemplary photograph of wild-type plants and plants of the ptrdj1c mutant strain.
FIG. 3 is a photograph showing the result of reverse transcription PCR on wild-type plants and plants of the ptrdj1c mutant line.
FIG. 4 is a photograph of chloroplast ultrastructures of wild type plants and ptrdj1c mutant lines.
FIG. 5 is a photograph of the accumulation of photosynthetic key proteins from wild type plants and mutant strains of ptrdj1 c.
Detailed Description
The following detailed description of the application is provided in connection with the accompanying drawings that are presented to illustrate the application and not to limit the scope thereof. The examples provided below are intended as guidelines for further modifications by one of ordinary skill in the art and are not to be construed as limiting the application in any way.
The experimental methods in the following examples, unless otherwise specified, are conventional methods, and are carried out according to techniques or conditions described in the literature in the field or according to the product specifications. Materials, reagents and the like used in the examples described below are commercially available unless otherwise specified.
AtU3d-sgRNA plasmid: wuhan vast, biological technology Co., ltd; atU3d-sgRNA plasmid is shown as sequence 6 in the sequence table. pYLCRISPR/Cas9Pubi-H plasmid: wuhan vast, biological technology Co., ltd; the pYLCRISPR/Cas9Pubi-H plasmid is shown as a sequence 7 of a sequence table.
The inventor discovers a novel protein for regulating and controlling the mosaic phenotype from 84K poplar in the research process, and the protein is named PtrDJ1C protein, and the amino acid sequence of the protein is shown as a sequence 1 of a sequence table. The gene for coding PtrDJ1C protein is named PtrDJ1C gene, and the nucleotide sequence of the cDNA of the gene is shown as the sequence 2 of the sequence table. The genome sequence is shown as a sequence 3 in a sequence table.
Example 1 obtaining Gene-editing lines
1. Construction of CRISPR/Cas9 Gene editing vector
1. Primers for preparing sgRNA are designed and synthesized according to the sequence of PtrDJ1C gene
Synthesizing single-stranded DNA molecules guide-F and single-stranded DNA molecules guide-R respectively, and then mixing and annealing to obtain double-stranded DNA molecules with sticky ends at two ends.
guide-F:5’-gtcaGGAGGAATGCCAGGCTCCGCA-3’;
guide-R:5’-aaacTGCGGAGCCTGGCATTCCTCC-3’。
2. Taking AtU d-sgRNA plasmid, adopting restriction enzyme Bsa I to carry out single enzyme digestion, and recovering enzyme digestion products.
3. And (2) connecting the double-stranded DNA molecule with the sticky end obtained in the step (1) with the enzyme digestion product obtained in the step (2) to obtain a connecting product.
4. And (3) taking the connection product obtained in the step (3), adopting a primer pair consisting of UF and guide-R to carry out PCR amplification, and recovering the amplification product.
5. And (3) taking the connection product obtained in the step (3), adopting a primer pair consisting of gR-R and guide-F to carry out PCR amplification, and recovering the amplification product.
6. And (3) mixing the amplification product in the step (4) and the amplification product in the step (5) in an equimolar manner, and performing PCR (polymerase chain reaction) amplification by using a primer pair consisting of Pps-R and Pgs-L to obtain the amplification product (linearized sgRNA expression cassette).
The sequence is sequenced, the linearized sgRNA expression cassette is shown as a sequence 4 in a sequence table, the expression cassette expresses the sgRNA shown as a sequence 5 in the sequence table, and the target sequence of the sgRNA is 146 th to 165 th positions of the sequence 4.
In practical application, the linearized sgRNA expression cassette can also be directly synthesized artificially.
7. And (3) connecting the linearized sgRNA expression cassette obtained in the step (6) with a pYLCRISPR/Cas9Pubi-H plasmid by utilizing a Golden Gate method (adopting restriction enzyme Bsa I) to obtain the CRISPR/Cas9 gene editing vector. The CRISPR/Cas9 gene editing vector contains a target sequence, wherein the target sequence is 146 th-165 th positions of a sequence 4.
The primers used above were as follows:
UF:5’-CTCCGTTTTACCTGTGGAATCG-3’。
gR-R:5’-CGGAGGAAAATTCCATCCAC-3’。
Pps-R:5’-TTCAGAggtctcTACCGACTAGTATGGAATCGGCAGCAAAGG-3’。
Pgs-L:5’-AGCGTGggtctcGCTCGACGCGTATCCATCCACTCCAAGCTC-3’。
2. obtaining Gene editing plants and identifying
1. And (3) taking the CRISPR/Cas9 gene editing vector constructed in the step one, and introducing the CRISPR/Cas9 gene editing vector into the competence of the agrobacterium EHA105 to obtain the recombinant agrobacterium.
And (3) extracting plasmids of the recombinant bacteria for sequencing verification, and naming the EHA105-CRISPR/Cas9 gene editing vector of the recombinant bacteria with correct sequencing verification.
2. And (3) taking the recombinant agrobacterium EHA105-CRISPR/Cas9 gene editing vector obtained in the step (1), and infecting leaves of 84K poplar by adopting a leaf disk method (the method is seen in MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar).
https:// doi.org/10.1038/s 41438-020-00341-w) to obtain regenerated poplar plants (leaves with three phenotypes of green, white and mottled; the mottled color is between non-green and green).
3. Screening gene editing positive plants from the obtained regenerated poplar plants, wherein the method comprises the following specific steps:
taking leaves of a regenerated poplar plant, extracting genome DNA, adopting a primer pair consisting of a primer F and a primer R to carry out PCR amplification, then recovering PCR amplification products, connecting a T vector, carrying out monoclonal sequencing, and screening a gene editing plant (the form of the gene editing plant can be a heterozygous gene editing plant, a chimeric gene editing plant or a homozygous gene editing plant) according to a sequencing result, and naming the gene editing plant as a ptrdj1c strain.
Primer F:5'-TATGCCTACTTGAACTTGC-3';
primer R:5'-ACCTCCTTGGCAACAGAC-3'.
As a result, the occurrence of a set peak at the target point is considered to be editing of the plant.
As shown in FIG. 1, both WT-1 and WT-2 were wild 84K poplar seedlings (leaf phenotype green) and dj1c-L1 to dj1c-L5 were gene-edited plants (leaf phenotype mosaic color).
And (3) statistics: 19 regenerated poplar plants in 30 regenerated poplar plants are edited (PtrDJ 1C gene appears to shift the frame and stop protein translation in advance) and named as gene editing plants, the gene editing efficiency reaches 63.3%, and the sgRNA has stronger editing efficiency.
Of the 19 edited plants, 2 were heterozygous gene edited and the leaf phenotype was green; 17 strains are homozygous gene editions, wherein 14 strains of leaf phenotype is a mottled color, and 3 strains of leaf phenotype is white.
The homozygous gene-edited plants were all subjected to gene editing for PtrDJ1C genes on 2 homologous chromosomes.
The heterozygous gene edited plant is that PtrDJ1C genes on 1 homologous chromosome are subjected to gene editing, and PtrDJ1C genes on the other homologous chromosome are not subjected to gene editing.
The homozygous gene-edited plant was designated as gene-edited plant.
3. Transcript level identification step
1) Extraction of total RNA from leaves
(1) About 0.1g of the leaf albino part or the non-green part of the gene editing plant is placed into a 2mL centrifuge tube without RNase, steel balls with proper size are added into the tube, and liquid nitrogen is frozen quickly. The quick frozen material is fully ground into powder.
(2) Subsequent RNA extraction operations were performed using a total plant RNA extraction kit (DP 432) purchased from the root biochemistry technology (beijing) limited.
(3) 1. Mu.L of RNA solution is taken, RNA concentration is measured by a NanoDrop 2000 ultra-micro spectrophotometer, and the labeled RNA is preserved for a long time in a refrigerator at-80 ℃.
2) Synthesis of cDNA
gDNA removal and cDNA Synthesis kit (AT 311) was purchased from Beijing full gold Biotechnology Co.
(1) In 200. Mu.L of RNase-free PCR tube, the preparation of the reverse transcription reaction solution was carried out according to the following system:
Total RNA 50 ng-2μg
OligodT primer 1. Mu.L
ddH 2 O To 8μL
(2) Incubating the mixed solution in a PCR instrument at 65 ℃ for 5min, taking out, and then carrying out ice bath for 2min.
(3) The reaction solution of the following system was continuously added to the PCR tube to a total volume of 20. Mu.L.
2×TS Reaction Mix 10 μL
RT/RI Enzyme Mix 1 μL
gDNA Remover 1 μL
(4) After thoroughly mixing, incubation was performed in a PCR apparatus at 42℃for 15min.
(5) The RT/RI Enzyme and gDNA reverse were thoroughly inactivated by heating at 85℃for 5s in a PCR apparatus.
3) Reverse transcription PCR
(1) The design of primers is selected for the exon regions near the gene editing and the primers are made to span the intron structure on the genome as much as possible, avoiding experimental inaccuracy.
The primer sequences are as follows:
RT-F:5'TTTGGTACAGAAGAAATGG 3'
RT-R:5'CTCCTTGGCAACAGAC 3'
(3) Amplification was performed in steps using Taq enzyme, with no more than 30 cycles, using an action as a control.
As a result, as shown in FIG. 3, it was found that PtrDJ1C gene was not expressed or the expression amount was low in the gene-edited plant (for example, dj 1C-L1) as compared with the wild type.
The above gene-edited plants were designated ptrdj1c plants.
3. Plant leaf phenotype identification
The above verified gene editing plants and wild 84K plants were cultured under parallel conditions for 60 days under conditions of 80. Mu. Mol m in a greenhouse -2 s -1 Light intensity, 25 degrees celsius, 16/8 hours light/dark period.
The photograph is shown in FIG. 2, and it can be seen that leaves of wild type 84K plants (WT) are all green and have no whitened areas. The albino area of the leaf of the gene-edited plants (dj 1c-L2 and dj1 c-L3) was 66.5% of the leaf area (average of 10 plant leaves, measurement by Image J software).
The above results indicate that inhibiting or reducing PtrDJ1C gene expression can effect a change in leaf green phenotype, specifically, the appearance of non-green regions in green leaves.
Example 2 chloroplast development assay and accumulation of Critical proteins
1. Chloroplast developmental status detection
Test plants: wild type 84K plants, ptrdj1c strain plants dj1c-L2.
The transmission electron microscope observation is carried out on the chloroplast ultrastructure, and the specific steps are as follows: leaves of the test plants grown for about 4 weeks were fixed with 3% glutaraldehyde solution for about 2 hours, then rinsed with 0.1M PBS buffer, then fixed with 1% osmium solution overnight at 4 ℃, then rinsed with 0.1M PBS buffer, then alcohol dehydrated (30% -95% alcohol each for 2-30min, and finally 100% alcohol three times for 20min each), then infiltrated (1/3 epoxy+2/3 propylene oxide for 2 hours, then 1/2 epoxy+1/2 propylene oxide for 2 hours, then 2/3 epoxy+1/3 propylene oxide for 2 hours, then pure epoxy; placed in a desiccator for 1-2 days), and then embedded (polymerization 37 ℃,24h;45 ℃,24h;55 ℃,24h;60 ℃ for 2 hours). And (5) trimming and marking, positioning the ultrathin slice, and observing by an electron transmission electron microscope.
The photo of the ultrastructure of chloroplast is shown in figure 4, and the leaf of wild type plant (WT) has normal development of chloroplast, and can clearly see structures such as thylakoid membrane; leaves of the ptrdj1c strain plant (dj 1 c): chloroplasts in the albino region appear undeveloped or dysplastic, with only some residual structures being visible.
2. Detection of key protein accumulation affecting chloroplast development
Test plants: wild type 84K plants, ptrdj1c plants dj1c-L2.
Sample supply: test plants were grown for approximately 4 weeks.
1. Extraction of Total protein
A50 mg fresh weight of sample specimen was taken and 200. Mu.L of buffer E (0.1514 g/mL Tris,0.01g/mL SDS,10% glycerol, 0.095g/mL Na) was added 2 S 2 O 5 pH 8.8) was ground to a homogenate, centrifuged at 13000g for 10 min at room temperature, and the supernatant was collected.
2. Quantification of Total protein
mu.L of the supernatant was used for total protein quantification (in mg/mL) using a BioRad DcProtein Assay kit (Bio-Rad, hercules, calif., USA).
3. And (3) leveling the total protein concentration of the supernatant obtained by the two sample samples according to the total protein quantitative result to obtain a protein solution. The protein solutions obtained from the wild plants were diluted to 2-fold and 4-fold volumes, respectively.
4. Protein electrophoresis and Western blot analysis were performed on the protein solution obtained from the plants of the ptrdj1c strain, the protein solution obtained from the wild type plants, the 2-fold dilution of the protein solution obtained from the wild type plants, and the 4-fold dilution of the protein solution obtained from the wild type plants, respectively (Actin protein was used as an internal reference, and the antibodies for detecting the proteins of each optical system were all commercially available antibodies).
As a result, as shown in FIG. 5, the content of each component protein (such as D1, psaA, cytf, CF 1. Alpha., rbcL and ATPase) affecting chloroplast development and photosynthesis was significantly reduced in plants of the ptrdj1c strain (shown as dj1c in the figure) as compared with wild type plants. Reduced levels of the related subunits of the photosynthetic complex can lead to chloroplast thylakoid membrane and chloroplast dysplasia, while reduced levels of chlorophyll associated with the photosystem, ultimately leading to a white (yellowish) phenotype.
The present application is described in detail above. It will be apparent to those skilled in the art that the present application can be practiced in a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the application and without undue experimentation. While the application has been described with respect to specific embodiments, it will be appreciated that the application may be further modified. In general, this application is intended to cover any variations, uses, or adaptations of the application following, in general, the principles of the application and including such departures from the present disclosure as come within known or customary practice within the art to which the application pertains. The application of some of the basic features may be done in accordance with the scope of the claims that follow.
SEQUENCE LISTING
<110> college of North and Hebei
<120> a method for creating a flower-spotted ornamental poplar using PtrDJ1C gene
<160> 7
<170> PatentIn version 3.5
<210> 1
<211> 471
<212> PRT
<213> Artificial sequence
<400> 1
Met Glu Ser Met Leu Cys Leu Leu Ser Pro Ser Pro Thr Lys Leu Ser
1 5 10 15
Pro Phe Lys Lys Leu Thr Ser Thr Cys Ala Leu Lys Thr Thr Phe Ser
20 25 30
Ser Leu Ser Phe Ala Ser Met Thr Ser Pro Pro Gln Pro Lys Thr Pro
35 40 45
Ser Thr Lys Lys Leu Ser Ser Ser Lys Pro Thr Lys Thr Leu Ser Pro
50 55 60
Lys Thr Pro Thr Thr Ser Thr Ser Val Gln Glu Thr Ser Thr Pro Phe
65 70 75 80
Ser Pro Pro Leu Lys Lys Val Leu Val Pro Ile Gly Phe Gly Thr Glu
85 90 95
Glu Met Glu Ala Val Ile Ile Val Asp Val Leu Arg Arg Ala Gly Ala
100 105 110
Glu Val Ile Val Ala Ser Val Glu Pro Gln Leu Glu Val Glu Ala Ala
115 120 125
Gly Gly Thr Arg Leu Val Ala Asp Thr Ser Ile Ser Lys Cys Ala Asn
130 135 140
Glu Val Phe Asp Leu Val Ala Leu Pro Gly Gly Met Pro Gly Ser Ala
145 150 155 160
Arg Leu Arg Asp Cys Glu Val Leu Arg Gln Ile Thr Ser Lys Gln Ala
165 170 175
Glu Asp Lys Arg Leu Tyr Gly Ala Ile Cys Ala Ala Pro Ala Ile Thr
180 185 190
Leu Leu Pro Trp Gly Leu Leu Arg Arg Lys Gln Met Thr Gly His Pro
195 200 205
Ala Phe Met Asp Lys Leu Pro Thr Phe Trp Ala Val Ala Ser Lys Ile
210 215 220
Gln Val Ser Gly Glu Leu Thr Thr Ser Arg Gly Pro Gly Thr Ser Phe
225 230 235 240
Glu Phe Ala Leu Ser Leu Val Asp Gln Leu Phe Gly Glu Ser Val Ala
245 250 255
Lys Glu Val Gly Gln Leu Leu Leu Met Gln Ala Asp Asp Asp Thr Gln
260 265 270
Arg Lys Glu Glu Tyr Asn Lys Val Glu Trp Ser Phe Asp His Asn Pro
275 280 285
Arg Val Leu Leu Pro Ile Ala Asn Gly Ser Glu Glu Ile Glu Ile Val
290 295 300
Ala Ile Val Asp Ile Leu Arg Arg Ala Lys Val Asp Val Val Val Ala
305 310 315 320
Ser Ile Glu Lys Ser Val Gln Ile Leu Ala Ser Arg Gly Ile Lys Ile
325 330 335
Val Ala Asp Lys Leu Ile Gly Asp Ala Ala Glu Ser Val Tyr Asp Leu
340 345 350
Ile Ile Leu Pro Gly Gly Asn Ala Gly Ala Glu Arg Leu His Lys Ser
355 360 365
Lys Val Leu Lys Lys Leu Leu Gln Glu Gln Tyr Thr Ala Gly Arg Ile
370 375 380
Tyr Gly Ala Val Cys Ser Ser Pro Ala Val Leu His Arg Gln Gly Leu
385 390 395 400
Leu Lys Asp Lys Arg Ala Thr Ala His Pro Ser Val Val Thr Asn Leu
405 410 415
Asn Asn Val Ser Asn Gly Ala Lys Val Val Ile Asp Gly Lys Leu Ile
420 425 430
Thr Ser Lys Gly Leu Ser Thr Val Thr Asp Phe Ala Leu Ala Ile Val
435 440 445
Ser Lys Leu Phe Gly His Ala Arg Thr Arg Cys Val Ala Glu Gly Leu
450 455 460
Val Phe Asp Tyr Pro Arg Ser
465 470
<210> 2
<211> 1416
<212> DNA
<213> Artificial sequence
<400> 2
atggagtcta tgctctgtct tctctcacca tctcctacaa agctctctcc tttcaagaaa 60
ctaacttcaa cttgtgcctt aaaaactaca ttttcctctt tatcatttgc ttccatgacc 120
tctcctccac agccaaaaac accctctaca aaaaaactct cttcttcaaa acccaccaaa 180
accctatctc caaaaacacc cacaacatca acgagtgttc aagaaacaag cactccattc 240
tctcctcctc tcaaaaaggt tctggtgcca ataggttttg gtacagaaga aatggaagca 300
gttattatcg ttgatgtttt gaggagagct ggtgctgagg taattgttgc ttcagtagaa 360
ccacagcttg aagttgaagc tgcaggtggc actaggcttg ttgctgatac ctccatttcc 420
aaatgtgcca atgaagtttt cgatcttgtt gctttgccgg gaggaatgcc aggctccgca 480
aggttgagag attgtgaagt tctcaggcaa attacaagca aacaagctga ggataagaga 540
ttatatggag ctatatgtgc cgctccggca atcactcttc ttccatgggg ccttctgagg 600
agaaagcaga tgacaggtca ccctgcattt atggacaagc ttcctacttt ctgggctgtt 660
gcatcaaaaa ttcaagtttc aggagagctt acaacaagcc gcggtccagg aacttctttc 720
gagtttgctc tatccttagt agaccagctg tttggagagt ctgttgccaa ggaggttgga 780
caattgttgc taatgcaagc tgatgatgac acccagagaa aagaagaata taacaaagtt 840
gaatggtctt ttgatcacaa tcctcgtgtt ctccttccaa ttgcaaatgg ttctgaagag 900
attgaaatag ttgctattgt agatatttta aggcgggcaa aggtggatgt tgtggttgct 960
tcaattgaaa aatcagtgca aattttggca tcacgaggca taaaaattgt cgctgacaag 1020
ttaattggtg atgctgctga atcagtatat gatctaatca ttctaccagg aggaaatgct 1080
ggggctgagc ggctacacaa atctaaggtt ctaaagaagc tgctccaaga gcaatataca 1140
gctggcagaa tatatggagc agtttgttct tcccctgcag ttcttcacag acagggttta 1200
ctaaaggata agagagccac tgcacacccc tctgttgtga ccaacctaaa caatgtatca 1260
aatggtgcca aagtagttat tgacggtaaa ttgatcacaa gcaagggact ttctaccgta 1320
acagattttg ctttggctat tgtgagcaag ctttttggcc atgcaaggac aagatgtgta 1380
gctgagggcc ttgtttttga ctatcccagg agttag 1416
<210> 3
<211> 4662
<212> DNA
<213> Artificial sequence
<400> 3
aaacagtcta tagcactgca agctccaatc aatggagtct atgctctgtc ttctctcacc 60
atctcctaca aagctctctc ctttcaagaa actaacttca acttgtgcct taaaaactac 120
attttcctct ttatcatttg cttccatgac ctctcctcca cagccaaaaa caccctctac 180
aaaaaaactc tcttcttcaa aacccaccaa aaccctatct ccaaaaacac ccacaacatc 240
aacgagtgtt caagaaacaa gcactccatt ctctcctcct ctcaaaaagg tgcctttttg 300
cttaaacctt ataccctttt accttaaaat gcttataaaa aaaacatagc ttttcaattg 360
ttgttttgta ttcaagaatt ctagactccc ctttcgacat gatggtagaa agttgatata 420
actatgccta cttgaacttg cagtgaccaa agtgttgatt ttttttatgg gttttgaaat 480
gtttgtggca ttgataggtt ctggtgccaa taggttttgg tacagaagaa atggaagcag 540
ttattatcgt tgatgttttg aggagagctg gtgctgaggt aattgttgct tcagtagaac 600
cacagcttga agttgaagct gcaggtggca ctaggcttgt tgctgatacc tccatttcca 660
aatgtgccaa tgaagttttc gatcttgttg ctttgccggt ttgttgtttt ttactttgaa 720
tcattcatgg tttgcaaatt aattcatgat tgttacattt atttctcatt gataatgtag 780
ccggggcaaa tattatgaca tagctttttt ttttttttaa ttttttcaat aaatggttgg 840
ttagtgactg acactcattg agaaattaat aaaaagtatg gtttagttga tttatgatcg 900
tgccggtaaa gatagttata catacaagcg tgaatgttaa gtataggaaa aagatatact 960
caacgacagg atttaattgg aaaatcgaga agattgtgtt ttctttgggg ttgtaacagg 1020
gagtttggtt gcttgttagt acagtaaatt ttatttggaa aacaactgta gcttttgtag 1080
tttgatctgg ccatgtaatt tgtaacaaag gcttgcgtgt tctgaatggc ttcaagggag 1140
gaatgccagg ctccgcaagg ttgagagatt gtgaagttct caggcaaatt acaagcaaac 1200
aagctgagga taagagatta tatggagcta tatgtgccgc tccggcaatc actcttcttc 1260
catggggcct tctgaggaga aagcaggtgg ctttcatgtg ttgcttttgc ttgaattttg 1320
ttgaatacac atgaatgtat tttggttgac taaatgtgct gtagcatgtg atgtaagatg 1380
acaggtcacc ctgcatttat ggacaagctt cctactttct gggctgttgc atcaaaaatt 1440
caagtttcag gagagcttac aacaagccgc ggtccaggaa cttctttcga gtttgctcta 1500
tccttagtag accagctgtt tggagagtct gttgccaagg aggttggaca attgttggta 1560
agtttaattg ctttgccagt ttcattttta cttttcatgc atgcgtcaac atagcatttt 1620
ggaaatcaag ttcctgtcat taacttaagt gcatcgaaag catgtgcagc ttagtcatgc 1680
cattctttac tgtgaacctc ttattcctaa ttgaatagaa gttaaaatta cctttttcag 1740
tggtgtataa tcatgattta aactctgcct ttttttctgg acatgatctg ctgaagttca 1800
cagggataat tagcgaactg ttttcaactt ttcataccat tgaagattct gtgcagaatt 1860
ctgaaatgaa atgcctgata acaggctcat aaaatttcta ttatcctgtt aattactagg 1920
atcttagcac aacaaattct gctgaaagca atacaaatta ttcaagtttt tttttttttt 1980
ggcatctgtc cattcattta actcaactgg gattcagacc tcgtcatgca catcttaaat 2040
attttttgtt cagtcagatt attgaaggat cgaatggatt tctttctatc ctttaataca 2100
gtatttttat agtggggaaa gaaagtctgg atggtatgaa agaagcagta tgagttaaag 2160
cattaattac cttagtgatc cttcaagttt tctaaaacag aatgcaaaga gtttgtgata 2220
tcttcattta gttcatatct tcaaagcgtc actacttttt acccatgtaa tggtttttta 2280
taggattttt aaaaaatgca cagaaaacca atgacaaaag gtagagaaat ttgataagtg 2340
actgtgtgta tggaatgcat agatcaggtg agctgttttc ttttgttttg taaaagattc 2400
atctgtcaac tgacttgtct tctcttacat gtttaccctt tggaagatgc tttgtggtta 2460
atcatcttga gctaacatct ctttacacct tatattagct aatgcaagct gatgatgaca 2520
cccagagaaa agaagaatat aacaaagttg aatggtcttt tgatcacaat cctcgtgtaa 2580
gtttcttcta ccttcctgtt tctgttaatc acctattggt ttataatctt ctttgtctgg 2640
agaacactcg atgcggggat gtggaacaca ttaaaaacaa gagctcctca tatttgaaac 2700
aattttgcat tttttcagtt gctaggtgga cgcactgata ttttttgaat gcatctttag 2760
tttaatcatt tgcgtaaagt tgcttcatga agtagttccc gcatccctgt gcaatcccaa 2820
tttgtagcat ttgtttgtct tctcatccct agtgcatttg agtttcttcc tatttatcat 2880
caaattaatc ttccacatgt tacacaggtt ctccttccaa ttgcaaatgg ttctgaagag 2940
attgaaatag ttgctattgt agatatttta aggcgggcaa aggtggatgt tgtggttgct 3000
tcaattgaaa aatcagtgca aattttggca tcacgaggca taaaaattgt cgctgacaag 3060
ttaattggtg atgctgctga atcagtatat gatctaatca ttctaccagt aagacaactc 3120
aatttttttt tataatattg aaaattgctt ttcttgcatt ctttcctaat agagttgtga 3180
gggttttata gtctttggaa ttcccactgt gatatcaaca gatgcctttg gaccttgcaa 3240
actagtctaa tatcataaga gggctttgag tacattggta gtcttaactt cagctttatg 3300
ttgatgaaaa aaacttcagc ttcaaggtaa tttgcaacat cttgtggaga tactgtcggt 3360
agcttgggct actgaaatta ctgcattagc tgttatcatt tgctcaggtt aacgccatgc 3420
cacatttctt gggatgaagt gctcaacaag tagcacattc caaaatctag gttttgctaa 3480
atattataga tctttctgaa attgaggctg ctgtctagtg cgttctttga catctacttt 3540
tgtgtttgtg ttgtatcctt gaagagtttt gatttgctgt gtcctttcag ggaggaaatg 3600
ctggggctga gcggctacac aaatctaagg ttctaaagaa gctgctccaa gagcaatata 3660
cagctggcag aatatatgga gcagtttgtt cttcccctgc agttcttcac agacagggtt 3720
tactaaaggt aatttgaact aattgaaatc tcttttctaa acagtaggac gctgaaggat 3780
ctgcttttct tcccaactat aggataagag agccactgca cacccctctg ttgtgaccaa 3840
cctaaacaat gtatcaaatg gtgccaaagt agttattgac ggtaaattga tcacaagcaa 3900
gggactttct accgtaacag attttgcttt ggctattgtg agcaagcttt ttggccatgc 3960
aaggacaaga tgtgtagctg agggccttgt ttttgactat cccaggagtt aggccatcag 4020
gtccttctgg acgaaaggca atttggaaga tccctgttcc atggagaaca gtctattccc 4080
tgaactcata tcagccagtt aagaaagaaa atcctctttc tgaggtgctt gcctaatgga 4140
tatttacgag actcatgttc gtccagatac agaatcctga ttgctttttt ggatagcaga 4200
acgagggaga gttgacattt gcctgtctgt gaagcccaaa gctactcgcc caatggcgat 4260
taacagaaga tgtgttgtga gctgaagcta acatctccaa atgtctgctg aagaacagac 4320
ttgtttgcaa actttatatg ataattcagt gccgaacagt atgaatggac atagaaatgg 4380
ctctgtgtaa caactgggca acgcagctgc tttttattca tcccatcttg ctcatgttgc 4440
attagcaaca ccagggattt cagttcggac ctgtgttatt gtggactttt tctcgttgcc 4500
aacgaatgat aaagattaca agcttaaatc aggactttca tgtatggtta tgatgttgcc 4560
gagattaatc ataaccatat atttcctctt atgcttgcct gttcttgact ggatatttta 4620
gaactggctg ctgttgtgtc tgaaaagcat ccgttcaatt gt 4662
<210> 4
<211> 293
<212> DNA
<213> Artificial sequence
<400> 4
ttcagaggtc tctaccgact agtatggaat cggcagcaaa ggaataagct tatgatttct 60
tttttcttac gaattttgcg tcccacatcg gtaagcgagt gaagaaataa ctgctttata 120
tatggctaca aagcaccatt ggtcagagga atgccaggct ccgcagtttt agagctagaa 180
atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg 240
ctttttttca agagcttgga gtggatggat acgcgtcgag cgagacccac gct 293
<210> 5
<211> 104
<212> DNA
<213> Artificial sequence
<400> 5
agaggaaugc caggcuccgc aguuuuagag cuagaaauag caaguuaaaa uaaggcuagu 60
ccguuaucaa cuugaaaaag uggcaccgag ucggugcuuu uuuu 104
<210> 6
<211> 2944
<212> DNA
<213> Artificial sequence
<400> 6
ggatccagcg tgggtctcgg ttttagagct agaaatagca agttaaaata aggctagtcc 60
gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt ttcaagagct tggagtggat 120
ggaattttcc tccgttttac ctgtggaatc ggcagcaaag gaataagctt atgatttctt 180
ttttcttacg aattttgcgt cccacatcgg taagcgagtg aagaaataac tgctttatat 240
atggctacaa agcaccattg gtcaagagac ctctgaagat aacatactaa gcttggcact 300
ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc gttacccaac ttaatcgcct 360
tgcagcacat ccccctttcg ccagctggcg taatagcgaa gaggcccgca ccgatcgccc 420
ttcccaacag ttgcgcagcc tgaatggcga atggcgcctg atgcggtatt ttctccttac 480
gcatctgtgc ggtatttcac accgcatatg gtgcactctc agtacaatct gctctgatgc 540
cgcatagtta agccagcccc gacacccgcc aacacccgct gacgcgccct gacgggcttg 600
tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct gcatgtgtca 660
gaggttttca ccgtcatcac cgaaacgcgc gagacgaaag ggcctcgtga tacgcctatt 720
tttataggtt aatgtcatga taataatggt ttcttagacg tcaggtggca cttttcgggg 780
aaatgtgcgc ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct 840
catgagacaa taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat 900
tcaacatttc cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc 960
tcacccagaa acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg 1020
ttacatcgaa ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg 1080
ttttccaatg atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtattga 1140
cgccgggcaa gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta 1200
ctcaccagtc acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc 1260
tgccataacc atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc 1320
gaaggagcta accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg 1380
ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc 1440
aatggcaaca acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca 1500
acaattaata gactggatgg aggcggataa agttgcagga ccacttctgc gctcggccct 1560
tccggctggc tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat 1620
cattgcagca ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg 1680
gagtcaggca actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat 1740
taagcattgg taactgtcag accaagttta ctcatatata ctttagattg atttaaaact 1800
tcatttttaa tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat 1860
cccttaacgt gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc 1920
ttcttgagat cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct 1980
accagcggtg gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg 2040
cttcagcaga gcgcagatac caaatactgt tcttctagtg tagccgtagt taggccacca 2100
cttcaagaac tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc 2160
tgctgccagt ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga 2220
taaggcgcag cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac 2280
gacctacacc gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga 2340
agggagaaag gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag 2400
ggagcttcca gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg 2460
acttgagcgt cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag 2520
caacgcggcc tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc 2580
tgcgttatcc cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc 2640
tcgccgcagc cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc 2700
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 2760
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt agctcactca 2820
ttaggcaccc caggctttac actttatgct tccggctcgt atgttgtgtg gaattgtgag 2880
cggataacaa tttcacacag gaaacagcta tgaccatgat tacgaattcg agctcggtac 2940
ccgg 2944
<210> 7
<211> 17619
<212> DNA
<213> Artificial sequence
<400> 7
ttgccctttt cctttatttc aatatatgcc gtgcacttgt ttgtcgggtc atcttttcat 60
gctttttttt gtcttggttg tgatgatgtg gtctggttgg gcggtcgttc tagatcggag 120
tagaattctg tttcaaacta cctggtggat ttattaattt tggatctgta tgtgtgtgcc 180
atacatattc atagttacga attgaagatg atggatggaa atatcgatct aggataggta 240
tacatgttga tgcgggtttt actgatgcat atacagagat gctttttgtt cgcttggttg 300
tgatgatgtg gtgtggttgg gcggtcgttc attcgttcta gatcggagta gaatactgtt 360
tcaaactacc tggtgtattt attaattttg gaactgtatg tgtgtgtcat acatcttcat 420
agttacgagt ttaagatgga tggaaatatc gatctaggat aggtatacat gttgatgtgg 480
gttttactga tgcatataca tgatggcata tgcagcatct attcatatgc tctaaccttg 540
agtacctatc tattataata aacaagtatg ttttataatt attttgatct tgatatactt 600
ggatgatggc atatgcagca gctatatgtg gattttttta gccctgcctt catacgctat 660
ttatttgctt ggtactgttt cttttgtcga tgctcaccct gttgtttggt gttacttctg 720
cagatggctc ctaagaagaa gcggaaggtt ggtattcacg gggtgcctgc ggctgacaag 780
aagtactcca tcggcctcga catcggcacc aacagcgtcg gctgggcggt gatcaccgac 840
gagtacaagg tcccgtccaa gaagttcaag gtcctgggca acaccgaccg ccactccatc 900
aagaagaacc tcatcggcgc cctcctcttc gactccggcg agacggcgga ggcgacccgc 960
ctcaagcgca ccgcccgccg ccgctacacc cgccgcaaga accgcatctg ctacctccag 1020
gagatcttct ccaacgagat ggcgaaggtc gacgactcct tcttccaccg cctcgaggag 1080
tccttcctcg tggaggagga caagaagcac gagcgccacc ccatcttcgg caacatcgtc 1140
gacgaggtcg cctaccacga gaagtacccc actatctacc accttcgtaa gaagcttgtt 1200
gactctactg ataaggctga tcttcgtctc atctaccttg ctctcgctca catgatcaag 1260
ttccgtggtc acttccttat cgagggtgac cttaaccctg ataactccga cgtggacaag 1320
ctcttcatcc agctcgtcca gacctacaac cagctcttcg aggagaaccc tatcaacgct 1380
tccggtgtcg acgctaaggc gatcctttcc gctaggctct ccaagtccag gcgtctcgag 1440
aacctcatcg cccagctccc tggtgagaag aagaacggtc ttttcggtaa cctcatcgct 1500
ctctccctcg gtctgacccc taacttcaag tccaacttcg acctcgctga ggacgctaag 1560
cttcagctct ccaaggatac ctacgacgat gatctcgaca acctcctcgc tcagattgga 1620
gatcagtacg ctgatctctt ccttgctgct aagaacctct ccgatgctat cctcctttcg 1680
gatatcctta gggttaacac tgagatcact aaggctcctc tttctgcttc catgatcaag 1740
cgctacgacg agcaccacca ggacctcacc ctcctcaagg ctcttgttcg tcagcagctc 1800
cccgagaagt acaaggagat cttcttcgac cagtccaaga acggctacgc cggttacatt 1860
gacggtggag ctagccagga ggagttctac aagttcatca agccaatcct tgagaagatg 1920
gatggtactg aggagcttct cgttaagctt aaccgtgagg acctccttag gaagcagagg 1980
actttcgata acggctctat ccctcaccag atccaccttg gtgagcttca cgccatcctt 2040
cgtaggcagg aggacttcta ccctttcctc aaggacaacc gtgagaagat cgagaagatc 2100
cttactttcc gtattcctta ctacgttggt cctcttgctc gtggtaactc ccgtttcgct 2160
tggatgacta ggaagtccga ggagactatc accccttgga acttcgagga ggttgttgac 2220
aagggtgctt ccgcccagtc cttcatcgag cgcatgacca acttcgacaa gaacctcccc 2280
aacgagaagg tcctccccaa gcactccctc ctctacgagt acttcacggt ctacaacgag 2340
ctcaccaagg tcaagtacgt caccgagggt atgcgcaagc ctgccttcct ctccggcgag 2400
cagaagaagg ctatcgttga cctcctcttc aagaccaacc gcaaggtcac cgtcaagcag 2460
ctcaaggagg actacttcaa gaagatcgag tgcttcgact ccgtcgagat cagcggcgtt 2520
gaggaccgtt tcaacgcttc tctcggtacc taccacgatc tcctcaagat catcaaggac 2580
aaggacttcc tcgacaacga ggagaacgag gacatcctcg aggacatcgt cctcactctt 2640
actctcttcg aggataggga gatgatcgag gagaggctca agacttacgc tcatctcttc 2700
gatgacaagg ttatgaagca gctcaagcgt cgccgttaca ccggttgggg taggctctcc 2760
cgcaagctca tcaacggtat cagggataag cagagcggca agactatcct cgacttcctc 2820
aagtctgatg gtttcgctaa caggaacttc atgcagctca tccacgatga ctctcttacc 2880
ttcaaggagg atattcagaa ggctcaggtg tccggtcagg gcgactctct ccacgagcac 2940
attgctaacc ttgctggttc ccctgctatc aagaagggca tccttcagac tgttaaggtt 3000
gtcgatgagc ttgtcaaggt tatgggtcgt cacaagcctg agaacatcgt catcgagatg 3060
gctcgtgaga accagactac ccagaagggt cagaagaact cgagggagcg catgaagagg 3120
attgaggagg gtatcaagga gcttggttct cagatcctta aggagcaccc tgtcgagaac 3180
acccagctcc agaacgagaa gctctacctc tactacctcc agaacggtag ggatatgtac 3240
gttgaccagg agctcgacat caacaggctt tctgactacg acgtcgacca cattgttcct 3300
cagtctttcc ttaaggatga ctccatcgac aacaaggtcc tcacgaggtc cgacaagaac 3360
aggggtaagt cggacaacgt cccttccgag gaggttgtca agaagatgaa gaactactgg 3420
aggcagcttc tcaacgctaa gctcattacc cagaggaagt tcgacaacct cacgaaggct 3480
gagaggggtg gcctttccga gcttgacaag gctggtttca tcaagaggca gcttgttgag 3540
acgaggcaga ttaccaagca cgttgctcag atcctcgatt ctaggatgaa caccaagtac 3600
gacgagaacg acaagctcat ccgcgaggtc aaggtgatca ccctcaagtc caagctcgtc 3660
tccgacttcc gcaaggactt ccagttctac aaggtccgcg agatcaacaa ctaccaccac 3720
gctcacgatg cttaccttaa cgctgtcgtt ggtaccgctc ttatcaagaa gtaccctaag 3780
cttgagtccg agttcgtcta cggtgactac aaggtctacg acgttcgtaa gatgatcgcc 3840
aagtccgagc aggagatcgg caaggccacc gccaagtact tcttctactc caacatcatg 3900
aacttcttca agaccgagat caccctcgcc aacggcgaga tccgcaagcg ccctcttatc 3960
gagacgaacg gtgagactgg tgagatcgtt tgggacaagg gtcgcgactt cgctactgtt 4020
cgcaaggtcc tttctatgcc tcaggttaac atcgtcaaga agaccgaggt ccagaccggt 4080
ggcttctcca aggagtctat ccttccaaag agaaactcgg acaagctcat cgctaggaag 4140
aaggattggg accctaagaa gtacggtggt ttcgactccc ctactgtcgc ctactccgtc 4200
ctcgtggtcg ccaaggtgga gaagggtaag tcgaagaagc tcaagtccgt caaggagctc 4260
ctcggcatca ccatcatgga gcgctcctcc ttcgagaaga acccgatcga cttcctcgag 4320
gccaagggct acaaggaggt caagaaggac ctcatcatca agctccccaa gtactctctt 4380
ttcgagctcg agaacggtcg taagaggatg ctggcttccg ctggtgagct ccagaagggt 4440
aacgagcttg ctcttccttc caagtacgtg aacttcctct acctcgcctc ccactacgag 4500
aagctcaagg gttcccctga ggataacgag cagaagcagc tcttcgtgga gcagcacaag 4560
cactacctcg acgagatcat cgagcagatc tccgagttct ccaagcgcgt catcctcgct 4620
gacgctaacc tcgacaaggt cctctccgcc tacaacaagc accgcgacaa gcccatccgc 4680
gagcaggccg agaacatcat ccacctcttc acgctcacga acctcggcgc ccctgctgct 4740
ttcaagtact tcgacaccac catcgacagg aagcgttaca cgtccaccaa ggaggttctc 4800
gacgctactc tcatccacca gtccatcacc ggtctttacg agactcgtat cgacctttcc 4860
cagcttggtg gtgataagcg tcctgctgcc accaaaaagg ccggacaggc taagaaaaag 4920
aagtaggatc ctcccgatcg ttcaaacatt tggcaataaa gtttcttaag attgaatcct 4980
gttgccggtc ttgcgatgat tatcatataa tttctgttga attacgttaa gcatgtaata 5040
attaacatgt aatgcatgac gttatttatg aggtgggttt ttatgattag agtcccgcaa 5100
ttatacattt aatacgcgat agaaaacaaa atatagcgcg caaactagga taaattatcg 5160
cgcgcggtgt catctatgtt actagatcgg gagcaccggt aaggcgcgcc gtagtgctcg 5220
agagacctct gaagtggccg attcattaat gcagctggca cgacaggttt cccgactgga 5280
aagcgggcag tgagcgcaac gcaattaatg tgagttagct cactcattag gcaccccagg 5340
ctttacactt tatgcttccg gctcgtatgt tgtgtggaat tgtgagcgga taacaatttc 5400
acacaagaaa cagctatgac catgattacg ccaagctatt taggtgacac tatagaatac 5460
tcaagctatg catcaagctc aatgggtcta gtctgtagat acccatcaca ctggcgaccg 5520
ctcgaacatc agtttaaggt ttacacctat aaaagagaga gccgttatcg tctgtttgtg 5580
gatgtacaga gtgatattat tgacacgccg gggcgacgga tggtgatccc cctggccagt 5640
gcacgtctgc tgtcagataa agtctcccgt gaactttacc cggtggtgca tatcggggat 5700
gaaagctggc gcatgatgac caccgatatg gccagtgtgc ctgtctccgt tatcggggaa 5760
gaagtggctg atctcagcca ccgcgaaaat gacatcaaaa acgccattaa cctgatgttc 5820
tggggaatat aaatgtcagg cctgaatggc gaatggacgc gccctgtagc ggcgcattaa 5880
gcgcggcggg tgagcgtggg tctcgcggta tcattggcgc gcctctcgag ctagcggccg 5940
catgcatcga tctcctacat cgtataaatt agcctatacg aagttattgc atctatgtcg 6000
ggtgcggaga aagaggtaat gaaatggcag tattagatct gataacttcg tataatgtat 6060
gctatacgaa gttatgactg caggtcgaca cccataatag ctgtttgcca agcttggcac 6120
tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg cgttacccaa cttaatcgcc 6180
ttgcagcaca tccccctttc gccagctggc gtaatagcga agaggcccgc accgatcgcc 6240
cttcccaaca gttgcgcagc ctgaatggcg aatgctagag cagcttgagc ttggatcaga 6300
ttgtcgtttc ccgccttcag tttaaactat cagtgtttga caggatatat tggcgggtaa 6360
acctaagaga aaagagcgtt tattagaata atcggatatt taaaagggcg tgaaaaggtt 6420
tatccgttcg tccatttgta tgtgcatgcc aaccacaggg ttcccctcgg gatcaaagta 6480
ctttgatcca acccctccgc tgctatagtg cagtcggctt ctgacgttca gtgcagccgt 6540
cttctgaaaa cgacatgtcg cacaagtcct aagttacgcg acaggctgcc gccctgccct 6600
tttcctggcg ttttcttgtc gcgtgtttta gtcgcataaa gtagaatact tgcgactaga 6660
accggagaca ttacgccatg aacaagagcg ccgccgctgg cctgctgggc tatgcccgcg 6720
tcagcaccga cgaccaggac ttgaccaacc aacgggccga actgcacgcg gccggctgca 6780
ccaagctgtt ttccgagaag atcaccggca ccaggcgcga ccgcccggag ctggccagga 6840
tgcttgacca cctacgccct ggcgacgttg tgacagtgac caggctagac cgcctggccc 6900
gcagcacccg cgacctactg gacattgccg agcgcatcca ggaggccggc gcgggcctgc 6960
gtagcctggc agagccgtgg gccgacacca ccacgccggc cggccgcatg gtgttgaccg 7020
tgttcgccgg cattgccgag ttcgagcgtt ccctaatcat cgaccgcacc cggagcgggc 7080
gcgaggccgc caaggcccga ggcgtgaagt ttggcccccg ccctaccctc accccggcac 7140
agatcgcgca cgcccgcgag ctgatcgacc aggaaggccg caccgtgaaa gaggcggctg 7200
cactgcttgg cgtgcatcgc tcgaccctgt accgcgcact tgagcgcagc gaggaagtga 7260
cgcccaccga ggccaggcgg cgcggtgcct tccgtgagga cgcattgacc gaggccgacg 7320
ccctggcggc cgccgagaat gaacgccaag aggaacaagc atgaaaccgc accaggacgg 7380
ccaggacgaa ccgtttttca ttaccgaaga gatcgaggcg gagatgatcg cggccgggta 7440
cgtgttcgag ccgcccgcgc acgtctcaac cgtgcggctg catgaaatcc tggccggttt 7500
gtctgatgcc aagctggcgg cctggccggc cagcttggcc gctgaagaaa ccgagcgccg 7560
ccgtctaaaa aggtgatgtg tatttgagta aaacagcttg cgtcatgcgg tcgctgcgta 7620
tatgatgcga tgagtaaata aacaaatacg caaggggaac gcatgaaggt tatcgctgta 7680
cttaaccaga aaggcgggtc aggcaagacg accatcgcaa cccatctagc ccgcgccctg 7740
caactcgccg gggccgatgt tctgttagtc gattccgatc cccagggcag tgcccgcgat 7800
tgggcggccg tgcgggaaga tcaaccgcta accgttgtcg gcatcgaccg cccgacgatt 7860
gaccgcgacg tgaaggccat cggccggcgc gacttcgtag tgatcgacgg agcgccccag 7920
gcggcggact tggctgtgtc cgcgatcaag gcagccgact tcgtgctgat tccggtgcag 7980
ccaagccctt acgacatatg ggccaccgcc gacctggtgg agctggttaa gcagcgcatt 8040
gaggtcacgg atggaaggct acaagcggcc tttgtcgtgt cgcgggcgat caaaggcacg 8100
cgcatcggcg gtgaggttgc cgaggcgctg gccgggtacg agctgcccat tcttgagtcc 8160
cgtatcacgc agcgcgtgag ctacccaggc actgccgccg ccggcacaac cgttcttgaa 8220
tcagaacccg agggcgacgc tgcccgcgag gtccaggcgc tggccgctga aattaaatca 8280
aaactcattt gagttaatga ggtaaagaga aaatgagcaa aagcacaaac acgctaagtg 8340
ccggccgtcc gagcgcacgc agcagcaagg ctgcaacgtt ggccagcctg gcagacacgc 8400
cagccatgaa gcgggtcaac tttcagttgc cggcggagga tcacaccaag ctgaagatgt 8460
acgcggtacg ccaaggcaag accattaccg agctgctatc tgaatacatc gcgcagctac 8520
cagagtaaat gagcaaatga ataaatgagt agatgaattt tagcggctaa aggaggcggc 8580
atggaaaatc aagaacaacc aggcaccgac gccgtggaat gccccatgtg tggaggaacg 8640
ggcggttggc caggcgtaag cggctgggtt gcctgccggc cctgcaatgg cactggaacc 8700
cccaagcccg aggaatcggc gtgagcggtc gcaaaccatc cggcccggta caaatcggcg 8760
cggcgctggg tgatgacctg gtggagaagt tgaaggccgc gcaggccgcc cagcggcaac 8820
gcatcgaggc agaagcacgc cccggtgaat cgtggcaagc ggccgctgat cgaatccgca 8880
aagaatcccg gcaaccgccg gcagccggtg cgccgtcgat taggaagccg cccaagggcg 8940
acgagcaacc agattttttc gttccgatgc tctatgacgt gggcacccgc gatagtcgca 9000
gcatcatgga cgtggccgtt ttccgtctgt cgaagcgtga ccgacgagct ggcgaggtga 9060
tccgctacga gcttccagac gggcacgtag aggtttccgc agggccggcc ggcatggcca 9120
gtgtgtggga ttacgacctg gtactgatgg cggtttccca tctaaccgaa tccatgaacc 9180
gataccggga agggaaggga gacaagcccg gccgcgtgtt ccgtccacac gttgcggacg 9240
tactcaagtt ctgccggcga gccgatggcg gaaagcagaa agacgacctg gtagaaacct 9300
gcattcggtt aaacaccacg cacgttgcca tgcagcgtac gaagaaggcc aagaacggcc 9360
gcctggtgac ggtatccgag ggtgaagcct tgattagccg ctacaagatc gtaaagagcg 9420
aaaccgggcg gccggagtac atcgagatcg agctagctga ttggatgtac cgcgagatca 9480
cagaaggcaa gaacccggac gtgctgacgg ttcaccccga ttactttttg atcgatcccg 9540
gcatcggccg ttttctctac cgcctggcac gccgcgccgc aggcaaggca gaagccagat 9600
ggttgttcaa gacgatctac gaacgcagtg gcagcgccgg agagttcaag aagttctgtt 9660
tcaccgtgcg caagctgatc gggtcaaatg acctgccgga gtacgatttg aaggaggagg 9720
cggggcaggc tggcccgatc ctagtcatgc gctaccgcaa cctgatcgag ggcgaagcat 9780
ccgccggttc ctaatgtacg gagcagatgc tagggcaaat tgccctagca ggggaaaaag 9840
gtcgaaaagt tctctttcct gtggatagca cgtacattgg gaacccaaag ccgtacattg 9900
ggaaccggaa cccgtacatt gggaacccaa agccgtacat tgggaaccgg tcacacatgt 9960
aagtgactga tataaaagag aaaaaaggcg atttttccgc ctaaaactct ttaaaactta 10020
ttaaaactct taaaacccgc ctggcctgtg cataactgtc tggccagcgc acagccgaag 10080
agctgcaaaa agcgcctacc cttcggtcgc tgcgctccct acgccccgcc gcttcgcgtc 10140
ggcctatcgc ggccgctggc cgctcaaaaa tggctggcct acggccaggc aatctaccag 10200
ggcgcggaca agccgcgccg tcgccactcg accgccggcg cccacatcaa ggcaccctgc 10260
ctcgcgcgtt tcggtgatga cggtgaaaac ctctgacaca tgcagctccc ggagacggtc 10320
acagcttgtc tgtaagcgga tgccgggagc agacaagccc gtcagggcgc gtcagcgggt 10380
gttggcgggt gtcggggcgc agccatgacc cagtcacgta gcgatagcgg agtgtatact 10440
ggcttaacta tgcggcatca gagcagattg tactgagagt gcaccatatg cggtgtgaaa 10500
taccgcacag atgcgtaagg agaaaatacc gcatcaggcg ctcttccgct tcctcgctca 10560
ctgactcgct gcgctcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg 10620
taatacggtt atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc 10680
agcaaaaggc caggaaccgt aaaaaggccg cgttgctggc gtttttccat aggctccgcc 10740
cccctgacga gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac 10800
tataaagata ccaggcgttt ccccctggaa gctccctcgt gcgctctcct gttccgaccc 10860
tgccgcttac cggatacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcata 10920
gctcacgctg taggtatctc agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc 10980
acgaaccccc cgttcagccc gaccgctgcg ccttatccgg taactatcgt cttgagtcca 11040
acccggtaag acacgactta tcgccactgg cagcagccac tggtaacagg attagcagag 11100
cgaggtatgt aggcggtgct acagagttct tgaagtggtg gcctaactac ggctacacta 11160
gaaggacagt atttggtatc tgcgctctgc tgaagccagt taccttcgga aaaagagttg 11220
gtagctcttg atccggcaaa caaaccaccg ctggtagcgg tggttttttt gtttgcaagc 11280
agcagattac gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt 11340
ctgacgctca gtggaacgaa aactcacgtt aagggatttt ggtcatgcat tctaggtact 11400
aaaacaattc atccagtaaa atataatatt ttattttctc ccaatcaggc ttgatcccca 11460
gtaagtcaaa aaatagctcg acatactgtt cttccccgat atcctccctg atcgaccgga 11520
cgcagaaggc aatgtcatac cacttgtccg ccctgccgct tctcccaaga tcaataaagc 11580
cacttacttt gccatctttc acaaagatgt tgctgtctcc caggtcgccg tgggaaaaga 11640
caagttcctc ttcgggcttt tccgtcttta aaaaatcata cagctcgcgc ggatctttaa 11700
atggagtgtc ttcttcccag ttttcgcaat ccacatcggc cagatcgtta ttcagtaagt 11760
aatccaattc ggctaagcgg ctgtctaagc tattcgtata gggacaatcc gatatgtcga 11820
tggagtgaaa gagcctgatg cactccgcat acagctcgat aatcttttca gggctttgtt 11880
catcttcata ctcttccgag caaaggacgc catcggcctc actcatgagc agattgctcc 11940
agccatcatg ccgttcaaag tgcaggacct ttggaacagg cagctttcct tccagccata 12000
gcatcatgtc cttttcccgt tccacatcat aggtggtccc tttataccgg ctgtccgtca 12060
tttttaaata taggttttca ttttctccca ccagcttata taccttagca ggagacattc 12120
cttccgtatc ttttacgcag cggtattttt cgatcagttt tttcaattcc ggtgatattc 12180
tcattttagc catttattat ttccttcctc ttttctacag tatttaaaga taccccaaga 12240
agctaaggaa ggtgcgaaca agtccctgat atgagatcat gtttgtcatc tggagccata 12300
gaacagggtt catcatgagt catcaactta ccttcgccga cagtgaattc agcagtaagc 12360
gccgtcagac cagaaaagag attttcttgt cccgcatgga gcagattctg ccatggcaaa 12420
acatggtgga agtcatcgag ccgttttacc ccaaggctgg taatggccgg cgaccttatc 12480
cgctggaaac catgctacgc attcactgca tgcagcattg gtacaacctg agcgatggcg 12540
cgatggaaga tgctctgtac gaaatcgcct ccatgcgtct gtttgcccgg ttatccctgg 12600
atagcgcctt gccggaccgc accaccatca tgaatttccg ccacctgctg gagcagcatc 12660
aactggcccg ccaattgttc aagaccatca atcgctggct ggccgaagca ggcgtcatga 12720
tgactcaagg caccttggtc gatgccacca tcattgaggc acccagctcg accaagaaca 12780
aagagcagca acgcgatccg gagatgcatc agaccaagaa aggcaatcag tggcactttg 12840
gcatgaaggc ccacattggt gtcgatgcca agagtggcct gacccacagc ctggtcacca 12900
ccgcggccaa cgagcatgac ctcaatcagc tgggtaatct gctgcatgga gaggagcaat 12960
ttgtctcagc cgatgccggc taccaagggg cgccacagcg cgaggagctg gccgaggtgg 13020
atgtggactg gctgatcgcc gagcgccccg gcaaggtaag aaccttgaaa cagcatccac 13080
gcaagaacaa aacggccatc aacatcgaat acatgaaagc cagcatccgg gccagggtgg 13140
agcacccatt tcgcatcatc aagcgacagt tcggcttcgt gaaagccaga tacaaggggt 13200
tgctgaaaaa cgataaccaa ctggcgatgt tattcacgct ggccaacctg tttcgggcgg 13260
accaaatgat acgtcagtgg gagagatctc actaaaaact ggggataacg ccttaaatgg 13320
cgaagaaacg gtctaaatag gctgattcaa ggcatttacg ggagaaaaaa tcggctcaaa 13380
catgaagaaa tgaaatgact gagtcagccg agaagaattt ccccgcttat tcgcaccttc 13440
cctaattata acaagacgaa ctccaattca ctgttccttg cattctaaaa ccttaaatac 13500
cagaaaacag ctttttcaaa gttgttttca aagttggcgt ataacatagt atcgacggag 13560
ccgattttga aaccgcggtg atcacaggca gcaacgctct gtcatcgtta caatcaacat 13620
gctaccctcc gcgagatcat ccgtgtttca aacccggcag cttagttgcc gttcttccga 13680
atagcatcgg taacatgagc aaagtctgcc gccttacaac ggctctcccg ctgacgccgt 13740
cccggactga tgggctgcct gtatcgagtg gtgattttgt gccgagctgc cggtcgggga 13800
gctgttggct ggctggtggc aggatatatt gtggtgtaaa caaattgacg cttagacaac 13860
ttaataacac attgcggacg tttttaatgt actgaattaa cgccgaatta attcggggga 13920
tctggatttt agtactggat tttggtttta ggaattagaa attttattga tagaagtatt 13980
ttacaaatac aaatacatac taagggtttc ttatatgctc aacacatgag cgaaacccta 14040
taggaaccct aattccctta tctgggaact actcacacat tattatggag aaactcgagc 14100
ttgtcgatcg acagatcccg gtcggcatct actctatttc tttgccctcg gacgagtgct 14160
ggggcgtcgg tttccactat cggcgagtac ttctacacag ccatcggtcc agacggccgc 14220
gcttctgcgg gcgatttgtg tacgcccgac agtcccggct ccggatcgga cgattgcgtc 14280
gcatcgaccc tgcgcccaag ctgcatcatc gaaattgccg tcaaccaagc tctgatagag 14340
ttggtcaaga ccaatgcgga gcatatacgc ccggagtcgt ggcgatcctg caagctccgg 14400
atgcctccgc tcgaagtagc gcgtctgctg ctccatacaa gccaaccacg gcctccagaa 14460
gaagatgttg gcgacctcgt attgggaatc cccgaacatc gcctcgctcc agtcaatgac 14520
cgctgttatg cggccattgt ccgtcaggac attgttggag ccgaaatccg cgtgcacgag 14580
gtgccggact tcggggcagt cctcggccca aagcatcagc tcatcgagag cctgcgcgac 14640
ggacgcactg acggtgtcgt ccatcacagt ttgccagtga tacacatggg gatcagcaat 14700
cgcgcatatg aaatcacgcc atgtagtgta ttgaccgatt ccttgcggtc cgaatgggcc 14760
gaacccgctc gtctggctaa gatcggccgc agcgatcgca tccatagcct ccgcgaccgg 14820
ttgtagaaca gcgggcagtt cggtttcagg caggtcttgc aacgtgacac cctgtgaacg 14880
gcgggagatg caataggtca ggctctcgct aaactcccca atgtcaagca cttccggaat 14940
cgggagcgcg gccgatgcaa agtgccgata aacataacga tctttgtaga aaccatcggc 15000
gcagctattt acccgcagga catatccacg ccctcctaca tcgaagctga aagcacgaga 15060
ttcttcgccc tccgagagct gcatcaggtc ggagacgctg tcgaactttt cgatcagaaa 15120
cttctcgaca gacgtcgcgg tgagttcagg ctttttcata tctcattgcc ccccggatct 15180
gcgaaagctc gagagagata gatttgtaga gagagactgg tgatttcagc gtgtcctctc 15240
caaatgaaat gaacttcctt atatagagga agggtcttgc gaaggatagt gggattgtgc 15300
gtcatccctt acgtcagtgg agatatcaca tcaatccact tgctttgaag acgtggttgg 15360
aacgtcttct ttttccacga tgctcttcgt gggtgggggt ccatctttgg gaccactgtc 15420
ggcagaggca tcttgaacga tagcctttcc tttatcgcaa tgatggcatt tgtaggtgcc 15480
accttccttt tctactgtcc ttttgatgaa gtgacagata gctgggcaat ggaatccgag 15540
gaggtttccc gatattaccc tttgttgaaa agtctcaata gccctttggt cttctgagac 15600
tgtatctttg atattcttgg agtagacgag agtgtcgtgc tccaccatgt tcacatcaat 15660
ccacttgctt tgaagacgtg gttggaacgt cttctttttc cacgatgctc ctcgtgggtg 15720
ggggtccatc tttgggacca ctgtcggcag aggcatcttg aacgatagcc tttcctttat 15780
cgcaatgatg gcatttgtag gtgccacctt ccttttctac tgtccttttg atgaagtgac 15840
agatagctgg gcaatggaat ccgaggaggt ttcccgatat taccctttgt tgaaaagtct 15900
caatagccct ttggtcttct gagactgtat ctttgatatt cttggagtag acgagagtgt 15960
cgtgctccac catgttggca agctgctcta gccaatacgc aaaccgcctc tccccgcgcg 16020
ttggccgatt cattaatgca gctggcacga caggtttccc gactggaaag cgggcagtga 16080
gcgcaacgca attaatgtga gttagctcac tcattaggca ccccaggctt tacactttat 16140
gcttccggct cgtatgttgt gtggaattgt gagcggataa caatttcaca caggaaacag 16200
ctatgacatg attacgaatt cgagctcggt accgtaacta taacggtcct aaggtagcga 16260
aggatccgct cgctacctta agagaggata tccctccatc ctataatgta ggctatagga 16320
actagggcaa ggccggccat gcggccgcaa gctgggtgca gcgtgacccg gtcgtgcccc 16380
tctctagaga taatgagcat tgcatgtcta agttataaaa aattaccaca tatttttttt 16440
gtcacacttg tttgaagtgc agtttatcta tctttataca tatatttaaa ctttactcta 16500
cgaataatat aatctatagt actacaataa tatcagtgtt ttagagaatc atataaatga 16560
acagttagac atggtctaaa ggacaattga gtattttgac aacaggactc tacagtttta 16620
tctttttagt gtgcatgtgt tctccttttt ttttgcaaat agcttcacct atataatact 16680
tcatccattt tattagtaca tccatttagg gtttagggtt aatggttttt atagactaat 16740
ttttttagta catctatttt attctatttt agcctctaaa ttaagaaaac taaaactcta 16800
ttttagtttt tttatttaat aatttagata taaaatagaa taaaataaag tgactaaaaa 16860
ttaaacaaat accctttaag aaattaaaaa aactaaggaa acatttttct tgtttcgagt 16920
agataatgcc agcctgttaa acgccgtcga cgagtctaac ggacaccaac cagcgaacca 16980
gcagcgtcgc gtcgggccaa gcgaagcaga cggcacggca tctctgtcgc tgcctctgga 17040
cccctctcga gagttccgct ccaccgttgg acttgctccg ctgtcggcat ccagaaattg 17100
cgtggcggag cggcagacgt gagccggcac ggcaggcggc ctcctcctcc tctcacggca 17160
ccggcagcta cgggggattc ctttcccacc gctccttcgc tttcccttcc tcgcccgccg 17220
taataaatag acaccccctc cacaccctct ttccccaacc tcgtgttgtt cggagcgcac 17280
acacacacaa ccagatctcc cccaaatcca cccgtcggca cctccgcttc aaggtacgcc 17340
gctcgtcctc cccccccccc ctctctacct tctctagatc ggcgttccgg tccatggtta 17400
gggcccggta gttctacttc tgttcatgtt tgtgttagat ccgtgtttgt gttagatccg 17460
tgctgctagc gttcgtacac ggatgcgacc tgtacgtcag acacgttctg attgctaact 17520
tgccagtgtt tctctttggg gaatcctggg atggctctag ccgttccgca gacgggatcg 17580
atttcatgat tttttttgtt tcgttgcata gggtttggt 17619

Claims (7)

1. Use of a substance that reduces the activity or content of a protein PtrDJ1C or a substance that inhibits the expression of a nucleic acid molecule encoding said protein PtrDJ1C in any one of the following a-F;
A. changing the color of poplar leaves;
B. changing the green leaves of poplar into the flower spot leaves;
C. cultivating poplar with flower spot leaves;
D. inhibiting the development of poplar leaf chloroplasts;
E. inhibiting development of a chloroplast thylakoid membrane of the poplar leaf;
F. reducing the expression quantity of proteins related to chloroplast development or photosynthesis in poplar leaves;
the protein PtrDJ1C is as follows (1) or (2):
(1) A protein consisting of an amino acid sequence shown as a sequence 1 in a sequence table;
(2) And a protein formed by adding a tag sequence at the tail end of an amino acid sequence shown in a sequence 1 in a sequence table.
2. The use according to claim 1, characterized in that:
the substance is a CRISPR/Cas9 system;
the CRISPR/Cas9 system comprises 1) or 2) as follows:
1) The target point of the sgRNA is 146 th to 165 th positions of a sequence 4;
2) CRISPR/Cas9 vectors expressing the sgrnas.
3. A method of growing a non-green leaf poplar, 1) or 2) or 3) as follows:
1) The method comprises the following steps: firstly, reducing the activity or content of protein PtrDJ1C in poplar with green leaf phenotype to obtain transgenic plants, and selecting the plants with non-green leaf phenotype, namely the poplar plants with non-green leaf phenotype;
2) The method comprises the following steps: firstly, inhibiting the expression of nucleic acid molecules of coding protein PtrDJ1C in poplar with green leaf phenotype to obtain transgenic plants, and selecting plants with non-green leaf phenotype, namely poplar plants with non-green leaf phenotype;
3) The method comprises the following steps: performing gene editing on nucleic acid molecules for encoding the protein PtrDJ1C in poplar with green leaf phenotype to terminate protein translation in advance to obtain a gene editing plant, and selecting a plant with a non-green leaf phenotype, namely a poplar plant with a non-green leaf;
the protein PtrDJ1C is as follows (1) or (2):
(1) A protein consisting of an amino acid sequence shown as a sequence 1 in a sequence table;
(2) And a protein formed by adding a tag sequence at the tail end of an amino acid sequence shown in a sequence 1 in a sequence table.
4. A method according to claim 3, characterized in that:
the gene editing is achieved by: introducing a CRISPR/Cas9 system into the plant of interest;
the CRISPR/Cas9 system comprises 1) or 2) as follows:
1) The target point of the sgRNA is 146 th to 165 th positions of a sequence 4;
2) CRISPR/Cas9 vectors expressing the sgrnas.
5. Use according to claim 1 or 2, characterized in that: the changing of the color of the poplar leaves is to change the green leaves of the poplar into non-green leaves.
Application of PtrDJ1C protein or coding gene thereof in regulation and control of the leaf spot phenotype of poplar;
the protein PtrDJ1C is as follows (1) or (2):
(1) A protein consisting of an amino acid sequence shown as a sequence 1 in a sequence table;
(2) And a protein formed by adding a tag sequence at the tail end of an amino acid sequence shown in a sequence 1 in a sequence table.
Application of PtrDJ1C protein or coding gene thereof in regulation and control of poplar chloroplast development;
the protein PtrDJ1C is as follows (1) or (2):
(1) A protein consisting of an amino acid sequence shown as a sequence 1 in a sequence table;
(2) And a protein formed by adding a tag sequence at the tail end of an amino acid sequence shown in a sequence 1 in a sequence table.
CN202210718436.9A 2022-06-23 2022-06-23 Method for creating flower-spot ornamental poplar by PtrDJ1C gene Active CN115029378B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210718436.9A CN115029378B (en) 2022-06-23 2022-06-23 Method for creating flower-spot ornamental poplar by PtrDJ1C gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210718436.9A CN115029378B (en) 2022-06-23 2022-06-23 Method for creating flower-spot ornamental poplar by PtrDJ1C gene

Publications (2)

Publication Number Publication Date
CN115029378A CN115029378A (en) 2022-09-09
CN115029378B true CN115029378B (en) 2023-09-15

Family

ID=83127708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210718436.9A Active CN115029378B (en) 2022-06-23 2022-06-23 Method for creating flower-spot ornamental poplar by PtrDJ1C gene

Country Status (1)

Country Link
CN (1) CN115029378B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103237901A (en) * 2010-03-01 2013-08-07 卡里斯生命科学卢森堡控股有限责任公司 Biomarkers for theranostics
CN104072597A (en) * 2014-06-23 2014-10-01 华南师范大学 Penaeus vanmamei LvDJ-1 protein as well as coding gene and application thereof
CN106916828A (en) * 2017-05-03 2017-07-04 中国林业科学研究院林业研究所 A kind of growth regulator gene of poplar adjusted and controlled leaf development and its application
CN107417781A (en) * 2017-06-27 2017-12-01 中国科学院植物研究所 Application of the chloroplast development associated protein in biological Development of Chloroplasts is regulated and controled
CN107995927A (en) * 2013-06-17 2018-05-04 布罗德研究所有限公司 For the Liver targeting and CRISPR-CAS systems for the treatment of, the delivering of carrier and composition and purposes
CN110724704A (en) * 2019-10-16 2020-01-24 安徽省农业科学院水稻研究所 Positive plasmid for identifying transgenic rice transformant and construction method and application thereof
CN111926032A (en) * 2020-06-05 2020-11-13 北京林业大学 Plant mottle protein HB1 and application of coding gene thereof in regulation and control of plant mottle phenotype
CN113906138A (en) * 2019-03-14 2022-01-07 热带生物科学英国有限公司 Introduction of silencing activity into multiple functionally deregulated RNA molecules and modification of their specificity for a gene of interest

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2010139897A (en) * 2008-02-29 2012-04-10 Рутгерс, Дзе Стейт Юниверсити (Us) DISEASES RESISTANT TRANSGENIC PLANTS
WO2015081061A2 (en) * 2013-11-26 2015-06-04 University Of Florida Research Foundation, Inc. Drought tolerant plants
WO2016127075A2 (en) * 2015-02-06 2016-08-11 New York University Transgenic plants and a transient transformation system for genome-wide transcription factor target discovery
US10648020B2 (en) * 2015-06-18 2020-05-12 The Broad Institute, Inc. CRISPR enzymes and systems
EP3433354B1 (en) * 2016-03-23 2023-12-27 Synthetic Genomics, Inc. Generation of synthetic genomes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103237901A (en) * 2010-03-01 2013-08-07 卡里斯生命科学卢森堡控股有限责任公司 Biomarkers for theranostics
CN107995927A (en) * 2013-06-17 2018-05-04 布罗德研究所有限公司 For the Liver targeting and CRISPR-CAS systems for the treatment of, the delivering of carrier and composition and purposes
CN104072597A (en) * 2014-06-23 2014-10-01 华南师范大学 Penaeus vanmamei LvDJ-1 protein as well as coding gene and application thereof
CN106916828A (en) * 2017-05-03 2017-07-04 中国林业科学研究院林业研究所 A kind of growth regulator gene of poplar adjusted and controlled leaf development and its application
CN107417781A (en) * 2017-06-27 2017-12-01 中国科学院植物研究所 Application of the chloroplast development associated protein in biological Development of Chloroplasts is regulated and controled
CN113906138A (en) * 2019-03-14 2022-01-07 热带生物科学英国有限公司 Introduction of silencing activity into multiple functionally deregulated RNA molecules and modification of their specificity for a gene of interest
CN110724704A (en) * 2019-10-16 2020-01-24 安徽省农业科学院水稻研究所 Positive plasmid for identifying transgenic rice transformant and construction method and application thereof
CN111926032A (en) * 2020-06-05 2020-11-13 北京林业大学 Plant mottle protein HB1 and application of coding gene thereof in regulation and control of plant mottle phenotype

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
A plant DJ-1 homolog is essential for arabidopsis thaliana chloroplast development;Jiusheng Lin 等;《PLoS One》;摘要,结果 *
DJ-1促进α-synuclein正常折叠的研究;李良等;《湖北工业大学学报》;第70-74页 *
Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus;Benjamin A Babst等;《The New phytologist.》;第63-72.页 *
PREDICTED: Populus trichocarpa protein DJ-1 homolog C (LOC7490037), mRNA;NCBI;《GenBank Database》;Accession No.XM_002313820.3 *
Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification;Ajit Ghosh等;《Scientific Reports》;第1-15页 *
protein DJ-1 homolog C [Populus trichocarpa];NCBI;《GenBank Database》;Accession No.XP_002313856 *
PtrDJ1C,an atypical member of the DJ-1superfamily,is essential for early chloroplast development and lignin deposition in poplar;XW Wang等;《Horticultural Plant Journal》;全文 *
Transcriptional profiling in dioecious plant Populus cathayana reveals potential and sex-related molecular adaptations to solar UV-B radiation;H Jiang等;《Physiologia Plantarum》;第105-118页 *
原发性帕金森病患者唾液DJ-1蛋白与非运动症状、α-突触核蛋白的相关性研究;杨钊;康文岩;刘军;;临床内科杂志(06);第37-40页 *
帕金森病早期诊断的研究进展;常培叶;马俐华;王雪梅;;内蒙古医科大学学报(01);第88-91页 *
张梅英 ; 徐影琪 ; 王惟 ; 赵越 ; 杨葳 ; 于萌 ; 郭晓冲 ; 秦英 ; 郑志红 ; .pcDNA3.1/myc-His-DJ-1~(M26I)重组载体构建及其对NIH3T3细胞增殖和凋亡研究.中国比较医学杂志.第28-33页. *
拟南芥DnaJ蛋白调控叶绿体铁硫簇组装的分子机理研究;张婧;《万方》;全文 *
拟南芥GATL12基因影响叶绿体的形成;苏延萍;路小铎;沈颂东;张春义;;植物学报(04);第379-385页 *
日本结缕草ZjERF2转录激活验证及互作蛋白的初步筛选;张蕊;刘凌云;范希峰;滕珂;常智慧;武菊英;;分子植物育种(12);第145-151页 *
杨树ASE蛋白的生化功能研究;钱婷婷;杨志灵;曾庆银;;林业科学研究(04);全文 *
用组织芯片分析DJ-1蛋白在非霍奇淋巴瘤组织中的定位表达及意义;王文松等;《中南医学科学杂志》;第119-122,135 页 *

Also Published As

Publication number Publication date
CN115029378A (en) 2022-09-09

Similar Documents

Publication Publication Date Title
CN102421895B (en) Chrysosporium lucknowense protein production systems
CN108220176B (en) Method for improving fermentation production of glucaric acid by saccharomyces cerevisiae engineering strain
CN113699177A (en) Application of OsABF1 gene in rice breeding regulation and/or rice seed vigor mechanism research
CN111542610A (en) Novel strategy for precise genome editing
CN112501101B (en) High-yield strain of natural herbicide thaxtomins as well as preparation method and application thereof
US20020162140A1 (en) Expression of recombinant human acetylcholinesterase in transgenic plants
CN111926032B (en) Plant mottle protein HB1 and application of coding gene thereof in regulation and control of plant mottle phenotype
US20040133937A1 (en) Plastid transformation
CN115029378B (en) Method for creating flower-spot ornamental poplar by PtrDJ1C gene
CN111187785B (en) Cloning expression and application of serpentis grass tryptophan decarboxylase gene OpTDC2
US8143474B2 (en) Compositions and methods for increasing transgene expression in the plastids of higher plants
KR101973007B1 (en) Recombinant transition vector for enhancement of foreign protein expression
CA2478969C (en) Early inflorescence-preferred regulatory elements and uses thereof
CN101948866A (en) Construction of bacillus subtilis integrated vector capable of being cloned by using homologous recombination and application thereof
CN114350698B (en) Human recombinant arginase I production strain and construction method thereof
CN114839382A (en) Method for establishing bimolecular fluorescence complementary system based on red fluorescent protein in yeast
CN114196712B (en) Method for producing L-ornithine by immobilized enzyme method
CN108085325B (en) Glyphosate-resistant gene and cultivation method of transgenic glyphosate-resistant tobacco
CN112831524B (en) Artificially modified recombinant adenovirus vector, virus packaged by same and application thereof
CN111909851B (en) Astaxanthin-producing engineering bacteria based on Dunaliella salina metabolic pathway and haematococcus pluvialis BKT as well as construction method and application thereof
CN114214353B (en) Method for producing human recombinant arginase I by fermentation
CN110923262B (en) Sorghum alpha-amylase and coding gene and application thereof
CN114350721A (en) Method for producing L-ornithine by microbial enzyme method
CN110872584B (en) Barley alpha-amylase and coding gene and application thereof
CN108949795B (en) Plasmid pCDSP for increasing squalene content in escherichia coli and preparation and use methods thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20220909

Assignee: Zhangjiakou Changhe Agricultural Development Co.,Ltd.

Assignor: HEBEI NORTH University

Contract record no.: X2023980049339

Denomination of invention: A method for creating ornamental poplar trees with flower spots using the PtrDJ1C gene

Granted publication date: 20230915

License type: Common License

Record date: 20231130

EE01 Entry into force of recordation of patent licensing contract