KR20160060913A - Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof - Google Patents

Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof Download PDF

Info

Publication number
KR20160060913A
KR20160060913A KR1020140163101A KR20140163101A KR20160060913A KR 20160060913 A KR20160060913 A KR 20160060913A KR 1020140163101 A KR1020140163101 A KR 1020140163101A KR 20140163101 A KR20140163101 A KR 20140163101A KR 20160060913 A KR20160060913 A KR 20160060913A
Authority
KR
South Korea
Prior art keywords
nanoparticles
dielectric constant
solvent
nanoparticle dispersion
coated
Prior art date
Application number
KR1020140163101A
Other languages
Korean (ko)
Other versions
KR102296571B1 (en
Inventor
이대호
한세원
정진
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020140163101A priority Critical patent/KR102296571B1/en
Publication of KR20160060913A publication Critical patent/KR20160060913A/en
Application granted granted Critical
Publication of KR102296571B1 publication Critical patent/KR102296571B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Abstract

The present invention relates to a fabrication method of a superhydrophobic surface. The fabrication method comprises the steps of: preparing a nanoparticle dispersion liquid; aggregating nanoparticles by adjusting dielectric constant values of the nanoparticle dispersion liquid through adding a solvent having solvent relative permittivity (ε) of 20 or less to the nanoparticle dispersion liquid; coating the aggregated nanoparticle dispersion liquid to the surface of an object to be coated; and treating the coated surface of the object to be hydrophobic. Through the method of the present invention, a surface exhibiting superhydrophobic properties can be obtained by adjusting the degree of aggregation of nanoparticles by adjusting the dielectric constant of the nanoparticle dispersion liquid and applying the same to the surface of the object to be coated.

Description

졸겔 나노입자 분산용매의 유전상수 조절을 통한 입자응집 제어 및 이에 의한 초발수 표면 제조방법 {Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sol-gel nanoparticle dispersed by a sol-gel nanoparticle,

본 발명은 졸겔 나노입자 분산용매의 유전상수 조절을 통한 입자응집 제어 및 이에 의한 초발수 표면 제조방법에 관한 것으로, 더욱 상세하게는 나노입자 분산액의 유전상수를 조절하여 나노입자의 뭉침 정도를 조절하고, 이를 코팅대상 표면에 적용하여 초발수 현상을 일으키는 표면을 얻을 수 있는 초발수 표면 제조방법에 관한 것이다.The present invention relates to control of particle aggregation through controlling the dielectric constant of a dispersion solvent of a sol-gel nano-particle, and more particularly, to a method for controlling the aggregation of nanoparticles by controlling a dielectric constant of the nanoparticle dispersion, And a method of manufacturing a super water-repellent surface by applying the super-water-repellent surface to a surface to be coated to obtain a super-water-repellent surface.

초발수(Superhydrophobic) 현상은 물방울을 흡수하지 않고 튕겨내는 성질로, 이러한 초발수 현상은 자연에서 연잎효과(Lotus effect)를 통해 그 특징이 알려져 있다. 표면에너지가 낮은 물질이 마이크로 또는 나노 크기의 표면 거칠기를 가지는 것이 이러한 초발수 표면 형성에 매우 중요한 역할을 하는 것으로 이해되고 있으며, 이는 Wenzel 및 Cassie-Baxter 이론 등으로 설명되고 있다. 이후 인공적인 초발수 표면 제조에 관하여 졸-겔(Sol-gel) 기법, 물리적 증착법(Physical vapor deposition), 템플레이트(Template) 기반 기술, 리소그래피(Lithography), 전기방사법(Electrospinning) 등과 같이 다양한 방법에 대해 수많은 연구가 이루어지고 있다. 많은 경우 복잡한 공정을 거치거나, 고가의 특수한 물질을 사용하거나, 고가의 장비를 사용하는 데 비하여, 졸-겔에 기반한 방법은 상대적으로 저가의 단순한 공정을 통하여 다양하게 이용될 수 있기 때문에 많은 관심을 받고 있다. 졸-겔 나노입자를 이용하여 초발수 표면을 제조하는 방법으로는, 고분자 혼합, 응집제를 별도로 투입, 자기정렬(Self-assembly) 이용 또는 반복코팅 등과 같은 방법이 알려져 있다.The superhydrophobic phenomenon is a phenomenon in which water is repelled without absorbing water droplets. Such a super water repellent phenomenon is known in nature through the Lotus effect. It is understood that a material having a low surface energy has a micro or nano-sized surface roughness plays a very important role in forming such a super water-repellent surface, which is explained by Wenzel and Cassie-Baxter theory. Thereafter, various methods such as sol-gel method, physical vapor deposition method, template-based technique, lithography, electrospinning, and the like are applied to the artificial super water- Numerous studies are being conducted. In many cases, sol-gel based methods can be used in a variety of ways through relatively simple and low cost processes, compared to using complex processes, using expensive special materials, or using expensive equipment. . As a method of producing a super water-repellent surface using sol-gel nanoparticles, methods such as polymer blending, coagulant addition, self-assembly or repeated coating are known.

종래의 졸-겔 기법의 경우, '대한민국특허청 등록특허 제10-0945198호 유기용제형 실리카 졸 및 그 제조방법' 또는 '대한민국특허청 등록특허 제10-1454402호 4가 알콕시 실란으로부터 고온반응조건을 이용하여 고순도 실리카졸을 제조하는 방법 및 이 방법에 의해 제조된 유기용매 분산 고순도 실리카졸'과 같이 4가의 알콕시 실란을 실리카 전구체(Precursor)로 하여 가수분해(Hydrolysis) 및 축합반응(Condensation)을 거쳐 고순도 실리카졸을 합성하는 방법이 알려져 있다.In the case of the conventional sol-gel technique, 'organic solvent-type silica sol and its preparation method' or 'Korean Patent Application No. 10-1454402' (Patent No. 10-0945198) are used from alkoxysilane at high temperature And the organic solvent-dispersed high-purity silica sol prepared by this method, the tetravalent alkoxysilane is subjected to hydrolysis and condensation using a precursor of silica as a silica precursor, A method of synthesizing a silica sol is known.

나노입자의 분산 안정성, 즉 콜로이드 안전성(Colloidal stability)은 DLVO 이론(Derjaguin-Landau-Verwey-Overbeek theory)에 의해 잘 알려져 있듯이 입자간 반데르발스 인력(Van der Waals attraction)과 표면의 정전기적 반발력(Electrostatic repulsion) 등의 입자간 다양한 상호박용력에 대해 결정되는 데, 예를 들어, 반데르발스 인력이 증가하거나 정전기적 반발력이 감소하는 경우 입자 응집력이 증가하게 된다.The dispersion stability of colloidal nanoparticles, ie, colloidal stability, is well known by the DLVO theory (Derjaguin-Landau-Verwey-Overbeek theory), and the van der Waals attraction and the electrostatic repulsion Electrostatic repulsion). For example, when the Van der Waals attractive force increases or the electrostatic repulsion decreases, the particle cohesion increases.

또한, 분산매질 용매의 극성도도 입자의 분산 안정성에 큰 영향을 끼친다. 예를 들어, 극성이 있는 실리카 나노입자의 경우 극성도가 높은 용매에 잘 분산되는 반면, 무극성 용매에는 분산되지 않고 뭉치는 경향이 있다. DLVO 이론의 측면에서 본다면, 저극성 용매는 입자의 제타-포텐셜(Zeta-potential)을 낮추게 되어 정전기적 반발력을 감소시킨다. 또한, 입자의 Hamarker constant의 변화로 인하여 반데르발스 인력이 증가하기 때문인 것으로 설명된다. DLVO 이론에 해당되지 않는 다른 종류의 상호작용도 존재하는 데, 용매와 입자간 수소결합과 같은 강한 상호작용에 의한 용매화(Solvation) 및 이로 인한 입자 안정성 측면에서 본다면, 저극성 용매일수록 나노입자의 극성기와 상호인력에 의한 안정화도가 저하되기 때문에 응집성이 커지게 된다.In addition, the polarity of the solvent of the dispersion medium also greatly influences the dispersion stability of the particles. For example, polarized silica nanoparticles tend to be well dispersed in highly polar solvents whereas they tend to aggregate in nonpolar solvents. In view of the DLVO theory, a low polarity solvent lowers the zeta-potential of the particles and reduces the electrostatic repulsion. It is also explained that the Van der Waals attraction increases due to the change of Hamarker constant of the particles. There are other types of interactions not covered by the DLVO theory. From the viewpoint of solvation due to strong interactions such as solvent-to-particle hydrogen bonding and the resulting particle stability, The degree of stabilization by the polar group and mutual attraction is reduced, and cohesiveness is increased.

일반적으로 상기와 같은 입자응집은 안정성 저하 문제로만 인식되어 이를 해결하기 위한 방법을 토대로 한 연구가 이루어져 왔다. 하지만, 또 다른 측면에서 본다면, 즉, 이러한 입자응집을 제어할 수 있다면 이로부터 유도되는 다양한 스케일의 거칠기 표면 제조가 가능할 것이다. 또한 이를 초발수 표면제조와 접목할 경우 보다 새롭고 간편한 초발수 제조방법이 될 것으로 기대된다.In general, the above-described particle agglomeration has been solved only as a problem of stability degradation and has been studied based on a method for solving the problem. However, on the other side, it would be possible to produce a variety of scale roughness surfaces derived from this, if this particle aggregation could be controlled. It is expected that this method will be a new and easy method of producing super water - repellent by combining it with super water - repellent surface preparation.

대한민국특허청 등록특허 제10-0945198호Korean Patent Registration No. 10-0945198 대한민국특허청 등록특허 제10-1454402호Korean Patent Registration No. 10-1454402

따라서, 본 발명의 목적은 나노입자 분산액의 유전상수를 조절하여 나노입자의 뭉침 정도를 조절하고, 이를 코팅대상 표면에 적용하여 초발수 현상을 일으키는 표면을 얻을 수 있는 초발수 표면 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a super-water-repellent surface preparation method capable of controlling a degree of aggregation of nanoparticles by controlling a dielectric constant of a nanoparticle dispersion and applying the same to a surface of a coating object, will be.

상기한 목적은, 나노입자 분산액을 준비하는 단계와; 상기 나노입자 분산액에 유전상수(Solvent relative permittivty, ε) 20 이하의 용매 추가를 통해 상기 나노입자 분산액의 유전상수 값을 조절하여 나노입자를 응집하는 단계와; 응집된 상기 나노입자 분산액을 코팅대상 표면에 코팅하는 단계와; 코팅된 상기 코팅대상 표면을 표면소수화 처리하는 단계를 포함하는 것을 특징으로 하는 초발수 표면 제조방법에 의해 달성된다.The above object is achieved by a method for preparing a nanoparticle dispersion, comprising: preparing a nanoparticle dispersion; Adjusting a dielectric constant value of the nanoparticle dispersion by adding a solvent having a dielectric constant (竜) of 20 or less to the nanoparticle dispersion; and agglomerating the nanoparticles; Coating the agglomerated nanoparticle dispersion on a surface to be coated; And a step of surface-hydrophobizing the surface of the coated object to be coated.

여기서, 상기 나노입자 분산액의 유전상수 값을 조절하여 나노입자를 응집하는 단계는, 상기 나노입자 분산액이 30 이하의 유전상수 값을 갖도록 조절하며, 상기 용매는, 상기 나노입자가 나노 사이즈 및 마이크로 사이즈로 불규칙하게 응집되도록 유전상수 5 미만의 비극성 용매, 유전상수 5 내지 20의 저극성 용매 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.Wherein adjusting the dielectric constant of the nanoparticle dispersion to coalesce the nanoparticles comprises adjusting the dispersion of the nanoparticles to have a dielectric constant of 30 or less, wherein the solvent is selected from the group consisting of nanosized and nanosized , A non-polar solvent having a dielectric constant of less than 5, a low polarity solvent having a dielectric constant of 5 to 20, and a mixture thereof.

여기서, 상기 나노입자 분산액을 준비하는 단계에서, 상기 나노입자는 졸-겔(Sol-gel) 기법에 의해 형성되는 것이 바람직하다.In preparing the nanoparticle dispersion, it is preferable that the nanoparticles are formed by a sol-gel technique.

또한, 상기 코팅대상 표면을 표면소수화 처리하는 단계는, 상기 코팅대상 표면을 소수성 실란을 포함하는 소수성 용매에 함침하는 단계와; 질소 분위기 내에서 소수화 반응하는 단계와; 상기 코팅대상 표면을 상기 소수성 용매로부터 꺼내어 세척하는 단계를 포함하는 것이 바람직하다.In addition, the step of surface-hydrophobizing the surface to be coated may include the steps of: impregnating the surface to be coated with a hydrophobic solvent containing hydrophobic silane; A step of performing hydrophobic reaction in a nitrogen atmosphere; And removing the surface to be coated from the hydrophobic solvent and washing the surface.

상술한 본 발명의 구성에 따르면 나노입자 분산액의 유전상수를 조절하여 나노입자의 뭉침 정도를 조절하고, 이를 코팅대상 표면에 적용하여 초발수 현상을 일으키는 표면을 얻을 수 있다.According to the structure of the present invention described above, the degree of aggregation of nanoparticles is controlled by controlling the dielectric constant of the nanoparticle dispersion, and the surface of the nanoparticle dispersion is applied to the surface of the coating object to obtain a surface causing super water repellency.

도 1은 초발수 표면 제조방법의 순서도이고,
도 2는 클로로폼 농도에 따른 나노입자 분산액의 사진이고,
도 3 및 도 4는 클로로폼 농도에 따른 나노입자 분산액의 DLS(Dynamic light scattering) 그래프이고,
도 5는 클로로폼 농도에 따른 나노입자 분산액의 코팅층 전자현미경 사진이고,
도 6 및 도 7은 클로로폼 농도에 따른 유전상수 값을 나타낸 그래프이고,
도 8은 초발수 표면을 갖는 기판의 전자현미경 사진이다.
1 is a flow chart of a method for producing super water repellent surface,
Figure 2 is a photograph of a nanoparticle dispersion according to chloroform concentration,
3 and 4 are dynamic light scattering (DLS) graphs of nanoparticle dispersions according to chloroform concentration,
5 is an electron micrograph of the coating layer of the nanoparticle dispersion according to the chloroform concentration,
6 and 7 are graphs showing dielectric constant values according to the chloroform concentration,
8 is an electron micrograph of a substrate having a super water repellent surface.

이하 도면을 참조하여 본 발명의 실시예에 따른 초발수 표면 제조방법을 상세히 설명한다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method of manufacturing a super water-repellent surface according to an embodiment of the present invention will be described in detail with reference to the drawings.

먼저, 도 1에 도시된 바와 같이 나노입자 분산액을 준비한다(S1).First, a nanoparticle dispersion is prepared as shown in FIG. 1 (S1).

나노입자가 분산액 내에서 균일하게 분산된 상태로 존재하는 나노입자 분산액을 준비한다. 분말상태의 나노입자는 입자들끼리 뭉침이 강하기 때문에 이를 기판에 적용할 경우 재분산하는 데 한계가 있으며, 다양한 범위에서의 입자 응집도를 제어하는 데 어려움이 있다. 따라서 기판에 효과적으로 나노입자를 적용하기 위해서는 졸-겔 기법을 이용하는 것이 바람직하다.A nanoparticle dispersion in which the nanoparticles are uniformly dispersed in the dispersion is prepared. Since nanoparticles in powder form are strong in aggregation among the particles, it is difficult to redisperse the nanoparticles when they are applied to a substrate, and it is difficult to control the degree of coagulation of particles in various ranges. Thus, it is desirable to use a sol-gel technique to effectively apply nanoparticles to a substrate.

여기서, 나노입자는 세라믹 나노입자 또는 금속산화물 나노입자가 가능하며, 산화실리콘(SiO2), 산화티타늄(TiO2), 산화주석(SnO2), 산화알루미늄(Al2O3) 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 사용하는 것이 바람직하다.Here, the nanoparticles may be ceramic nanoparticles or metal oxide nanoparticles. The nanoparticles may be formed of silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), tin oxide (SnO 2 ), aluminum oxide (Al 2 O 3 ) It is preferable to use one selected from the group consisting of

또한, 나노입자의 직경은 10nm 내지 1㎛인 것이 바람직하다. 나노입자가 10nm 미만일 경우 나노입자 간의 뭉침에 의해 다양한 사이즈를 획득하는 데 한계가 있으며, 1㎛를 초과할 경우 나노수준의 거칠기가 없이 마이크로 수준의 거칠기만 형성되므로 이후 초발수 특성을 구현하는 데 불리하게 작용한다.The diameter of the nanoparticles is preferably 10 nm to 1 mu m. When the nanoparticles are less than 10 nm, there is a limitation in acquiring various sizes due to aggregation between the nanoparticles. If the nanoparticles are larger than 1 탆, only the micro-level roughness is formed without the nano-level roughness. .

나노입자를 분산시키기 위한 분산액은 나노입자의 분산이 용이하도록 물과 극성 유기용매를 혼합하여 사용하며, 극성 유기용매는 메틸알콜(Metyl alcohol), 에틸알콜(Ethyl alcohol), 프로필알콜(Propyl alcohol) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.The dispersion liquid for dispersing the nanoparticles is a mixture of water and a polar organic solvent to facilitate dispersion of the nanoparticles. The polar organic solvent is selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, And mixtures thereof.

나노입자 분산액에 저극성 용매를 추가하여 나노입자를 응집시킨다(S2).A low polarity solvent is added to the nanoparticle dispersion to agglomerate the nanoparticles (S2).

물과 극성 유기용매가 혼합된 상태의 나노입자 분산액에 물과 극성 유기용매보다 유전상수(Solvent relative permittivty, ε) 값이 낮은 비극성 또는 저극성 용매를 추가한다. 유전상수는 용액의 극성을 나타내는 것으로, 유전상수가 낮을수록 용매의 극성이 낮은 것을 의미한다. 여기서 비극성 또는 저극성 용매는 유전상수가 20 이하인 용매를 사용한다.Add a nonpolar or low polarity solvent with lower dielectric constant (ε) than water and polar organic solvent in the nanoparticle dispersion with water and polar organic solvent mixed. The dielectric constant indicates the polarity of the solution and the lower the dielectric constant, the lower the polarity of the solvent. Wherein the non-polar or low polarity solvent uses a solvent having a dielectric constant of 20 or less.

바람직한 비극성 용매는 분산액과 혼합하여 유전상수가 조절 용이하도록 유전상수가 5 미만인 비극성 용매이며, 비극성 용매는 톨루엔(Toluene), 자일렌(Xylene), 벤젠(Benzene), 헥산(Hexane), 클로로폼(Chloroform), 카본테트라클로라이드(Carbon tetrachloride) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.A preferred nonpolar solvent is a nonpolar solvent having a dielectric constant of less than 5 so that the dielectric constant can be easily controlled by mixing with the dispersion. The nonpolar solvent is a nonpolar solvent such as toluene, xylene, benzene, hexane, Chloroform, Carbon tetrachloride, and mixtures thereof.

경우에 따라서 유전상수를 미세하게 조절하기 위해 유전상수가 5 내지 20인 저극성 용매를 사용할 수도 있으며, 저극성 용매는 이소프로필알콜(Isopropyl alcohol), 부틸알콜(Butyl alcohol), t-부틸알콜(t-Butyl alcohol), 펜틸알콜(Pentyl alcohol), 벤질알콜(Benzyl alcohol) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.If necessary, a low polarity solvent having a dielectric constant of 5 to 20 may be used to finely adjust the dielectric constant. The low polarity solvent may be isopropyl alcohol, butyl alcohol, t-butyl alcohol t-butyl alcohol, pentyl alcohol, benzyl alcohol, and mixtures thereof.

비극성 용매를 단독으로 실리카 나노입자 분산액에 투입하여 분산용매의 극성도를 낮추는 과정에서 용매 간 극성도 차이가 너무 커 용액이 서로 혼합되지 않고 상분리가 될 수 있다. 이때 비극성 용매보다 극성이 다소 큰 저극성 용매를 중간용매로서 함께 사용하게 되면 용액의 상분리를 억제하면서 나노입자 분산 매질 용액의 극성도를 보다 다양하게 조절할 수 있게 된다.In the process of lowering the polarity of the dispersion solvent by injecting the nonpolar solvent alone into the silica nanoparticle dispersion, the polarities of the solvents are too different, and the solutions may be phase-separated without being mixed with each other. When a low polarity solvent having a polarity somewhat larger than that of a nonpolar solvent is used together as an intermediate solvent, the polarity of the nanoparticle dispersion medium solution can be controlled in various ways while suppressing the phase separation of the solution.

이와 같이 용액의 극성을 나타내는 유전상수 값을 이용하여 분산액의 유전상수 값을 다양한 범위로 조절 가능하며, 이를 통해 입자의 응집 정도를 제어할 수 있다. 즉 분산액에 비극성 또는 저극성 용매를 많이 추가하게 되면 입자의 응집 정도가 커지고, 적게 추가하게 되면 입자의 응집 정도가 작아지게 된다.By using the dielectric constant value indicating the polarity of the solution, the dielectric constant value of the dispersion can be adjusted to various ranges, thereby controlling the degree of agglomeration of the particles. That is, when a non-polar or low-polarity solvent is added to the dispersion, the degree of coagulation of the particles is increased.

이는 도 2 내지 도 4에서 확인되는데, 도 2는 유전상수가 4.8인 클로로폼을 분산액에 추가할 때 추가되는 양을 조절한 것으로, ref는 순수한 분산액을 의미하고 Chl 15%는 분산액에 클로로폼이 15% 추가된 것을 의미한다. 클로로폼이 추가되는 양이 증가할수록 분산액이 뿌옇게 흐려지는 것을 확인할 수 있는데, 이는 응집정도가 큰 입자가 많이 혼합되어 있는 것을 의미한다.2 to 4, wherein FIG. 2 illustrates the addition of chloroform with a dielectric constant of 4.8 to the dispersion, where ref refers to pure dispersion and Chl 15% refers to the amount of chloroform added to the dispersion 15% is added. It can be seen that as the amount of chloroform added increases, the dispersion becomes cloudy, meaning that a large amount of coagulated particles are mixed.

도 3 및 도 4는 분산액 내의 나노입자의 DLS(Dynamic light scattering)를 측정한 그래프로 도 3은 나노입자가 10nm일 때의 DLS 값이고, 도 4는 나노입자가 40nm일 때의 DLS 값이다. 이를 통해 나노입자의 크기와 상관없이 클로로폼의 함유량이 증가할수록 나노입자의 응집정도가 증가하는 것을 확인할 수 있다.
FIGS. 3 and 4 are graphs showing dynamic light scattering (DLS) of nanoparticles in the dispersion. FIG. 3 shows DLS values when the nanoparticles are 10 nm and FIG. 4 shows DLS values when the nanoparticles are 40 nm. As a result, the degree of agglomeration of the nanoparticles increases with increasing the content of chloroform regardless of the size of the nanoparticles.

나노입자 분산액을 코팅대상 표면에 코팅한다(S3).The nanoparticle dispersion is coated on the surface of the coating target (S3).

S2 단계에서 응집 정도가 제어된 나노입자 분산액을 코팅대상 표면에 코팅한다. 여기서 코팅대상 표면은 기판으로 설명하며, 그 외에도 기판뿐만 아니라 필름 등과 같이 소수성 표면을 위한 곳이라면 어디든지 적용 가능하다.In step S2, the nanoparticle dispersion liquid with controlled degree of coagulation is coated on the surface of the coated object. Here, the surface to be coated is described as a substrate, and it can be applied to any surface for hydrophobic surfaces such as a film as well as a substrate.

또한 코팅은 스핀코팅(Spin coating), 딥코팅(Dip coating), 바코팅(Bar coating) 등 다양한 코팅방법을 통하여 코팅이 가능하며, 필요시 반복적인 코팅을 통하여 코팅 두께를 조절할 수 있다.The coating can be coated by various coating methods such as spin coating, dip coating and bar coating, and the thickness of the coating can be adjusted by repeated coating if necessary.

도 5는 분산용매에 추가되는 클로로폼의 양을 달리하였을 때의 분산액을 기판에 코팅한 후 확인한 전자현미경(SEM)사진이다, 클로로폼이 0%일 때에는 나노입자의 뭉침이 거의 없음을 확인할 수 있으며, 분산용매에 추가되는 클로로폼의 양이 점점 증가할수록 나노입자의 뭉침 정도가 커지는 것을 확인할 수 있다. 특히 클로로폼이 45% 함유된 경우 뭉친 입자의 직경이 약 1㎛이며, 클로로폼이 55% 이상 함유된 경우는 그 직경이 약 4㎛인 것을 확인할 수 있다. 이때 뭉치는 나노입자는 균일한 직경으로 뭉치지 않고 불규칙한 직경으로 뭉치기 때문에 기판에 코팅된 나노입자 분산액은 균일하지 않고 나노 및 마이크로 수준의 다양한 직경을 가지는 입자가 분포된다.FIG. 5 is an electron micrograph (SEM) image obtained by coating a dispersion prepared by dissolving chloroform added in a dispersion solvent on a substrate. It is confirmed that nanoparticles are hardly aggregated when chloroform is 0% And the degree of aggregation of the nanoparticles increases as the amount of chloroform added to the dispersion solvent increases. Particularly, when the chloroform content is 45%, the diameter of the aggregated particles is about 1 탆, and when the chloroform content is 55% or more, the diameter is about 4 탆. At this time, the nanoparticles in the bundle do not aggregate to a uniform diameter but aggregate to an irregular diameter, so that the nanoparticle dispersion coated on the substrate is not uniform and particles having various diameters at nano- and micro-levels are distributed.

나노입자가 코팅된 기판은 나노입자가 변성되지 않은 온도 조건에서 분산액을 건조한다. 여기서 건조 온도는 세라믹 및 금속 산화물 입자가 변성되지 않은 50 내지 200℃가 바람직하다.
The substrate coated with nanoparticles is dried at a temperature where the nanoparticles are not denatured. Here, the drying temperature is preferably 50 to 200 DEG C at which the ceramic and metal oxide particles are not denatured.

코팅대상 표면을 표면소수화 처리한다(S4).The surface to be coated is surface-hydrophobized (S4).

나노입자는 표면이 친수성을 띄기 때문에 S3단계에 의해 코팅된 코팅 기판은 표면이 초친수성이다. 따라서 나노입자가 코팅된 기판이 물을 흡수하지 않고 초발수가 가능하도록 코팅 기판의 나노입자를 표면소수화 처리한다. 표면소수화 처리는 표면소수화를 위한 소수성 실란을 용매에 추가한 후 여기에 코팅 기판을 함침하고 질소 분위기에서 소수화 반응을 진행한다. 그 후 코팅 기판을 용매로부터 꺼내에 세척하고, 100 내지 150℃에서 용매를 충분히 건조시킨다.Since the surface of the nanoparticles is hydrophilic, the surface of the coated substrate coated by step S3 is superhydrophilic. Therefore, the nanoparticles of the coated substrate are surface-hydrophobized so that the substrate coated with nanoparticles can be super-water-repellent without absorbing water. In the surface hydrophobic treatment, a hydrophobic silane for surface hydrophobization is added to a solvent, and then a coating substrate is impregnated with the hydrophobic silane and a hydrophobic reaction is performed in a nitrogen atmosphere. The coated substrate is then removed from the solvent and washed, and the solvent is thoroughly dried at 100-150 < 0 > C.

여기서, 소수성 실란은 유기용매 100중량부에 대해 0.01 내지 0.1중량부 추가되는 것이 바람직하다. 또한, 소수성 실란은 옥타데실트리클로로실란(Octadecyltrichlorosilane), 옥틸트리클로로실란(Octyltrichlorosilane), 헥실트리클로로실란(Hexyltrichlorosilane), 옥타데실트리에톡시실란(Octadecyltriethoxysilane), 옥틸트리메톡시실란(Octyltrimethoxysilane), 헥실트리에톡시실란(Hexyltriethoxysilane), 퍼플루오로옥틸트리에톡시실란(Perfluorooctyltriethoxysilane) 등 소수기를 가지는 알콕시실란(Alkoxysilane), 클로로실란(Chlorosilane) 및 불소기를 지니는 실란을 사용하는 것이 바람직하다.The hydrophobic silane is preferably added in an amount of 0.01 to 0.1 part by weight based on 100 parts by weight of the organic solvent. Also, the hydrophobic silane may be at least one selected from the group consisting of octadecyltrichlorosilane, octyltrichlorosilane, hexyltrichlorosilane, octadecyltriethoxysilane, octyltrimethoxysilane, hexylsilane, It is preferable to use alkoxysilane, chlorosilane, and silane having a fluorine group, such as perfluorooctyltriethoxysilane and the like, such as hexyltriethoxysilane and perfluorooctyltriethoxysilane.

경우에 따라서, 나노입자를 소수성인 고분자 나노입자를 사용할 경우 별도의 추가적인 소수화 과정을 생략할 수 있다.In some cases, when hydrophobic nanoparticles are used as the nanoparticles, additional hydrophobic processes may be omitted.

상기와 같은 단계들을 거쳐 제조된 기판은 도 6 및 도 7의 그래프를 통해 유전상수와 초발수 현상과의 관계를 확인할 수 있다.The substrate manufactured through the above steps can be confirmed the relationship between the dielectric constant and the super water-repellent phenomenon through the graphs of FIG. 6 and FIG.

도 6은 유전상수 4.8의 클로로폼을 분산액에 추가하였을 때 클로로폼이 추가되는 양에 따른 물방울접촉각(Contact angle) 및 유전상수값(Relative permittivity)을 나타낸 그래프이다. 유전상수가 분산액보다 낮은 클로로폼이 추가되는 양이 증가할수록 유전상수 값이 감소하는 것을 확인할 수 있으며, 이에따라 물방울접촉각은 증가하는 것을 확인할 수 있다. FIG. 6 is a graph showing the contact angle and relative permittivity according to the amount of chloroform added when chloroform with a dielectric constant of 4.8 is added to the dispersion. FIG. It can be seen that the dielectric constant value decreases as the amount of addition of chloroform having a dielectric constant lower than that of the dispersion increases, and thus the contact angle of the water droplet increases.

괄호 안의 숫자는 클로로폼의 함유에 따른 구름경사각을 나타내는 것으로, 기판 상부에 물방울을 떨어뜨리고 기판을 기울였을 때 물방울이 구르는 각도를 뜻한다. 구름경사각은 유전상수 값이 감소할수록 각도가 낮아지다가, 유전상수 값이 25 내지 30에서는 0°근처로 기판을 기울이지 않아도 물방울이 구르는 초발수 각이 된다. 따라서 유전상수 값이 30이하에서 부터는 0° 근처로 기판을 기울이지 않아도 물방울이 구르는 초발수 각이 된다. 따라서 유전상수 값이 30이하로 된 상태의 분산액에서 형성된 나노입자를 기판에 도포하는 것이 가장 바람직하다. The numbers in parentheses indicate the inclination angle of the cloud due to the inclusion of chloroform, which means the water droplet rolls when water droplets are dropped on the substrate and the substrate is tilted. The angle of cloud inclination becomes lower as the dielectric constant value decreases and becomes a super water repellent angle where the water droplet rolls even if the substrate is not tilted near 0 ° in the dielectric constant value of 25 to 30. Therefore, when the dielectric constant is less than 30, the water repellent angle becomes a super-water-repellent angle at which water droplets roll, even if the substrate is not tilted to about 0 °. Therefore, it is most preferable to apply the nanoparticles formed in the dispersion having a dielectric constant value of 30 or less to the substrate.

도 7은 유전상수 값이 8.9인 디클로로메탄(Dichloromethane)을 분산액에 추가했을 때 농도에 따른 물방울접촉각 및 유전상수 값을 나타낸 것이다. 도 7은 도 6과 마찬가지로 유전상수 값이 30이하일 때 입자의 뭉침이 급격히 발생하여 초발수 현상이 일어나게 된다. 따라서 분산액의 유전상수 값을 30이하로, 더욱 바람직하게는 유전상수 값을 25 내지 30으로 조절할 경우 초발수 현상을 위한 나노입자가 생성된다는 것을 확인할 수 있다.FIG. 7 shows the water droplet contact angle and dielectric constant value according to the concentration when adding a dichloromethane having a dielectric constant value of 8.9 to the dispersion. 7, when the dielectric constant is 30 or less as in the case of FIG. 6, agglomeration of particles occurs rapidly and super water repellent phenomenon occurs. Therefore, it can be confirmed that when the dielectric constant of the dispersion is adjusted to 30 or less, and more preferably the dielectric constant is adjusted to 25 to 30, nanoparticles for super water-repellent development are produced.

기판에 코팅된 나노입자의 응집정도에 따라 자연스럽게 나노 및 마이크로 수준의 거칠기가 코팅층 표면에 형성되게 된다. 이와 같은 표면을 가지는 기판은 도 8에 도시된 바와 같이 소수화를 거치면서 초발수 표면이 된다.
Nano- and micro-level roughness is naturally formed on the surface of the coating layer according to the degree of agglomeration of the nanoparticles coated on the substrate. The substrate having such a surface becomes a super water-repellent surface through hydrophobization as shown in Fig.

<실시예><Examples>

테트라에톡시실란(Tetraethoxysilane, TEOS) 100중량부와, 메탄올 250중량부를 혼합하여 50℃로 승온하면서 30분 가량 교반한 뒤, 증류수 50중량부 및 암모니아수 10중량부를 혼합한 수용액을 투입하여 반응시켰다. 이후 고형분의 변화가 없을 때까지 충분히 반응시켰으며, 이때 고형분은 7중량부 가량이 되었다. 최종 제조된 실리카졸의 입자크기는 암모니아수 함량에 따라 증가하였으며, 입자크기 범위는 1 내지 40nm임을 확인하였다.100 parts by weight of tetraethoxysilane (TEOS) and 250 parts by weight of methanol were mixed and stirred for about 30 minutes while raising the temperature to 50 캜. Then, an aqueous solution containing 50 parts by weight of distilled water and 10 parts by weight of ammonia water was added to react. Thereafter, sufficient reaction was carried out until there was no change in the solid content, and the solid content was 7 parts by weight. The particle size of the finally prepared silica sol increased with the ammonia water content, and the particle size range was 1 to 40 nm.

메탄올 및 증류수에 분산된 실리카 나노입자 용액에 융액유전상수(ε)가 4.8인 클로로폼(Chloroform)을 15중량부부터 60중량부까지 다양한 범위로 추가 투입하였다. 그 후 클로로폼이 포함된 실리카 나노입자 분산액을 유리기판에 스핀코팅한 후 150℃에서 1시간 열처리를 하였다. Chloroform having a melt dielectric constant (?) Of 4.8 was added to the silica nanoparticle solution dispersed in methanol and distilled water in various ranges from 15 parts by weight to 60 parts by weight. Thereafter, the dispersion of silica nanoparticles containing chloroform was spin-coated on a glass substrate and then heat-treated at 150 ° C for 1 hour.

코팅층의 소수화를 위하여 옥타데실트리클로로실란(Octadecyltrichlorosilane, OTS)를 0.5중량부 농도로 용해된 톨루엔(Toluene) 용액에 코팅된 기판을 10시간 가량 함침한 후 세척 및 건조 과정을 거치고, 이를 120℃에서 30분간 열처리를 하였다.To hydrophobize the coating layer, octadecyltrichlorosilane (OTS) was impregnated with a substrate coated with dissolved toluene (toluene) solution at a concentration of 0.5 parts by weight for about 10 hours, followed by washing and drying, Followed by heat treatment for 30 minutes.

기판의 코팅표면은 실리카 나노입자 분산액에 투입한 클로로폼의 함량이 증가함에 따라 소수화 정도가 증가하였고, 클로로폼이 45중량부 이후 물접촉각을 측정하기 불가능할 정도로 초발수 특성이 나타나는 것을 확인하였다.
The hydrophobicity of the coated surface of the substrate increased as the amount of chloroform added to the silica nanoparticle dispersion increased, and it was confirmed that the water repellency of the chloroform was such that the water contact angle after 45 parts by weight could not be measured.

이와 같이 나노입자가 포함되며 극성인 분산액에 비극성 또는 저극성 용매를 추가하여 유전상수가 30이하의 범위가 되도록 조절하게 되면 나노입자가 나노 크기 및 마이크로 크기로 입자 뭉침이 발생하게 된다. 이를 기판에 도포하고 소수화 처리를 하게 되면 기판은 나노 및 마이크로 거칠기를 가지게 되고, 이는 구름경사각이 0°에 가까워지는 초발수 현상이 나타나게 된다. 즉, 분산액의 유전상수 값을 조절할 경우 초발수 표면을 제조할 수 있으며, 이를 통해 초발수 현상을 나타내는 기판을 제조할 수 있다.
If a nonpolar or low polarity solvent is added to the dispersion containing nanoparticles and polarity and the dielectric constant is controlled to be within 30, nanoparticles will be agglomerated into nano-sized and micro-sized particles. When this is applied to a substrate and subjected to hydrophobic treatment, the substrate has nano- and micro-roughness, which results in a super water-repellent phenomenon in which the tilt angle of the cloud approaches 0 °. That is, when the value of the dielectric constant of the dispersion is adjusted, a super water-repellent surface can be manufactured, and thereby a substrate exhibiting super-water-repellency can be manufactured.

Claims (10)

초발수 표면 제조방법에 있어서,
나노입자 분산액을 준비하는 단계와;
상기 나노입자 분산액에 유전상수(Solvent relative permittivty, ε) 20 이하의 용매 추가를 통해 상기 나노입자 분산액의 유전상수 값을 조절하여 나노입자를 응집하는 단계와;
응집된 상기 나노입자 분산액을 코팅대상 표면에 코팅하는 단계와;
코팅된 상기 코팅대상 표면을 표면소수화 처리하는 단계를 포함하는 것을 특징으로 하는 초발수 표면 제조방법.
In the method for producing super water repellent surface,
Preparing a nanoparticle dispersion;
Adjusting a dielectric constant value of the nanoparticle dispersion by adding a solvent having a dielectric constant (竜) of 20 or less to the nanoparticle dispersion; and agglomerating the nanoparticles;
Coating the agglomerated nanoparticle dispersion on a surface to be coated;
Characterized by comprising the step of surface-hydrophobizing the surface of the coated object to be coated.
제 1항에 있어서,
상기 나노입자 분산액의 유전상수 값을 조절하여 나노입자를 응집하는 단계는,
상기 나노입자 분산액이 30 이하의 유전상수 값을 갖도록 조절하는 것을 특징으로 하는 초발수 표면 제조방법.
The method according to claim 1,
The step of adjusting the dielectric constant of the nanoparticle dispersion to agglomerate the nanoparticles comprises:
Wherein the nanoparticle dispersion is adjusted to have a dielectric constant of 30 or less.
제 1항에 있어서,
상기 용매는,
상기 나노입자가 나노 사이즈 및 마이크로 사이즈로 불규칙하게 응집되도록 유전상수 5 미만의 비극성 용매, 유전상수 5 내지 20의 저극성 용매 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 초발수 표면 제조방법.
The method according to claim 1,
The solvent may be,
Wherein the nanoparticles are selected from the group consisting of a nonpolar solvent having a dielectric constant of less than 5, a low polarity solvent having a dielectric constant of 5 to 20, and a mixture thereof so that the nanoparticles aggregate irregularly in nanosize and microsize.
제 3항에 있어서,
상기 비극성 용매는,
톨루엔(Toluene), 자일렌(Xylene), 벤젠(Benzene), 헥산(Hexane), 클로로폼(Chloroform), 카본테트라클로라이드(Carbon tetrachloride) 및 이의 혼합으로 이루어진 군으로부터 선택되며,
상기 저극성 용매는,
이소프로필알콜(Isopropyl alcohol), 부틸알콜(Butyl alcohol), t-부틸알콜(t-Butyl alcohol), 펜틸알콜(Pentyl alcohol), 벤질알콜(Benzyl alcohol) 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 초발수 표면 제조방법.
The method of claim 3,
The non-
And is selected from the group consisting of toluene, xylene, benzene, hexane, chloroform, carbon tetrachloride, and mixtures thereof,
The low-
Is selected from the group consisting of isopropyl alcohol, butyl alcohol, t-butyl alcohol, pentyl alcohol, benzyl alcohol, and mixtures thereof. Wherein said water-repellent surface is a water-soluble polymer.
제 1항에 있어서,
상기 나노입자 분산액을 준비하는 단계에서,
상기 나노입자는 졸-겔(Sol-gel) 기법에 의해 형성되는 것을 특징으로 하는 초발수 표면 제조방법.
The method according to claim 1,
In preparing the nanoparticle dispersion,
Wherein the nanoparticles are formed by a sol-gel technique.
제 1항에 있어서,
상기 나노입자는 산화실리콘(SiO2), 산화티타늄(TiO2), 산화주석(SnO2), 산화알루미늄(Al2O3) 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 초발수 표면 제조방법.
The method according to claim 1,
Wherein the nanoparticles are selected from the group consisting of silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), tin oxide (SnO 2 ), aluminum oxide (Al 2 O 3 ) .
제 6항에 있어서,
상기 나노입자는 10nm 내지 1㎛의 직경을 갖는 것을 특징으로 하는 초발수 표면 제조방법.
The method according to claim 6,
Wherein the nanoparticles have a diameter of 10 nm to 1 占 퐉.
제 1항에 있어서,
상기 나노입자 분산액을 준비하는 단계에서,
상기 분산액은 물 및 극성 유기용매의 혼합액이며,
상기 극성 유기용매는 메틸알콜(Metyl alcohol), 에틸알콜(Ethyl alcohol), 프로필알콜(Propyl alcohol) 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 초발수 표면 제조방법.
The method according to claim 1,
In preparing the nanoparticle dispersion,
Wherein the dispersion is a mixture of water and a polar organic solvent,
Wherein the polar organic solvent is selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, and mixtures thereof.
제 1항에 있어서,
상기 코팅대상 표면을 표면소수화 처리하는 단계는,
상기 코팅대상 표면을 소수성 실란을 포함하는 소수성 용매에 함침하는 단계와;
질소 분위기 내에서 소수화 반응하는 단계와;
상기 코팅대상 표면을 상기 소수성 용매로부터 꺼내어 세척하는 단계를 포함하는 것을 특징으로 하는 초발수 표면 제조방법.
The method according to claim 1,
Wherein the step of surface-hydrophobizing the surface to be coated comprises:
Impregnating the surface to be coated with a hydrophobic solvent containing hydrophobic silane;
A step of performing hydrophobic reaction in a nitrogen atmosphere;
And removing the surface to be coated from the hydrophobic solvent and washing the surface.
제 9항에 있어서,
상기 소수성 실란은,
옥타데실트리클로로실란(Octadecyltrichlorosilane), 옥틸트리클로로실란(Octyltrichlorosilane), 헥실트리클로로실란(Hexyltrichlorosilane), 옥타데실트리에톡시실란(Octadecyltriethoxysilane), 옥틸트리메톡시실란(Octyltrimethoxysilane), 헥실트리에톡시실란(Hexyltriethoxysilane), 퍼플루오로옥틸트리에톡시실란(Perfluorooctyltriethoxysilane) 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 초발수 표면 제조방법.
10. The method of claim 9,
The hydrophobic silane,
Octadecyltrichlorosilane, octyltrichlorosilane, hexyltrichlorosilane, octadecyltriethoxysilane, octyltrimethoxysilane, hexyltriethoxysilane (hexyltrimethoxysilane), octyltrimethoxysilane, octyltrimethoxysilane, octyltrimethoxysilane, Hexyltriethoxysilane, perfluorooctyltriethoxysilane, and mixtures thereof. &Lt; Desc / Clms Page number 19 &gt;
KR1020140163101A 2014-11-21 2014-11-21 Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof KR102296571B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140163101A KR102296571B1 (en) 2014-11-21 2014-11-21 Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140163101A KR102296571B1 (en) 2014-11-21 2014-11-21 Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof

Publications (2)

Publication Number Publication Date
KR20160060913A true KR20160060913A (en) 2016-05-31
KR102296571B1 KR102296571B1 (en) 2021-08-31

Family

ID=56098915

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140163101A KR102296571B1 (en) 2014-11-21 2014-11-21 Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof

Country Status (1)

Country Link
KR (1) KR102296571B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200029084A (en) * 2018-09-07 2020-03-18 한국세라믹기술원 Super water-repellent coating method
KR20200064592A (en) 2018-11-29 2020-06-08 진의규 Fluorinated Water-repellant surface-treating composition having high water-glinding property and manufacturing method thereof
KR20200064604A (en) 2018-11-29 2020-06-08 진의규 Fluorinated Water-repellant surface-treating composition having high water-glinding property and manufacturing method thereof
KR20200064588A (en) 2018-11-29 2020-06-08 진의규 Non-Fluorinated Water-repellant surface-treating composition having high water-glinding property and manufacturing method thereof
KR20220151277A (en) 2021-05-06 2022-11-15 동아대학교 산학협력단 Hydrophobic coating layer and manufacturing method of the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090089286A (en) * 2006-12-15 2009-08-21 아사히 가라스 가부시키가이샤 Articles having water-repellent surfaces
KR100945198B1 (en) 2007-11-22 2010-03-03 한국전기연구원 Organic Solvent Based Colloidal Silica Sol and Fabrication Method Thereof
WO2012096172A1 (en) * 2011-01-11 2012-07-19 日本板硝子株式会社 Method for manufacturing metal-oxide-containing particles and method for manufacturing aggregate of metal-oxide colloidal particles
KR20130034928A (en) * 2011-09-29 2013-04-08 한국세라믹기술원 Process for preparing hydrophobic inorganic oxide by using microwave
KR20130105510A (en) * 2012-03-15 2013-09-25 다이니폰 인사츠 가부시키가이샤 Optical film, polarizing plate, liquid-crystal panel and image display device
KR101406116B1 (en) * 2012-12-31 2014-06-16 한국기계연구원 Forming method of superhydrophobic coating layer using inorganic oxide supraparticles and the superhydrophobic coating layer formed thereby
KR101454402B1 (en) 2012-11-26 2014-11-12 한국전기연구원 Method for manufacturing high-purity colloidal silica sol from tetraalkoxy silane under high-temperature condition, and dispersion in organic solvents thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090089286A (en) * 2006-12-15 2009-08-21 아사히 가라스 가부시키가이샤 Articles having water-repellent surfaces
KR100945198B1 (en) 2007-11-22 2010-03-03 한국전기연구원 Organic Solvent Based Colloidal Silica Sol and Fabrication Method Thereof
WO2012096172A1 (en) * 2011-01-11 2012-07-19 日本板硝子株式会社 Method for manufacturing metal-oxide-containing particles and method for manufacturing aggregate of metal-oxide colloidal particles
KR20130034928A (en) * 2011-09-29 2013-04-08 한국세라믹기술원 Process for preparing hydrophobic inorganic oxide by using microwave
KR20130105510A (en) * 2012-03-15 2013-09-25 다이니폰 인사츠 가부시키가이샤 Optical film, polarizing plate, liquid-crystal panel and image display device
KR101454402B1 (en) 2012-11-26 2014-11-12 한국전기연구원 Method for manufacturing high-purity colloidal silica sol from tetraalkoxy silane under high-temperature condition, and dispersion in organic solvents thereof
KR101406116B1 (en) * 2012-12-31 2014-06-16 한국기계연구원 Forming method of superhydrophobic coating layer using inorganic oxide supraparticles and the superhydrophobic coating layer formed thereby

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200029084A (en) * 2018-09-07 2020-03-18 한국세라믹기술원 Super water-repellent coating method
KR20200064592A (en) 2018-11-29 2020-06-08 진의규 Fluorinated Water-repellant surface-treating composition having high water-glinding property and manufacturing method thereof
KR20200064604A (en) 2018-11-29 2020-06-08 진의규 Fluorinated Water-repellant surface-treating composition having high water-glinding property and manufacturing method thereof
KR20200064588A (en) 2018-11-29 2020-06-08 진의규 Non-Fluorinated Water-repellant surface-treating composition having high water-glinding property and manufacturing method thereof
KR20220151277A (en) 2021-05-06 2022-11-15 동아대학교 산학협력단 Hydrophobic coating layer and manufacturing method of the same

Also Published As

Publication number Publication date
KR102296571B1 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
KR102296571B1 (en) Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof
Berendjchi et al. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper
KR100823895B1 (en) Superhydrophobic coating film comprising inorganic particles having different diameters, coating composition, and the forming method of coating film
JP5079450B2 (en) Dispersible silica nano hollow particles and method for producing dispersion of silica nano hollow particles
KR101406116B1 (en) Forming method of superhydrophobic coating layer using inorganic oxide supraparticles and the superhydrophobic coating layer formed thereby
US20230348726A1 (en) Closed-cell metal oxide particles
Park et al. Preparation and electrophoretic response of poly (methyl methacrylate-co-methacrylic acid) coated TiO2 nanoparticles for electronic paper application
CN107614436B (en) Composite particle containing zinc oxide, composition for shielding ultraviolet ray, and cosmetic
Kim et al. Novel superamphiphobic surfaces based on micro-nano hierarchical fluorinated Ag/SiO2 structures
Fan et al. Template synthesis of raspberry-like polystyrene/SiO2 composite microspheres and their application in wettability gradient surfaces
Nordenström et al. Superamphiphobic coatings based on liquid-core microcapsules with engineered capsule walls and functionality
US7704604B2 (en) Silicate coating and method of coating by acoustic excitation
Zhao et al. One-pot formation of monodisperse polymer@ SiO 2 core–shell nanoparticles via surfactant-free emulsion polymerization using an adaptive silica precursor polymer
Tigges et al. ZnO nanoparticle-containing emulsions for transparent, hydrophobic UV-absorbent films
JP2015501272A (en) Stable nanoparticle suspension and process for its production
US20230348727A1 (en) Hybrid metal oxide particles
JP4722412B2 (en) Conductive tin oxide powder, method for producing the same, conductive paste and conductive paint
Benammar et al. The effect of solvents and rare-earth element (Er, Yb) doping on suspension stability of sol–gel titania nanoparticles
Ullah et al. Fabrication and characterization of functionalized nano-silica based transparent superhydrophobic surface
KR20120010901A (en) A method of surface modification of highly dispersed silica nanoparticles by a cationic surfactant
KR20200041817A (en) Complex coating liquid, metal substrate structure, manufactured by using the same, and method of manufacturing the same
KR101391394B1 (en) Method for searching optimum dispersion condition and physical cohesion condition of water-base titanum-dioxide suspensions, method for manufacturing water-base titanum-dioxide sol by using that
Munkhbaatar et al. PVP-assisted Synthesis of TiO 2 Nanospheres and their Application to the Preparation of Superhydrophobic Surfaces
JP4877770B2 (en) Method for forming a highly water-repellent surface
Mendoza et al. Formulating 3-Chloropropyltriethoxysilane Modified Silica Nanoparticle Sprays as Hydrophobic Transparent Coatings onto Cotton Textiles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant