KR20160076533A - 지도 학습을 이용하여 클래스들을 태깅하기 위한 방법들 및 장치 - Google Patents

지도 학습을 이용하여 클래스들을 태깅하기 위한 방법들 및 장치 Download PDF

Info

Publication number
KR20160076533A
KR20160076533A KR1020167013948A KR20167013948A KR20160076533A KR 20160076533 A KR20160076533 A KR 20160076533A KR 1020167013948 A KR1020167013948 A KR 1020167013948A KR 20167013948 A KR20167013948 A KR 20167013948A KR 20160076533 A KR20160076533 A KR 20160076533A
Authority
KR
South Korea
Prior art keywords
network
neurons
classes
tags
artificial neurons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1020167013948A
Other languages
English (en)
Korean (ko)
Inventor
비크람 굽타
레건 블라이스 토월
빅터 호키우 챈
라빈드라 마노하르 팟와르드한
제프리 레빈
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20160076533A publication Critical patent/KR20160076533A/ko
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • G06N3/0454
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0499Feedforward networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Analysis (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Machine Translation (AREA)
  • Stored Programmes (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
KR1020167013948A 2013-10-28 2014-10-13 지도 학습을 이용하여 클래스들을 태깅하기 위한 방법들 및 장치 Withdrawn KR20160076533A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/065,089 2013-10-28
US14/065,089 US9418331B2 (en) 2013-10-28 2013-10-28 Methods and apparatus for tagging classes using supervised learning
PCT/US2014/060234 WO2015065686A2 (en) 2013-10-28 2014-10-13 Methods and apparatus for tagging classes using supervised learning

Publications (1)

Publication Number Publication Date
KR20160076533A true KR20160076533A (ko) 2016-06-30

Family

ID=51845519

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167013948A Withdrawn KR20160076533A (ko) 2013-10-28 2014-10-13 지도 학습을 이용하여 클래스들을 태깅하기 위한 방법들 및 장치

Country Status (7)

Country Link
US (1) US9418331B2 (OSRAM)
EP (1) EP3063706A2 (OSRAM)
JP (1) JP2016538632A (OSRAM)
KR (1) KR20160076533A (OSRAM)
CN (1) CN105684002B (OSRAM)
CA (1) CA2926334A1 (OSRAM)
WO (1) WO2015065686A2 (OSRAM)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200002245A (ko) * 2018-06-29 2020-01-08 포항공과대학교 산학협력단 뉴럴 네트워크 하드웨어
KR20200052439A (ko) 2018-10-29 2020-05-15 삼성에스디에스 주식회사 딥러닝 모델의 최적화 시스템 및 방법
US11580393B2 (en) 2019-12-27 2023-02-14 Samsung Electronics Co., Ltd. Method and apparatus with neural network data input and output control

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9405975B2 (en) 2010-03-26 2016-08-02 Brain Corporation Apparatus and methods for pulse-code invariant object recognition
US9412041B1 (en) 2012-06-29 2016-08-09 Brain Corporation Retinal apparatus and methods
US9275326B2 (en) 2012-11-30 2016-03-01 Brain Corporation Rate stabilization through plasticity in spiking neuron network
US9436909B2 (en) 2013-06-19 2016-09-06 Brain Corporation Increased dynamic range artificial neuron network apparatus and methods
US9552546B1 (en) * 2013-07-30 2017-01-24 Brain Corporation Apparatus and methods for efficacy balancing in a spiking neuron network
US10198691B2 (en) * 2014-06-19 2019-02-05 University Of Florida Research Foundation, Inc. Memristive nanofiber neural networks
EP3158509A4 (en) * 2014-06-19 2018-02-28 University of Florida Research Foundation, Inc. Memristive nanofiber neural networks
US9881349B1 (en) 2014-10-24 2018-01-30 Gopro, Inc. Apparatus and methods for computerized object identification
US10074050B2 (en) * 2015-07-13 2018-09-11 Denso Corporation Memristive neuromorphic circuit and method for training the memristive neuromorphic circuit
CN105243421B (zh) * 2015-10-19 2018-04-03 湖州师范学院 一种基于cnn声发射识别动静态部件间摩擦故障的方法
CN106875004B (zh) * 2017-01-20 2019-09-10 北京灵汐科技有限公司 复合模式神经元信息处理方法和系统
CN110651330A (zh) 2017-05-22 2020-01-03 佛罗里达大学研究基金会 二分忆阻网络中的深度学习
US11348002B2 (en) 2017-10-24 2022-05-31 International Business Machines Corporation Training of artificial neural networks
CN108038543B (zh) * 2017-10-24 2021-01-22 华南师范大学 期望与反期望深度学习方法和神经网络系统
CN107798384B (zh) * 2017-10-31 2020-10-16 山东第一医科大学(山东省医学科学院) 一种基于可进化脉冲神经网络的鸢尾花卉分类方法和装置
US20190042942A1 (en) * 2017-12-07 2019-02-07 Koba Natroshvili Hybrid spiking neural network and support vector machine classifier
US10108903B1 (en) * 2017-12-08 2018-10-23 Cognitive Systems Corp. Motion detection based on machine learning of wireless signal properties
EP3743856A4 (en) * 2018-01-23 2021-10-27 HRL Laboratories, LLC CODING AND LEARNING PROCESS AND SYSTEM DISTRIBUTED IN NEUROMORPHIC NETWORKS ALLOWING RECOGNITION OF PATTERNS
WO2019167884A1 (ja) * 2018-02-28 2019-09-06 富士フイルム株式会社 機械学習方法及び装置、プログラム、学習済みモデル、並びに判別装置
CN112204617B (zh) * 2018-04-09 2023-09-05 杜比实验室特许公司 使用神经网络映射的hdr图像表示
WO2020065881A1 (ja) * 2018-09-27 2020-04-02 Tdk株式会社 積和演算器、ニューロモーフィックデバイス及び積和演算方法
WO2020112105A1 (en) * 2018-11-28 2020-06-04 Hewlett-Packard Development Company, L.P. Event-based processing using the output of a deep neural network
JP7279368B2 (ja) * 2019-01-17 2023-05-23 富士通株式会社 学習方法、学習プログラムおよび学習装置
JP7163786B2 (ja) 2019-01-17 2022-11-01 富士通株式会社 学習方法、学習プログラムおよび学習装置
CN110458286B (zh) * 2019-08-14 2022-02-08 中科寒武纪科技股份有限公司 数据处理方法、装置、计算机设备和存储介质
US11684921B1 (en) * 2019-08-16 2023-06-27 Leidos, Inc. Pocket detection pouch
CN113408613B (zh) * 2021-06-18 2022-07-19 电子科技大学 一种基于延迟机制的单层图像分类方法
US12205242B2 (en) * 2021-07-01 2025-01-21 Leidos, Inc. Method and system for accelerating rapid class augmentation for object detection in deep neural networks

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781983B2 (en) * 2009-12-29 2014-07-15 Knowmtech, Llc Framework for the evolution of electronic neural assemblies toward directed goals
US7716150B2 (en) 2006-09-28 2010-05-11 Microsoft Corporation Machine learning system for analyzing and establishing tagging trends based on convergence criteria
EP2053523A1 (en) 2007-10-16 2009-04-29 Sony France S.A. Method and apparatus for updating of prototypes
US8682819B2 (en) 2008-06-19 2014-03-25 Microsoft Corporation Machine-based learning for automatically categorizing data on per-user basis
US8655803B2 (en) 2008-12-17 2014-02-18 Xerox Corporation Method of feature extraction from noisy documents
US8843567B2 (en) 2009-11-30 2014-09-23 International Business Machines Corporation Managing electronic messages
US9129220B2 (en) * 2010-07-07 2015-09-08 Qualcomm Incorporated Methods and systems for digital neural processing with discrete-level synapes and probabilistic STDP
US8892487B2 (en) * 2010-12-30 2014-11-18 International Business Machines Corporation Electronic synapses for reinforcement learning
CN103078054B (zh) * 2013-01-04 2015-06-03 华中科技大学 一种模拟生物神经元和神经突触的单元、装置及方法
US9753959B2 (en) * 2013-10-16 2017-09-05 University Of Tennessee Research Foundation Method and apparatus for constructing a neuroscience-inspired artificial neural network with visualization of neural pathways

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200002245A (ko) * 2018-06-29 2020-01-08 포항공과대학교 산학협력단 뉴럴 네트워크 하드웨어
KR20200052439A (ko) 2018-10-29 2020-05-15 삼성에스디에스 주식회사 딥러닝 모델의 최적화 시스템 및 방법
US11580393B2 (en) 2019-12-27 2023-02-14 Samsung Electronics Co., Ltd. Method and apparatus with neural network data input and output control
US11790232B2 (en) 2019-12-27 2023-10-17 Samsung Electronics Co., Ltd. Method and apparatus with neural network data input and output control

Also Published As

Publication number Publication date
WO2015065686A2 (en) 2015-05-07
WO2015065686A3 (en) 2015-06-25
CA2926334A1 (en) 2015-05-07
JP2016538632A (ja) 2016-12-08
US9418331B2 (en) 2016-08-16
US20150120626A1 (en) 2015-04-30
CN105684002A (zh) 2016-06-15
EP3063706A2 (en) 2016-09-07
CN105684002B (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
KR20160076533A (ko) 지도 학습을 이용하여 클래스들을 태깅하기 위한 방법들 및 장치
KR101793011B1 (ko) 스파이킹 네트워크들의 효율적인 하드웨어 구현
US10339447B2 (en) Configuring sparse neuronal networks
US9330355B2 (en) Computed synapses for neuromorphic systems
US9558442B2 (en) Monitoring neural networks with shadow networks
KR20160138002A (ko) 스파이킹 dbn (deep belief network) 에서의 트레이닝, 인식, 및 생성
US20150212861A1 (en) Value synchronization across neural processors
KR20160123309A (ko) 확률적 스파이킹 베이지안망들에 대한 이벤트-기반 추론 및 학습
KR20170031695A (ko) 신경망들에서의 콘볼루션 동작의 분해
KR20160136381A (ko) 신경 네트워크들에서의 차분 인코딩
KR20160136364A (ko) 콜드 뉴런 스파이크 타이밍 역 전파
KR20160076520A (ko) 인과적 현출성 시간 추론
US10552734B2 (en) Dynamic spatial target selection
KR20160076531A (ko) 다차원 범위에 걸쳐 분리가능한 서브 시스템들을 포함하는 시스템의 평가
KR20160138042A (ko) 스파이킹 뉴럴 네트워크들을 사용하는 이미지들의 불변의 객체 표현
KR20160084401A (ko) 스파이킹 뉴럴 네트워크들에서 리플레이를 사용한 시냅스 학습의 구현
US20150278685A1 (en) Probabilistic representation of large sequences using spiking neural network
KR20160135206A (ko) 역치하 변조를 통한 아날로그 신호 재구성 및 인식
KR101825937B1 (ko) 가소성 시냅스 관리
KR20160058825A (ko) 신경 모델들에 대한 그룹 태그들의 구현을 위한 방법들 및 장치
KR20160125967A (ko) 일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치
US20150213356A1 (en) Method for converting values into spikes
KR20160047581A (ko) 인공 신경 시스템에서 브레이크포인트 결정 유닛을 구현하기 위한 방법들 및 장치
EP3063709A2 (en) Doppler effect processing in a neural network model
KR20160132850A (ko) 뉴로모픽 모델 개발을 위한 콘텍스트 실시간 피드백

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20160525

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid