KR20160076533A - 지도 학습을 이용하여 클래스들을 태깅하기 위한 방법들 및 장치 - Google Patents
지도 학습을 이용하여 클래스들을 태깅하기 위한 방법들 및 장치 Download PDFInfo
- Publication number
- KR20160076533A KR20160076533A KR1020167013948A KR20167013948A KR20160076533A KR 20160076533 A KR20160076533 A KR 20160076533A KR 1020167013948 A KR1020167013948 A KR 1020167013948A KR 20167013948 A KR20167013948 A KR 20167013948A KR 20160076533 A KR20160076533 A KR 20160076533A
- Authority
- KR
- South Korea
- Prior art keywords
- network
- neurons
- classes
- tags
- artificial neurons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G06N3/0454—
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0499—Feedforward networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Machine Translation (AREA)
- Stored Programmes (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/065,089 | 2013-10-28 | ||
| US14/065,089 US9418331B2 (en) | 2013-10-28 | 2013-10-28 | Methods and apparatus for tagging classes using supervised learning |
| PCT/US2014/060234 WO2015065686A2 (en) | 2013-10-28 | 2014-10-13 | Methods and apparatus for tagging classes using supervised learning |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR20160076533A true KR20160076533A (ko) | 2016-06-30 |
Family
ID=51845519
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020167013948A Withdrawn KR20160076533A (ko) | 2013-10-28 | 2014-10-13 | 지도 학습을 이용하여 클래스들을 태깅하기 위한 방법들 및 장치 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9418331B2 (OSRAM) |
| EP (1) | EP3063706A2 (OSRAM) |
| JP (1) | JP2016538632A (OSRAM) |
| KR (1) | KR20160076533A (OSRAM) |
| CN (1) | CN105684002B (OSRAM) |
| CA (1) | CA2926334A1 (OSRAM) |
| WO (1) | WO2015065686A2 (OSRAM) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200002245A (ko) * | 2018-06-29 | 2020-01-08 | 포항공과대학교 산학협력단 | 뉴럴 네트워크 하드웨어 |
| KR20200052439A (ko) | 2018-10-29 | 2020-05-15 | 삼성에스디에스 주식회사 | 딥러닝 모델의 최적화 시스템 및 방법 |
| US11580393B2 (en) | 2019-12-27 | 2023-02-14 | Samsung Electronics Co., Ltd. | Method and apparatus with neural network data input and output control |
Families Citing this family (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9405975B2 (en) | 2010-03-26 | 2016-08-02 | Brain Corporation | Apparatus and methods for pulse-code invariant object recognition |
| US9412041B1 (en) | 2012-06-29 | 2016-08-09 | Brain Corporation | Retinal apparatus and methods |
| US9275326B2 (en) | 2012-11-30 | 2016-03-01 | Brain Corporation | Rate stabilization through plasticity in spiking neuron network |
| US9436909B2 (en) | 2013-06-19 | 2016-09-06 | Brain Corporation | Increased dynamic range artificial neuron network apparatus and methods |
| US9552546B1 (en) * | 2013-07-30 | 2017-01-24 | Brain Corporation | Apparatus and methods for efficacy balancing in a spiking neuron network |
| US10198691B2 (en) * | 2014-06-19 | 2019-02-05 | University Of Florida Research Foundation, Inc. | Memristive nanofiber neural networks |
| EP3158509A4 (en) * | 2014-06-19 | 2018-02-28 | University of Florida Research Foundation, Inc. | Memristive nanofiber neural networks |
| US9881349B1 (en) | 2014-10-24 | 2018-01-30 | Gopro, Inc. | Apparatus and methods for computerized object identification |
| US10074050B2 (en) * | 2015-07-13 | 2018-09-11 | Denso Corporation | Memristive neuromorphic circuit and method for training the memristive neuromorphic circuit |
| CN105243421B (zh) * | 2015-10-19 | 2018-04-03 | 湖州师范学院 | 一种基于cnn声发射识别动静态部件间摩擦故障的方法 |
| CN106875004B (zh) * | 2017-01-20 | 2019-09-10 | 北京灵汐科技有限公司 | 复合模式神经元信息处理方法和系统 |
| CN110651330A (zh) | 2017-05-22 | 2020-01-03 | 佛罗里达大学研究基金会 | 二分忆阻网络中的深度学习 |
| US11348002B2 (en) | 2017-10-24 | 2022-05-31 | International Business Machines Corporation | Training of artificial neural networks |
| CN108038543B (zh) * | 2017-10-24 | 2021-01-22 | 华南师范大学 | 期望与反期望深度学习方法和神经网络系统 |
| CN107798384B (zh) * | 2017-10-31 | 2020-10-16 | 山东第一医科大学(山东省医学科学院) | 一种基于可进化脉冲神经网络的鸢尾花卉分类方法和装置 |
| US20190042942A1 (en) * | 2017-12-07 | 2019-02-07 | Koba Natroshvili | Hybrid spiking neural network and support vector machine classifier |
| US10108903B1 (en) * | 2017-12-08 | 2018-10-23 | Cognitive Systems Corp. | Motion detection based on machine learning of wireless signal properties |
| EP3743856A4 (en) * | 2018-01-23 | 2021-10-27 | HRL Laboratories, LLC | CODING AND LEARNING PROCESS AND SYSTEM DISTRIBUTED IN NEUROMORPHIC NETWORKS ALLOWING RECOGNITION OF PATTERNS |
| WO2019167884A1 (ja) * | 2018-02-28 | 2019-09-06 | 富士フイルム株式会社 | 機械学習方法及び装置、プログラム、学習済みモデル、並びに判別装置 |
| CN112204617B (zh) * | 2018-04-09 | 2023-09-05 | 杜比实验室特许公司 | 使用神经网络映射的hdr图像表示 |
| WO2020065881A1 (ja) * | 2018-09-27 | 2020-04-02 | Tdk株式会社 | 積和演算器、ニューロモーフィックデバイス及び積和演算方法 |
| WO2020112105A1 (en) * | 2018-11-28 | 2020-06-04 | Hewlett-Packard Development Company, L.P. | Event-based processing using the output of a deep neural network |
| JP7279368B2 (ja) * | 2019-01-17 | 2023-05-23 | 富士通株式会社 | 学習方法、学習プログラムおよび学習装置 |
| JP7163786B2 (ja) | 2019-01-17 | 2022-11-01 | 富士通株式会社 | 学習方法、学習プログラムおよび学習装置 |
| CN110458286B (zh) * | 2019-08-14 | 2022-02-08 | 中科寒武纪科技股份有限公司 | 数据处理方法、装置、计算机设备和存储介质 |
| US11684921B1 (en) * | 2019-08-16 | 2023-06-27 | Leidos, Inc. | Pocket detection pouch |
| CN113408613B (zh) * | 2021-06-18 | 2022-07-19 | 电子科技大学 | 一种基于延迟机制的单层图像分类方法 |
| US12205242B2 (en) * | 2021-07-01 | 2025-01-21 | Leidos, Inc. | Method and system for accelerating rapid class augmentation for object detection in deep neural networks |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8781983B2 (en) * | 2009-12-29 | 2014-07-15 | Knowmtech, Llc | Framework for the evolution of electronic neural assemblies toward directed goals |
| US7716150B2 (en) | 2006-09-28 | 2010-05-11 | Microsoft Corporation | Machine learning system for analyzing and establishing tagging trends based on convergence criteria |
| EP2053523A1 (en) | 2007-10-16 | 2009-04-29 | Sony France S.A. | Method and apparatus for updating of prototypes |
| US8682819B2 (en) | 2008-06-19 | 2014-03-25 | Microsoft Corporation | Machine-based learning for automatically categorizing data on per-user basis |
| US8655803B2 (en) | 2008-12-17 | 2014-02-18 | Xerox Corporation | Method of feature extraction from noisy documents |
| US8843567B2 (en) | 2009-11-30 | 2014-09-23 | International Business Machines Corporation | Managing electronic messages |
| US9129220B2 (en) * | 2010-07-07 | 2015-09-08 | Qualcomm Incorporated | Methods and systems for digital neural processing with discrete-level synapes and probabilistic STDP |
| US8892487B2 (en) * | 2010-12-30 | 2014-11-18 | International Business Machines Corporation | Electronic synapses for reinforcement learning |
| CN103078054B (zh) * | 2013-01-04 | 2015-06-03 | 华中科技大学 | 一种模拟生物神经元和神经突触的单元、装置及方法 |
| US9753959B2 (en) * | 2013-10-16 | 2017-09-05 | University Of Tennessee Research Foundation | Method and apparatus for constructing a neuroscience-inspired artificial neural network with visualization of neural pathways |
-
2013
- 2013-10-28 US US14/065,089 patent/US9418331B2/en active Active
-
2014
- 2014-10-13 JP JP2016526172A patent/JP2016538632A/ja active Pending
- 2014-10-13 WO PCT/US2014/060234 patent/WO2015065686A2/en not_active Ceased
- 2014-10-13 CA CA2926334A patent/CA2926334A1/en not_active Abandoned
- 2014-10-13 EP EP14792938.4A patent/EP3063706A2/en not_active Ceased
- 2014-10-13 CN CN201480058854.3A patent/CN105684002B/zh active Active
- 2014-10-13 KR KR1020167013948A patent/KR20160076533A/ko not_active Withdrawn
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200002245A (ko) * | 2018-06-29 | 2020-01-08 | 포항공과대학교 산학협력단 | 뉴럴 네트워크 하드웨어 |
| KR20200052439A (ko) | 2018-10-29 | 2020-05-15 | 삼성에스디에스 주식회사 | 딥러닝 모델의 최적화 시스템 및 방법 |
| US11580393B2 (en) | 2019-12-27 | 2023-02-14 | Samsung Electronics Co., Ltd. | Method and apparatus with neural network data input and output control |
| US11790232B2 (en) | 2019-12-27 | 2023-10-17 | Samsung Electronics Co., Ltd. | Method and apparatus with neural network data input and output control |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2015065686A2 (en) | 2015-05-07 |
| WO2015065686A3 (en) | 2015-06-25 |
| CA2926334A1 (en) | 2015-05-07 |
| JP2016538632A (ja) | 2016-12-08 |
| US9418331B2 (en) | 2016-08-16 |
| US20150120626A1 (en) | 2015-04-30 |
| CN105684002A (zh) | 2016-06-15 |
| EP3063706A2 (en) | 2016-09-07 |
| CN105684002B (zh) | 2018-07-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR20160076533A (ko) | 지도 학습을 이용하여 클래스들을 태깅하기 위한 방법들 및 장치 | |
| KR101793011B1 (ko) | 스파이킹 네트워크들의 효율적인 하드웨어 구현 | |
| US10339447B2 (en) | Configuring sparse neuronal networks | |
| US9330355B2 (en) | Computed synapses for neuromorphic systems | |
| US9558442B2 (en) | Monitoring neural networks with shadow networks | |
| KR20160138002A (ko) | 스파이킹 dbn (deep belief network) 에서의 트레이닝, 인식, 및 생성 | |
| US20150212861A1 (en) | Value synchronization across neural processors | |
| KR20160123309A (ko) | 확률적 스파이킹 베이지안망들에 대한 이벤트-기반 추론 및 학습 | |
| KR20170031695A (ko) | 신경망들에서의 콘볼루션 동작의 분해 | |
| KR20160136381A (ko) | 신경 네트워크들에서의 차분 인코딩 | |
| KR20160136364A (ko) | 콜드 뉴런 스파이크 타이밍 역 전파 | |
| KR20160076520A (ko) | 인과적 현출성 시간 추론 | |
| US10552734B2 (en) | Dynamic spatial target selection | |
| KR20160076531A (ko) | 다차원 범위에 걸쳐 분리가능한 서브 시스템들을 포함하는 시스템의 평가 | |
| KR20160138042A (ko) | 스파이킹 뉴럴 네트워크들을 사용하는 이미지들의 불변의 객체 표현 | |
| KR20160084401A (ko) | 스파이킹 뉴럴 네트워크들에서 리플레이를 사용한 시냅스 학습의 구현 | |
| US20150278685A1 (en) | Probabilistic representation of large sequences using spiking neural network | |
| KR20160135206A (ko) | 역치하 변조를 통한 아날로그 신호 재구성 및 인식 | |
| KR101825937B1 (ko) | 가소성 시냅스 관리 | |
| KR20160058825A (ko) | 신경 모델들에 대한 그룹 태그들의 구현을 위한 방법들 및 장치 | |
| KR20160125967A (ko) | 일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치 | |
| US20150213356A1 (en) | Method for converting values into spikes | |
| KR20160047581A (ko) | 인공 신경 시스템에서 브레이크포인트 결정 유닛을 구현하기 위한 방법들 및 장치 | |
| EP3063709A2 (en) | Doppler effect processing in a neural network model | |
| KR20160132850A (ko) | 뉴로모픽 모델 개발을 위한 콘텍스트 실시간 피드백 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0105 | International application |
Patent event date: 20160525 Patent event code: PA01051R01D Comment text: International Patent Application |
|
| PG1501 | Laying open of application | ||
| PC1203 | Withdrawal of no request for examination | ||
| WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |