KR20160078867A - Organic light emitting display panel and organic light emitting display device - Google Patents

Organic light emitting display panel and organic light emitting display device Download PDF

Info

Publication number
KR20160078867A
KR20160078867A KR1020150109834A KR20150109834A KR20160078867A KR 20160078867 A KR20160078867 A KR 20160078867A KR 1020150109834 A KR1020150109834 A KR 1020150109834A KR 20150109834 A KR20150109834 A KR 20150109834A KR 20160078867 A KR20160078867 A KR 20160078867A
Authority
KR
South Korea
Prior art keywords
light emitting
organic light
node
driving
sensing
Prior art date
Application number
KR1020150109834A
Other languages
Korean (ko)
Other versions
KR102344969B1 (en
Inventor
타니료스케
홍성진
배나영
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to US14/919,934 priority Critical patent/US9607549B2/en
Priority to DE102015118833.3A priority patent/DE102015118833A1/en
Priority to CN201510953896.XA priority patent/CN105741784B/en
Publication of KR20160078867A publication Critical patent/KR20160078867A/en
Application granted granted Critical
Publication of KR102344969B1 publication Critical patent/KR102344969B1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Abstract

Embodiments of the present invention relate to an organic light emitting display panel and an organic light emitting display apparatus, configured to provide potential stability of a reference voltage line, playing a role as a sensing line, during a sensing operation and be able to enhance sensing accuracy and compensation accuracy. According to the present invention, the organic light emitting display apparatus comprises: the organic light emitting display panel; a data operation unit; a gate operation unit; and a timing controller.

Description

유기발광표시패널 및 유기발광표시장치{ORGANIC LIGHT EMITTING DISPLAY PANEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic light emitting display panel and an organic light emitting display device,

본 실시예들은 유기발광표시패널 및 유기발광표시장치에 관한 것이다. The present embodiments relate to an organic light emitting display panel and an organic light emitting display.

최근, 표시장치로서 각광받고 있는 유기발광표시장치는 스스로 발광하는 유기발광다이오드(OLED: Organic Light Emitting Diode)를 이용함으로써 응답속도가 빠르고, 명암비(Contrast Ration), 발광효율, 휘도 및 시야각 등이 크다는 장점이 있다. 2. Description of the Related Art In recent years, an organic light emitting diode (OLED) display device that has been spotlighted as a display device has a high response speed and an excellent contrast ratio, luminous efficiency, luminance, and viewing angle by using an organic light emitting diode (OLED) There are advantages.

이러한 유기발광표시장치의 유기발광표시패널에는 배치되는 각 서브픽셀은, 기본적으로, 유기발광다이오드를 구동하는 구동 트랜지스터, 구동 트랜지스터의 게이트 노드에 데이터 전압을 전달해주는 스위칭 트랜지스터, 한 프레임 시간 동안 일정 전압을 유지해주는 역할을 하는 캐패시터를 포함하여 구성될 수 있다. Each of the sub-pixels arranged in the organic light emitting display panel of the organic light emitting display device is basically composed of a driving transistor for driving the organic light emitting diode, a switching transistor for transmitting the data voltage to the gate node of the driving transistor, And a capacitor that serves to maintain the capacitor.

한편, 각 서브픽셀 내 구동 트랜지스터는 문턱전압, 이동도 등의 특성치를 갖는데, 이러한 특성치는 각 구동 트랜지스터마다 다를 수 있다. On the other hand, the driving transistors in each sub-pixel have characteristic values such as a threshold voltage and a mobility, and these characteristic values may be different for each driving transistor.

또한, 구동 트랜지스터는 구동 시간이 길어짐에 따라 열화(Degradation) 되어 특성치가 변할 수 있는데, 구동 시간이 동일하더라도, 구동 트랜지스터 간의 열화 정도의 차이가 있을 수 있고, 이는 구동 트랜지스터 간의 특성치 편차를 발생시킬 수 있다. In addition, the driving transistor may be degraded as the driving time becomes longer, and the characteristic value may vary. Even if the driving time is the same, there may be a difference in degree of deterioration between the driving transistors, have.

이러한 각 구동 트랜지스터 간의 특성치 편차는 휘도 편차를 발생시켜 유기발광표시패널의 휘도 불균일을 야기한다. The deviation of the characteristic values between the driving transistors generates a luminance variation, causing non-uniformity of luminance of the OLED display panel.

이에, 구동 트랜지스터에 대한 특성치를 센싱하여 특성치 편차를 보상해주는 기술이 개발되었다. 하지만, 이러한 구동 트랜지스터에 대한 특성치 편차 보상에도 불구하고, 구동 트랜지스터에 대한 특성치에 대한 센싱값에 대한 변동이 어떠한 이유에서인지 발생하여 센싱 정확도가 떨어지고, 이로 인해 제대로 된 특성치 편차 보상(즉, 휘도 편차 보상)이 이루어지지 못하는 문제점이 있어왔다. 결국, 이러한 문제점은 화질 불량이 이어져 왔다.Accordingly, a technique has been developed that senses the characteristic value of the driving transistor and compensates for the characteristic value deviation. However, in spite of the compensation of the characteristic value deviation for the driving transistor, the variation in the sensing value with respect to the characteristic value for the driving transistor occurs for some reason, and the sensing accuracy is lowered. As a result, Compensation) has not been achieved. As a result, such a problem has resulted in poor image quality.

본 실시예들의 목적은, 구동 트랜지스터의 특성치에 대한 센싱 정확도를 높여주어 정확한 보상이 이루어질 수 있는 유기발광표시장치 및 그 유기발광표시패널을 제공하는 데 있다. It is an object of the present embodiments to provide an organic light emitting display device and an organic light emitting display panel thereof that can accurately compensate a driving transistor by increasing the sensing accuracy with respect to a characteristic value thereof.

본 실시예들의 다른 목적은, 구동 트랜지스터의 특성치에 대한 센싱 정확도를 높여줄 수 있는 센싱 구동 안정화 구성을 갖는 유기발광표시장치 및 유기발광표시패널을 제공하는 데 있다. It is another object of the present embodiments to provide an organic light emitting display device and an organic light emitting display panel having a sensing driving stabilization configuration capable of improving sensing accuracy with respect to a characteristic value of a driving transistor.

본 실시예들의 또 다른 목적은, 센싱 구동 시, 센싱 라인 역할을 하는 기준전압 라인의 전위 안정성을 제공하여 센싱 정확도 및 보상 정확도를 높여줄 수 있는 센싱 구동 안정화 구성을 갖는 유기발광표시장치 및 유기발광표시패널을 제공하는 데 있다. Another object of the present invention is to provide an OLED display device having a sensing driving stabilization configuration capable of improving sensing accuracy and compensation accuracy by providing potential stability of a reference voltage line serving as a sensing line during sensing driving, To provide a display panel.

일 실시예는, 다수의 데이터 라인 및 다수의 게이트 라인이 배치되고, 다수의 서브픽셀이 배치된 유기발광표시패널과, 다수의 데이터 라인을 구동하는 데이터 구동부와, 다수의 게이트 라인을 구동하는 게이트 구동부와, 데이터 구동부 및 게이트 구동부를 제어하는 타이밍 컨트롤러를 포함하는 유기발광표시장치를 제공할 수 있다. One embodiment includes an organic light emitting display panel in which a plurality of data lines and a plurality of gate lines are arranged and in which a plurality of subpixels are arranged, a data driver driving a plurality of data lines, a gate driving a plurality of gate lines And a timing controller for controlling the data driver and the gate driver.

이러한 유기발광표시장치에서, 다수의 서브픽셀 각각은, 유기발광다이오드와, 유기발광다이오드를 구동하는 구동 트랜지스터와, 구동 트랜지스터의 제1노드와 기준전압 라인 사이에 전기적으로 연결되는 센싱 트랜지스터와, 구동 트랜지스터의 제2노드와 데이터 라인 사이에 전기적으로 연결되는 스위칭 트랜지스터와, 구동 트랜지스터의 제1노드와 제2노드 사이에 전기적으로 연결되는 스토리지 캐패시터를 포함하여 구성될 수 있다. Each of the plurality of subpixels includes an organic light emitting diode, a driving transistor for driving the organic light emitting diode, a sensing transistor electrically connected between the first node of the driving transistor and the reference voltage line, A switching transistor electrically connected between the second node of the transistor and the data line, and a storage capacitor electrically connected between the first node and the second node of the driving transistor.

또한, 유기발광표시장치는, 구동 모드에 따라, 기준전압 라인과 전기적으로 연결되거나 미연결되는 안정화 캐패시터를 더 포함할 수 있다. The organic light emitting display may further include a stabilization capacitor electrically connected to or disconnected from the reference voltage line according to the driving mode.

이러한 안정화 캐패시터는, 센싱 구동 모드 구간에서, 상기 기준전압 라인과 전기적으로 연결되고, 디스플레이 구동 모드 구간에서, 기준전압 라인과 미연결될 수 있다. The stabilization capacitor may be electrically connected to the reference voltage line during a sensing driving mode period and may not be connected to a reference voltage line during a display driving mode period.

이러한 안정화 캐패시터는, 유기발광표시패널에 배치되거나 유기발광표시패널의 외부에 배치될 수 있다. The stabilization capacitor may be disposed on the organic light emitting display panel or may be disposed outside the organic light emitting display panel.

다른 실시예는, 서로 교차하는 방향으로 배치된 다수의 데이터 라인 및 다수의 게이트 라인과, 매트릭스 타입으로 배치된 다수의 서브픽셀을 포함하는 유기발광표시패널을 제공할 수 있다. Another embodiment can provide an organic light emitting display panel including a plurality of data lines and a plurality of gate lines arranged in a direction crossing each other and a plurality of subpixels arranged in a matrix type.

이러한 유기발광표시패널에서, 다수의 서브픽셀 각각은, 유기발광다이오드와, 유기발광다이오드를 구동하는 구동 트랜지스터와, 구동 트랜지스터의 제1노드와 기준전압 라인 사이에 전기적으로 연결되는 센싱 트랜지스터와, 구동 트랜지스터의 제2노드와 데이터 라인 사이에 전기적으로 연결되는 스위칭 트랜지스터와, 구동 트랜지스터의 제1노드와 제2노드 사이에 전기적으로 연결되는 스토리지 캐패시터를 포함하여 구성될 수 있다. Each of the plurality of subpixels includes an organic light emitting diode, a driving transistor for driving the organic light emitting diode, a sensing transistor electrically connected between the first node of the driving transistor and the reference voltage line, A switching transistor electrically connected between the second node of the transistor and the data line, and a storage capacitor electrically connected between the first node and the second node of the driving transistor.

이러한 유기발광표시패널에는, 구동 모드에 따라, 기준전압 라인과 전기적으로 연결되거나 미연결되는 안정화 캐패시터가 더 배치될 수 있다. The organic light emitting display panel may further include a stabilization capacitor electrically connected to or disconnected from the reference voltage line according to the driving mode.

이상에서 설명한 바와 같은 본 실시예들에 의하면, 구동 트랜지스터의 특성치에 대한 센싱 정확도를 높여주어 정확한 보상이 이루어질 수 있는 유기발광표시장치 및 그 유기발광표시패널을 제공할 수 있다. According to the exemplary embodiments of the present invention described above, it is possible to provide an organic light emitting display device and an organic light emitting display panel thereof, which can accurately compensate a driving transistor by increasing sensing accuracy with respect to a characteristic value thereof.

본 실시예들에 의하면, 구동 트랜지스터의 특성치에 대한 센싱 정확도를 높여줄 수 있는 센싱 구동 안정화 구성을 갖는 유기발광표시장치 및 유기발광표시패널을 제공할 수 있다. According to the embodiments, it is possible to provide an organic light emitting display device and an organic light emitting display panel having a sensing driving stabilization configuration that can improve the sensing accuracy with respect to the characteristic value of the driving transistor.

본 실시예들에 의하면, 센싱 구동 시, 센싱 라인 역할을 하는 기준전압 라인의 전위 안정성을 제공하여 센싱 정확도 및 보상 정확도를 높여줄 수 있는 센싱 구동 안정화 구성을 갖는 유기발광표시장치 및 유기발광표시패널을 제공할 수 있다. According to the embodiments, an OLED display device having a sensing driving stabilization configuration capable of improving sensing accuracy and compensation accuracy by providing potential stability of a reference voltage line serving as a sensing line during sensing driving, Can be provided.

도 1은 본 실시예들에 따른 유기발광표시장치의 개략적인 시스템 구성도이다.
도 2는 본 실시예들에 따른 유기발광표시장치의 서브픽셀 회로의 예시도이다.
도 3은 본 실시예들에 따른 유기발광표시장치의 서브픽셀 회로의 다른 예시도이다.
도 4는 본 실시예들에 따른 유기발광표시장치의 서브픽셀 회로와 보상 구조를 예시적으로 나타낸 도면이다.
도 5 내지 도 7은 본 실시예들에 따른 유기발광표시장치의 센싱 구동 동작을 나타낸 도면이다.
도 8은 본 실시예들에 따른 유기발광표시장치의 센싱 구동 안정화 구성을 나타낸 도면이다.
도 9는 본 실시예들에 따른 유기발광표시장치의 센싱 구동 동작 시, 센싱 구동 안정화 구성의 상태를 나타낸 도면이다.
도 10은 본 실시예들에 따른 유기발광표시장치의 디스플레이 구동 동작 시, 센싱 구동 안정화 구성의 상태를 나타낸 도면이다.
도 11 및 도 12는 본 실시예들에 따른 유기발광표시장치의 센싱 구동 안정화 구성을 유기발광표시패널 상에 구현한 예시도이다.
도 13은 본 실시예들에 따른 유기발광표시장치의 센싱 구동 안정화 구성을 연성인쇄회로 상에 구현한 예시도이다.
도 14는 본 실시예들에 따른 유기발광표시장치의 센싱 구동 안정화 구성에서 스위칭 소자의 타이밍 다이어그램이다.
도 15는 본 실시예들에 따른 유기발광표시장치의 센싱 구동 안정화 구성에서 스위칭 소자의 다른 타이밍 다이어그램이다.
1 is a schematic system configuration diagram of an organic light emitting display according to the present embodiments.
FIG. 2 is a diagram illustrating an example of a sub-pixel circuit of an OLED display according to an embodiment of the present invention. Referring to FIG.
3 is another example of a subpixel circuit of an organic light emitting display according to the present embodiments.
4 is a diagram illustrating a subpixel circuit and a compensation structure of an OLED display according to an exemplary embodiment of the present invention.
FIGS. 5 to 7 are views illustrating a sensing driving operation of the OLED display according to the exemplary embodiments of the present invention.
FIG. 8 is a diagram illustrating a sensing driving stabilization configuration of the OLED display according to the present embodiments. Referring to FIG.
9 is a diagram illustrating a state of the sensing driving stabilization configuration in the sensing driving operation of the organic light emitting display according to the present embodiments.
10 is a diagram illustrating a state of the sensing driving stabilization configuration in the display driving operation of the organic light emitting diode display according to the present embodiments.
FIGS. 11 and 12 are views illustrating the structure of sensing and driving stabilization of the organic light emitting display according to the present embodiments on an organic light emitting display panel.
FIG. 13 is an exemplary view illustrating a sensing driving stabilization configuration of the OLED display according to the present embodiments implemented on a flexible printed circuit.
FIG. 14 is a timing diagram of the switching elements in the sensing driving stabilization configuration of the organic light emitting display according to the present embodiments.
15 is another timing diagram of the switching device in the sensing driving stabilization configuration of the OLED display according to the present embodiments.

이하, 본 발명의 일부 실시예들을 예시적인 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가질 수 있다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 수 있다.Hereinafter, some embodiments of the present invention will be described in detail with reference to exemplary drawings. In the drawings, like reference numerals are used to denote like elements throughout the drawings, even if they are shown on different drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질, 차례, 순서 또는 개수 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 다른 구성 요소가 "개재"되거나, 각 구성 요소가 다른 구성 요소를 통해 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In describing the components of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are intended to distinguish the components from other components, and the terms do not limit the nature, order, order, or number of the components. When a component is described as being "connected", "coupled", or "connected" to another component, the component may be directly connected or connected to the other component, Quot; intervening "or that each component may be" connected, "" coupled, "or " connected" through other components.

도 1은 본 실시예들에 따른 유기발광표시장치(100)의 개략적인 시스템 구성도이다.FIG. 1 is a schematic system configuration diagram of an organic light emitting diode display 100 according to the present embodiments.

도 1을 참조하면, 본 실시예들에 따른 유기발광표시장치(100)는, 유기발광표시패널(110), 데이터 구동부(120), 게이트 구동부(130), 타이밍 컨트롤러(140) 등을 포함할 수 있다. 1, the OLED display 100 includes an OLED display panel 110, a data driver 120, a gate driver 130, a timing controller 140, and the like .

유기발광표시패널(110)에는, 서로 교차하는 방향으로 다수의 데이터 라인과 다수의 게이트 라인이 배치될 수 있다. In the OLED display panel 110, a plurality of data lines and a plurality of gate lines may be arranged in a direction crossing each other.

또한, 유기발광표시패널(110)에는, 다수의 서브픽셀(Sub Pixel)이 매트릭스 타입으로 배치될 수 있다. In addition, a plurality of sub pixels may be arranged in a matrix type in the organic light emitting display panel 110.

데이터 구동부(120)는, 다수의 데이터 라인으로 데이터 전압을 공급하여 다수의 데이터 라인을 구동한다. The data driver 120 supplies data voltages to a plurality of data lines to drive a plurality of data lines.

게이트 구동부(130)는, 다수의 게이트 라인으로 스캔 신호를 순차적으로 공급하여 다수의 게이트 라인을 순차적으로 구동한다. The gate driver 130 sequentially supplies the scan signals to the plurality of gate lines to sequentially drive the plurality of gate lines.

타이밍 컨트롤러(140)는, 데이터 구동부(120) 및 게이트 구동부(130)로 제어신호를 공급하여, 데이터 구동부(120) 및 게이트 구동부(130)를 제어한다. The timing controller 140 supplies control signals to the data driver 120 and the gate driver 130 to control the data driver 120 and the gate driver 130.

이러한 타이밍 컨트롤러(140)는, 각 프레임에서 구현하는 타이밍에 따라 스캔을 시작하고, 외부에서 입력되는 영상데이터를 데이터 구동부(120)에서 사용하는 데이터 신호 형식에 맞게 전환하여 전환된 영상데이터를 출력하고, 스캔에 맞춰 적당한 시간에 데이터 구동을 통제한다. The timing controller 140 starts scanning according to the timing implemented in each frame, switches the image data input from the outside according to the data signal format used by the data driver 120, and outputs the converted image data , And controls the data driving at a suitable time according to the scan.

게이트 구동부(130)는, 타이밍 컨트롤러(140)의 제어에 따라, 온(On) 전압 또는 오프(Off) 전압의 스캔 신호를 다수의 게이트 라인으로 순차적으로 공급하여 다수의 게이트 라인을 순차적으로 구동한다. Under the control of the timing controller 140, the gate driver 130 sequentially supplies the scan signals of the On voltage or the Off voltage to the plurality of gate lines to sequentially drive the plurality of gate lines .

게이트 구동부(130)는, 구동 방식에 따라서, 도 1에서와 같이, 유기발광표시패널(110)의 일 측에만 위치할 수도 있고, 경우에 따라서는, 양측에 위치할 수도 있다. 1, the gate driver 130 may be located only on one side of the organic light emitting display panel 110, or on both sides of the organic light emitting display panel 110, depending on the driving method.

또한, 게이트 구동부(130)는, 하나 이상의 게이트 드라이버 집적회로(GDIC: Gate Driver Integrated Circuit)를 포함할 수 있다. 단, 도 1에서는 설명의 편의상, 5개의 게이트 드라이버 집적회로(GDIC #1, ... , GDIC #5)가 도시되었다. In addition, the gate driver 130 may include one or more gate driver integrated circuits (GDICs). 1, five gate driver integrated circuits (GDIC # 1, ..., GDIC # 5) are shown for convenience of explanation.

또한, 각 게이트 드라이버 집적회로(GDIC #1, ..., GDIC #5)는, 테이프 오토메티드 본딩(TAB: Tape Automated Bonding) 방식 또는 칩 온 글래스(COG) 방식으로 유기발광표시패널(110)의 본딩 패드(Bonding Pad)에 연결되거나, GIP(Gate In Panel) 타입으로 구현되어 유기발광표시패널(110)에 직접 배치될 수도 있으며, 경우에 따라서, 유기발광표시패널(110)에 집적화되어 배치될 수도 있다. Each of the gate driver ICs GDIC # 1, ..., and GDIC # 5 is connected to the organic light emitting display panel 110 in a Tape Automated Bonding (TAB) or chip on glass (COG) Or a GIP (Gate In Panel) type and may be directly disposed on the organic light emitting display panel 110. In some cases, the organic light emitting display panel 110 may be integrated with the organic light emitting display panel 110, .

각 게이트 드라이버 집적회로(GDIC #1, ..., GDIC #8)는, 쉬프트 레지스터, 레벨 쉬프터, 출력 버퍼 등을 포함할 수 있다. Each of the gate driver integrated circuits GDIC # 1, ..., GDIC # 8 may include a shift register, a level shifter, an output buffer, and the like.

데이터 구동부(120)는, 특정 게이트 라인이 열리면, 타이밍 컨트롤러(140)로부터 수신한 영상 데이터를 아날로그 형태의 데이터 전압으로 변환하여 데이터 라인들로 공급함으로써, 다수의 데이터 라인을 구동한다. When the specific gate line is opened, the data driver 120 converts the image data received from the timing controller 140 into analog data voltages and supplies the data voltages to the data lines to drive the plurality of data lines.

데이터 구동부(120)는 하나 이상의 소스 드라이버 집적회로(SDIC: Source Driver Integrated Circuit, 데이터 드라이버 집적회로(Data Driver IC)라고도 함)를 포함할 수 있다. 단, 도 1에서는, 설명의 편의상, 8개의 소스 드라이버 집적회로(SDIC #1, ... , SDIC #8)가 도시되었다. The data driver 120 may include one or more source driver integrated circuits (SDICs) (also referred to as data driver ICs). 1, eight source driver integrated circuits (SDIC # 1, ..., SDIC # 8) are shown for convenience of explanation.

각 소스 드라이버 집적회로(SDIC #1, ... , SDIC #8)는, 테이프 오토메티드 본딩(TAB: Tape Automated Bonding) 방식 또는 칩 온 글래스(COG) 방식으로 유기발광표시패널(110)의 본딩 패드(Bonding Pad)에 연결되거나, 유기발광표시패널(110)에 직접 배치될 수도 있으며, 경우에 따라서, 유기발광표시패널(110)에 집적화되어 배치될 수도 있다. Each of the source driver ICs (SDIC # 1, ..., SDIC # 8) is connected to the organic light emitting display panel 110 by tape automation bonding (TAB) or chip on glass (COG) (Bonding Pad), directly disposed on the organic light emitting display panel 110, and may be integrated on the organic light emitting display panel 110, as the case may be.

또한, 각 소스 드라이버 집적회로(SDIC #1, ... , SDIC #8)는, 칩 온 필름(COF: Chip On Film) 방식으로 구현될 수 있다. 각 소스 드라이버 집적회로(SDIC #1, ... , SDIC #8)에서, 일 단은 소스 인쇄회로기판(Source Printed Circuit Board, 160)에 본딩되고, 타 단은 유기발광표시패널(110)에 본딩된다.Also, each of the source driver integrated circuits (SDIC # 1, ..., SDIC # 8) can be implemented by a chip on film (COF) method. One end of each source driver integrated circuit (SDIC # 1, ..., SDIC # 8) is bonded to a source printed circuit board (160) and the other end thereof is connected to the organic light emitting display panel Bonding.

각 소스 드라이버 집적회로(SDIC #1, ... , SDIC #8)는, 쉬프트 레지스터, 래치, 디지털 아날로그 컨버터(DAC: Digital Analog Converter), 출력 버터 등을 포함하고, 경우에 따라서, 서브픽셀 보상을 위해 아날로그 전압 값을 센싱하여 디지털 값으로 변환하고 센싱 데이터를 생성하여 출력하는 아날로그 디지털 컨버터(ADC: Analog Digital Converter)를 더 포함할 수 있다.  Each of the source driver ICs (SDIC # 1, ..., SDIC # 8) includes a shift register, a latch, a digital analog converter (DAC), an output buffer, And an analog digital converter (ADC) for sensing the analog voltage value to convert the analog voltage value into a digital value and generating and outputting sensing data.

한편, 타이밍 컨트롤러(140)는, 외부로부터 입력 영상의 영상 데이터와 함께, 수직 동기 신호(Vsync), 수평 동기 신호(Hsync), 입력 데이터 인에이블(DE: Data Enable) 신호, 클럭 신호(CLK) 등을 포함하는 각종 타이밍 신호들을 수신한다. On the other hand, the timing controller 140 outputs a vertical synchronizing signal Vsync, a horizontal synchronizing signal Hsync, an input data enable (DE) signal, a clock signal CLK, And the like.

타이밍 컨트롤러(140)는, 외부로부터 입력된 영상 데이터를 데이터 구동부(120)에서 사용하는 데이터 신호 형식에 맞게 전환하여 전환된 영상데이터를 출력하는 것 이외에, 데이터 구동부(120) 및 게이트 구동부(130)를 제어하기 위하여, 수직 동기 신호(Vsync), 수평 동기 신호(Hsync), 입력 DE 신호, 클럭 신호 등의 타이밍 신호를 입력받아, 각종 제어 신호들을 생성하여 데이터 구동부(120) 및 게이트 구동부(130)로 출력한다. The timing controller 140 may control the data driving unit 120 and the gate driving unit 130 in addition to outputting the converted video data by switching the video data inputted from the outside according to the data signal format used by the data driving unit 120, The data driver 120 and the gate driver 130 generate various control signals by receiving timing signals such as a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, an input DE signal, and a clock signal, .

예를 들어, 타이밍 컨트롤러(140)는, 게이트 구동부(130)를 제어하기 위하여, 게이트 스타트 펄스(GSP: Gate Start Pulse), 게이트 쉬프트 클럭(GSC: Gate Shift Clock), 게이트 출력 인에이블 신호(GOE: Gate Output Enable) 등을 포함하는 각종 게이트 제어 신호(GCS: Gate Control Signal)를 출력한다. 게이트 스타트 펄스(GSP)는 게이트 구동부(130)를 구성하는 하나 이상의 게이트 드라이버 집적회로(GDIC #1, ..., GDIC #5)의 동작 스타트 타이밍을 제어한다. 게이트 쉬프트 클럭(GSC)은 하나 이상의 게이트 드라이버 집적회로(GDIC #1, ..., GDIC #5)에 공통으로 입력되는 클럭 신호로서, 스캔 신호(게이트 펄스)의 쉬프트 타이밍을 제어한다. 게이트 출력 인에이블 신호(GOE)는 하나 이상의 게이트 드라이버 집적회로(GDIC #1, ..., GDIC #5)의 타이밍 정보를 지정하고 있다. For example, in order to control the gate driver 130, the timing controller 140 generates a gate start pulse (GSP), a gate shift clock (GSC), a gate output enable signal GOE : Gate Output Enable), and the like. The gate start pulse GSP controls the operation start timing of one or more gate driver ICs GDIC # 1, ..., GDIC # 5 constituting the gate driver 130. The gate shift clock GSC is a clock signal commonly input to one or more gate driver ICs GDIC # 1, ..., GDIC # 5, and controls the shift timing of the scan signal (gate pulse). The gate output enable signal GOE specifies timing information of one or more gate driver ICs (GDIC # 1, ..., GDIC # 5).

타이밍 컨트롤러(140)는, 데이터 구동부(120)를 제어하기 위하여, 소스 스타트 펄스(SSP: Source Start Pulse), 소스 샘플링 클럭(SSC: Source Sampling Clock), 소스 출력 인에이블 신호(SOE: Souce Output Enable) 등을 포함하는 각종 데이터 제어 신호(DCS: Data Control Signal)를 출력한다. 소스 스타트 펄스(SSP)는 데이터 구동부(120)를 구성하는 하나 이상의 소스 드라이버 집적회로(SDIC #1, ... , SDIC #8)의 데이터 샘플링 시작 타이밍을 제어한다. 소스 샘플링 클럭(SSC)은 소스 드라이버 집적회로(SDIC #1, ... , SDIC #8) 각각에서 데이터의 샘플링 타이밍을 제어하는 클럭 신호이다. 소스 출력 인에이블 신호(SOE)는 데이터 구동부(120)의 출력 타이밍을 제어한다. The timing controller 140 controls the data driver 120 such that a source start pulse SSP, a source sampling clock SSC, a source output enable signal SOE, (DCS: Data Control Signal) including a data signal The source start pulse SSP controls the data sampling start timing of one or more source driver integrated circuits (SDIC # 1, ..., SDIC # 8) constituting the data driver 120. The source sampling clock SSC is a clock signal for controlling sampling timing of data in each of the source driver integrated circuits (SDIC # 1, ..., SDIC # 8). The source output enable signal SOE controls the output timing of the data driver 120.

도 1을 참조하면, 타이밍 컨트롤러(140)는, 소스 드라이버 집적회로(SDIC #1, ... , SDIC #8)가 본딩된 소스 인쇄회로기판(160)과 연성 플랫 케이블(FFC: Flexible Flat Cable) 또는 연성 인쇄 회로(FPC: Flexible Printed Circuit) 등의 연결 매체(170)를 통해 연결된 컨트롤 인쇄회로기판(Control Printed Circuit Board, 180)에 배치될 수 있다. 1, the timing controller 140 includes a source printed circuit board 160 to which source driver integrated circuits (SDIC # 1 to SDIC # 8) are bonded, a flexible flat cable (FFC) Or a control printed circuit board 180 connected via a connection medium 170 such as a flexible printed circuit (FPC).

이러한 컨트롤 인쇄회로기판(180)에는, 유기발광표시패널(110), 데이터 구동부(120) 및 게이트 구동부(130) 등으로 각종 전압 또는 전류를 공급해주거나 공급할 각종 전압 또는 전류를 제어하는 전원 컨트롤러(150)가 더 배치될 수 있다. 이러한 전원 컨트롤러는 전원 관리 집적회로(PMIC: Power Management IC)라고도 한다. The control printed circuit board 180 includes a power controller 150 for controlling various voltages or currents to supply or supply various voltages or currents to the organic light emitting display panel 110, the data driver 120, the gate driver 130, Can be further disposed. These power controllers are also referred to as power management ICs (PMICs).

한편, 도 1에서는, 소스 인쇄회로기판(160)이 1개인 것으로 도시되었으나, 이는 실시예일 뿐, 표시패널(110)의 양측에 게이트 드라이버 집적회로들이 배치되거나, 소스 드라이버 집적회로의 개수가 많아지는 등과 같은 각종 경우에 따라서는, 2개 이상의 소스 인쇄회로기판(160)이 존재할 수도 있다. 1, only one source printed circuit board 160 is shown, but this is only an embodiment, in which the gate driver integrated circuits are disposed on both sides of the display panel 110, or the number of the source driver integrated circuits is increased There may be more than one source printed circuit board 160. In this case,

또한, 도 1에서는, 소스 인쇄회로기판(160)과 컨트롤 인쇄회로기판(180)이 별도로 구성되었으나, 이는 실시예일 뿐, 하나의 인쇄회로기판으로 구현될 수도 있다. In FIG. 1, the source printed circuit board 160 and the control printed circuit board 180 are separately formed, but this is an embodiment, and may be implemented as one printed circuit board.

도 1에 간략하게 도시된 유기발광표시패널(110)에 배치된 각 서브픽셀(SP)에는, 트랜지스터, 캐패시터 등의 회로 소자가 형성되어 있다. 예를 들어, 유기발광표시패널(110) 상의 각 서브픽셀에는 유기발광다이오드(OLED: Organic Light Emitting Diode), 둘 이상의 트랜지스터(Transistor) 및 하나 이상의 캐패시터(Capacitor) 등으로 이루어진 회로가 형성되어 있다. In each subpixel SP disposed in the organic light emitting display panel 110 shown in FIG. 1, a circuit element such as a transistor or a capacitor is formed. For example, a circuit including an organic light emitting diode (OLED), two or more transistors, and one or more capacitors is formed in each subpixel on the organic light emitting display panel 110.

아래에서는, 도 2 및 도 3을 참조하여, 서브픽셀 회로를 예시적으로 설명한다. Hereinafter, with reference to FIG. 2 and FIG. 3, a subpixel circuit is exemplarily described.

도 2는 본 실시예들에 따른 유기발광표시장치(100)의 서브픽셀 회로의 예시도이다. 2 is an exemplary view of a sub-pixel circuit of the organic light emitting diode display 100 according to the present embodiments.

도 2를 참조하면, 본 실시예들에 따른 유기발광표시장치(100)에서, 각 서브픽셀은, 유기발광다이오드(OLED)와, 유기발광다이오드(OLED)를 구동하기 위한 구동회로로 구성된다. Referring to FIG. 2, in the organic light emitting diode display 100 according to the present embodiment, each sub-pixel includes an organic light emitting diode (OLED) and a driving circuit for driving the organic light emitting diode (OLED).

도 2를 참조하면, 구동회로는, 기본적으로, 2개의 트랜지스터(구동 트랜지스터(DRT: Driving Transistor), 스위칭 트랜지스터(SWT: Switching Transistor))와 1개의 캐패시터(스토리지 캐패시터(Cstg: Storage Capacitor))로 구성될 수 있다. 2, the driving circuit basically includes two transistors (a driving transistor (DRT), a switching transistor (SWT), and a storage capacitor (Cstg: Storage Capacitor)) and a capacitor Lt; / RTI >

도 2를 참조하면, 유기발광다이오드(OLED)는 제1전극(예: 애노드 전극 또는 캐소드 전극), 유기층 및 제2전극(예: 캐소드 전극 또는 애노드 전극)으로 이루어진다. Referring to FIG. 2, the organic light emitting diode OLED includes a first electrode (e.g., an anode electrode or a cathode electrode), an organic layer, and a second electrode (e.g., a cathode electrode or an anode electrode).

일 예로, 유기발광다이오드(OLED)에서, 제1전극에는 구동 트랜지스터(DRT)의 제1노드(N1 노드, 예: 소스 노드 또는 드레인 노드)가 전기적으로 연결되고, 제2전극에는 기저전압(EVSS)이 인가될 수 있다. For example, in the organic light emitting diode OLED, a first node (N1 node, for example, a source node or a drain node) of the driving transistor DRT is electrically connected to the first electrode, and a low voltage EVSS ) May be applied.

도 2를 참조하면, 구동 트랜지스터(DRT)는, 유기발광다이오드(OLED)로 구동 전류를 공급해주어, 유기발광다이오드(OLED)를 구동하기 위한 트랜지스터이다. Referring to FIG. 2, the driving transistor DRT is a transistor for supplying driving current to the organic light emitting diode OLED to drive the organic light emitting diode OLED.

이러한 구동 트랜지스터(DRT)는, 소스 노드 또는 드레인 노드에 해당하는 제1노드(N1 노드)와, 게이트 노드에 해당하는 제2노드(N2 노드)와, 드레인 노드 또는 소스 노드에 해당하는 제3노드(N3 노드)를 갖는다. 구동 트랜지스터(DRT)는, N형 트랜지스터 또는 P형 트랜지스터일 수 있다. The driving transistor DRT includes a first node N1 node corresponding to a source node or a drain node, a second node N2 node corresponding to a gate node, a third node N3 corresponding to a drain node or a source node, (N3 node). The driving transistor DRT may be an N-type transistor or a P-type transistor.

일 예로, 이러한 구동 트랜지스터(DRT)에서, N1 노드는 유기발광다이오드(OLED)의 제1전극 또는 제2전극과 전기적으로 연결될 수 있고, N3 노드는 구동전압(EVDD)을 공급하는 구동전압 라인(DVL)과 전기적으로 연결될 수 있다. For example, in this driving transistor DRT, the N1 node may be electrically connected to the first electrode or the second electrode of the organic light emitting diode OLED, and the N3 node may be connected to the driving voltage line DVL < / RTI >

도 2를 참조하면, 스위칭 트랜지스터(SWT)는, 구동 트랜지스터(DRT)의 게이트 노드에 해당하는 N2 노드로 데이터 전압(Vdata)을 전달해주기 위한 트랜지스터이다. Referring to FIG. 2, the switching transistor SWT is a transistor for transferring a data voltage (Vdata) to an N2 node corresponding to a gate node of the driving transistor DRT.

이러한 스위칭 트랜지스터(SWT)는, 게이트 노드에 인가되는 스캔 신호(SCAN)에 의해 제어되고, 구동 트랜지스터(DRT)의 N2 노드와 데이터 라인(DL) 사이에 전기적으로 연결된다. This switching transistor SWT is controlled by the scan signal SCAN applied to the gate node and is electrically connected between the node N2 of the driving transistor DRT and the data line DL.

도 2를 참조하면, 구동 트랜지스터(DRT)의 N1 노드와 N2 노드 사이에 스토리지 캐패시터(Cstg)가 전기적으로 연결될 수 있다. Referring to FIG. 2, a storage capacitor Cstg may be electrically connected between the node N1 and the node N2 of the driving transistor DRT.

이러한 스토리지 캐패시터(Cstg)는, 한 프레임 시간 동안 일정 전압을 유지해주는 역할을 한다. The storage capacitor Cstg serves to maintain a constant voltage for one frame time.

도 2에 예시된 서브픽셀의 구조는, 2개의 트랜지스터(DRT, SWT)와 1개의 캐패시터(Cstg), 1개의 유기발광다이오드(OELD)로 구성되는 가장 기본적인 2T1C 구조이다. The structure of the subpixel illustrated in FIG. 2 is the most basic 2T1C structure composed of two transistors (DRT, SWT), one capacitor (Cstg), and one organic light emitting diode (OELD).

한편, 서브픽셀 구조는, 화질을 개선하기 위한 다양한 설계 목적에 따라 다양하게 변형될 수 있다. On the other hand, the subpixel structure can be variously modified according to various design purposes for improving image quality.

예를 들어, 서브픽셀은, 구동 트랜지스터(DRT)의 문턱전압(Vth) 및 이동도(Mobility) 등의 고유 특성치를 보상하기 위한 보상 구조를 가질 수 있다. 보상 구조는 매우 다양한 종류가 있을 수 있으며, 구동 트랜지스터(DRT)의 종류, 유기발광표시패널(110)의 크기 및 해상도 등을 고려하여 결정될 수 있다. For example, the subpixel may have a compensation structure for compensating the intrinsic characteristic values such as the threshold voltage (Vth) and mobility of the driving transistor (DRT). The compensation structure may be of various types, and may be determined in consideration of the type of the driving transistor DRT, the size and resolution of the organic light emitting display panel 110, and the like.

한편, 본 명세서에서, 언급되는 "보상"은, 구동 트랜지스터(DRT)의 특성치를 보상해주는 것을 의미하며, 이는, 서브픽셀의 휘도를 보상해주는 것과 동일한 의미이며, 구동 트랜지스터(DRT) 간의 특성치 편차를 보상해주는 것과, 서브픽셀 간의 휘도 편차를 보상해주는 것과도 동일한 의미이다. In the present specification, the term " compensation "refers to compensating the characteristic value of the driving transistor DRT, which is equivalent to compensating the luminance of the subpixel. This is equivalent to compensating and compensating for luminance deviation between subpixels.

도 3은 본 실시예들에 따른 유기발광표시장치(100)의 서브픽셀 회로의 다른 예시도이다. 3 is another example of the subpixel circuit of the organic light emitting diode display 100 according to the present embodiments.

도 3을 참조하면, 본 실시예들에 따른 유기발광표시장치(100)에서, 각 서브픽셀은, 유기발광다이오드(OLED)와, 구동회로로 구성된다. Referring to FIG. 3, in the OLED display 100 according to the present embodiment, each sub-pixel is composed of an organic light emitting diode (OLED) and a driving circuit.

도 3을 참조하면, 보상 구조를 갖는 서브픽셀 내 구동회로는, 일 예로, 3개의 트랜지스터(구동 트랜지스터(DRT: Driving Transistor), 스위칭 트랜지스터(SWT: Switching Transistor), 센싱 트랜지스터(SENT: Sensing Transistor)와 1개의 캐패시터(스토리지 캐패시터(Cstg: Storage Capacitor))로 구성될 수 있다. 3, a sub-pixel driving circuit having a compensation structure includes three transistors (a driving transistor (DRT), a switching transistor (SWT), a sensing transistor (SENT) And one capacitor (storage capacitor Cstg: Storage Capacitor).

이와 같이, 3개의 트랜지스터(DRT, SWT, SENT)와 1개의 캐패시터(Cstg)를 포함하여 구성된 서브픽셀을 "3T1C 구조"를 갖는다고 한다. Thus, a subpixel including three transistors (DRT, SWT, SENT) and one capacitor (Cstg) has a "3T1C structure".

도 3을 참조하면, 유기발광다이오드(OLED)는 제1전극(예: 애노드 전극 또는 캐소드 전극), 유기층 및 제2전극(예: 캐소드 전극 또는 애노드 전극)으로 이루어진다. Referring to FIG. 3, the organic light emitting diode OLED includes a first electrode (e.g., an anode electrode or a cathode electrode), an organic layer, and a second electrode (e.g., a cathode electrode or an anode electrode).

일 예로, 유기발광다이오드(OLED)에서, 제1전극에는 구동 트랜지스터(DRT)의 소스 노드 또는 드레인 노드가 연결되고, 제2전극에는 기저전압(EVSS)이 인가될 수 있다. For example, in the organic light emitting diode OLED, a source node or a drain node of the driving transistor DRT may be connected to the first electrode, and a ground voltage (EVSS) may be applied to the second electrode.

도 3을 참조하면, 구동 트랜지스터(DRT)는, 유기발광다이오드(OLED)로 구동 전류를 공급해주어, 유기발광다이오드(OLED)를 구동하기 위한 트랜지스터이다. Referring to FIG. 3, the driving transistor DRT is a transistor for supplying a driving current to the organic light emitting diode (OLED) to drive the organic light emitting diode (OLED).

이러한 구동 트랜지스터(DRT)는, 소스 노드 또는 드레인 노드에 해당하는 제1노드(N1 노드), 게이트 노드에 해당하는 제2노드(N2 노드)와, 드레인 노드 또는 소스 노드에 해당하는 제3노드(N3 노드)를 갖는다. 아래에서는, 설명의 편의를 위해, N1 노드를 소스 노드로, N2 노드를 게이트 노드로, N3 노드를 드레인 노드로 명명할 수도 있다. The driving transistor DRT includes a first node N1 node corresponding to a source node or a drain node, a second node N2 node corresponding to a gate node, a third node N2 corresponding to a drain node or a source node, N3 node). Hereinafter, for convenience of explanation, the N1 node may be referred to as a source node, the N2 node as a gate node, and the N3 node as a drain node.

일 예로, 이러한 구동 트랜지스터(DRT)에서, N1 노드는 유기발광다이오드(OLED)의 제1전극 또는 제2전극과 전기적으로 연결될 수 있고, N3 노드는 구동전압(EVDD)을 공급하는 구동전압 라인(DVL)과 전기적으로 연결될 수 있다. For example, in this driving transistor DRT, the N1 node may be electrically connected to the first electrode or the second electrode of the organic light emitting diode OLED, and the N3 node may be connected to the driving voltage line DVL < / RTI >

도 3을 참조하면, 스위칭 트랜지스터(SWT)는, 구동 트랜지스터(DRT)의 게이트 노드에 해당하는 N2 노드로 데이터 전압(Vdata)을 전달해주기 위한 트랜지스터이다. Referring to FIG. 3, the switching transistor SWT is a transistor for transmitting a data voltage (Vdata) to an N2 node corresponding to a gate node of the driving transistor DRT.

이러한 스위칭 트랜지스터(SWT)는, 게이트 노드에 인가되는 스캔 신호(SCAN)에 의해 제어되고, 구동 트랜지스터(DRT)의 N2 노드와 데이터 라인(DL) 사이에 전기적으로 연결된다. This switching transistor SWT is controlled by the scan signal SCAN applied to the gate node and is electrically connected between the node N2 of the driving transistor DRT and the data line DL.

도 3을 참조하면, 구동 트랜지스터(DRT)의 N1 노드와 N2 노드 사이에 스토리지 캐패시터(Cstg)가 전기적으로 연결될 수 있다. Referring to FIG. 3, a storage capacitor Cstg may be electrically connected between an N1 node and an N2 node of the driving transistor DRT.

이러한 스토리지 캐패시터(Cstg)는, 한 프레임 시간 동안 일정 전압을 유지해주는 역할을 한다. The storage capacitor Cstg serves to maintain a constant voltage for one frame time.

한편, 도 3을 참조하면, 도 2의 기본적인 서브픽셀 구조에 비해 새롭게 추가된 센싱 트랜지스터(SENT)는, 게이트 노드에 인가되는 스캔 신호의 일종인 센스 신호(SENSE)에 의해 제어되고, 기준전압 라인(RVL: Reference Voltage Line)과 구동 트랜지스터(DRT)의 N1 노드 사이에 전기적으로 연결될 수 있다. 3, the sensing transistor SENT newly added to the basic subpixel structure of FIG. 2 is controlled by a sense signal SENSE, which is a kind of a scan signal applied to a gate node, (RVL: Reference Voltage Line) and the N1 node of the driving transistor DRT.

이러한 센싱 트랜지스터(SENT)는, 턴 온 되어, 기준전압 라인(RVL)을 통해 공급된 기준전압(Vref)을 구동 트랜지스터(DRT)의 N1 노드(예: 소스 노드 또는 드레인 노드)에 인가해줄 수 있다. This sensing transistor SENT is turned on to apply the reference voltage Vref supplied through the reference voltage line RVL to the N1 node (e.g., the source node or the drain node) of the driving transistor DRT .

또한, 센싱 트랜지스터(SENT)는, 구동 트랜지스터(DRT)의 N1 노드의 전압을 기준전압 라인(RVL)과 전기적으로 연결된 아날로그 디지털 컨버터(ADC)에 의해 센싱되도록 해주는 역할을 한다. The sensing transistor SENT serves to allow the voltage of the node N1 of the driving transistor DRT to be sensed by an analog-to-digital converter (ADC) electrically connected to the reference voltage line RVL.

이러한 센싱 트랜지스터(SETN)의 역할은, 구동 트랜지스터(DRT)의 고유 특성치에 대한 보상 기능과 관련된 것이다. 여기서, 구동 트랜지스터(DRT)의 고유 특성치는, 일 예로, 문턱전압(Vth: Threshold Voltage), 이동도(Mobility) 등을 포함할 수 있다. The role of the sensing transistor SETN is related to the compensation function for the characteristic value of the driving transistor DRT. Here, the inherent characteristic value of the driving transistor DRT may include, for example, a threshold voltage (Vth), a mobility, and the like.

이와 관련하여, 각 서브픽셀 내 구동 트랜지스터(DRT) 간의 고유 특성치(문턱전압, 이동도)에 대한 편차가 발생하면, 각 서브픽셀 간의 휘도 편차가 발생하여 화질을 떨어뜨릴 수 있다. In this regard, if a deviation of the intrinsic property value (threshold voltage, mobility) between the driving transistors DRT in each sub-pixel occurs, a luminance variation occurs between the sub-pixels and the image quality may be deteriorated.

따라서, 각 서브픽셀 내 구동 트랜지스터(DRT)의 고유 특성치(문턱전압, 이동도)를 센싱하여, 구동 트랜지스터(DRT) 간의 고유 특성치(문턱전압, 이동도)를 보상해줌으로써, 휘도 균일도를 높여줄 수 있다. Therefore, the intrinsic property values (threshold voltage, mobility) of the driving transistors DRT in each sub-pixel are sensed to compensate intrinsic property values (threshold voltage, mobility) between the driving transistors DRT, .

구동 트랜지스터(DRT)에 대한 문턱전압 센싱 원리를 간단하게 설명하면, 구동 트랜지스터(DRT)의 소스 노드(N1 노드)의 전압(Vs)이 게이트 노드(N2 노드)의 전압(Vg)을 팔로잉(Following) 하는 소스 팔로잉(Source Following) 동작을 하도록 만들어 주고, 구동 트랜지스터(DRT)의 소스 노드(N1 노드)의 전압이 포화한 이후, 구동 트랜지스터(DRT)의 소스 노드(N1 노드)의 전압을 센싱 전압으로서 센싱한다. 이때 센싱된 센싱 전압을 토대로 구동 트랜지스터(DRT)의 문턱전압 변동을 파악할 수 있다. The voltage Vs of the source node N1 node of the driving transistor DRT follows the voltage Vg of the gate node N2 node And the voltage of the source node (N1 node) of the driving transistor DRT is set to a voltage of the source node N1 node of the driving transistor DRT Sensing as a sensing voltage. At this time, the threshold voltage variation of the driving transistor DRT can be grasped based on the sensed sensing voltage.

다음으로, 구동 트랜지스터(DRT)에 대한 이동도 센싱 원리를 간단하게 설명하면, 구동 트랜지스터(DRT)의 문턱전압(Vth)를 제외한 전류능력 특성을 규정하기 위해서, 구동 트랜지스터(DRT)의 게이트 노드(N2 노드)에 일정 전압을 인가해준다. A description will now be briefly made of the principle of the mobility sensing for the driving transistor DRT. In order to define the current capability characteristic excluding the threshold voltage Vth of the driving transistor DRT, N2 node).

이렇게 해서 일정 시간 동안 충전된 전압의 양을 통해서, 구동 트랜지스터(DRT)의 전류능력(즉, 이동도)을 상대적으로 파악할 수 있고, 이를 통해 보상을 위한 보정 게인(Gain)을 구해낸다. Thus, the current capability (i.e., mobility) of the driving transistor DRT can be relatively grasped through the amount of the charged voltage for a predetermined period of time, thereby obtaining the correction gain Gain for compensation.

전술한 이동도 센싱을 통한 이동도 보상은, 화면 구동 시 일정 시간을 할애하여 진행될 수 있다. 이렇게 함으로써 실시간으로 변동되는 구동 트랜지스터(DRT)의 파라미터를 센싱하고 보상할 수 있다. The mobility compensation through the above-described mobility sensing can be performed by allocating a predetermined time during the screen driving. By doing so, the parameters of the driving transistor DRT varying in real time can be sensed and compensated.

한편, 스위칭 트랜지스터(SWT)의 게이트 노드와 센싱 트랜지스터(SENT)의 게이트 노드는 동일한 게이트 라인에 전기적으로 연결될 수 있다. On the other hand, the gate node of the switching transistor SWT and the gate node of the sensing transistor SENT may be electrically connected to the same gate line.

다시 말해, 스위칭 트랜지스터(SWT)의 게이트 노드 및 센싱 트랜지스터(SENT)의 게이트 노드에는, 동일한 게이트 라인(GL)을 통해, 게이트 신호(SCAN, SENSE)를 공통으로 인가받는다. 이때, 스캔 신호(SCAN) 및 센스 신호(SENSE)는 동일한 게이트 신호이다. In other words, gate signals SCAN and SENSE are commonly applied to the gate node of the switching transistor SWT and the gate node of the sensing transistor SENT through the same gate line GL. At this time, the scan signal SCAN and the sense signal SENSE are the same gate signal.

스위칭 트랜지스터(SWT)의 게이트 노드와 센싱 트랜지스터(SENT)의 게이트 노드는 서로 다른 게이트 라인에 전기적으로 연결되어, 스캔 신호(SCAN) 및 센스 신호(SENSE) 각각이 별도로 인가될 수 있다. The gate node of the switching transistor SWT and the gate node of the sensing transistor SENT are electrically connected to different gate lines so that the scan signal SCAN and the sense signal SENSE may be separately applied.

도 4는 본 실시예들에 따른 유기발광표시장치(100)의 서브픽셀 회로와 보상 구조(문턱전압 보상 및 이동도 보상을 위한 센싱 구조)를 예시적으로 나타낸 도면이다. FIG. 4 is a diagram illustrating a subpixel circuit and a compensation structure of the organic light emitting diode display 100 according to the embodiments (a sensing structure for threshold voltage compensation and mobility compensation).

도 4에 도시된 서브픽셀 회로는, 도 3의 서브픽셀 회로와 동일한다. The subpixel circuit shown in Fig. 4 is the same as the subpixel circuit of Fig.

도 4를 참조하면, 유기발광표시장치(100)는, 기준전압 라인(RVL)의 전압을 센싱하고, 센싱된 전압을 디지털 값으로 변환하여 센싱 데이터를 생성하고, 생성된 센싱 데이터를 타이밍 컨트롤러(140)로 전송하는 아날로그 디지털 컨버터(ADC)를 더 포함할 수 있다. 4, the OLED display 100 senses the voltage of the reference voltage line RVL, converts the sensed voltage into a digital value to generate sensing data, and outputs the sensed data to a timing controller 140 to an analog to digital converter (ADC).

이러한 아날로그 디지털 컨버터(ADC)를 이용하면, 타이밍 컨트롤러(140)가 디지털 기반에서 보상값을 연산하고 데이터 보상을 할 수 있도록 해줄 수 있다. Using such an analog-to-digital converter (ADC), the timing controller 140 may be capable of computing compensation values and performing data compensation on a digital basis.

이러한 아날로그 디지털 컨버터(ADC)는, 영상 데이터를 데이터 전압(Vdata)으로 변환하는 디지털 아날로그 컨버터(DAC)와 함께, 각 소스 드라이버 집적회로(SDIC)에 포함될 수 있다. Such an analog-to-digital converter (ADC) may be included in each source driver integrated circuit (SDIC) together with a digital-to-analog converter (DAC) that converts the image data to a data voltage (Vdata).

도 4를 참조하면, 유기발광표시장치(100)는, 센싱 동작을 효과적으로 제공하기 위하여, 제1스위치(SW1) 및 제2스위치(SW2) 등의 스위치 구성을 포함할 수 있다. Referring to FIG. 4, the organic light emitting diode display 100 may include a switch structure such as a first switch SW1 and a second switch SW2 in order to effectively provide a sensing operation.

제1스위치(SW1)는, 제1스위칭 신호에 따라, 기준전압 라인(RVL) 및 기준전압(Vref)의 공급 노드(Nref) 간을 연결해줄 수 있다. The first switch SW1 may connect between the reference voltage line RVL and the supply node Nref of the reference voltage Vref in accordance with the first switching signal.

제1스위치(SW1)가 온이 되면, 기준전압 라인(RVL)으로 기준전압(Vref)이 공급되고, 제1스위치(SW1)가 오프 되면, 기준전압 라인(RVL)으로 기준전압(Vref)이 공급되지 않는다. When the first switch SW1 is turned on, the reference voltage Vref is supplied to the reference voltage line RVL. When the first switch SW1 is turned off, the reference voltage Vref is applied to the reference voltage line RVL Not supplied.

제2스위치(SW2)는, 제2스위칭 신호(샘플링 신호)에 따라, 기준전압 라인(RVL) 및 아날로그 디지털 컨버터(ADC) 간을 연결해줄 수 있다. The second switch SW2 can connect the reference voltage line RVL and the analog-to-digital converter ADC according to the second switching signal (sampling signal).

제2스위치(SW2)가 온이 되면, 기준전압 라인(RVL)과 아날로그 디지털 컨버터(ADC)가 연결되어, 아날로그 디지털 컨버터(ADC)가 기준전압 라인(RVL)의 전압을 센싱할 수 있다. When the second switch SW2 is turned on, the reference voltage line RVL and the analog-to-digital converter ADC are connected so that the analog-to-digital converter ADC can sense the voltage of the reference voltage line RVL.

전술한 스위치 구성들(SW1, SW2)을 통해, 유기발광표시장치(100)는, 주요 노드(N1 노드, N2 노드)의 전압 상태를 센싱 구동에 필요한 상태로 만들어줄 수 있고, 이를 통해, 효율적인 센싱을 가능하게 할 수 있다. The organic light emitting diode display 100 can make the voltage state of the main node (N1 node, N2 node) necessary for sensing driving through the switch constructions SW1 and SW2 described above, Sensing can be enabled.

도 5 내지 도 7은 본 실시예들에 따른 유기발광표시장치(100)의 센싱 구동 동작과 N1 노드의 전압 파형을 나타낸 도면이다. 단, 문턱전압 보상을 위한 센싱 동작에 대하여 예를 들어 설명한다. 5 to 7 are views showing the sensing driving operation of the OLED display 100 and the voltage waveform of the N1 node according to the present embodiments. However, the sensing operation for compensating the threshold voltage will be described by way of example.

도 5 내지 도 7을 참조하면, 본 실시예들에 따른 유기발광표시장치(100)의 센싱 구동 동작은, 초기화 단계(S10), 전압 부스팅 단계(S20) 및 센싱 단계(S30) 등으로 진행될 수 있다. 5 to 7, the sensing driving operation of the organic light emitting diode display 100 according to the exemplary embodiments of the present invention may be performed in an initialization step S10, a voltage boosting step S20, and a sensing step S30 have.

도 5를 참조하면, 초기화 단계(S10)는, 구동 트랜지스터(DRT)의 N1 노드 및 N2 노드를 일정 전압으로 초기화하는 단계이다. Referring to FIG. 5, the initializing step S10 initializes the N1 node and the N2 node of the driving transistor DRT to a constant voltage.

도 5를 참조하면, 초기화 단계(S10)에서, 스위칭 트랜지스터(SWT) 및 센싱 트랜지스터(SENT)는 턴 온 상태이고, 제1스위치(SW1)는 온 상태이고, 제2스위치(SW2)는 오프 상태이다. 5, in the initialization step S10, the switching transistor SWT and the sensing transistor SENT are in a turned-on state, the first switch SW1 is in an on state, the second switch SW2 is in an off state to be.

이에 따라, 기준전압 라인(RVL)으로 공급된 기준전압(Vref)이, 센싱 트랜지스터(SENT)를 통해, 구동 트랜지스터(DRT)의 N1 노드로 인가된다. Thus, the reference voltage Vref supplied to the reference voltage line RVL is applied to the node N1 of the driving transistor DRT through the sensing transistor SENT.

따라서, 구동 트랜지스터(DRT)의 N1 노드는 기준전압(Vref)으로 초기화된다. Therefore, the N1 node of the driving transistor DRT is initialized to the reference voltage Vref.

또한, 해당 소스 드라이버 집적회로의 디지털 아날로그 컨버터(DAC)에서 아날로그 전압값으로 변환된 데이터 전압(Vdata)이, 스위칭 트랜지스터(SWT)를 통해 구동 트랜지스터(DRT)의 N2 노드에 인가된다. The data voltage Vdata converted to the analog voltage value in the digital-analog converter DAC of the source driver integrated circuit is applied to the node N2 of the driving transistor DRT through the switching transistor SWT.

따라서, 구동 트랜지스터(DRT)의 N2 노드는 데이터 전압(Vdata)으로 초기화된다. Therefore, the node N2 of the driving transistor DRT is initialized to the data voltage Vdata.

도 6을 참조하면, 전압 부스팅 단계(S20)는, 구동 트랜지스터(DRT)의 N1 노드의 전압을 상승(Boosting)해주는 단계이다. Referring to FIG. 6, the voltage boosting step S20 is a step of boosting the voltage of the N1 node of the driving transistor DRT.

도 6을 참조하면, 전압 부스팅 단계(S20)에서는, 제1스위치(SW1)는 오프 상태이고, 제2스위치(SW2)는 오프 상태이다. Referring to FIG. 6, in the voltage boosting step S20, the first switch SW1 is in an OFF state and the second switch SW2 is in an OFF state.

제1스위치(SW2)가 오프 상태가 됨에 따라, 구동 트랜지스터(DRT)의 N1 노드에 기준전압(Vref)이 인가되지 않는다. 즉, 구동 트랜지스터(DRT)의 N1 노드가 플로팅(Floating) 된다. As the first switch SW2 is turned off, the reference voltage Vref is not applied to the node N1 of the driving transistor DRT. That is, the node N1 of the driving transistor DRT is floated.

따라서, 전압 부스팅 단계(S20)에서, N1 전압 파형도에서 보는 바와 같이, 구동 트랜지스터(DRT)의 N1 노드의 전압은 상승(Boosting)하게 된다. Therefore, in the voltage boosting step S20, as shown in the N1 voltage waveform diagram, the voltage of the N1 node of the driving transistor DRT is boosted.

이러한 구동 트랜지스터(DRT)의 N1 노드의 전압 상승은, 구동 트랜지스터(DRT)의 N2 노드의 전압(Vdata)과 일정 전압(Vth)만큼 차이가 날 때까지 이루어진다. The voltage rise of the node N1 of the driving transistor DRT is performed until the voltage Vdata of the node N2 of the driving transistor DRT is different from the voltage Vth by a predetermined voltage Vth.

즉, 구동 트랜지스터(DRT)의 N1 노드의 전압은, 구동 트랜지스터(DRT)의 N2 노드의 전압(Vdata)에서 구동 트랜지스터(DRT)의 문턱전압(Vth)을 뺀 전압 값(Vdata-Vth)이 되면, 포화(Saturation)된다. That is, the voltage of the N1 node of the driving transistor DRT becomes equal to the voltage value Vdata-Vth obtained by subtracting the threshold voltage Vth of the driving transistor DRT from the voltage Vdata of the N2 node of the driving transistor DRT And saturation.

이와 같이, 구동 트랜지스터(DRT)의 N1 노드의 전압이 포화(Saturation) 된 이후부터, 구동 트랜지스터(DRT)의 문턱전압(Vth)을 센싱하기 위하여, 구동 트랜지스터(DRT)의 N1 노드의 전압을 센싱할 수 있다. After the voltage of the node N1 of the driving transistor DRT is saturated, the voltage of the node N1 of the driving transistor DRT is sensed in order to sense the threshold voltage Vth of the driving transistor DRT. can do.

즉, 구동 트랜지스터(DRT)의 N1 노드의 전압이 포화(Saturation) 된 이후, 센싱 단계(S30)가 진행될 수 있다. That is, after the voltage of the node N1 of the driving transistor DRT is saturated, the sensing step S30 may proceed.

도 7을 참조하면, 센싱 단계(S30)에서는, 제1스위치(SW1)가 오프 상태이고, 제2스위치(SW2)가 온 상태로 된다. 또한, 센싱 단계(S30)에서, 센싱 트랜지스터(SENT)는 턴 온 상태를 유지한다. Referring to FIG. 7, in the sensing step S30, the first switch SW1 is in the OFF state and the second switch SW2 is in the ON state. Further, in the sensing step S30, the sensing transistor SENT maintains the turn-on state.

도 7을 참조하면, 제2스위치(SW2)의 온 상태에 따라, 아날로그 디지털 컨버터(ADC)는 기준전압 라인(RVL)과 연결되어, 기준전압 라인(RVL)의 전압을 샘플링하여 센싱할 수 있다. Referring to FIG. 7, according to the ON state of the second switch SW2, the analog-to-digital converter ADC is connected to the reference voltage line RVL to sample and sense the voltage of the reference voltage line RVL .

이때, 아날로그 디지털 컨버터(ADC)에 의해 센싱되는 전압(Vsense)은, 구동 트랜지스터(DRT)의 N1 노드(예: 소스 노드 또는 드레인 노드)의 포화된 전압일 수 있다. At this time, the voltage (Vsense) sensed by the analog-to-digital converter (ADC) may be the saturated voltage of the N1 node (e.g., the source node or the drain node) of the driving transistor DRT.

그리고, N1 노드 전압 파형도를 보면, 아날로그 디지털 컨버터(ADC)에 의해 센싱되는 전압(Vsense)은, 데이터 전압(Vdata)에서 구동 트랜지스터(DRT)의 문턱전압(Vth)을 뺀 전압 값에 해당한다. The voltage Vsense sensed by the analog digital converter ADC corresponds to a voltage value obtained by subtracting the threshold voltage Vth of the driving transistor DRT from the data voltage Vdata .

따라서, 아날로그 디지털 컨버터(ADC)에 의해 센싱된 전압(Vsense)을 토대로, 각 서브픽셀의 구동 트랜지스터(DRT)의 문턱전압(Vth)을 파악할 수 있고, 구동 트랜지스터(DRT) 간의 문턱전압 편차도 파악할 수 있다. Therefore, the threshold voltage (Vth) of the driving transistor (DRT) of each subpixel can be grasped based on the voltage (Vsense) sensed by the analog digital converter (ADC) and the threshold voltage deviation between the driving transistors .

아날로그 디지털 컨버터(ADC)는, 센싱된 전압(Vsense)을 디지털 값으로 변환하여 센싱 데이터를 생성하고, 이를 타이밍 컨트롤러(140)로 전송해준다. The analog-to-digital converter (ADC) converts the sensed voltage (Vsense) into a digital value to generate sensing data and transmits it to the timing controller (140).

타이밍 컨트롤러(140)는, 센싱 데이터를 수신하여, 이를 토대로, 문턱전압 편차를 파악하여, 이를 보상해주기 위한 각 서브픽셀에 대한 데이터 보상값을 결정하여 저장해둘 수 있다. The timing controller 140 receives the sensing data, determines the threshold voltage deviation, and determines and stores a data compensation value for each subpixel to compensate for the threshold voltage deviation.

타이밍 컨트롤러(140)는, 데이터 보상값을 토대로 영상 데이터를 변경하여 해당 소스 드라이버 집적회로로 전송해준다. 이에 따라, 소스 드라이버 집적회로는 변경된 영상 데이터를 디지털 아날로그 컨버터(DAC)를 이용하여 데이터 전압으로 변환하여 해당 데이터 라인으로 출력해줄 수 있다. 이렇게 하여, 실질적인 보상이 실행되어진다. The timing controller 140 changes image data based on the data compensation value and transmits the image data to the corresponding source driver integrated circuit. Accordingly, the source driver integrated circuit can convert the changed image data into a data voltage using a digital-to-analog converter (DAC), and output the data voltage to the corresponding data line. In this way, substantial compensation is performed.

한편, 유기발광표시패널(110) 상의 트랜지스터 및 각종 신호 배선 등에는 기생 캐패시턴스(Parasitic Capacitance) 성분이 존재할 수 있다. 이러한 기생 캐패시턴스 성분으로 인해 RC(Resistance Capacitance) 로드가 발생할 수 있다. On the other hand, a parasitic capacitance component may exist in the transistors and various signal lines on the organic light emitting display panel 110. Such a parasitic capacitance component may cause an RC (Resistance Capacitance) load.

이러한 기생 캐패시턴스 성분에 따른 RC 로드의 발생은, 센싱 동작 시, 전압 특성이 불안정해지는 현상, 즉, 센싱되는 전압 값이 흔들리는 현상을 유발시킬 수 있고, 이로 인해, 센싱 정확도가 많이 낮아질 수 있다. The generation of the RC rod according to the parasitic capacitance component can cause a phenomenon that the voltage characteristic becomes unstable during the sensing operation, that is, the voltage value to be sensed is shaken, and thus the sensing accuracy can be significantly lowered.

이러한 센싱 정확도의 저하로 인해, 타이밍 컨트롤러(140)는, 보상값 연산 시, 잘못된 보상값을 얻을 수 있다. 따라서, 휘도 편차 개선을 위한 보상에도 불구하고, 화질이 오히려 나빠지는 현상을 발생할 수 있다. Due to such a reduction in the sensing accuracy, the timing controller 140 can obtain a wrong compensation value when calculating the compensation value. Therefore, despite the compensation for the improvement in the luminance deviation, the image quality may be rather deteriorated.

이에, 본 실시예들은, 전위 불안정성으로 인해, 센싱 동작시, 센싱 값의 변동이 발생하여 보상 값의 오차가 유발되는 현상을 방지하고자, 센싱 구동 안정화 방법을 제공한다. Accordingly, the present embodiments provide a sensing driving stabilization method for preventing a phenomenon in which a variation in sensing value occurs during sensing operation due to potential instability, thereby causing an error in a compensation value.

도 8은 본 실시예들에 따른 유기발광표시장치(100)의 센싱 구동 안정화 구성을 나타낸 도면이다. 도 9는 본 실시예들에 따른 유기발광표시장치(100)의 센싱 구동 동작 시, 센싱 구동 안정화 구성의 상태를 나타낸 도면이다. 도 10은 본 실시예들에 따른 유기발광표시장치(100)의 디스플레이 구동 동작 시, 센싱 구동 안정화 구성의 상태를 나타낸 도면이다. 8 is a diagram illustrating a sensing driving stabilization configuration of the OLED display 100 according to the present embodiments. 9 is a diagram showing a state of the sensing driving stabilization configuration in the sensing driving operation of the organic light emitting diode display 100 according to the present embodiments. 10 is a diagram showing a state of the sensing drive stabilization configuration in the display driving operation of the organic light emitting diode display 100 according to the present embodiments.

도 8을 참조하면, 본 실시예들에 따른 유기발광표시장치(100)는, 센싱 동작시, 센싱 값의 변동이 발생하여 보상 값의 오차가 유발되는 현상을 방지하기 위한 센싱 구동 안정화으로서, 구동 모드에 따라 선택적으로, 기준전압 라인(RVL)과 전기적으로 연결되거나 미연결될 수 있는 안정화 캐패시터(Cs)를 더 포함할 수 있다. Referring to FIG. 8, the organic light emitting display 100 according to the present embodiment is a sensing driving stabilization for preventing a phenomenon in which a variation in sensing value occurs during sensing operation to cause an error in a compensation value, And may further include a stabilization capacitor Cs, which may be electrically connected or disconnected from the reference voltage line RVL, depending on the mode.

이러한 안정화 캐패시터(Cs)는, 구동 모드가 센싱 구동 모드인 경우, 도 9에 도시된 바와 같이, 기준전압 라인(RVL)과 전기적으로 연결되고, 구동 모드가 일반 구동 모드(즉, 디스플레이 구동 모드)인 경우, 도 10에 도시된 바와 같이, 기준전압 라인(RVL)과 전기적으로 연결되지 않는다. 9, the stabilization capacitor Cs is electrically connected to the reference voltage line RVL when the driving mode is the sensing driving mode, and the driving mode is the common driving mode (i.e., the display driving mode) , It is not electrically connected to the reference voltage line RVL, as shown in Fig.

센싱 구동 모드 구간에서, 즉, 센싱 동작 시, 안정화 캐패시터(Cs)가 기준전압 라인(RVL)에 연결됨으로써, 기준전압 라인(RVL)의 전위 변동을 안정화시켜줄 수 있다. The stabilization capacitor Cs is connected to the reference voltage line RVL in the sensing driving mode period, that is, in the sensing operation, thereby stabilizing the potential variation of the reference voltage line RVL.

한편, 기준전압 라인(RVL)은, 센싱 동작 시, 각 서브픽셀의 구동 트랜지스터(DRT)를 통해, 전류를 흐르게 한다. 기준전압 라인(RVL)을 통해 흐르는 전류는, 기준전압 라인(RVL)에서의 전체 캐패시터를 충전시켜, 기준전압 라인(RVL)의 전압을 상승시키게 된다. 이러한 전압 상승이, 전압 부스팅 단계(S20)에서 이루어지는 현상이다. On the other hand, the reference voltage line RVL allows a current to flow through the driving transistor DRT of each sub-pixel in the sensing operation. The current flowing through the reference voltage line RVL charges the entire capacitor in the reference voltage line RVL and raises the voltage of the reference voltage line RVL. This voltage increase is a phenomenon occurring in the voltage boosting step S20.

이때, 전압 상승 속도는, 기준전압 라인(RVL)의 총 캐패시턴스에 따라 결정될 수 있다. 따라서, 안정화 캐패시터(Cs)의 추가로 인해, 기준전압 라인(RVL)의 총 캐피시턴스가 커지게 되면, 전압 상승 속도가 빨라져, 센싱을 보다 빠르게 할 수 있다. At this time, the voltage rising rate can be determined according to the total capacitance of the reference voltage line RVL. Therefore, when the total capacitance of the reference voltage line RVL is increased due to the addition of the stabilizing capacitor Cs, the voltage rising speed is increased and the sensing can be performed more quickly.

또한, 센싱 종료 근처에서는 구동 트랜지스터(DRT)를 통해, 전류가 거의 안 흐르게 되기 때문에, 기준전압 라인(RVL)의 센싱 전압은, 다른 불필요한 전압 성분(예: EVDD, EVSS 등) 없이, 원하는 전압 성분(예: Vdata-Vth)으로 더 정확하게 표현될 수 있다. 원하는 전압 성분은 구동 트랜지스터(DRT)의 특성치(예: Vth)를 더욱 잘 반영할 수 있다. The sensing voltage of the reference voltage line RVL is set to a desired voltage component without any other unnecessary voltage components (e.g., EVDD, EVSS, etc.) because the current is hardly flowed through the driving transistor DRT near the sensing end. (E.g., Vdata-Vth). The desired voltage component can more accurately reflect the characteristic value (e.g., Vth) of the driving transistor DRT.

전술한 바와 같이, 안정화 캐패시터(Cs)는, 센싱 구동 모드 구간에서, 기준전압 라인(RVL)과 전기적으로 연결되고, 디스플레이 구동 모드 구간에서, 기준전압 라인(RVL)과 연결되지 않는다.As described above, the stabilization capacitor Cs is electrically connected to the reference voltage line RVL in the sensing driving mode period, and is not connected to the reference voltage line RVL in the display driving mode period.

이렇듯, 센싱 구동 모드 구간에서만, 안정화 캐패시터(Cs)가 기준전압 라인(RVL)에 연결됨으로써, 센싱 구동 시간 동안, 기준전압 라인(RVL)의 전위를 안정화시켜 주어, 센싱 값의 정확도를 높여줄 수 있고, 이를 통해, 정확한 보상값을 얻을 수 있어, 화질 향상에 도움을 줄 수 있다. As described above, the stabilizing capacitor Cs is connected to the reference voltage line RVL only during the sensing driving mode period, thereby stabilizing the potential of the reference voltage line RVL during the sensing driving time, thereby improving the accuracy of the sensing value Thus, it is possible to obtain an accurate compensation value, thereby improving the image quality.

전술한 바와 같이, 구동 모드에 따라, 안정화 캐패시터(Cs)가 기준전압 라인(RVL)에 연결되거나 연결되지 않도록 제어하기 위하여, 도 8에 도시된 바와 같이, 본 실시예들에 따른 유기발광표시장치(100)는, 스위칭 제어 신호(SWCS)에 따라, 센싱 구동 시에만, 기준전압 라인(RVL)과 안정화 캐패시터(Cs)를 전기적으로 연결해주는 스위칭 소자(SWs)를 더 포함할 수 있다. 8, in order to control the stabilization capacitor Cs to be connected to or not connected to the reference voltage line RVL according to the driving mode, as described above, The switching device 100 may further include a switching element SWs for electrically connecting the reference voltage line RVL and the stabilization capacitor Cs only during sensing operation according to the switching control signal SWCS.

이러한 스위칭 소자(SWs)를 통해, 구동 모드에 따라, 기준전압 라인(RVL)으로의 안정화 캐패시터(Cs)에 대한 효율적인 연결 제어를 해줄 수 있다. Through this switching element SWs, efficient connection control to the stabilization capacitor Cs to the reference voltage line RVL can be performed according to the driving mode.

한편, 센싱 구동 시, 기준전압 라인(RVL)에 추가로 연결될 수 있는 안정화 캐패시터(Cs)는, 유기발광표시패널(110)에 배치될 수도 있고, 유기발광표시패널(110)의 외부에 배치될 수도 있다. The stabilizing capacitor Cs which can be additionally connected to the reference voltage line RVL during sensing operation may be disposed on the organic light emitting display panel 110 or on the outside of the organic light emitting display panel 110 It is possible.

만약, 유기발광표시패널(110)에 안정화 캐패시터(Cs)를 배치하는 경우, 유기발광표시패널(110)의 제조 공정 시, 안정화 캐패시터(Cs)를 다른 패턴들과 함께 형성할 수 있기 때문에, 별도의 공정 없이도, 안정화 캐패시터(Cs)를 구현할 수 있는 장점이 있다. If the stabilizing capacitor Cs is disposed on the organic light emitting display panel 110, the stabilizing capacitor Cs can be formed together with other patterns in the manufacturing process of the organic light emitting display panel 110, There is an advantage that the stabilized capacitor Cs can be implemented without the process of FIG.

이에 비해, 유기발광표시패널(110)의 외부에 안정화 캐패시터(Cs)를 배치하는 경우, 일 예로, 소스 드라이버 집적회로가 배치된 연성인쇄회로(FPC: Flexible Printed Circuit) 등의 필름에 배치하는 경우, 소스 드라이버 집적회로의 내부에 포함될 수 있는 센싱 구성에 해당하는 아날로그 디지털 컨버터(ADC)에 의한 센싱 동작의 효율성이 높아지고, 센싱 거리가 짧아져 센싱 정확도도 어느 정도 향상될 수 있다. 여기서, 연성인쇄회로(FPC: Flexible Printed Circuit) 등의 필름에 배치된 소스 드라이버 집적회로를 COF(Chip On Film) 타입의 소스 드라이버 집적회로라고 한다. In contrast, when the stabilizing capacitor Cs is disposed outside the organic light emitting display panel 110, for example, in a case where the stabilizing capacitor Cs is disposed on a film such as a flexible printed circuit (FPC) on which a source driver integrated circuit is disposed , The efficiency of the sensing operation by the analog-to-digital converter (ADC) corresponding to the sensing configuration included in the source driver integrated circuit is enhanced, and the sensing distance is shortened to improve the sensing accuracy to some extent. Here, a source driver integrated circuit disposed on a film such as a flexible printed circuit (FPC) is referred to as a COF (Chip On Film) type source driver integrated circuit.

전술한 스위칭 소자(SWs)는, 게이트 노드에 인가되는 스위칭 제어 신호(SWCS)에 따라 제어되며, 기준전압 라인(RVL)과 안정화 캐패시터(Cs)의 제1플레이트(Plate) 사이에 전기적으로 연결되는 트랜지스터일 수 있다. The switching element SWs described above is controlled according to the switching control signal SWCS applied to the gate node and is electrically connected between the reference voltage line RVL and the first plate Plate of the stabilization capacitor Cs Transistor.

이러한 스위칭 소자(SWs)를 활용하는 경우, 기준전압 라인(RVL)과 안정화 캐패시터(Cs) 간의 연결을 더욱 효과적으로 제어해줄 수 있다. When such a switching element SWs is utilized, the connection between the reference voltage line RVL and the stabilization capacitor Cs can be more effectively controlled.

전술한 바와 같이, 안정화 캐패시터(Cs)는, 유기발광표시패널(110) 상에 배치되거나, 유기발광표시패널(110)의 외부에 배치될 수 있다. The stabilization capacitor Cs may be disposed on the organic light emitting display panel 110 or may be disposed outside the organic light emitting display panel 110. [

아래에서는, 안정화 캐패시터(Cs)가 유기발광표시패널(110) 상에 배치되는 경우, 안정화 캐패시터(Cs)의 구현 방식을 도 11 및 도 12를 참조하여, 예시적으로 설명한다. 또한, 안정화 캐패시터(Cs)가 유기발광표시패널(110)의 외부에 배치되는 경우의 일 예로서, 연성인쇄회로(FPC)에 배치되는 경우에 대한 안정화 캐패시터(Cs)의 구현 방식을 도 13을 참조하여, 예시적으로 설명한다. Hereinafter, when the stabilization capacitor Cs is disposed on the organic light emitting display panel 110, an implementation method of the stabilization capacitor Cs will be exemplarily described with reference to FIGS. 11 and 12. FIG. As an example of the case where the stabilization capacitor Cs is disposed outside the organic light emitting display panel 110, an implementation method of the stabilization capacitor Cs in the case where the stabilization capacitor Cs is disposed in the flexible printed circuit (FPC) Will be described with reference to the accompanying drawings.

도 11 및 도 12는 본 실시예들에 따른 유기발광표시장치(100)의 센싱 구동 안정화 구성을 유기발광표시패널(110) 상에 구현한 예시도이다. 단, 도 12에서는, 스위칭 소자(SWs)를 코플레이너 박막 트랜지스터(Coplanar TFT)로 예로 들었다. 하지만, 이에 제한되지 않고, 다양한 구조의 트랜지스터로 구현될 수 있다. FIGS. 11 and 12 illustrate examples of implementing the sensing driving stabilization configuration of the OLED display 100 according to the present embodiments on the organic light emitting display panel 110. FIG. However, in Fig. 12, the switching element SWs is exemplified as a coplanar TFT. However, the present invention is not limited thereto, and can be implemented with transistors having various structures.

도 11 및 도 12를 참조하면, 유기발광표시패널(110)의 제조 공정 시, 유기발광표시패널(110)에 각종 패턴들(트랜지스터들, 캐패시터들, 전압 라인들 등)을 형성할 때, 안정화 캐패시터(Cs) 및 스위칭 소자(SWs)도 함께 형성할 수 있다. 11 and 12, when various patterns (transistors, capacitors, voltage lines, etc.) are formed on the organic light emitting display panel 110 in the manufacturing process of the organic light emitting display panel 110, The capacitor Cs and the switching element SWs can be formed together.

도 11 및 도 12를 참조하면, 안정화 캐패시터(Cs) 및 스위칭 소자(SWs)가 유기발광표시패널(110)에 배치되는 경우, 스위칭 소자(SWs)의 게이트 노드에 스위칭 제어 신호(SWCS: Switching Control Signal)를 인가해주는 게이트 배선(1110)이 유기발광표시패널(110)에 더 배치될 수 있다.11 and 12, when the stabilization capacitor Cs and the switching element SWs are disposed in the OLED panel 110, a switching control signal SWCS is applied to the gate node of the switching element SWs, A gate wiring 1110 for applying a voltage to the organic light emitting display panel 110 may be further disposed.

이와 같이, 유기발광표시패널(110)에 추가적인 게이트 배선(1110)을 더 배치시켜, 이를 통해, 스위칭 소자(SWs)의 게이트 노드에 스위칭 제어 신호(SWCS: Switching Control Signal)를 인가해줌으로써, 스위칭 소자(SWs)의 스위칭 동작을 효율적으로 제어할 수 있다. In this manner, a further gate line 1110 is further disposed in the organic light emitting display panel 110 to apply a switching control signal (SWCS) to the gate node of the switching device SWs, The switching operation of the element SWs can be controlled efficiently.

위에서 언급한 스위칭 제어 신호(SWCS)는, 일 예로, 게이트 구동부(130)에서 게이트 제어 신호(GCS)로서 출력될 수 있다. The above-mentioned switching control signal SWCS may be output as a gate control signal GCS in the gate driver 130, for example.

도 11 및 도 12를 참조하면, 스위칭 소자(SWs)는, Na 노드, Nb 노드 및 Nc 노드를 가질 수 있는데, 스위칭 소자(SWs)의 Na 노드는, 드레인 노드 또는 소스 노드로서, 기준전압 라인(RVL)과 전기적으로 연결되고, 스위칭 소자(SWs)의 Nb 노드는, 소스 노드 또는 드레인 노드로서, 안정화 캐패시터(Cs)의 제1플레이트(P1)와 전기적으로 연결된다. 11 and 12, the switching element SWs may have an Na node, an Nb node, and an Nc node, and the Na node of the switching element SWs may be a drain node or a source node, RVL and the Nb node of the switching element SWs is electrically connected to the first plate P1 of the stabilizing capacitor Cs as a source node or a drain node.

도 11 및 도 12를 참조하면, 안정화 캐패시터(Cs)는, 제1플레이트(P1)와 제2플레이트(P2)에 의해 형성될 수 있다. 11 and 12, the stabilization capacitor Cs may be formed by the first plate P1 and the second plate P2.

안정화 캐패시터(Cs)의 제1플레이트(P1)는, 스위칭 소자(SWs)의 Nb 노드와 전기적으로 연결될 수 있다. 안정화 캐패시터(Cs)의 제2플레이트(P2)는 기저전압 단(GND)과 전기적으로 연결될 수 있다. The first plate P1 of the stabilization capacitor Cs may be electrically connected to the Nb node of the switching element SWs. The second plate P2 of the stabilization capacitor Cs may be electrically connected to the ground voltage terminal GND.

도 12에서와 같이, 안정화 캐패시터(Cs)의 제1플레이트(P1)는, 스위칭 소자(SWs)의 Nb 노드와 일체형 금속으로 되어 있을 수 있다. As shown in Fig. 12, the first plate P1 of the stabilizing capacitor Cs may be made of an integral metal with the Nb node of the switching element SWs.

전술한 센싱 안정화 구성으로서, 안정화 캐패시터(Cs) 및 스위칭 소자(SWs) 등은, 유기발광표시패널(110)에서, 화상이 표시되는 액티브 영역(Active Area)의 외부 영역, 즉, 화상이 표시되지 않는 영역에 배치될 수 있다.The stabilization capacitor Cs and the switching elements SWs are arranged in the organic light emitting display panel 110 in such a manner that the external region of the active area in which the image is displayed, Lt; / RTI >

전술한 바에 따르면, 센싱 안정화 구성으로서, 안정화 캐패시터(Cs), 스위칭 소자(SWs) 및 게이트 배선(1100) 등을 유기발광표시패널(110) 상에 효과적으로 배치해줄 수 있다. The stabilizing capacitor Cs, the switching element SWs, the gate wiring 1100, and the like can be effectively disposed on the organic light emitting display panel 110 as a sensing stabilization configuration.

도 13은 본 실시예들에 따른 유기발광표시장치(100)의 센싱 구동 안정화 구성을 연성인쇄회로(FPC) 상에 구현한 예시도이다.FIG. 13 is an exemplary diagram illustrating a sensing driving stabilization configuration of the organic light emitting diode display 100 according to the present embodiments implemented on a flexible printed circuit (FPC).

도 13을 참조하면, 본 실시예들에 따른 유기발광표시장치(100)는, 일단이 유기발광표시패널(110)에 연결되고 타단이 소스 인쇄회로기판(160)에 연결되며, 데이터 구동부(120)에 포함된 소스 드라이버 집적회로(SDIC)가 배치된 연성인쇄회로(FPC)를 더 포함할 수 있다. 13, one end of the organic light emitting display 100 according to the present embodiment is connected to the organic light emitting display panel 110 and the other end is connected to the source PCB 200, and the data driver 120 (FPC) in which a source driver integrated circuit (SDIC) included in the source driver integrated circuit (SDIC) is disposed.

도 13을 참조하면, 센싱 구동 안정화 구성으로서, 안정화 캐패시터(Cs) 및 스위칭 소자(SWs)는, 연성인쇄회로(FPC)에 배치될 수 있다. Referring to Fig. 13, as a sensing driving stabilization configuration, the stabilization capacitor Cs and the switching element SWs can be arranged in a flexible printed circuit (FPC).

도 13을 참조하면, 스위칭 소자(SWs)의 Na 노드(드레인 노드 또는 소스 노드)는 기준전압 라인(RVL)과 전기적으로 연결되고, Nb 노드(소스 노드 또는 드레인 노드)는 안정화 캐패시터(Cs)의 제1플레이트와 연결된다. 13, the Na node (drain node or source node) of the switching element SWs is electrically connected to the reference voltage line RVL, and the Nb node (source node or drain node) is connected to the stabilization capacitor Cs And is connected to the first plate.

도 13을 참조하면, 연성인쇄회로(FPC)는, 2 층 구조로 되어 있을 수 있다. 연성인쇄회로(FPC)의 2층 구조에서, 한 층은 안정화 캐패시터(Cs)의 제1플레이트 역할을 하고, 그라운드 메탈 층(Ground Metal Layer)에 해당하는 나머지 한 층은 안정화 캐패시터(Cs)의 제2플레이트 역할을 함으로써, 안정화 캐패시터(Cs)를 형성해줄 수 있다. Referring to FIG. 13, the flexible printed circuit (FPC) may have a two-layer structure. In the two-layer structure of the flexible printed circuit (FPC), one layer serves as the first plate of the stabilizing capacitor Cs, and the other layer corresponding to the ground metal layer serves as the stabilizing capacitor Cs 2 plate, it is possible to form the stabilization capacitor Cs.

또한, 스위칭 소자(SWs)의 게이트 노드(Nc)에 스위칭 제어 신호(SWCS)를 인가해주는 스위칭 제어 신호 배선(1310)이 연성인쇄회로(FPC)에 배치될 수 있다. The switching control signal line 1310 for applying the switching control signal SWCS to the gate node Nc of the switching element SWs may be arranged in the flexible printed circuit FPC.

전술한 바와 같이, 센싱 구동 안정화 구성들(Cs, SWs, 1310)을 유기발광표시패널(110)의 외부에 있는 연성인쇄회로(FPC)에 배치함으로써, 유기발광표시패널(110)의 제조 공정을 변경하지 않아도 된다. 또한, 센싱 구동 안정화 구성들(Cs, SWs, 1310)을 소스 드라이버 집적회로(SDIC)가 있는 연성인쇄회로(FPC)에 배치하기 때문에, 소스 드라이버 집적회로(SDIC) 내부의 센싱 구성에 해당하는 아날로그 디지털 컨버터(ADC)와 센싱 지점(기준전압 라인(RVL)과 연결된 안정화 캐패시터(Cs))까지의 거리가 짧아져 센싱값의 정확도가 높아질 수 있다. As described above, by arranging the sensing and driving stabilization structures Cs, SWs, and 1310 in the flexible printed circuit (FPC) outside the organic light emitting display panel 110, the manufacturing process of the organic light emitting display panel 110 can be simplified You do not need to change it. In addition, since the sensing driving stabilization structures Cs, SWs, and 1310 are disposed in the flexible printed circuit (FPC) having the source driver IC (SDIC), the analog Digital converter ADC and the sensing point (stabilizing capacitor Cs connected to the reference voltage line RVL) is shortened, so that the accuracy of the sensing value can be increased.

도 13을 참조하면 연성인쇄회로(FPC)에는, 스위칭 소자(SWs)의 Na 노드(드레인 노드 또는 소스 노드)와 유기발광표시패널(110) 상의 기준전압 라인(RVL)을 전기적으로 연결해주는 연결 배선(1320)이 배치될 수 있다. 13, a flexible printed circuit (FPC) is provided with a connection wiring (not shown) electrically connecting the Na node (drain node or source node) of the switching element SWs and the reference voltage line RVL on the OLED panel 110, (1320) may be disposed.

연결 배선(1320)과 기준전압 라인(RVL)이 연결되는 지점은, 연성인쇄회로(FPC)와 유기발광표시패널(110)이 본딩되는 부분에 위치할 수 있다. The connection point between the connection wiring 1320 and the reference voltage line RVL may be located at a portion where the flexible printed circuit FPC and the organic light emitting display panel 110 are bonded.

이와 같이, 연결 배선(1320)을 통해, 스위칭 소자(SWs)를 기준전압 라인(RVL)과 전기적으로 연결해줄 수 있다. In this manner, the switching element SWs can be electrically connected to the reference voltage line RVL through the connection wiring 1320. [

도 13을 참조하면, 연성인쇄회로(FPC) 상에 배치된 스위칭 제어 신호 배선(1310)은, 소스 인쇄회로기판(160)을 통해 스위칭 제어 신호(SWCS)를 공급받을 수 있다. 13, a switching control signal line 1310 disposed on a flexible printed circuit (FPC) can receive a switching control signal SWCS through a source printed circuit board 160.

이에 따라, 스위칭 소자(SWs)의 스위칭 동작을 효율적으로 제어할 수 있다.Thus, the switching operation of the switching element SWs can be efficiently controlled.

도 14는 본 실시예들에 따른 유기발광표시장치(100)의 센싱 구동 안정화 구성에서 스위칭 소자(SWs)의 타이밍 다이어그램이다. FIG. 14 is a timing diagram of the switching element SWs in the sensing driving stabilization configuration of the organic light emitting diode display 100 according to the present embodiments.

도 14를 참조하면, 스위칭 소자(SWs)는, 센싱 구동 모드 구간(S10, S20, S30) 동안 온-상태(On-state)일 수 있다. Referring to FIG. 14, the switching device SWs may be on-state during the sensing driving mode periods S10, S20, and S30.

도 14를 참조하면, 스위칭 소자(SWs)는 센싱 구동 모드 구간의 초기화 단계(S10)에서 턴-온(Turn-on) 되는 제1스위치(SW1)보다 빨리 턴-온 될 수 있다. 그리고, 센싱 구동 모드 구간의 센싱 단계(S30)에서 제2스위치(SW2)가 턴-오프(Turn-off) 될 때 또는 제2스위치(SW2)가 턴-오프 된 이후, 스위칭 소자(SWs)는 턴-오프 될 수 있다.Referring to FIG. 14, the switching element SWs may be turned on earlier than the first switch SW1 turned on in the initialization step S10 of the sensing driving mode section. Then, when the second switch SW2 is turned off in the sensing step S30 of the sensing driving mode section or after the second switch SW2 is turned off, the switching element SWs is turned off Can be turned off.

도 15는 본 실시예들에 따른 유기발광표시장치(100) 센싱 구동 안정화 구성에서 스위칭 소자(SWs)의 다른 타이밍 다이어그램이다.15 is another timing diagram of the switching element SWs in the sensing driving stabilization configuration of the OLED display 100 according to the present embodiments.

도 15를 참조하면, 스위칭 소자(SWs)는 센싱 트랜지스터(SENT)의 제어 타이밍(Control Timing)과 동일하거나 대응되는 타이밍으로 제어될 수 있다. Referring to FIG. 15, the switching element SWs may be controlled at the same timing as the control timing of the sensing transistor SENT or at a corresponding timing.

이상에서 설명한 바와 같은 본 실시예들에 의하면, 구동 트랜지스터의 특성치에 대한 센싱 정확도를 높여주어 정확한 보상이 이루어질 수 있는 유기발광표시장치(100) 및 유기발광표시패널(110)을 제공할 수 있다. According to the exemplary embodiments of the present invention described above, it is possible to provide the OLED display 100 and the organic light emitting display panel 110, which can improve the sensing accuracy with respect to the characteristic value of the driving transistor and perform accurate compensation.

본 실시예들에 의하면, 구동 트랜지스터의 특성치에 대한 센싱 정확도를 높여줄 수 있는 센싱 구동 안정화 구성을 갖는 유기발광표시장치(100) 및 유기발광표시패널(110)을 제공할 수 있다. According to the embodiments, it is possible to provide the organic light emitting display 100 and the organic light emitting display panel 110 having the sensing driving stabilization configuration capable of improving the sensing accuracy with respect to the characteristic value of the driving transistor.

본 실시예들에 의하면, 센싱 구동 시, 센싱 라인 역할을 하는 기준전압 라인의 전위 안정성을 제공하여 센싱 정확도 및 보상 정확도를 높여줄 수 있는 센싱 구동 안정화 구성을 갖는 유기발광표시장치(100) 및 유기발광표시패널(110)을 제공할 수 있다. According to the embodiments, the organic light emitting display 100 and the organic light emitting display 100 having the sensing driving stabilization configuration capable of improving the sensing accuracy and the compensation accuracy by providing the potential stability of the reference voltage line serving as the sensing line during sensing driving, The light emitting display panel 110 can be provided.

이상에서의 설명 및 첨부된 도면은 본 발명의 기술 사상을 예시적으로 나타낸 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 구성의 결합, 분리, 치환 및 변경 등의 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. , Separation, substitution, and alteration of the invention will be apparent to those skilled in the art. Therefore, the embodiments disclosed in the present invention are intended to illustrate rather than limit the scope of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be construed according to the following claims, and all technical ideas within the scope of equivalents should be construed as falling within the scope of the present invention.

100: 표시장치
110: 표시패널
120: 데이터 구동부
130: 게이트 구동부
140: 타이밍 컨트롤러
100: display device
110: Display panel
120: Data driver
130: Gate driver
140: Timing controller

Claims (14)

다수의 데이터 라인 및 다수의 게이트 라인이 배치되고, 다수의 서브픽셀이 배치된 유기발광표시패널;
상기 다수의 데이터 라인을 구동하는 데이터 구동부;
상기 다수의 게이트 라인을 구동하는 게이트 구동부; 및
상기 데이터 구동부 및 상기 게이트 구동부를 제어하는 타이밍 컨트롤러를 포함하고,
상기 다수의 서브픽셀 각각은, 유기발광다이오드와, 상기 유기발광다이오드를 구동하는 구동 트랜지스터와, 상기 구동 트랜지스터의 제1노드와 기준전압 라인 사이에 전기적으로 연결되는 센싱 트랜지스터와, 상기 구동 트랜지스터의 제2노드와 데이터 라인 사이에 전기적으로 연결되는 스위칭 트랜지스터와, 상기 구동 트랜지스터의 제1노드와 제2노드 사이에 전기적으로 연결되는 스토리지 캐패시터를 포함하여 구성되고,
구동 모드에 따라, 상기 기준전압 라인과 전기적으로 연결되거나 미연결되는 안정화 캐패시터를 더 포함하는 유기발광표시장치.
An organic light emitting display panel in which a plurality of data lines and a plurality of gate lines are arranged and in which a plurality of subpixels are arranged;
A data driver driving the plurality of data lines;
A gate driver for driving the plurality of gate lines; And
And a timing controller for controlling the data driver and the gate driver,
Each of the plurality of subpixels includes an organic light emitting diode, a driving transistor for driving the organic light emitting diode, a sensing transistor electrically connected between a first node of the driving transistor and a reference voltage line, A switching transistor electrically connected between the two nodes and the data line; and a storage capacitor electrically connected between the first node and the second node of the driving transistor,
And a stabilization capacitor electrically connected to or disconnected from the reference voltage line according to a driving mode.
제1항에 있어서,
상기 안정화 캐패시터는,
상기 유기발광표시패널에 배치되거나,
상기 유기발광표시패널의 외부에 배치되는 것을 특징으로 하는 유기발광표시장치.
The method according to claim 1,
The stabilization capacitor includes:
The organic light emitting display according to claim 1,
Wherein the organic light emitting display panel is disposed outside the organic light emitting display panel.
제1항에 있어서,
상기 안정화 캐패시터는,
센싱 구동 모드 구간에서, 상기 기준전압 라인과 전기적으로 연결되고,
디스플레이 구동 모드 구간에서, 상기 기준전압 라인과 미연결되는 것을 특징으로 하는 유기발광표시장치.
The method according to claim 1,
The stabilization capacitor includes:
In the sensing driving mode section, the driving transistor is electrically connected to the reference voltage line,
Wherein the reference voltage line is not connected to the reference voltage line during a display driving mode period.
제3항에 있어서,
스위칭 제어 신호에 따라, 센싱 구동 시에만, 상기 기준전압 라인과 상기 안정화 캐패시터를 전기적으로 연결해주는 스위칭 소자를 더 포함하는 유기발광표시장치.
The method of claim 3,
Further comprising a switching element for electrically connecting the reference voltage line and the stabilization capacitor only during a sensing operation according to a switching control signal.
제4항에 있어서,
상기 스위칭 소자는,
게이트 노드에 인가되는 상기 스위칭 제어 신호에 따라 제어되며, 상기 기준전압 라인과 상기 안정화 캐패시터의 제1플레이트 사이에 전기적으로 연결되는 트랜지스터인 것을 특징으로 하는 유기발광표시장치.
5. The method of claim 4,
The switching device includes:
And a transistor which is controlled according to the switching control signal applied to the gate node and is electrically connected between the reference voltage line and the first plate of the stabilization capacitor.
제5항에 있어서,
상기 안정화 캐패시터 및 상기 스위칭 소자는, 상기 유기발광표시패널에 배치되고,
상기 스위칭 소자의 게이트 노드에 상기 스위칭 제어 신호를 인가해주는 게이트 배선이 상기 유기발광표시패널에 더 배치되는 것을 특징으로 하는 유기발광표시장치.
6. The method of claim 5,
Wherein the stabilizing capacitor and the switching element are disposed on the organic light emitting display panel,
And a gate wiring for applying the switching control signal to the gate node of the switching element is further disposed in the organic light emitting display panel.
제6항에 있어서,
상기 스위칭 소자의 드레인 노드 또는 소스 노드는 상기 기준전압 라인과 전기적으로 연결되고, 상기 스위칭 소자의 소스 노드 또는 드레인 노드는 상기 안정화 캐패시터의 제1플레이트와 전기적으로 연결되며,
상기 안정화 캐패시터의 제2플레이트는 기저전압 단과 전기적으로 연결된 것을 특징으로 하는 유기발광표시장치.
The method according to claim 6,
A source node or a drain node of the switching element is electrically connected to the first plate of the stabilization capacitor,
And the second plate of the stabilization capacitor is electrically connected to the base low-voltage terminal.
제5항에 있어서,
일단이 상기 유기발광표시패널에 연결되고 타단이 소스 인쇄회로기판에 연결되며 상기 데이터 구동부에 포함된 소스 드라이버 집적회로가 배치된 연성인쇄회로를 더 포함하고,
상기 안정화 캐패시터 및 상기 스위칭 소자는, 상기 연성인쇄회로에 배치되고,
상기 스위칭 소자의 게이트 노드에 상기 스위칭 제어 신호를 인가해주는 스위칭 제어 신호 배선이 상기 연성인쇄회로에 더 배치된 것을 특징으로 하는 유기발광표시장치.
6. The method of claim 5,
Further comprising a flexible printed circuit having one end connected to the organic light emitting display panel and the other end connected to a source printed circuit board and a source driver integrated circuit included in the data driver,
Wherein the stabilizing capacitor and the switching element are arranged in the flexible printed circuit,
And a switching control signal line for applying the switching control signal to the gate node of the switching device is further disposed in the flexible printed circuit.
제8항에 있어서,
상기 연성인쇄회로에는, 상기 스위칭 소자의 드레인 노드 또는 소스 노드와 상기 유기발광표시패널 상의 상기 기준전압 라인을 전기적으로 연결해주는 연결 배선이 더 배치된 것을 특징으로 하는 유기발광표시장치.
9. The method of claim 8,
Wherein the flexible printed circuit further comprises a connection wiring for electrically connecting the drain node or the source node of the switching element to the reference voltage line on the organic light emitting display panel.
제8항에 있어서,
상기 연성인쇄회로 상에 배치된 상기 스위칭 제어 신호 배선은,
상기 소스 인쇄회로기판을 통해 상기 스위칭 제어 신호를 공급받는 것을 특징으로 하는 유기발광표시장치.
9. The method of claim 8,
Wherein the switching control signal wiring arranged on the flexible printed circuit comprises:
And the switching control signal is supplied through the source printed circuit board.
제4항에 있어서,
상기 스위칭 소자는,
센싱 구동 모드 구간 동안 온-상태이거나,
상기 센싱 트랜지스터의 제어 타이밍과 동일하거나 대응되는 타이밍으로 제어되는 유기발광표시장치.
5. The method of claim 4,
The switching device includes:
State during the sensing driving mode period,
Wherein the control signal is controlled at the same timing as the control timing of the sensing transistor.
서로 교차하는 방향으로 배치된 다수의 데이터 라인 및 다수의 게이트 라인; 및
매트릭스 타입으로 배치된 다수의 서브픽셀을 포함하고,
상기 다수의 서브픽셀 각각은,
유기발광다이오드와, 상기 유기발광다이오드를 구동하는 구동 트랜지스터와, 상기 구동 트랜지스터의 제1노드와 기준전압 라인 사이에 전기적으로 연결되는 센싱 트랜지스터와, 상기 구동 트랜지스터의 제2노드와 데이터 라인 사이에 전기적으로 연결되는 스위칭 트랜지스터와, 상기 구동 트랜지스터의 제1노드와 제2노드 사이에 전기적으로 연결되는 스토리지 캐패시터를 포함하여 구성되고,
구동 모드에 따라, 상기 기준전압 라인과 전기적으로 연결되거나 미연결되는 안정화 캐패시터를 더 포함하는 유기발광표시패널.
A plurality of data lines and a plurality of gate lines arranged in a direction crossing each other; And
A plurality of sub-pixels arranged in a matrix type,
Each of the plurality of sub-
A driving transistor for driving the organic light emitting diode; a sensing transistor electrically connected between a first node of the driving transistor and a reference voltage line; and a driving transistor electrically connected between the second node of the driving transistor and the data line, And a storage capacitor electrically connected between the first node and the second node of the driving transistor,
And a stabilization capacitor electrically connected to or disconnected from the reference voltage line according to a driving mode.
제12항에 있어서,
상기 안정화 캐패시터는,
센싱 구동 모드 구간에서, 상기 기준전압 라인과 전기적으로 연결되고,
디스플레이 구동 모드 구간에서, 상기 기준전압 라인과 미연결되는 것을 특징으로 하는 유기발광표시패널.
13. The method of claim 12,
The stabilization capacitor includes:
In the sensing driving mode section, the driving transistor is electrically connected to the reference voltage line,
Wherein the organic light emitting display panel is not connected to the reference voltage line in the display driving mode period.
제13항에 있어서,
스위칭 제어 신호에 따라, 센싱 구동 시에만, 상기 기준전압 라인과 상기 안정화 캐패시터를 전기적으로 연결해주는 스위칭 소자를 더 포함하는 유기발광표시패널.
14. The method of claim 13,
Further comprising a switching element for electrically connecting the reference voltage line and the stabilization capacitor only during sensing driving according to a switching control signal.
KR1020150109834A 2014-12-24 2015-08-04 Organic light emitting display panel and organic light emitting display device KR102344969B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/919,934 US9607549B2 (en) 2014-12-24 2015-10-22 Organic light emitting diode display panel and organic light emitting diode display device
DE102015118833.3A DE102015118833A1 (en) 2014-12-24 2015-11-03 Organic Light Emitting Diode Display Panel and Organic Light Emitting Diode Display Apparatus
CN201510953896.XA CN105741784B (en) 2014-12-24 2015-12-17 Organic LED display panel and organic LED display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140188254 2014-12-24
KR1020140188254 2014-12-24

Publications (2)

Publication Number Publication Date
KR20160078867A true KR20160078867A (en) 2016-07-05
KR102344969B1 KR102344969B1 (en) 2022-01-03

Family

ID=56502008

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150109834A KR102344969B1 (en) 2014-12-24 2015-08-04 Organic light emitting display panel and organic light emitting display device

Country Status (1)

Country Link
KR (1) KR102344969B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026113A1 (en) * 2016-08-02 2018-02-08 주식회사 실리콘웍스 Sensing device, panel driving device and display device
KR20180025798A (en) * 2016-08-29 2018-03-09 엘지디스플레이 주식회사 Display device and method for driving thereof
KR20180039808A (en) * 2016-10-10 2018-04-19 엘지디스플레이 주식회사 Sub-pixel, gate driver and organic light emitting display device
KR20190057705A (en) * 2017-11-20 2019-05-29 엘지디스플레이 주식회사 Organic light emitting diode display device and method for driving the same
US11189232B2 (en) 2019-12-26 2021-11-30 Lg Display Co., Ltd. Organic light emitting display device and driving method thereof
CN114360459A (en) * 2022-03-16 2022-04-15 惠科股份有限公司 OLED drive circuit and OLED display device
US11651742B2 (en) 2021-06-24 2023-05-16 Lg Display Co., Ltd. Organic light emitting display device and driving method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140080728A (en) * 2012-12-14 2014-07-01 엘지디스플레이 주식회사 Organic light emitting diode display device and driving method the same
US20150001504A1 (en) * 2013-06-26 2015-01-01 Lg Display Co., Ltd. Organic light emitting diode display device
US20150049075A1 (en) * 2013-08-19 2015-02-19 Lg Display Co., Ltd. Organic light emitting display and method for driving the same
US20150061981A1 (en) * 2013-08-30 2015-03-05 Lg Display Co., Ltd. Organic light emitting display device
US20150077314A1 (en) * 2013-09-13 2015-03-19 Samsung Display Co., Ltd. Amoled display device and driving method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140080728A (en) * 2012-12-14 2014-07-01 엘지디스플레이 주식회사 Organic light emitting diode display device and driving method the same
US20150001504A1 (en) * 2013-06-26 2015-01-01 Lg Display Co., Ltd. Organic light emitting diode display device
US20150049075A1 (en) * 2013-08-19 2015-02-19 Lg Display Co., Ltd. Organic light emitting display and method for driving the same
US20150061981A1 (en) * 2013-08-30 2015-03-05 Lg Display Co., Ltd. Organic light emitting display device
US20150077314A1 (en) * 2013-09-13 2015-03-19 Samsung Display Co., Ltd. Amoled display device and driving method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026113A1 (en) * 2016-08-02 2018-02-08 주식회사 실리콘웍스 Sensing device, panel driving device and display device
KR20180015321A (en) * 2016-08-02 2018-02-13 주식회사 실리콘웍스 Sensing apparatus, panel driving apparatus and display device
KR20180025798A (en) * 2016-08-29 2018-03-09 엘지디스플레이 주식회사 Display device and method for driving thereof
KR20180039808A (en) * 2016-10-10 2018-04-19 엘지디스플레이 주식회사 Sub-pixel, gate driver and organic light emitting display device
KR20190057705A (en) * 2017-11-20 2019-05-29 엘지디스플레이 주식회사 Organic light emitting diode display device and method for driving the same
US11189232B2 (en) 2019-12-26 2021-11-30 Lg Display Co., Ltd. Organic light emitting display device and driving method thereof
US11651742B2 (en) 2021-06-24 2023-05-16 Lg Display Co., Ltd. Organic light emitting display device and driving method thereof
CN114360459A (en) * 2022-03-16 2022-04-15 惠科股份有限公司 OLED drive circuit and OLED display device
CN114360459B (en) * 2022-03-16 2022-06-07 惠科股份有限公司 OLED drive circuit and OLED display device
US11881174B2 (en) 2022-03-16 2024-01-23 HKC Corporation Limited OLED drive circuit for detecting and compensating data voltage

Also Published As

Publication number Publication date
KR102344969B1 (en) 2022-01-03

Similar Documents

Publication Publication Date Title
US9607549B2 (en) Organic light emitting diode display panel and organic light emitting diode display device
KR102289664B1 (en) Controller, organic light emitting display panel, organic light emitting display device, and the method for driving the organic light emitting display device
KR102344969B1 (en) Organic light emitting display panel and organic light emitting display device
KR20160083540A (en) Organic light emitting display device
KR102368078B1 (en) Organic light emitting display device and method for driving the same
KR20170081034A (en) Gate driving method, sensing driving method, gate driver, and organic light emitting display device
KR20230005084A (en) Organic light emitting display panel, organic light emitting display device, image driving method, and sensing method
KR20180079560A (en) Display device, display panel, driving method, and gate driving circuit
KR101980777B1 (en) Organic light emitting diode display device and driving method the same
KR102379393B1 (en) Organic light emitting display device
CN112017573B (en) Display device, controller, driving circuit, and driving method
KR102337377B1 (en) Power management integrated circuits, organic light emitting display and driving method thereof
KR20180039804A (en) Controller, organic light emitting display device and method for driving thereof
KR102156160B1 (en) Organic light emitting display device, organic light emitting display panel, and method for driving the organic light emitting display device
KR20170064162A (en) Source driver ic, organic light emitting display device, and the method for driving the organic light emitting display device
KR102526232B1 (en) Organic light emitting display panel, organic light emitting display device, and the method for driving the organic light emitting display device
KR102500858B1 (en) Organic light emitting display device and method for driving the organic light emitting display device
KR20170065090A (en) Display device and printed circuit board for supplying voltage to the display device
KR102291363B1 (en) Organic light emitting display panel, organic light emitting display device, and the method for driving the organic light emitting display device
KR102416761B1 (en) Organic light-emitting display device, and compensation system and compensation method of the organic light-emitting display device
KR20160078692A (en) Organic light emitting display device and method for the same
KR102492335B1 (en) Organic light-emitting display device, and compensation method of organic light-emitting display device
KR102313655B1 (en) Organic light emitting display device and organic light emitting display panel
KR20200032508A (en) Driving circuit, organic light emitting display device, and driving method
KR101980778B1 (en) Organic light emitting diode display device and driving method the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right