KR20160125875A - 촬상 장치 및 촬상 장치를 포함하는 이미지 센서 - Google Patents

촬상 장치 및 촬상 장치를 포함하는 이미지 센서 Download PDF

Info

Publication number
KR20160125875A
KR20160125875A KR1020160003672A KR20160003672A KR20160125875A KR 20160125875 A KR20160125875 A KR 20160125875A KR 1020160003672 A KR1020160003672 A KR 1020160003672A KR 20160003672 A KR20160003672 A KR 20160003672A KR 20160125875 A KR20160125875 A KR 20160125875A
Authority
KR
South Korea
Prior art keywords
optical element
light
optical
nanostructures
incident
Prior art date
Application number
KR1020160003672A
Other languages
English (en)
Other versions
KR102659161B1 (ko
Inventor
한승훈
아미르 아바비
안드레이 파라온
황성우
유장우
최병룡
Original Assignee
삼성전자주식회사
캘리포니아 인스티튜트 오브 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 캘리포니아 인스티튜트 오브 테크놀로지 filed Critical 삼성전자주식회사
Priority to US15/134,885 priority Critical patent/US9946051B2/en
Publication of KR20160125875A publication Critical patent/KR20160125875A/ko
Priority to US15/923,554 priority patent/US10942333B2/en
Priority to US16/800,468 priority patent/US11698510B2/en
Priority to US17/167,849 priority patent/US20210318516A1/en
Application granted granted Critical
Publication of KR102659161B1 publication Critical patent/KR102659161B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/16Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + all the components being simple
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • H04N5/372

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

촬상 장치 및 촬상 장치를 포함하는 이미지 센서가 개시된다. 개시된 촬상 장치는 제1 내지 제3 광학 소자를 포함한다. 상기 제1 내지 제3 광학 소자 중 적어도 하나는 나노 구조를 포함하는 박형 렌즈이다.

Description

촬상 장치 및 촬상 장치를 포함하는 이미지 센서{IMAGING DEVICE AND IMAGE SENSOR INCLUDING THE IMAGING DEVICE}
본 개시는, 촬상 장치 및 상기 촬상 장치를 포함하는 이미지 센서에 관한 것이다.
반도체 기반 센서 배열을 이용하는 광학 센서들은 모바일 기기 및 웨어러블 기기 사물 인터넷 등에 점점 더 많이 사용되고 있다. 이들 기기 들의 소형화가 요구되고 있지만, 기기들에 포함되는 촬상 장치의 두께를 줄이는데 어려움이 있다.
종래 광학 렌즈를 이용한 촬상 광학계는 색수차와 기하 수차 제거 및 충분한 F 수(F number) 확보를 위해 많은 수의 광학 렌즈가 요구된다. 그리고 이들 광학 렌즈가 각각 고유의 역할 수행을 위해 소정의 형상을 가져야 하는바 촬상 장치의 두께를 얇게 하는데 제한이 있다.
본 개시는 소형 설계에 적합한 구조의 촬상 장치 및 촬상 장치를 포함하는 이미지 센서를 제공한다.
일 측면에 있어서,
입사광의 입사각도에 따라 상기 입사광을 다른 위치로 집광하는 제1 광학 소자;
상기 제1 광학 소자를 통과한 광이 입사되는 것으로 위치에 따라 다른 초점거리로 상기 제1 광학 소자를 통과한 광을 집광하는 제2 광학 소자; 및
상기 제2 광학 소자를 통과한 광이 입사되는 것으로 상기 제2 광학 소자를 통과한 광이 소정의 촬상면 상에 집광점을 형성하도록 하는 제3 광학소자;를 포함하며,
상기 제1 내지 제3 광학 소자 중 적어도 하나는 표면에 복수의 나노 구조체를 포함하는 박형 렌즈로 구현되는 촬상 장치가 제공된다.
상기 제2 광학소자는 광축으로부터 바깥쪽으로 갈수록 더 긴 초점거리를 가지도록 구성될 수 있다.
상기 제3 광학 소자는 광축으로부터 바깥쪽으로 갈수록 더 짧은 초점거리를 가지도록 구성될 수 있다.
상기 제1 광학계는 양의 굴절력을 가지고, 상기 제2 광학계는 음의 굴절력을 가지고, 상기 제3 광학계는 양의 굴절력을 가질 수 있다.
상기 제3 광학 소자는 상기 촬상면 상에 상기 광이 수직으로 입사되어 집광점을 형성하도록 상기 광의 방향을 변화시킬 수 있다.
상기 제1 광학 소자는 기존 굴절률 방식의 광학렌즈로 구성되고, 상기 제2 및 제3 광학 소자는 상기 박형 렌즈로 구성될 수 있다.
상기 제2 광학 소자의 나노 구조체들과 상기 제3 광학 소자의 나노 구조체들은 서로 색수차를 상쇄 시키는 구조 및 배열을 가질 수 있다.
상기 제1 광학 소자는 상기 제2 및 제3 광학 소자에서 발생하는 기하수차 및 색수차 중 적어도 하나를 상쇄 시키는 구조를 가질 수 있다.
상기 제1 광학 소자는 상기 박형렌즈로 구성되고, 상기 제2 및 제3 광학 소자는 굴절률 방식의 광학렌즈로 구성될 수 있다.
상기 제1 광학 소자에 포함된 나노 구조체들은 상기 제2 및 제3 광학 소자에서 발생하는 색수차 및 기하 수차 중 적어도 하나를 상쇄 시키는 구조 및 배열을 가질 수 있다.
상기 제1 광학 소자는 상기 제2 광학 소자의 표면에 마련될 수 있다.
상기 박형 렌즈는 상기 나노 구조체들이 배열되는 기판을 포함할 수 있다.
상기 나노 구조체들은 상기 기판보다 큰 굴절률을 가질 수 있다.
상기 기판은 glass (fused silica, BK7, 등), Quartz, polymer(PMMA(Polymethyl methacrylate), SU-8 등) 및 플라스틱(plastic)) 중 적어도 하나를 포함하며, 상기 나노 구조체들은 c-Si, p-Si, a-Si, 및 III-V 화합물 반도체(GaP, GaN, GaAs 등), SiC, TiO2, SiN, 중 적어도 하나를 포함할 수 있다.
상기 나노 구조체들은 원기둥, 타원 기둥, 다면체 기둥 중 적어도 어느 한 형상을 가질 수 있다.
상기 제1 내지 제3 광학 소자는 상기 입사광 가운데 소정의 파장 영역에 대해서만 상기 촬상면에 집광점이 형성되도록 할 수 있다.
상기 촬상장치는, 상기 소정의 파장 영역 밖의 파장 성분을 차단하는 광 필터;를 더 포함할 수 있다.
다른 측면에 있어서,
입사광의 입사각도에 따라 상기 입사광을 다른 위치로 집광하는 제1 광학 소자와, 상기 제1 광학 소자를 통과한 광이 입사되는 것으로 위치에 따라 다른 초점거리로 상기 제1 광학 소자를 통과한 광을 집광하는 제2 광학 소자 및 상기 제2 광학 소자를 통과한 광이 입사되는 것으로 상기 제2 광학 소자를 통과한 광이 소정의 촬상면 상에 집광점을 형성하도록 하는 제3 광학소자를 포함하며,를 포함하는 적어도 하나의 촬상 장치; 및
상기 촬상 장치에 대응되게 마련되며 상기 촬상 장치의 촬상면에 입사된 광을 측정하는 광 측정부;를 포함하며
상기 제1 내지 제3 광학 소자 중 적어도 하나는 표면에 복수의 나노 구조체를 포함하는 박형 렌즈로 구현되는 이미지 센서가 제공된다.
상기 촬상 장치 및 상기 광 측정부는 복수 개로 마련되며,
상기 복수의 촬상 장치 중 적어도 둘 이상은 서로 다른 파장 영역의 광에 대해서 상기 촬상면에 집광점이 형성되도록 구성될 수 있다.
상술한 촬상 장치 및 이미지 센서는 나노 구조체를 이용한 박형 렌즈를 포함하는 바, 소형 제작이 용이하다.
또한, 박형 렌즈의 나노 구조체의 형상, 물질, 배열모양을 조절함으로써 촬상 장치의 색수차, 기하수차를 보정할 수 있다.
도 1은 굴절률 방식의 광학 렌즈들을 이용한 촬상 광학계를 나타낸 도면이다.
도 2는 예시적인 실시예에 따른 촬상 광학계를 나타낸 도면이다.
도 3은 입사광이 제1 광학 소자를 통과하는 것을 예시적으로 나타낸 도면이다.
도 4는 광이 제2 광학 소자를 통과하는 것을 예시적으로 나타낸 도면이다.
도 5는 광이 제3 광학 소자를 통과하는 것을 예시적으로 나타낸 도면이다.
도 6은 도 2 내지 도 5에서 나타낸 촬상 광학계(100)에서 전체 광 경로를 나타낸 도면이다.
도 7은 예시적인 실시예에 따른 촬상 광학계를 나타낸 도면이다.
도 8은 예시적인 실시예에 따른 촬상 광학계를 나타낸 도면이다.
도 9는 예시적인 실시예에 따른 촬상 광학계를 나타낸 도면이다.
도 10은 이상에서 설명한 박형 렌즈를 나타낸 도면이다.
도 11은 도 10에서 나타낸 제1 광학 소자의 표면 중 일부를 나타낸 도면이다.
도 12는 도 10에서 나타낸 제1 광학 소자의 표면의 다른 예를 나타낸 도면이다.
도 13은 예시적인 실시예에 따른 촬상 광학계를 나타낸 도면이다.
도 14는 예시적인 실시예에 따른 이미지 센서를 나타낸 도면이다.
도 15는 예시적인 실시예에 따른 이미지 센서를 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명하기로 한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다. 한편, 이하에 설명되는 실시예는 단지 예시적인 것에 불과하며, 이러한 실시예들로부터 다양한 변형이 가능하다. 이하에서, "상부" 나 "상"이라고 기재된 것은 접촉하여 바로 위에 있는 것뿐만 아니라 비접촉으로 위에 있는 것도 포함할 수 있다.
도 1은 굴절률 방식의 광학 렌즈들(10, 20, 30, 40)을 이용한 촬상 장치를 나타낸 도면이다.
도 1을 참조하면, 일반적인 촬상 장치는 복수의 광학 렌즈를(10, 20, 30, 40)을 포함할 수 있다. 광학 렌즈들(10, 20, 30, 40)은 렌즈 밖 매질과 다른 굴절률의 물질로 구성될 수 있다. 광학 렌즈들(10, 20, 30, 40)의 굴절률, 표면의 곡률을 다르게 함으로써 광학 렌즈들(10, 20, 30, 40)을 통과하는 빛의 경로를 조절할 수 있다. 또한, 광학 렌즈들(10, 20, 30, 40)의 모양과 광학 렌즈들(10, 20, 30, 40) 사이의 간격을 적절히 조절함으로써 촬상 장치를 통과한 광이 촬상면(S1)에 집광점을 형성하도록 할 수 있다.
그런데, 굴절률 방식의 광학 렌즈는 광의 파장에 따라 굴절률이 다르기 때문에 색수차(chromatic aberration)를 발생시킬 수 있다. 또한, 광학 렌즈를 통과한 광들이 형성하는 집광점들은 이미징되는 빛의 초점이 맺히는 형태가 왜곡되는 기하수차를 가질 수 있다. 예를 들어, 초점이 맺히는 면이 평면이 아닌 곡면을 형성하는 기하수차가 field of curvature 발생할 수 있다.
색수차와 기하수차를 제어하기 위해, 여러 형태의 렌즈들을 복합해서 촬상 장치를 설계할 수 있다. 하지만, 이 경우 복잡한 모양의 광학 렌즈들이 촬상 장치에 포함되면서 촬상 장치의 두께가 커질 수 있다. 또한, 촬상 장치의 전체 두께를 줄이려고 하면, 각 렌즈들의 직경 대비 두께가 커지는 (즉, F 수(f-number)가 줄어드는) 문제점이 있을 수 있다. 여기서 F 수는 렌즈의 초점거리를 렌즈직경으로 나눈 수로써 렌즈의 밝기를 나타낼 수 있다. 따라서, 개별 렌즈들의 두께 증가로 인해 촬상 장치의 전체 두께를 줄이는데는 제약이 있게 된다.
촬영장치의 소형화를 위해, 촬상 장치의 두께를 줄이면서 이를 구성하는 개별 렌즈의 F 수를 일정 크기 이하로 낮춰야 한다. 이는 기존 굴절률 방식의 렌즈로는 한계가 있기에, 새로운 박형 렌즈를 도입하여 해결 할 수 있다.
도 2는 예시적인 실시예에 따른 촬상 장치를 나타낸 도면이다.
도 2를 참조하면, 예시적인 실시예에 따른 촬상 장치(100)는 입사광의 입사각도에 따라 상기 입사광을 다른 위치로 집광하는 제1 광학 소자(110)와, 제1 광학 소자(110)를 통과한 광이 입사되는 것으로 위치에 따라 다른 초점거리로 상기 제1 광학 소자(110)를 통과한 광을 집광하는 제2 광학 소자(120) 및 제2 광학소자(120)를 통과한 광이 입사되는 것으로 상기 제2 광학 소자(120)를 통과한 광이 소정의 촬상면(S1) 상에 집광점을 형성하도록 하는 제3 광학소자(130)를 포함할 수 있다.
제1 내지 제3 광학 소자(110, 120, 130) 중 적어도 하나는 표면에 복수의 나노 구조체(112, 122, 132)를 포함하는 박형 렌즈일 수 있다. 여기서 박형 렌즈란 기존의 광학 렌즈와 같이 렌즈의 구조에 의해 렌즈를 통과한 광의 경로가 결정되는 것이 아닌 박형 렌즈 표면에 마련된 나노 구조체들(112, 122, 132)별로 생기는 고유의 투과 빛의 위상 지연 및 그 분포를 조절하여 광의 경로를 변경하는 방식의 광학 소자를 의미한다. 따라서, 박형 렌즈는 광학 렌즈와 달리 두께에 대한 제한이 적을 수 있으며 얇게 설계될 수 있다.
주변 대비 굴절률이 충분히 높은 나노 구조체들(112, 122, 132)은 각기 그 모양과 구성 물질에 따라 소정의 투과율 및 투과 위상을 가질 수 있다. 나노 구조체에 입사하는 빛은 나노구조체의 하나 이상의 도파로 모드들로 커플링(coupling)되면서 나노구조체 안에서 공진하게 된다. 이러한 도파모드들로 구성된 공진 특성이 상호 간섭하여, 나노구조체에서 투과 혹은 반사하여 나오는 빛들의 세기 및 위상을 디자인 할 수 있다. 원하는 광학 소자(박형 렌즈)를 만들고자 할 경우에는, 해당 소자가 가져야 하는 투과 위상 및 세기 분포(예를 들어, 수렴 혹은 발산하는 파면 형태)에 맞게 이러한 나노구조체들의 형태를 변화시키면서 배열시키면 된다.
도 2에서는 광학 소자들(110, 120, 130)에서 촬상면(S1)과 마주보는 면에 나노 구조체(112, 122, 132)들이 마련된 예를 나타냈지만 실시예가 이에 제한되는 것은 아니다. 예를 들어, 나노 구조체들은 광학 소자들(110, 120, 130)에서 광이 입사하는 면에 마련될 수도 있다. 다른 예로, 나노 구조체들(112, 122, 132)은 광학 소자들(110, 120, 130)의 양면에 모두 마련되어 있을 수도 있다.
또한, 도 2에서는 제1 내지 제3 광학 소자(110, 120, 130)가 모두 박형 렌즈인 예를 나타냈지만 실시예가 이에 제한되는 것은 아니다. 예를 들어, 제1 내지 제3 광학 소자(110, 120, 130) 가운데 하나 또는 둘만 박형 렌즈로 설계되고 나머지는 광학 렌즈로 설계될 수도 있다.
제1 광학 소자(110)에는 물체(미도시)로부터 반사된 광이 입사광으로서 입사될 수 있다. 도 3은 입사광이 제1 광학 소자(110)를 통과하는 것을 예시적으로 나타낸 도면이다.
도 3을 참조하면, 제1 광학 소자(110)는 입사광의 입사 각도에 따라 입사광을 서로 다른 위치로 집광할 수 있다. 예를 들어, 제1 내지 제3 광학 소자(110, 120, 130)의 배열방향에 평행하게 입사한 제2 입사광(L21)은 제2 광학 소자(120)의 중심을 향해 집광될 수 있다. 반면, 제1 내지 제3 광학 소자(110, 120, 130)의 배열방향에 비스듬하게 입사한 제1 입사광(L11)은 제2 광학 소자(120)의 가장자리를 향해 집광될 수 있다. 제1 광학 소자(110)는 입사광의 진행방향을 변경하기 위해, 표면에 복수의 나노 구조체(112)를 포함할 수 있다.
나노 구조체들(112)은 제1 광학 소자(110)의 촬상면(S1)과 마주보는 면에 마련될 수 있다. 하지만, 실시예가 이에 제한되는 것은 아니다. 다른 예로 나노 구조체들(112)은 물체로부터 반사된 입사광이 입사하는 면에 마련될 수도 있다. 또한, 나노 구조체들(112)은 제1 광학 소자(110)의 양면 모두에 마련될 수도 있다.
제1 광학 소자(110)의 표면에 마련된 나노 구조체들(112)은 제1 광학 소자(110)가 양(+)의 굴절력을 가지는 렌즈와 같은 기능을 수행하도록 설계될 수 있다. 나노 구조체들(112)의 모양과 높이, 간격 등을 조절함으로써, 제1 광학 소자(110)가 양(+)의 굴절력을 가지는 렌즈와 같이 광의 경로를 변경하도록 할 수 있다. 제1 광학 소자(110)가 양(+)의 굴절력을 가짐으로써, 제1 내지 제3 광학 소자(110, 120, 130)의 배열방향에 비스듬하게 입사한 제2 입사광(L21)은 제2 광학 소자(120)의 가장자리로 집광될 수 있다. 또한, 제1 내지 제3 광학 소자(110, 120, 130)의 배열방향에 평행하게 입사한 제1 입사광(L11)은 제2 광학 소자(120)의 중심을 향해 집광될 수 있다.
제1 광학 소자(110)를 통과한 광은 제2 광학 소자(120)에 입사될 수 있다. 제2 광학 소자(120)는 광이 입사되는 위치에 따라 다른 초점 거리로 광을 집광할 수 있다.
도 4는 광이 제2 광학 소자(120)를 통과하는 것을 예시적으로 나타낸 도면이다.
도 4를 참조하면, 제2 광학 소자(120)는 광의 입사 위치에 따라 광을 다른 초점거리로 집광할 수 있다. 예를 들어, 제2 광학 소자(120)의 중심을 향해 입사된 제2 광(L22)은 비교적 짧은 초점거리로 집광될 수 있다. 반면, 제2 광학 소자(120)의 가장자리를 향해 입사된 제1 광(L12)은 비교적 긴 초점거리로 집광될 수 있다. 제2 광학 소자(120)가 가장자리에 입사된 광을 더 긴 초점 거리로 집광함으로써, 입사각에 따른 광 경로 차이를 보상해줄 수 있다. 제2 광학 소자(120)는 입사광의 진행방향을 변경하기 위해, 표면에 복수의 나노 구조체(122)를 포함할 수 있다.
나노 구조체들(122)은 제2 광학 소자(120)의 촬상면(S1)과 마주보는 면에 마련될 수 있다. 하지만, 실시예가 이에 제한되는 것은 아니다. 다른 예로 나노 구조체들(122)은 제2 광학 소자(120)에서 광이 입사하는 면에 마련될 수도 있다. 또한, 나노 구조체들(122)은 제2 광학 소자(120)의 양면 모두에 마련될 수도 있다.
제2 광학 소자(120)의 표면에 마련된 나노 구조체들(122)은 제2 광학 소자(120)가 음(-)의 굴절력을 가지는 렌즈와 같은 기능을 수행하도록 설계될 수 있다. 나노 구조체들(122)의 모양과 높이, 간격 등을 조절함으로써, 제2 광학 소자(120)가 음(-)의 굴절력을 가지는 렌즈와 같이 광의 경로를 변경하도록 할 수 있다. 제2 광학 소자(120)가 음(-)의 굴절력을 가짐으로써, 제1 내지 제3 광학 소자(110, 120, 130)의 배열방향에 비스듬하게 입사한 제1 입사광(L12)은 비교적 긴 초점거리로 집광될 수 있다. 또한, 제1 내지 제3 광학 소자(110, 120, 130)의 배열방향에 평행하게 입사한 제2 입사광(L22)은 비교적 짧은 초점거리로 집광될 수 있다.
제2 광학 소자(120)를 통과한 광은 제3 광학 소자(130)에 입사될 수 있다. 제3 광학 소자(130)는 제2 광학 소자(120)를 통과한 광의 경로를 변경하여 소정의 촬상면(S1) 상에 집광점이 형성되도록 할 수 있다. 이때 촬상면(S1)은 제3 광학 소자(130)와 소정의 간격을 두고 떨어진 임의의 면일 수 있다. 촬상면(S1)의 모양은 평면일 수 있지만 이에 한정되지 않으며 임의의 곡면일 수도 있다.
도 5는 광이 제3 광학 소자(130)를 통과하는 것을 예시적으로 나타낸 도면이다.
도 5를 참조하면, 제3 광학 소자(120)는 제3 광학 소자(130)에 입사된 광들이 촬상면(S1)에 집광점을 형성하도록 할 수 있다. 이때, 예시적으로 제3 광학 소자(120)는 제3 광학 소자(130)를 통과한 광 들이 촬상면(S1)에 수직으로 입사되도록 광의 경로를 변경할 수 있다. 하지만, 실시예가 이에 제한되는 것은 아니다. 다른 예로 제3 광학 소자(130)의 위치 별로 통과한 광들이 촬상면(S1)에 입사하는 각도가 달라질 수도 있다.
예시적으로, 제3 광학 소자(130)는 가장자리로 갈수록 초점거리가 짧은 투과 위상 분포를 가지게 만들어질 수 있다. 즉, 제3 광학 소자(130)의 가장 자리에 입사된 제1 광(L13)는 비교적 짧은 초점거리의 투과 위상분포를 이용하여 집광이 될 수 있다. 반면 제3 광학 소자(130)의 중심에 입사된 제2 광(L23)은 비교적 긴 초점거리의 투과 위상분포로 집광될 수 있다. 제3 광학 소자(130)가 위치 별로 다른 초점거리로 광을 집광함으로써, 제3 광학 소자(130)를 통과한 광들이 촬상면(S1) 상에 집광점을 형성할 수 있다. 제3 광학 소자(130)는 입사광의 진행방향을 변경하기 위해, 표면에 복수의 나노 구조체(132)를 포함할 수 있다.
나노 구조체들(132)은 제3 광학 소자(130)의 촬상면(S1)과 마주보는 면에 마련될 수 있다. 하지만, 실시예가 이에 제한되는 것은 아니다. 다른 예로 나노 구조체들(132)은 제3 광학 소자(130)에서 광이 입사하는 면에 마련될 수도 있다. 또한, 나노 구조체들(132)은 제3 광학 소자(130)의 양면 모두에 마련될 수도 있다.
제3 광학 소자(130)의 표면에 마련된 나노 구조체들(132)은 제3 광학 소자(120)가 양(+)의 굴절력을 가지는 렌즈와 같은 기능을 수행하도록 설계될 수 있다. 나노 구조체들(132)의 모양과 높이, 간격 등을 조절함으로써, 제3 광학 소자(130)가 양(+)의 굴절력을 가지는 렌즈와 같이 광의 경로를 변경하도록 할 수 있다. 제3 광학 소자(130)가 양(+)의 굴절력을 가짐으로써, 제1 내지 제3 광학 소자(110, 120, 130)의 배열방향에 비스듬하게 입사한 제1 입사광(L13)은 비교적 짧은 초점거리로 집광될 수 있다. 또한, 제1 내지 제3 광학 소자(110, 120, 130)의 배열방향에 평행하게 입사한 제2 입사광(L23)은 비교적 긴 초점거리로 집광될 수 있다.
도 6은 도 2 내지 도 5에서 나타낸 촬상 장치(100)에서 전체 광 경로를 나타낸 도면이다.
도 6을 참조하면, 입사광의 입사 각도에 관계없이, 제1 내지 제3 광학 소자(110, 120, 130)를 거치면서 광들의 집광점이 촬상면(S1)에 형성될 수 있다. 또한, 입사광의 입사각도에 따라 촬상면(S1)에서 집광점을 형성하는 위치가 달라질 수 있다. 따라서, 촬상면(S1)에서 각 위치 좌표별로 복수의 수광 유닛을 구비하면, 수광 유닛 각각이 픽셀로 구현될 수 있다.
제1 내지 제3 광학 소자(110, 120, 130)는 광의 경로를 변경함에 있어서, 상호간 색수차와 기하수차를 상쇄시켜주도록 설계될 수 있다. 이를 위해, 제1 내지 제3 광학 소자(110, 120, 130)에 포함된 나노 구조체들(112, 122, 132)의 모양과 단면적, 높이, 물질구성, 간격 등이 적절히 조절될 수 있다.
도 2 내지 도 6에서는 제1 내지 제3 광학 소자(110, 120, 130)가 모두 나노 구조체(112, 122, 132)를 포함하는 박형 렌즈인 경우를 나타냈다. 하지만, 실시예가 이에 제한되는 것은 아니다. 예를 들어, 제1 내지 제3 광학 소자(110, 120, 130) 가운데 어느 둘만 박형 렌즈로 구현되고 나머지 하나는 굴절률 방식의 광학 렌즈로 구현될 수도 있다. 다른 예로, 제1 내지 제3 광학 소자(110, 120, 130) 가운데 어느 하나만 박형 렌즈로 구현되고 나머지 둘이 굴절률 방식의 광학 렌즈로 구현될 수도 있다.
도 7은 예시적인 실시예에 따른 촬상 장치(100)를 나타낸 도면이다.
도 7을 참조하면, 제1 광학 소자(110')는 굴절률 방식의 광학 렌즈로 구현되고 제2 및 제3 광학 소자(120, 130)는 나노 구조체들(122, 132)을 포함하는 박형 렌즈로 구현될 수 있다. 제2 및 제3 광학 소자(120, 130)의 나노 구조체들(122, 132)은 제2 및 제3 광학 소자(120, 130)에서 발생하는 색수차를 최소화 시키도록 설계될 수 있다. 이를 위해, 제2 및 제3 광학 소자(120, 130)에 포함된 나노 구조체들(122, 132)의 모양과 단면적, 높이, 물질구성, 간격 등이 적절히 조절될 수 있다.
제1 광학 소자(110)는 제2 및 제3 광학 소자(120, 130)에서 보정되지 못한 색수차 및 기하수차 중 적어도 하나를 보정하도록 설계될 수 있다. 이를 위해, 제1 광학 소자(110)에 포함된 물질이 변경함으로써 제1 광학 소자(110)의 굴절률을 조절할 수 있다. 또한, 제1 광학 소자(110)의 표면 모양과 두께를 변경함으로써 제1 광학 소자(110)의 렌즈 특성이 조절될 수 있다.
도 8은 예시적인 실시예에 따른 촬상 장치(100)를 나타낸 도면이다.
도 8을 참조하면, 제1 광학 소자(110)는 나노 구조체들(112)을 포함하는 박형 렌즈로 구현되고, 제2 및 제3 광학 소자(120, 130)는 굴절률 방식의 광학 렌즈로 구현될 수 있다. 제1 광학 소자(110)의 나노 구조체들(112)은 제2 및 제3 광학 소자(120, 130)에서 발생하는 색수차 및 기하수차 중 적어도 하나를 상쇄시키도록 설계될 수 있다. 이를 위해, 제1 광학 소자(110)에 포함된 나노 구조체들(112)의 모양과 단면적, 높이, 물질구성, 간격 등이 적절히 조절될 수 있다.
도 8에서는 제1 광학 소자(110)가 제2 광학 소자(120)와 분리되어 있는 예를 나타냈다. 하지만, 제1 광학 소자(110)는 박형 렌즈로 구현되어 표면 모양에 제한이 없으므로 제2 광학 소자(120)와 일체형으로 마련될 수도 있다.
도 9는 예시적인 실시예에 따른 촬상 장치(100)를 나타낸 도면이다.
도 9를 참조하면, 박형 렌즈로 구현된 제1 광학 소자(110)는 제2 광학 소자(120)의 표면에 마련될 수도 있다. 도 9에서는 제1 광학 소자(110)가 제2 광학 소자(120)에서 광이 입사되는 표면에 마련된 예를 나타냈지만 실시예가 이에 제한되는 것은 아니다. 예를 들어, 제1 광학 소자(110)는 제2 광학 소자(120)에서 촬상면(S1)과 마주보는 면에 마련될 수도 있다.
도 9에서와 같이, 제1 광학 소자(110)를 제2 광학 소자(120)의 표면에 배치하면, 제1 광학 소자(110)와 제2 광학 소자(120) 사이의 간격이 사라지므로 촬상 장치(100)의 크기를 줄일 수 있다.
도 10은 이상에서 설명한 박형 렌즈를 나타낸 도면이다.
도 10에서는 예시적으로 도 2 내지 도 6에서 나타낸 제1 광학 소자(110)를 예로 들어 설명한다.
도 10을 참조하면, 박형 렌즈로 구현된 제1 광학 소자(110)는 복수의 나노 구조체(112)와 나노 구조체들(112)이 배열되는 기판(114)을 포함할 수 있다. 기판(114)은 나노 구조체들(112)의 형성을 위한 지지부가 될 수 있다. 또한 나노 구조체들을 둘러싸는 물질층을 추가할 수 도 있다. 도 10은 나노 구조체들(112)을 개념적으로 나타낸 것에 불과하며, 실제 나노 구조체들(112)의 크기 및 숫자는 도면에 나타낸 것과 다를 수 있다.
도 10에서 S2 표면을 확대하여 나타낸 것을 참조하면, 나노 구조체들(112)의 형상, 물질, 배열 모양 등은 제1 광학 소자(110)의 위치 별로 달라질 수 있다. 제1 광학 소자(110) 에서 위치 별로 나노 구조체들(112)의 형상, 물질, 배열 모양 등이 달라짐에 따라, 제1 광학 소자(110)의 위치 별로 광의 투과 위상 분포를 조절하여 투과 빛의 진행방향을 다르게 조절할 수 있다.
도 11은 도 10에서 나타낸 제1 광학 소자(110)의 표면 중 일부를 나타낸 도면이다.
도 11을 참조하면, 기판(114) 상에 원기둥 형상의 나노 구조체들(112)이 배열되어 있을 수 있다. 도 11에서는 예시적으로, 나노 구조체들(112)이 원기둥 형상을 가지는 예를 나타냈지만, 실시예가 이에 제한되는 것은 아니다. 예를 들어, 나노 구조체들(112)은 다면체 기둥, 원기둥, 타원 기둥 등 다양한 형상을 가질 수 있다. 또한 나노 구조체들(112)은 단면이 'L'모양인 기둥 형상을 가질 수도 있다.
나노 구조체들(112)의 형상은 특정방향으로 대칭성이 없을 수도 있다. 예를 들어, 나노 구조체들(112)의 단면은 타원과 같이 수평방향으로 대칭성이 없는 모양일 수 있다. 또한, 나노 구조체들(112)의 단면이 높이에 따라 달라짐으로써, 나노 구조체들(112)의 형상이 높이에 대해 대칭성을 가지지 않을 수도 있다.
나노 구조체들(112)에 포함된 물질의 굴절률은 기판(114) 및 그 주변부의 물질의 굴절률 보다 높을 수 있다 (예를 들어 굴절률이 1.5 이상 더 큼). 따라서, 기판(114)은 상대적으로 저 굴절률 물질을 포함하고 나노 구조체들(112)은 상대적으로 고 굴절률 물질을 포함할 수 있다.
예를 들어, 나노 구조체들(112)은 결정질 실리콘(Crystalline silicon; c-Si), 다결정 실리콘(Poly Si), 비정질 실리콘(Amorphous Si), Si3N4, GaP, TiO2, AlSb, AlAs, AlGaAs, AlGaInP, BP, ZnGeP2 중 적어도 하나를 포함할 수 있다. 또한, 예시적으로 기판(114)은 PMMA와 같은 폴리머, 플라스틱, SiO2 (glass 혹은 Quartz) 중 어느 하나를 포함할 수 있다.
제1 내지 제3 광학 소자(110, 120, 130)는 입사광의 파장에 따라 광의 방향을 다르게 변경할 수 있다. 따라서, 실시예에 따른 촬상 장치(100)는 소정의 파장 영역을 가지는 입사광에 대해서만 촬상면(S1)에 집광점이 형성되도록 할 수 있다. 입사광의 파장영역 가운데 촬상 장치(100)가 촬상면(S1)에 집광점을 형성하는 파장을 작동파장 이라고 한다. 상기 작동파장은 예시적으로 적색광(red light)의 파장(대략 650nm), 청색광(blue light)의 파장(대략 475nm), 녹색광의 파장(대략 510nm)을 포함할 수 있다. 또한, 작동파장은 적외선 영역의 파장(대략 800nm 내지 900nm)를 포함할 수도 있다. 상기 수치들은 예시적인 것에 불과하며 촬상 장치(100)의 작동 파장은 다르게 설정될 수도 있다.
작동파장이 정해지면, 제1 내지 제3 광학 소자(110, 120, 130) 또한 상기 작동파장에 대응하여 설계될 수 있다. 예를 들어, 제1 내지 제 3 광학 소자(110, 120, 130)에 포함될 수 있는 나노 구조들(112, 122, 132)의 세부 형상(배열 간격, 단면 모양, 높이 등), 물질 등이 상기 작동 파장에 대응되도록 결정될 수 있다.
다시 도 11을 참조하면, 나노 구조체들(112) 사이의 간격(T)은 찰상 광학계(100)의 작동파장 보다 작을 수 있다. 예를 들어, 나노 구조체들(112) 사이의 간격(T)는 촬상 장치(100)의 작동파장보다 3/4 또는 2/3 이하일 수 있고 또는 작동파장의 절반 이하일 수 있다. 또한, 나노 구조체들(112)의 높이(h)도 작동파장 보다 작을 수 있다. 예를 들어, 나노 구조체들(112)의 높이(h)는 작동파장의 2/3 이하일 수 있다.
도 12는 도 10에서 나타낸 제1 광학 소자(110)의 표면의 다른 예를 나타낸 도면이다.
도 12를 참조하면, 기판(114) 상에 직육면체 형상의 나노 구조체들(112)이 배열되어 있을 수 있다. 도 12에서는 예시적으로, 나노 구조체들(112)이 직육면체 형상을 가지는 예를 나타냈지만, 실시예가 이에 제한되는 것은 아니다. 예를 들어, 나노 구조체들(112)은 다면체 기둥, 원기둥, 타원 기둥 등 다양한 형상을 가질 수 있다. 또한 나노 구조체들(112)은 단면이 'L'모양인 기둥 형상을 가질 수도 있다.
나노 구조체들(112)의 높이, 간격 등은 촬상 장치(100)의 작동 파장에 따라 달라질 수 있다. 나노 구조체들(112) 사이의 간격(T)은 찰상 광학계(100)의 작동파장 보다 작을 수 있다. 예를 들어, 나노 구조체들(112) 사이의 간격(T)는 촬상 장치(100)의 작동파장보다 3/4 또는 2/3 이하일 수 있고 또는 작동파장의 절반 이하일 수 있다. 또한, 나노 구조체들(112)의 높이(h)도 작동파장 보다 작을 수 있다. 예를 들어, 나노 구조체들(112)의 높이(h)는 작동파장의 2/3 이하일 수 있다.
이상에서 도 11 및 도 12를 참조하여 설명한 기판(114) 및 나노 구조체들(112)에 관한 실시예들은 제2 및 제3 광학 소자(120, 130)에도 적용될 수 있다. 즉, 제2 및 제3 광학 소자(120, 130)가 박형 렌즈로 설계되는 경우, 도 11 및 도 12를 참조하여 설명한 나노 구조체들(112)의 실시예가 제2 및 제3 광학 소자(120, 130)에 포함된 나노 구조체들(122, 132)에 적용될 수 있다.
도 13은 예시적인 실시예에 따른 촬상 장치(100)를 나타낸 도면이다.
도 13의 실시예를 설명함에 있어서, 전술한 내용과 중복되는 내용은 생략하기로 한다.
도 13을 참조하면, 실시예에 따른 촬상 장치(100)는 작동파장 외의 다른 파장 성분 광이 촬상면(S1)에 입사하는 것을 차단하는 광 필터(140)를 더 포함할 수 있다. 도 13에서는 예시적으로 광 필터(140)가 제3 광학 소자(130)와 촬상면(S1) 사이에 마련되는 예를 나타냈지만, 광 필터(140)의 위치가 이에 제한되는 것은 아니다. 광 필터(140)는 제2 광학 소자(120)와 제3 광학 소자 사이 또는 제1 광학 소자(110)와 제2 광학 소자(120) 사이에 마련될 수도 있다. 다른 예로, 광 필터(140)는 제1 광학 소자(110)의 입사면 앞에 마련되어 입사광에서 작동파장 성분의 광만 제1 광학 소자(110)로 입사되도록 할 수도 잇다.
광 필터(140)는 광 필터(140)에 입사되는 광 가운데 촬상 장치(100)의 동작 파장을 제외한 나머지 파장 성분들을 흡수하거나 반사시킬 수 있다. 광 필터(140)를 이용하여, 촬상면(S1)에 작동파장 성분 외에 다른 파장 성분이 노이즈로 입사되는 것을 방지할 수 있다.
도 14는 예시적인 실시예에 따른 이미지 센서(1000)를 나타낸 도면이다.
도 14를 참조하면, 예시적인 실시예에 따른 이미지 센서(1000)는 촬상 장치(100)와 촬상 장치(100)에 대응하여 마련된 광 측정부(200)를 포함할 수 있다.
도 14에서 나타낸 촬상 장치(100)에는 도 2 내지 도 13을 참조하여 설명한 실시예들이 모두 적용될 수 있다. 광 측정부(200)는 촬상 장치(100)의 촬상면(S1)에 마련되어 있을 수 있다. 광 측정부(200)는 촬상 장치(100)에 의해 집광된 광을 측정할 수 있다. 광 측정부(200)는 복수의 광 센서를 포함할 수 있다. 광 측정부(200)에 포함된 광 센서의 개수가 많을수록 광 측정부(200)를 통해 출력되는 이미지의 해상도가 높아질 수 있다. 광 센서는 CCD 또는 CMOS 등을 이용한 CIS(CMOS Image Sensor)의 pixel array일 수 있다. 혹은 포토다이오드(photodiode) 센서일 수도 있다.
도 15는 예시적인 실시예에 따른 이미지 센서(1000)를 나타낸 도면이다.
도 15를 참조하면, 예시적인 실시예에 따른 이미지 센서(1000)는 복수의 촬상 장치(100a, 100b, 100c)를 포함할 수 있다. 복수의 촬상 장치(100a, 100b, 100c)중 적어도 둘 이상은 서로 다른 작동파장을 가질 수 있다. 즉, 복수의 촬상 장치(100a, 100b, 100c)중 적어도 둘 이상은 서로 다른 파장의 광을 촬상면(S1)에 집광할 수 있다. 또한, 복수의 촬상 장치(100a, 100b, 100c) 각각은 입사광에서 작동파장을 제외한 나머지 파장성분을 필터링 하는 광 필터를 포함하고 있을 수 있다.
예를 들어, 제1 촬상 장치(100a)는 적색광을 집광하고, 제2 촬상 장치(100b)는 청색광을 집광하고, 제3 찰상 장치(100c)는 녹색광을 집광할 수 있다. 하지만, 이는 예시적인 것에 불과하며 촬상 장치들(100a, 100b, 100c)의 작동파장은 다르게 설정될 수도 있다. 또한, 복수의 촬상 장치(100a, 100b, 100c)가 모두 서로 다른 작동파장을 가질 수도 있지만, 복수의 촬상 장치(100a, 100b, 100c) 중 일부는 같은 작동파장을 가질 수도 있다.
이미지 센서(1000)는 복수의 촬상 장치(100a, 100b, 100c)에 대응하여 마련된 복수의 광 측정부(200a, 200b, 200c)를 포함할 수 있다. 광 측정부들(200a, 200b, 200c)은 복수의 촬상 장치(100a, 100b, 100c)의 촬상면(S1)에 마련되어 촬상 장치들(100a, 100b, 100c)에 의해 집광된 광을 측정함으로써 물체(OBJ)의 이미지를 생성할 수 있다.
이상 도 1 내지 도 15를 참조하여 예시적인 실시예에 따른 촬상 장치(100) 및 촬상 장치(100)를 포함하는 이미지 센서(1000)에 관하여 설명하였다. 이상의 설명에 따르면, 촬상 장치(100)의 제1 내지 제3 광학 소자(110, 120, 130) 중 적어도 하나를 나노 구조체(112, 122, 132)를 포함하는 박형 렌즈로 구현함으로써 촬상 장치(100)의 두께를 줄일 수 있다. 또한, 촬상 장치(100)의 전체 색수차와 기하수차를 줄일 수 있다.
실시예에 따른 촬상 장치(100) 및 이미지 센서(1000)는 소형화 제작이 용이한 바, 소형 픽셀 및 고해상도가 요구되는 카메라에 적용될 수 있다. 또한,
셀이 작아지고, 고해상도가 되는 효과를 통해 많은 픽셀정보가 필요한, light field 3D camera용 color image sensor pixel array에 사용될 수 있다. 또한, hyperspectral imaging용 sensor array에도 사용될 수 있다. 이 외에도 분광기를 이용한 심박 센서, 혈압 센서 등의 광학 생체 센서에도 실시예에 따른 촬상 장치(100)와 이미지 센서(1000)가 포함될 수 있다.
지금까지, 본 발명의 이해를 돕기 위하여 예시적인 실시예가 설명되고 첨부된 도면에 도시되었다. 그러나, 이러한 실시예는 단지 본 발명을 예시하기 위한 것이고 이를 제한하지 않는다는 점이 이해되어야 할 것이다. 그리고 본 발명은 도시되고 설명된 설명에 국한되지 않는다는 점이 이해되어야 할 것이다. 이는 다양한 다른 변형이 본 기술분야에서 통상의 지식을 가진 자에게 일어날 수 있기 때문이다.
100 : 촬상 장치
110 : 제1 광학 소자
120 : 제2 광학 소자
130 : 제3 광학 소자
S1 : 촬상면
140 : 광 필터
1000 : 이미지 센서

Claims (19)

  1. 입사광의 입사각도에 따라 상기 입사광을 다른 위치로 집광하는 제1 광학 소자;
    상기 제1 광학 소자를 통과한 광이 입사되는 것으로 위치에 따라 다른 초점거리로 상기 제1 광학 소자를 통과한 광을 집광하는 제2 광학 소자; 및
    상기 제2 광학 소자를 통과한 광이 입사되는 것으로 상기 제2 광학 소자를 통과한 광이 소정의 촬상면 상에 집광점을 형성하도록 하는 제3 광학소자;를 포함하며,
    상기 제1 내지 제3 광학 소자 중 적어도 하나는 표면에 복수의 나노 구조체를 포함하는 박형 렌즈로 구현되는 촬상 장치.
  2. 제 1 항에 있어서,
    상기 제2 광학소자는 광축으로부터 바깥쪽으로 갈수록 더 긴 초점거리를 가지도록 구성되는 촬상 장치.
  3. 제 1 항에 있어서,
    상기 제3 광학 소자는 광축으로부터 바깥쪽으로 갈수록 더 짧은 초점거리를 가지도록 구성되는 촬상 장치.
  4. 제 1 항에 있어서,
    상기 제1 광학계는 양의 굴절력을 가지고, 상기 제2 광학계는 음의 굴절력을 가지고, 상기 제3 광학계는 양의 굴절력을 가지는 촬상 장치.
  5. 제 1 항에 있어서,
    상기 제3 광학 소자는 상기 촬상면 상에 상기 광이 수직으로 입사되어 집광점을 형성하도록 상기 광의 방향을 변화시키는 촬상 장치.
  6. 제 1 항에 있어서,
    상기 제1 광학 소자는 굴절률 방식의 광학렌즈로 구성되고, 상기 제2 및 제3 광학 소자는 상기 박형 렌즈로 구성되는 촬상 장치.
  7. 제 6 항에 있어서,
    상기 제2 광학 소자의 나노 구조체들과 상기 제3 광학 소자의 나노 구조체들은 서로 색수차를 상쇄 시키는 구조 및 배열을 가지는 촬상 장치.
  8. 제 7 항에 있어서,
    상기 제1 광학 소자는 상기 제2 및 제3 광학 소자에서 발생하는 기하수차 및 색수차 중 적어도 하나를 상쇄 시키는 구조를 가지는 촬상 장치.
  9. 제 1 항에 있어서,
    상기 제1 광학 소자는 상기 박형렌즈로 구성되고, 상기 제2 및 제3 광학 소자는 굴절률 방식의 광학렌즈로 구성되는 촬상 장치.
  10. 제 9 항에 있어서,
    상기 제1 광학 소자에 포함된 나노 구조체들은 상기 제2 및 제3 광학 소자에서 발생하는 색수차 및 기하 수차 중 적어도 하나를 상쇄 시키는 구조 및 배열을 가지는 촬상 장치.
  11. 제 9 항에 있어서,
    상기 제1 광학 소자는 상기 제2 광학 소자의 표면에 마련되는 촬상 장치.
  12. 제 1 항에 있어서,
    상기 박형 렌즈는 상기 나노 구조체들이 배열되는 기판을 포함하는 촬상 장치.
  13. 제 12 항에 있어서,
    상기 나노 구조체들은 상기 기판보다 큰 굴절률을 가지는 촬상 장치.
  14. 제 12 항에 있어서,
    상기 기판은 SiO2, 플라스틱, PMMA(Poly methyl methacrylate) 적어도 하나를 포함하며, 상기 나노 구조체들은 c-Si, p-Si, a-Si, III-V 화합물 반도체, SiC, TiO2, 및 SiN 중 적어도 하나를 포함하는 촬상 장치.
  15. 제 1 항에 있어서,
    상기 나노 구조체들은 원기둥, 타원 기둥, 다면체 기둥 중 적어도 어느 한 형상을 가지는 촬상 장치.
  16. 제 1 항에 있어서,
    상기 제1 내지 제3 광학 소자는 상기 입사광 가운데 소정의 파장 영역에 대해서만 상기 촬상면에 집광점이 형성되도록 하는 촬상 장치.
  17. 제 16 항에 있어서,
    상기 소정의 파장 영역 밖의 파장 성분을 차단하는 광 필터;를 더 포함하는 촬상 장치.
  18. 입사광의 입사각도에 따라 상기 입사광을 다른 위치로 집광하는 제1 광학 소자와, 상기 제1 광학 소자를 통과한 광이 입사되는 것으로 위치에 따라 다른 초점거리로 상기 제1 광학 소자를 통과한 광을 집광하는 제2 광학 소자 및 상기 제2 광학 소자를 통과한 광이 입사되는 것으로 상기 제2 광학 소자를 통과한 광이 소정의 촬상면 상에 집광점을 형성하도록 하는 제3 광학소자를 포함하며,를 포함하는 적어도 하나의 촬상 장치; 및
    상기 촬상 장치에 대응되게 마련되며 상기 촬상 장치의 촬상면에 입사된 광을 측정하는 광 측정부;를 포함하며
    상기 제1 내지 제3 광학 소자 중 적어도 하나는 표면에 복수의 나노 구조체를 포함하는 박형 렌즈로 구현되는 이미지 센서.
  19. 제 18 항에 있어서,
    상기 촬상 장치 및 상기 광 측정부는 복수 개로 마련되며,
    상기 복수의 촬상 장치 중 적어도 둘 이상은 서로 다른 파장 영역의 광에 대해서 상기 촬상면에 집광점이 형성되도록 구성되는 이미지 센서.
KR1020160003672A 2015-04-22 2016-01-12 촬상 장치 및 촬상 장치를 포함하는 이미지 센서 KR102659161B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/134,885 US9946051B2 (en) 2015-04-22 2016-04-21 Imaging apparatus and image sensor including the same
US15/923,554 US10942333B2 (en) 2015-04-22 2018-03-16 Optical system
US16/800,468 US11698510B2 (en) 2015-04-22 2020-02-25 Imaging apparatus and image sensor including the same
US17/167,849 US20210318516A1 (en) 2015-04-22 2021-02-04 Optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562151108P 2015-04-22 2015-04-22
US62/151,108 2015-04-22

Publications (2)

Publication Number Publication Date
KR20160125875A true KR20160125875A (ko) 2016-11-01
KR102659161B1 KR102659161B1 (ko) 2024-04-19

Family

ID=57484771

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160003672A KR102659161B1 (ko) 2015-04-22 2016-01-12 촬상 장치 및 촬상 장치를 포함하는 이미지 센서

Country Status (1)

Country Link
KR (1) KR102659161B1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10403668B2 (en) 2015-07-29 2019-09-03 Samsung Electronics Co., Ltd. Imaging apparatus and image sensor including the same
KR20200042554A (ko) * 2018-10-15 2020-04-24 한국과학기술원 나노구조를 갖는 가변렌즈 및 이의 제조방법
US10790325B2 (en) 2015-07-29 2020-09-29 Samsung Electronics Co., Ltd. Imaging apparatus and image sensor including the same
US11089286B2 (en) 2015-07-29 2021-08-10 Samsung Electronics Co., Ltd. Image sensor
US11469265B2 (en) 2015-07-29 2022-10-11 Samsung Electronics Co., Ltd. Imaging apparatus and image sensor including the same
US11630238B2 (en) 2020-09-11 2023-04-18 Samsung Electronics Co., Ltd. Meta lens assembly and electronic device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9116039B2 (en) 2013-03-15 2015-08-25 Raytheon Company Sensor including dielectric metamaterial microarray

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10403668B2 (en) 2015-07-29 2019-09-03 Samsung Electronics Co., Ltd. Imaging apparatus and image sensor including the same
US10790325B2 (en) 2015-07-29 2020-09-29 Samsung Electronics Co., Ltd. Imaging apparatus and image sensor including the same
US11037976B2 (en) 2015-07-29 2021-06-15 Samsung Electronics Co., Ltd. Imaging apparatus and image sensor including the same
US11089286B2 (en) 2015-07-29 2021-08-10 Samsung Electronics Co., Ltd. Image sensor
US11211418B2 (en) 2015-07-29 2021-12-28 Samsung Electronics Co., Ltd. Imaging apparatus and image sensor including the same
US11469265B2 (en) 2015-07-29 2022-10-11 Samsung Electronics Co., Ltd. Imaging apparatus and image sensor including the same
KR20200042554A (ko) * 2018-10-15 2020-04-24 한국과학기술원 나노구조를 갖는 가변렌즈 및 이의 제조방법
US11630238B2 (en) 2020-09-11 2023-04-18 Samsung Electronics Co., Ltd. Meta lens assembly and electronic device including the same

Also Published As

Publication number Publication date
KR102659161B1 (ko) 2024-04-19

Similar Documents

Publication Publication Date Title
US20210318516A1 (en) Optical system
KR102659161B1 (ko) 촬상 장치 및 촬상 장치를 포함하는 이미지 센서
US11428929B2 (en) Focusing device comprising a plurality of scatterers and beam scanner and scope device
US11567240B2 (en) Multilayered meta lens and optical apparatus including the same
US11733100B2 (en) Polarization imaging system
US11698510B2 (en) Imaging apparatus and image sensor including the same
US20210103075A1 (en) Meta lens and optical apparatus including the same
US8629930B2 (en) Device, image processing device and method for optical imaging
KR102601597B1 (ko) 집광 장치 및 집광 장치를 포함한 빔 스캐너 및 스코프 장치
US20190191144A1 (en) Image sensor
TWI475245B (zh) 攝像用光學透鏡組及其攝像裝置
TW201621385A (zh) 鏡頭模組
US9438779B2 (en) Wide-angle camera using achromatic doublet prism array and method of manufacturing the same
US8520325B2 (en) Photographic lens optical system
US8736985B2 (en) Photographic lens optical system
US20220373789A1 (en) Focusing device comprising a plurality of scatterers and beam scanner and scope device
EP4044233A1 (en) Spectral element array, imaging element, and imaging device
US11378797B2 (en) Focusing device comprising a plurality of scatterers and beam scanner and scope device
KR102496374B1 (ko) 이미지 센서
TW202119094A (zh) 攝像元件及攝像裝置
US20230239552A1 (en) Image sensor and imaging device
US9902120B2 (en) Wide-angle camera using achromatic doublet prism array and method of manufacturing the same
JP4020259B2 (ja) 三板式固体撮像装置
TWI665467B (zh) 轉折式望遠定焦鏡頭及攝像裝置
KR20230093051A (ko) 광학 소자, 촬상 소자 및 촬상장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant