JP4877770B2 - Method for forming a highly water-repellent surface - Google Patents

Method for forming a highly water-repellent surface Download PDF

Info

Publication number
JP4877770B2
JP4877770B2 JP2006242821A JP2006242821A JP4877770B2 JP 4877770 B2 JP4877770 B2 JP 4877770B2 JP 2006242821 A JP2006242821 A JP 2006242821A JP 2006242821 A JP2006242821 A JP 2006242821A JP 4877770 B2 JP4877770 B2 JP 4877770B2
Authority
JP
Japan
Prior art keywords
metal oxide
oxide
water
repellent surface
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006242821A
Other languages
Japanese (ja)
Other versions
JP2008062182A (en
Inventor
浩一 朝倉
章裕 黒田
直樹 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2006242821A priority Critical patent/JP4877770B2/en
Publication of JP2008062182A publication Critical patent/JP2008062182A/en
Application granted granted Critical
Publication of JP4877770B2 publication Critical patent/JP4877770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、微粒子金属酸化物分散型配合物を回転塗布法を用いて塗工・乾燥することにより高撥水性の表面を基材に形成する方法に関する。
さらに詳しくは、材料の表面に微粒子金属酸化物を分散・担持した乾性油を揮発性溶剤で希釈した塗膜を回転塗布法で形成させることで、乾燥後に機械的に安定で、高撥水性の表面を形成する方法に関する。
The present invention relates to a method for forming a highly water-repellent surface on a substrate by coating and drying a particulate metal oxide dispersion type compound using a spin coating method.
More specifically, by forming a coating film obtained by diluting a dry oil in which fine metal oxide is dispersed and supported on the surface of the material with a volatile solvent by a spin coating method, it is mechanically stable after drying and has a high water repellency. The present invention relates to a method for forming a surface.

近年、材料表面に高撥水性の表面を形成する技術が多く発表されているが、これらの多くは、ハスの葉の表面のように材料表面に凹凸構造を形成させて高撥水性の表面を形成させる技術か、フッ素系化合物を用いて材料表面に高撥水性の被膜を形成させる技術である。前者としては、例えば特許文献1には、ポリマー成分と撥水性微粒子とが均一に分散混合された混合体の表面に、レーザーを照射してレーザーアブレーションを行うと、レーザーが照射された表面及びその付近のポリマー成分が除去されて(この現象をスパッタリングという)、撥水性微粒子による凹凸面が表面に露出することにより、表面が優れた撥水性を発揮することができることが記載されている。また、特許文献2には、平均粒子径0.1〜0.5μmのTFE樹脂及びポリアミック酸を含む水溶性有機液体に発泡剤及び/又は凝集剤を添加混合し、得られた混合液を基材上に塗布した後、これを加熱して水、水溶性有機液体、発泡剤及び/又は凝集剤を除去すると共に、ポリアミック酸を縮合して、ポリイミド又はポリアミドイミドを形成させる技術が記載されている。   In recent years, many technologies for forming a highly water-repellent surface on the material surface have been announced. Many of these technologies, however, have a surface with a highly water-repellent surface formed by forming an uneven structure on the material surface, such as the surface of a lotus leaf. This is a technique for forming a film, or a technique for forming a highly water-repellent film on a material surface using a fluorine-based compound. As the former, for example, in Patent Document 1, when laser ablation is performed by irradiating the surface of a mixture in which a polymer component and water-repellent fine particles are uniformly dispersed and mixed, the surface irradiated with the laser and its surface It is described that the surface can exhibit excellent water repellency by removing the polymer component in the vicinity (this phenomenon is referred to as sputtering) and exposing the irregular surface due to the water-repellent fine particles to the surface. Further, Patent Document 2 is based on a mixture obtained by adding and mixing a foaming agent and / or an aggregating agent to a water-soluble organic liquid containing a TFE resin having an average particle size of 0.1 to 0.5 μm and a polyamic acid. A technique is described in which after coating on a material, this is heated to remove water, water-soluble organic liquid, foaming agent and / or flocculant, and polyamic acid is condensed to form polyimide or polyamideimide. Yes.

次に後者の例としては、特許文献3には撥水性のバインダー樹脂、ポリテトラフルオロエチレン粒子及び分散剤、さらに要すれば低熱容量の粒子及び溶媒からなり、微小水滴の滑落角が極めて小さい塗膜を与える表面処理用配合物であって、着氷及び着雪を防止し得る高撥水性で易水滴滑落性の塗膜を与える表面処理用配合物についての技術が記載されている。双方の技術はそれぞれ一長一短があり、両者の融合も進んでいる。   Next, as an example of the latter, Patent Document 3 includes a water-repellent binder resin, polytetrafluoroethylene particles and a dispersant, and, if necessary, a low heat capacity particle and a solvent. A technique is described for a surface treatment formulation that provides a film and that provides a highly water-repellent and easy-to-drop paint film that can prevent icing and snowing. Both technologies have their merits and demerits, and the fusion of both is progressing.

特開2005−179441号公報JP 2005-179441 A 特開平10−17695号公報Japanese Patent Laid-Open No. 10-17695 国際公開WO2003−93388号公報International Publication WO2003-93388

材料表面に凹凸構造を形成させて高撥水性の表面を形成させる手法の場合、基材膜表面に塗布した塗膜表面に安定的に、かつ安価に凹凸構造を形成させるのは簡単ではなく、複雑な製造工程を経るために手間がかかる、形成コストが高いなどの問題があり、より安価に、より単純な製造工程で材料表面に高撥水性を示す微細凹凸構造を形成する技術が求められていた。   In the case of a method of forming a concavo-convex structure on the material surface to form a highly water-repellent surface, it is not easy to form a concavo-convex structure stably and inexpensively on the coating film surface applied to the substrate film surface, There is a problem that it takes time to go through complicated manufacturing processes and the formation cost is high, and there is a need for a technology to form a fine concavo-convex structure exhibiting high water repellency on the material surface at a lower cost and with a simpler manufacturing process. It was.

本発明者らは、これらの問題に鑑み、鋭意研究した結果、凹凸構造を形成して高撥水性表面を得たい物体や基板に特定組成の溶液を滴下させるか、又は該特定組成溶液中に該物体や基板を浸漬した後、空気中で該物体や基板を機械的に回転させるだけで、該物体や基板表面に微細な凹凸構造を形成させ、かつこれらの物体や基板表面を簡単に高撥水性表面に転換する方法を見出した。   As a result of diligent research in view of these problems, the inventors of the present invention drop a solution of a specific composition on an object or substrate on which a concavo-convex structure is formed to obtain a highly water-repellent surface, or in the specific composition solution. After immersing the object or substrate, the object or substrate is mechanically rotated in the air to form a fine uneven structure on the object or substrate surface, and the object or substrate surface can be easily raised. A method for converting to a water-repellent surface was found.

本願に記載された発明は、以下の第1〜第7の発明よりなるものである(以下、特に断りない限り「本発明」という)。   The invention described in the present application is composed of the following first to seventh inventions (hereinafter referred to as “the present invention” unless otherwise specified).

すなわち、本願の第1の発明は、一次粒子径が10nm〜50nmの範囲にある撥水化表面処理微粒子金属酸化物、乾性油及び揮発性溶媒を配合してなり、かつ揮発性溶媒を除く配合物質量に対して撥水化表面処理微粒子金属酸化物の配合質量が60〜80質量%の範囲にある微粒子金属酸化物分散型配合物を、回転塗布法を用いて基板表面に塗工することを特徴とする高撥水性表面の形成方法にある。   That is, the first invention of the present application is a combination of a water-repellent surface-treated fine particle metal oxide having a primary particle size in the range of 10 nm to 50 nm, a drying oil and a volatile solvent, and excluding the volatile solvent. Applying a fine particle metal oxide dispersion type compound in which the blending amount of the water-repellent surface-treated fine particle metal oxide is 60 to 80% by mass with respect to the amount of the substance on the substrate surface using a spin coating method. And a method for forming a highly water-repellent surface.

本願の第2の発明は、回転塗布法がスピンコーターを用いるものであることを特徴とする第1の発明に記載の高撥水性表面の形成方法にある。   A second invention of the present application is the method for forming a highly water-repellent surface according to the first invention, wherein the spin coating method uses a spin coater.

本願の第3の発明は、回転塗布法におけるスピンコーターの回転速度が、毎分2000〜6000回転の範囲にあることを特徴とする第1又は第2の発明に記載の高撥水性表面の形成方法にある。   According to a third aspect of the present invention, the spin coater has a rotational speed in the range of 2000 to 6000 revolutions per minute in the spin coating method. The formation of the highly water-repellent surface according to the first or second aspect of the invention Is in the way.

本願の第4の発明は、微粒子金属酸化物分散型配合物中の微粒子金属酸化物が酸化チタン、酸化亜鉛、二酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化セリウム、酸化鉛、酸化錫、酸化鉄、酸化マンガン、酸化コバルト、酸化クロムの少なくとも1種であることを特徴とする第1〜第3の発明に記載の高撥水性表面の形成方法にある。   In the fourth invention of the present application, the fine particle metal oxide in the fine particle metal oxide dispersion type compound is titanium oxide, zinc oxide, silicon dioxide, aluminum oxide, zirconium oxide, cerium oxide, lead oxide, tin oxide, iron oxide, The method for forming a highly water-repellent surface according to any one of the first to third inventions, which is at least one of manganese oxide, cobalt oxide, and chromium oxide.

本願の第5の発明は、微粒子金属酸化物分散型配合物中に用いる乾性油が、アマニ油、ケシ油、胡桃油、ベニバナ油及びひまわり油の少なくとも1種であることを特徴とする第1〜第3の発明に記載の高撥水性表面の形成方法にある。   The fifth invention of the present application is characterized in that the drying oil used in the fine particle metal oxide dispersion type compound is at least one of linseed oil, poppy oil, walnut oil, safflower oil and sunflower oil. The method for forming a highly water-repellent surface described in the third invention.

本願の第6の発明は、微粒子金属酸化物の撥水化表面処理が、アルキル鎖長が6〜12の範囲にあるアルキル基を有するモノアルキルトリアルコキシシラン類、トリメチルシラン、メチルハイドロジェンポリシロキサン、シリコーン樹脂、片末端反応性ジメチルポリシロキサン、金属石鹸、有機化チタネート、有機化アルミネート、フッ素化シラン、片末端反応性パーフルオロポリエーテル、シランカップリング剤の少なくとも1種を用いて行われたことを特徴とする第1〜第3の発明に記載の高撥水性表面の形成方法にある。   According to a sixth aspect of the present invention, the water-repellent surface treatment of the particulate metal oxide is a monoalkyltrialkoxysilane having an alkyl group with an alkyl chain length in the range of 6 to 12, trimethylsilane, methylhydrogenpolysiloxane , Silicone resin, one-end reactive dimethylpolysiloxane, metal soap, organic titanate, organicated aluminate, fluorinated silane, one-end reactive perfluoropolyether, and silane coupling agent. The method for forming a highly water-repellent surface according to any one of the first to third inventions is characterized in that.

本願の第7の発明は、撥水化金属酸化物分散型配合物中の揮発性溶剤が、低級アルコール、n―ヘキサン、シクロヘキサン、トルエン、キシレン、イソパラフィン、フルオロカーボン、次世代フロン、n―ブタン、環状シロキサン、揮発性シリコーンの少なくとも1種であることを特徴とする第1〜第3の発明に記載の高撥水性表面の形成方法にある。   In the seventh invention of the present application, the volatile solvent in the water-repellent metal oxide dispersion type compound is a lower alcohol, n-hexane, cyclohexane, toluene, xylene, isoparaffin, fluorocarbon, next-generation flon, n-butane, The method for forming a highly water-repellent surface according to any one of the first to third inventions, which is at least one of cyclic siloxane and volatile silicone.

以上のことから本発明は、一次粒子径が10nm〜50nmの範囲にある撥水化表面処理微粒子金属酸化物、乾性油及び揮発性溶媒を配合しており、かつ揮発性溶媒を除く配合物質量に対して撥水化表面処理微粒子金属酸化物の配合質量が60〜80質量%の範囲にある微粒子金属酸化物分散型配合物を、スピンコーターのような回転塗布法を用いて基板表面に塗工することにより、簡単に、しかも安価に基板表面に高撥水性表面を形成することが可能となった。   From the above, the present invention contains a water-repellent surface-treated fine particle metal oxide having a primary particle diameter in the range of 10 nm to 50 nm, a drying oil, and a volatile solvent, and the amount of the compounded material excluding the volatile solvent Is applied to the substrate surface by a spin coating method such as a spin coater. By processing, it has become possible to easily and inexpensively form a highly water-repellent surface on the substrate surface.

以下、上記本願第1〜第7の発明(以下、総称して「本発明」という)を詳細に説明する。
まず、本発明は、一次粒子径が10nm〜50nmの範囲にある撥水化表面処理微粒子金属酸化物、乾性油及び揮発性溶媒を配合しており、かつ揮発性溶媒を除く配合物質量に対して撥水化表面処理微粒子金属酸化物の配合質量が60〜80質量%の範囲にある微粒子金属酸化物分散型配合物を、回転塗布法を用いて基板表面に塗工することにより簡単に、しかも安価に基板表面に高撥水性表面を形成することを特徴とする、高撥水性表面の形成方法に関する。
本発明で言う「回転塗布法」とは、スピンコーターに代表されるような塗工方法であり、物体や基板を回転軸に固定し、微粒子金属酸化物分散型配合物なる溶液を物体に滴下又は物体を微粒子金属酸化物分散型配合物なる溶液に浸漬した後、それを高速で回転させて余分な溶液自体を除去し、物体表面に溶液を比較的均一に塗工する方法である。スピンコーターは通常、2ピース缶の塗装、液晶やレジストなどの大変低い粘度の溶液の塗工に用いられるが、微粒子金属酸化物分散型配合物のようなそれと比べて高粘度の溶液の塗工に適用すると、基材表面に微細な凹凸構造を形成できる場合がある。この現象を利用することにより、基材表面に極めて容易に高撥水性の表面を形成することができる。本発明では、特に塗工する物体又は基材の回転速度が毎分2000〜6000回転の範囲にあると、物体又は基材表面に塗工された塗膜に凹凸構造が安定して明確に形成させることができる。
Hereinafter, the first to seventh inventions of the present application (hereinafter collectively referred to as “the present invention”) will be described in detail.
First, the present invention blends a water-repellent surface-treated fine particle metal oxide having a primary particle size in the range of 10 nm to 50 nm, a drying oil and a volatile solvent, and with respect to the amount of the blended substance excluding the volatile solvent. By applying a fine particle metal oxide dispersion type compound having a water repellent surface treatment fine particle metal oxide in the range of 60 to 80% by mass to the substrate surface using a spin coating method, In addition, the present invention relates to a method for forming a highly water-repellent surface, characterized in that a highly water-repellent surface is formed on a substrate surface at low cost.
The “rotary coating method” referred to in the present invention is a coating method represented by a spin coater, in which an object or a substrate is fixed to a rotating shaft, and a solution of a fine particle metal oxide dispersion type compound is dropped onto the object. Alternatively, after the object is immersed in a solution of the fine particle metal oxide dispersion type composition, it is rotated at a high speed to remove excess solution itself, and the solution is applied to the surface of the object relatively uniformly. Spin coaters are usually used for coating two-piece cans and very low-viscosity solutions such as liquid crystals and resists. In some cases, a fine uneven structure can be formed on the substrate surface. By utilizing this phenomenon, a highly water-repellent surface can be formed very easily on the substrate surface. In the present invention, when the rotation speed of the object or substrate to be coated is in the range of 2000 to 6000 rotations per minute, the uneven structure is stably and clearly formed on the coating film applied to the surface of the object or substrate. Can be made.

本発明では、一次粒子径が10nm〜50nmの範囲にある撥水化表面処理した微粒子金属酸化物を用いるが、この微粒子金属酸化物の一次粒子径の評価方法としては、電子顕微鏡観察により行った。微粒子金属酸化物の一次粒径がこの範囲をはずれると、基材表面に塗工した塗膜に微細な凹凸構造が安定して形成し難くなり、基材表面の高撥水性の向上を期待できない場合が生じる。   In the present invention, a water-repellent surface-treated fine particle metal oxide having a primary particle diameter in the range of 10 nm to 50 nm is used. As a method for evaluating the primary particle diameter of this fine particle metal oxide, an electron microscope observation was performed. . If the primary particle size of the fine particle metal oxide is out of this range, it becomes difficult to stably form a fine uneven structure on the coating film applied to the substrate surface, and improvement in the high water repellency of the substrate surface cannot be expected. Cases arise.

本発明における微粒子金属酸化物の撥水化表面処理とは、アルキル鎖長が炭素数6〜12の範囲にあるアルキル基を有するオクチルトリエトキシシランなどのモノアルキルトリアルコキシシラン類、トリメチルシラン、メチルハイドロジェンポリシロキサン、シリコーン樹脂、片末端反応性のジメチルポリシロキサン、ステアリン酸亜鉛などの金属石鹸、有機化チタネート、有機化アルミネート、フッ素化シラン、片末端反応性パーフルオロポリエーテル、シランカップリング剤等による表面処理である。これら微粒子金属酸化物の表面処理量としては、表面処理前の金属酸化物の質量に対して、0.5〜20質量%の範囲であり、より好ましくは3〜15質量%の範囲が挙げられる。また、これらの金属酸化物の表面処理は、単独の表面処理剤で処理されていても複数の表面処理剤を組み合わせて差し支えない。   In the present invention, the water-repellent surface treatment of the particulate metal oxide means monoalkyltrialkoxysilanes such as octyltriethoxysilane having an alkyl group having an alkyl chain length in the range of 6 to 12 carbon atoms, trimethylsilane, methyl Hydrogen polysiloxane, silicone resin, one-end reactive dimethylpolysiloxane, metal soap such as zinc stearate, organotitanate, organoaluminate, fluorinated silane, one-end reactive perfluoropolyether, silane coupling Surface treatment with an agent or the like. The surface treatment amount of these fine particle metal oxides is in the range of 0.5 to 20% by mass, more preferably in the range of 3 to 15% by mass with respect to the mass of the metal oxide before the surface treatment. . In addition, the surface treatment of these metal oxides may be performed by combining a plurality of surface treatment agents even if they are treated with a single surface treatment agent.

これらの表面処理剤の中で、特に微粒子金属酸化物の分散安定性の優れている表面処理剤としては、オクチルトリエトキシシラン、オクチルトリメトキシシランである。さらに、微粒子金属酸化物の表面処理の方法として、乾式及び湿式の方法が一般に挙げられるが、微粒子金属酸化物の凝集を解除して乾性油への分散性を向上させる効果の高いビーズミルなどの湿式の微粉砕装置を用いて表面処理する方法が好ましい。   Among these surface treatment agents, octyltriethoxysilane and octyltrimethoxysilane are particularly preferred surface treatment agents having excellent dispersion stability of the particulate metal oxide. Furthermore, as a method for surface treatment of the fine particle metal oxide, a dry method and a wet method are generally exemplified. However, wet methods such as a bead mill which has a high effect of releasing the aggregation of the fine particle metal oxide and improving dispersibility in dry oil. A surface treatment method using a fine pulverizer is preferable.

本発明で用いる微粒子金属酸化物としては、一次粒子径が10nm〜50nmの範囲にある金属酸化物を用いることができ、その形状としては、球状、略球状、棒状、紡錘状、板状、不定形状などいずれの形状であっても差し支えない。一次粒子径が10nm未満、又は50nm以上では、本発明の効果である基材に高撥水性表面の形成が難しく、高撥水性表面の耐水性が低下する問題がある。   As the fine particle metal oxide used in the present invention, a metal oxide having a primary particle diameter in the range of 10 nm to 50 nm can be used, and the shape thereof is spherical, substantially spherical, rod-shaped, spindle-shaped, plate-shaped, indefinite. Any shape such as a shape may be used. When the primary particle size is less than 10 nm or 50 nm or more, it is difficult to form a highly water-repellent surface on the substrate, which is an effect of the present invention, and there is a problem that the water resistance of the highly water-repellent surface is lowered.

本発明における微粒子金属酸化物としては、具体的に酸化チタン、酸化亜鉛、二酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化セリウム、酸化タングステン、酸化コバルト、酸化マンガン、酸化錫の少なくとも1種を含むことが好ましく、特に酸化チタン、酸化亜鉛、二酸化珪素の少なくとも1種を含むことが好ましい。これらの金属酸化物は安全であり、皮膜形成時の安定性に優れる特性がある。また、本発明で用いるこれらの金属酸化物は微粒子の形態では固体触媒活性を示すものが多く、経時で配合物中の乾性油などを酸化劣化させる原因となるため、その表面をシリカ、アルミナなどで被覆されているものを使用すると触媒活性は大幅に低下し、塗膜の長期の安定性に良い影響を与えるので好ましい。   As the particulate metal oxide in the present invention, specifically, at least one of titanium oxide, zinc oxide, silicon dioxide, aluminum oxide, zirconium oxide, iron oxide, cerium oxide, tungsten oxide, cobalt oxide, manganese oxide, and tin oxide is used. It is preferable to include, and it is preferable to include at least one of titanium oxide, zinc oxide, and silicon dioxide. These metal oxides are safe and have excellent stability during film formation. In addition, these metal oxides used in the present invention often exhibit solid catalyst activity in the form of fine particles, and cause oxidative degradation of the drying oil in the formulation over time. When the catalyst is coated with the catalyst, the catalytic activity is significantly lowered, and this has a favorable effect on the long-term stability of the coating film, which is preferable.

本発明で用いる微粒子金属酸化物分散型配合物は、揮発性溶媒を除く配合物質量に対して上記撥水性表面処理した微粒子金属酸化物の配合質量が60〜80質量%の範囲であることが好ましく、配合質量が60質量%未満では、回転塗布法を用いても用いなくても水に対する被膜表面の接触角が変わらなくなる問題があり、また80質量%を超えると酸化重合して架橋被膜を形成する乾性油などの配合量が不足して、塗膜の耐久性が低下してくる問題が生じる。   In the fine particle metal oxide dispersion type compound used in the present invention, the compounded mass of the fine particle metal oxide subjected to the water-repellent surface treatment with respect to the amount of the compounded material excluding the volatile solvent is in the range of 60 to 80% by mass. Preferably, if the blending mass is less than 60% by mass, there is a problem that the contact angle of the coating surface with respect to water does not change regardless of whether or not the spin coating method is used. There is a problem that the durability of the coating film is lowered due to insufficient amount of the drying oil to be formed.

本発明における微粒子金属酸化物分散型配合物中の乾性油としては、アマニ油、ケシ油、胡桃油、ベニバナ油及びひまわり油の少なくとも1種を用いることを特徴としており、酸素架橋により硬化する油脂が挙げられ、特にアマニ油は取り扱いがしやすく使用に適している。
乾性油の配合量としては、揮発性溶媒を除く配合物質量に対して乾性油が10〜40質量%の範囲であることが好ましく、さらに好ましくは20〜40質量%の範囲が挙げられる。この範囲であると、乾性油の硬化した塗膜中に微粒子金属酸化物が分散固定され、皮膜の耐久性も向上するメリットがある。
The dry oil in the fine particle metal oxide dispersion type compound of the present invention is characterized by using at least one of linseed oil, poppy oil, walnut oil, safflower oil, and sunflower oil, and is fat and oil that hardens by oxygen crosslinking In particular, linseed oil is easy to handle and suitable for use.
The amount of the drying oil is preferably in the range of 10 to 40% by mass, more preferably in the range of 20 to 40% by mass with respect to the amount of the compounding material excluding the volatile solvent. Within this range, there is a merit that the particulate metal oxide is dispersed and fixed in the coating film obtained by curing the drying oil, and the durability of the film is improved.

さらに、本発明で用いられる揮発性溶媒としては、乾性油の溶解性に優れ、かつ微粒子金属酸化物の分散性に優れた有機溶媒であれば良く、その例としてエチルアルコール、イソプロピルアルコール、プロピルアルコール等の低級アルコール、n―ヘキサン、シクロヘキサン、トルエン、キシレン、イソパラフィン、フルオロカーボン、次世代フロン、n―ブタン、環状シロキサン、メチルトリメチコン等の揮発性シリコーンが挙げられる。この中でも特に環状シロキサンの一種であるデカメチルシクロペンタンシロキサンや低級アルコール類は価格、入手の容易性、人体に対する安全性などに優れているので好ましい。これら揮発性溶媒の微粒子金属酸化物分散型配合物への配合量は、揮発性溶媒を除く配合物質量100質量部に対して400〜1900質量部の範囲が好ましい。400質量部未満では、微粒子金属酸化物分散型配合物の溶液粘度が高くなり過ぎ、皮膜形成を均一に調整することが難しく、塗工に問題が生じる。また、1900質量部を超えると揮発性溶媒が蒸発した後の塗膜が薄くなり過ぎ、塗膜強度が不足する問題が生じる。   Furthermore, the volatile solvent used in the present invention may be an organic solvent that is excellent in the solubility of drying oil and the dispersibility of the particulate metal oxide, and examples thereof include ethyl alcohol, isopropyl alcohol, and propyl alcohol. And volatile silicones such as n-hexane, cyclohexane, toluene, xylene, isoparaffin, fluorocarbon, next-generation fluorocarbon, n-butane, cyclic siloxane, and methyltrimethicone. Of these, decamethylcyclopentanesiloxane, which is a kind of cyclic siloxane, and lower alcohols are particularly preferable because they are excellent in price, availability, and safety to the human body. The blending amount of these volatile solvents in the fine particle metal oxide dispersed blend is preferably in the range of 400 to 1900 parts by weight with respect to 100 parts by weight of the blended substance excluding the volatile solvent. If it is less than 400 parts by mass, the solution viscosity of the fine particle metal oxide dispersion type compound becomes too high, and it is difficult to uniformly adjust the film formation, which causes a problem in coating. Moreover, when it exceeds 1900 mass parts, the coating film after a volatile solvent evaporates will become thin too much, and the problem that coating film strength is insufficient will arise.

本発明で用いる微粒子金属酸化物分散型配合物は、上記各成分を均一に混合分散したものを用いる。この際、微粒子金属酸化物はこの前に微粉砕されたもの、又は溶液中に高度に分散されたスラリー形態のもののいずれをもちいても良い。また、微粒子金属酸化物をそのまま投入した後、配合物をビーズミル等を用いて微粉砕して均一な微粒子金属酸化物分散型配合物としてもよい。   As the fine particle metal oxide dispersion type compound used in the present invention, the above-mentioned components are uniformly mixed and dispersed. At this time, the particulate metal oxide may be either finely pulverized before or in the form of a slurry highly dispersed in a solution. Alternatively, the particulate metal oxide may be added as it is, and then the blend may be finely pulverized using a bead mill or the like to obtain a uniform particulate metal oxide dispersed blend.

本発明では、撥水性の微粒子金属酸化物を分散させた分散液を基板上に塗布するが、撥水性の微粒子金属酸化物を分散させる方法としては、微粒子金属酸化物の表面を表面処理剤で表面処理して分散安定性を高めたものを用いる方法、界面活性剤を用いて微粒子金属酸化物の安定性を高める方法など、機械的な分散力を用いる方法を組み合わせて使用することが好ましい。   In the present invention, a dispersion in which water-repellent fine particle metal oxide is dispersed is applied on a substrate. As a method of dispersing the water-repellent fine particle metal oxide, the surface of the fine particle metal oxide is treated with a surface treatment agent. It is preferable to use a combination of methods using a mechanical dispersion force, such as a method using a surface treatment to improve dispersion stability and a method using a surfactant to increase the stability of the fine particle metal oxide.

ここで用いる界面活性剤としては、焼成後にシリカに転換できる特性を有するシリコーン系の界面活性剤が好ましく、例えば、ポリエーテル変性オルガノポリシロキサン、アルキル・ポリエーテル変性オルガノポリシロキサン、ポリグリセリル変性オルガノポリシロキサン、アルキル変性オルガノポリシロキサンの少なくとも1種から選ばれる変性オルガノポリシロキサンを用いることが好ましい。また、機械的に分散する方法としては、ディスパーやアトライター、ホモミキサーなどを用いて分散させる方法、スラリーを高圧噴射する方法、ペイントシェーカー、サンドミル、ペブルミルなどの媒体型粉砕機やロールミルなどを用いる方法などが挙げられる。前者は安価で作業が簡単なメリットがあり、後者は高分散が可能であり、塗膜の透明性や外観を重視する場合には好ましい方法である。   The surfactant used herein is preferably a silicone-based surfactant having a characteristic that it can be converted to silica after firing. For example, polyether-modified organopolysiloxane, alkyl-polyether-modified organopolysiloxane, polyglyceryl-modified organopolysiloxane It is preferable to use a modified organopolysiloxane selected from at least one of alkyl-modified organopolysiloxanes. Further, as a mechanical dispersion method, a dispersion method using a disper, attritor, homomixer, or the like, a method of spraying a slurry at high pressure, a medium type pulverizer such as a paint shaker, a sand mill, or a pebble mill, or a roll mill is used. The method etc. are mentioned. The former has the merit of being inexpensive and easy to work, and the latter can be highly dispersed, and is a preferable method when importance is attached to the transparency and appearance of the coating film.

本発明で用いる撥水性微粉末金属酸化物分散型配合物の塗布方法としては、アプリケーター、ロールコーターなどを用いて均一な厚みで塗布したり、刷毛などを用いて塗布する方法、また分散液中に基板を浸漬する方法などがあるが、厚く塗ると塗膜の強度にムラがでたり、強度が弱くなる問題があり、本発明においては、回転塗布法を用いて基板表面に塗工する。   As a coating method of the water-repellent fine powder metal oxide dispersion type compound used in the present invention, a method of coating with a uniform thickness using an applicator, a roll coater or the like, a method of coating using a brush, etc. There is a method of immersing the substrate in the substrate, but there are problems that the coating strength becomes uneven or the strength becomes weak when applied thickly. In the present invention, the coating is applied to the surface of the substrate using a spin coating method.

回転塗布法について、さらに詳細に説明すると、基板が板状の材料ならば、スピンコーターを用いて中心部に微粒子金属酸化物分散型配合物を垂らした後、基板自体を高速回転させて余分な分散配合物を除去し、さらに加熱乾燥するなどの乾性油皮膜の架橋方法が挙げられる。
また、基板が立体物の場合、立体物の重心付近に回転用の軸を固定し、立体物をそのまま微粒子金属酸化物分散型配合物に浸漬した後、回転用の軸を高速で回転させ、さらに加熱乾燥するなどの架橋方法が挙げられる。
さらに、基板の材料、材質に制限無く、微粒子金属酸化物分散型配合物が弾かれてしまい塗工できないような材料を除いて塗工可能である。かかる塗工不可能な基板の場合、基板に予め塗工可能となるようなプライマーを塗布しておき、その表面に塗工する方法が適用できる場合もある。また、さらに塗膜の凹凸構造を強調する方法として、塗工後の基板を流水で洗浄する方法も効果的である。
The spin coating method will be described in more detail. If the substrate is a plate-like material, the fine particle metal oxide dispersion-type compound is hung at the center using a spin coater, and then the substrate itself is rotated at a high speed to remove the excess. Examples include a method for crosslinking a dry oil film such as removing the dispersion compound and further drying by heating.
In addition, when the substrate is a three-dimensional object, the rotation shaft is fixed in the vicinity of the center of gravity of the three-dimensional object, and after the three-dimensional object is immersed in the fine particle metal oxide dispersion type compound as it is, the rotation shaft is rotated at a high speed, Further, a crosslinking method such as heat drying may be mentioned.
Furthermore, there is no limitation on the material and the material of the substrate, and the coating can be performed except for a material that cannot be applied because the fine particle metal oxide dispersion compound is repelled. In the case of such a substrate that cannot be coated, a method may be applied in which a primer that can be coated in advance is applied to the substrate and the surface is coated. Further, as a method of further emphasizing the uneven structure of the coating film, a method of washing the coated substrate with running water is also effective.

本発明で用いる微粒子金属酸化物分散型配合物においては、上記の各成分以外にフィラー、油剤、防腐剤、防かび剤、殺菌剤、紫外線吸収剤、着色剤等の成分を適宜使用することもできる。   In the fine particle metal oxide dispersion type compound used in the present invention, components such as fillers, oil agents, preservatives, fungicides, bactericides, ultraviolet absorbers, colorants and the like may be used as appropriate in addition to the above components. it can.

以下、実施例及び比較例によって本発明を具体的に説明する。
なお、実施例及び比較例で用いた各種特性に対する評価方法を以下に示す。
<接触角の評価方法>
接触角測定装置(協和界面科学社製DM500型接触角測定装置)を用いて基板に水滴を接触させ、その直後の基板と水滴間のデータから接触角を求めた。接触角の解析には同社製解析ソフトウェアFAMASを使用した。
また、測定に用いた試料は再度乾燥して接触角の測定を繰り返し、水との接触の繰り返しにより高撥水性が維持されるか否かを確認した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
In addition, the evaluation method with respect to the various characteristics used by the Example and the comparative example is shown below.
<Evaluation method of contact angle>
Water droplets were brought into contact with the substrate using a contact angle measuring device (DM500 type contact angle measuring device manufactured by Kyowa Interface Science Co., Ltd.), and the contact angle was determined from data immediately after the substrate. The analysis software FAMAS manufactured by the company was used for the analysis of the contact angle.
Moreover, the sample used for the measurement was dried again and the measurement of the contact angle was repeated, and it was confirmed whether or not the high water repellency was maintained by repeated contact with water.

まず、オクチルシリル化微粒子酸化チタン(オクチルトリエトキシシラン10質量%処理シリカ・アルミナ処理微粒子酸化チタン。平均粒子径35nm。溶媒としてトルエンを使用し、ビーズミル中で反応させた後、乾燥・加熱処理をおこなったもの)40質量部とデカメチルシクロペンタシロキサン(環状揮発性シリコンの一種。沸点210℃)60質量部を、粗混合した後、ビーズミル(横型サンドグラインドミル)を用いて微粉砕し、オクチルシリル化微粒子酸化チタンが均一に分散したオクチルシリル化微粒子酸化チタンのスラリーを得た。
次に、オクチルシリル化微粒子酸化チタンスラリー中のオクチルシリル化微粒子酸化チタンの60質量部に対して、アマニ油を40質量部の割合で加え、さらに揮発性デカメチルシクロペンタシロキサンを加えて全体量がオクチルシリル化微粒子酸化チタンとアマニ油の合計量の5倍量になるように調製した。
スピンコーター(共和理研社製 フォトレジストスピナー K−359SD−1型)を用い、ガラス板の中央に上記配合物を0.2mL滴下した後、500回転/分の回転速度で5秒間回転し、続いて4000回転/分の回転速度で20秒間回転させて塗工を終了した。その後、60℃で十分乾燥させて安定な塗膜を得た。
First, octylsilylated fine particle titanium oxide (octyltriethoxysilane 10% by mass treated silica / alumina treated fine particle titanium oxide. Average particle diameter 35 nm. Toluene was used as a solvent and reacted in a bead mill, followed by drying and heat treatment. 40 parts by mass and 60 parts by mass of decamethylcyclopentasiloxane (a kind of cyclic volatile silicon, boiling point 210 ° C.) were roughly mixed, and then finely pulverized using a bead mill (horizontal sand grind mill), and octyl A slurry of octylsilylated fine particle titanium oxide in which silylated fine particle titanium oxide was uniformly dispersed was obtained.
Next, linseed oil is added at a ratio of 40 parts by mass with respect to 60 parts by mass of octylsilylated fine particle titanium oxide in the octylsilylated fine particle titanium oxide slurry, and volatile decamethylcyclopentasiloxane is further added to the total amount. Was prepared to be 5 times the total amount of octylsilylated fine particle titanium oxide and linseed oil.
Using a spin coater (Photoresist Spinner K-359SD-1 type, manufactured by Kyowa Riken Co., Ltd.), 0.2 mL of the above composition was dropped on the center of the glass plate, and then rotated for 5 seconds at a rotation speed of 500 rpm. The coating was completed by rotating for 20 seconds at a rotational speed of 4000 rpm. Thereafter, it was sufficiently dried at 60 ° C. to obtain a stable coating film.

上記と同様の工程で、オクチルシリル化微粒子酸化チタンとアマニ油の質量比率を2:8(20質量%:80質量%、以下同様の質量%表示省略)、4:6、6:4、6.25:3.75、6.5:3.5、6.75:3.25、7:3、7.25:2.75、7.5:2.5、7.75:2.25、8:2の比率でそれぞれの試料を作成することができた。   In the same process as above, the mass ratio of the octylsilylated fine particle titanium oxide and linseed oil was 2: 8 (20 mass%: 80 mass%, hereinafter the same mass% is omitted), 4: 6, 6: 4, 6 .25: 3.75, 6.5: 3.5, 6.75: 3.25, 7: 3, 7.25: 2.75, 7.5: 2.5, 7.75: 2.25 , 8: 2 ratio of each sample could be prepared.

(比較例1)
実施例1の試料を用いてスピンコーターを用いることなしに、ガラス板上に1ミリインチのスリットを持ったアプリケーターを用いて、0.02m/秒の速度で塗工した後、実施例1と同様に60℃で乾燥させて試料を得た。
(Comparative Example 1)
The sample of Example 1 was applied at a speed of 0.02 m / sec using an applicator having a 1 mm inch slit on a glass plate without using a spin coater, and then the same as in Example 1. And dried at 60 ° C. to obtain a sample.

実施例1のオクチルシリル化微粒子酸化チタンとアマニ油の質量比率を7.75:2.25に設定した試料を用い、同じように揮発性デカメチルシクロペンタシロキサンを加えて全体量がオクチルシリル化微粒子酸化チタンとアマニ油の合計質量の5倍量になるように調製した。
スピンコーターの回転速度を6000回転/分に変更した他はすべて実施例1と同様にした試料を得た。
この試料について、精製水に対する接触角を測定した結果、149度の高い接触角値を示した。
Using a sample in which the mass ratio of the octylsilylated fine particle titanium oxide and linseed oil of Example 1 was set to 7.75: 2.25, volatile decamethylcyclopentasiloxane was added in the same manner, and the total amount was octylsilylated. The total mass of fine particle titanium oxide and linseed oil was adjusted to be 5 times the total mass.
A sample was obtained in the same manner as in Example 1 except that the rotation speed of the spin coater was changed to 6000 rpm.
As a result of measuring the contact angle with respect to the purified water of this sample, a high contact angle value of 149 degrees was shown.

実施例2におけるスピンコーターの回転速度を2000回転/分に変更した以外はすべて実施例2と同様にして試料を作成した。この試料の精製水に対する接触角は130度であり、実施例2における試料よりやや低く、基材表面の撥水性がやや低い結果を示した。   Samples were prepared in the same manner as in Example 2 except that the rotation speed of the spin coater in Example 2 was changed to 2000 rpm. The contact angle of this sample with purified water was 130 degrees, which was slightly lower than that of the sample in Example 2, and the water repellency of the substrate surface was slightly lower.

(比較例2)
実施例1におけるオクチルシリル化微粒子酸化チタンの代わりに、一次粒子径5nmのシリカを同様の方法でオクチルシリル化処理したものを用いた以外は実施例1と同様にして試料を得た。この塗膜表面の精製水に対する接触角は最大でも120度程度であり、高撥水性表面を形成しているとは言えなかった。
(Comparative Example 2)
A sample was obtained in the same manner as in Example 1 except that instead of octylsilylated fine particle titanium oxide in Example 1, silica having a primary particle diameter of 5 nm was subjected to octylsilylation treatment in the same manner. The contact angle of the surface of the coating film with purified water was about 120 degrees at the maximum, and it could not be said that a highly water-repellent surface was formed.

(比較例3)
実施例1におけるオクチルシリル化微粒子酸化チタンの代わりに、一次粒子径250nmのシリカを同様の方法でオクチルシリル化処理したもの以外は実施例1と同様にして試料を得た。この塗膜表面の精製水に対する接触角は最大でも115度程度であり、高撥水性表面を形成できなかった。
(Comparative Example 3)
A sample was obtained in the same manner as in Example 1 except that instead of octylsilylated fine particle titanium oxide in Example 1, silica having a primary particle size of 250 nm was octylsilylated by the same method. The contact angle of the coating surface with purified water was about 115 degrees at the maximum, and a highly water-repellent surface could not be formed.

基材が立体物の例として角型ブロックの中心部に金属製の軸を固定し、これを実施例2で用いた微粒子酸化チタンスラリーに浸漬し、モーターを用いて3000回転/分の回転速度で30秒間回転して塗工した。その後、60℃で乾燥し、処理を完結させた。このブロックの精製水に対する接触角は、135°前後で、高い撥水性の表面を有していた。   As an example of a three-dimensional base material, a metal shaft is fixed to the center of a square block, which is immersed in the fine particle titanium oxide slurry used in Example 2, and rotated at 3000 rpm with a motor. And rotated for 30 seconds. Then, it dried at 60 degreeC and the process was completed. The contact angle of the block with purified water was around 135 ° and had a highly water-repellent surface.

(結果の総括)
実施例1と比較例1における試料の精製水に対する接触角を測定した結果を図1に示す。
図1では、縦軸に接触角(C.A.(°))を、横軸にオクチルシリル化微粒子酸化チタンとアマニ油合計質量に対するオクチルシリル化微粒子酸化チタンの質量比率を示している。
図1の結果からみると、アプリケーターで塗工した場合(「アプリケーター」と記載)と比べて同じ配合物でもスピンコーターを用いて塗工した場合(「スピンコーター」と記載)の方が、オクチルシリル化酸化チタンの高濃度領域、特に60質量%〜80質量%において有意に接触角が大きくなっていることが確認できた。とりわけ、オクチルシリル化酸化チタンの濃度比率が70質量%を越えると飛躍的に接触角が大きくなることが判った。
(Summary of results)
FIG. 1 shows the results of measuring the contact angles of the samples in Example 1 and Comparative Example 1 with respect to purified water.
In FIG. 1, the vertical axis represents the contact angle (CA (°)), and the horizontal axis represents the mass ratio of the octylsilylated fine particle titanium oxide to the total mass of the octylsilylated fine particle titanium oxide and linseed oil.
From the results shown in FIG. 1, octyl is better when applied with a spin coater (described as “spin coater”) than when applied with an applicator (described as “applicator”). It was confirmed that the contact angle was significantly increased in the high concentration region of silylated titanium oxide, particularly 60 mass% to 80 mass%. In particular, it has been found that when the concentration ratio of octylsilylated titanium oxide exceeds 70% by mass, the contact angle dramatically increases.

さらに、オクチルシリル化酸化チタンとアマニ油の質量比率が7.75:2.25(77.5質量%:22.5質量%)における塗膜表面の状態を走査型電子顕微鏡を用いて観察した結果を図2に示す。
図2から、塗膜表面に細かい筋状の構造が形成されていることがわかる。
Furthermore, the state of the coating film surface when the mass ratio of octylsilylated titanium oxide and linseed oil was 7.75: 2.25 (77.5 mass%: 22.5 mass%) was observed using a scanning electron microscope. The results are shown in FIG.
FIG. 2 shows that a fine streak structure is formed on the surface of the coating film.

次いで、実施例1の結果(図1)からみて、アプリケータに比して大きな接触角が得られるスピンコーターにおけるオクチルシリル化酸化チタンとアマニ油の質量比率を7.5:2.5(75質量%:25質量%)のときの試料について、有機溶剤による希釈倍率及びスピンコーターの回転速度による接触角への影響を調べた。
表1に示すように、希釈倍率、スピンコーターの回転速度(回転数/分)
を各変化させた場合の塗膜表面の精製水に対する接触角を求めた。
縦軸の希釈倍率は、実施例1と同様の手法で求めた。
表1によれば、塗膜表面の精製水に対する接触角は、有機溶剤の希釈率及
びスピンコーターの回転速度に関係しており、塗膜表面の撥水性がこれらの塗膜形成条件と密接に関係していることが判る。
Next, in view of the results of Example 1 (FIG. 1), the mass ratio of octylsilylated titanium oxide and linseed oil in a spin coater that provides a larger contact angle than that of the applicator is 7.5: 2.5 (75 (Mass%: 25% by mass) The influence of the dilution rate with the organic solvent and the rotation angle of the spin coater on the contact angle was examined.
As shown in Table 1, dilution rate, spin coater rotation speed (number of rotations / minute)
The contact angle with respect to the purified water of the coating film surface when each was changed was determined.
The dilution factor on the vertical axis was determined by the same method as in Example 1.
According to Table 1, the contact angle of the coating film surface with purified water is related to the dilution rate of the organic solvent and the rotation speed of the spin coater, and the water repellency of the coating film surface is closely related to these coating film forming conditions. It turns out that it is related.

なお、表中の「平滑」は、ガラス板上に1ミリインチのスリットを持ったアプリケーターを用いて0.02m/秒の速度で塗工した後、実施例1と同様に60℃で乾燥させて得たものの接触角を示す。また、粘度の単位は10−3Pa・sである。 “Smooth” in the table is applied at a rate of 0.02 m / sec using an applicator having a 1 mm inch slit on a glass plate and then dried at 60 ° C. in the same manner as in Example 1. The contact angle of the obtained one is shown. The unit of viscosity is 10 −3 Pa · s.

以上の実施例及び比較例の結果から、回転塗布法を用いて撥水性微粒子金属酸化物分散型配合物は、従来の塗布方法と比べて有意に高い接触角を有する表面、すなわち高い撥水性表面を形成できることが明らかになった。さらに、その表面を観察すると、筋状の微細構造が多数形成されていることが明らかになった。
本発明の用途としては、水滴のつかない窓ガラス、汚れにくいタイル、外壁材などの形成が挙げられる。
From the results of the above examples and comparative examples, the water-repellent fine particle metal oxide dispersion-type compound using the spin coating method has a surface having a significantly higher contact angle compared with the conventional coating method, that is, a high water-repellent surface. It became clear that can be formed. Furthermore, when the surface was observed, it became clear that many streaky microstructures were formed.
Applications of the present invention include the formation of water-free window glass, dirt-resistant tiles, outer wall materials, and the like.

実施例1及び比較例1の接触角測定結果を示す。The contact angle measurement result of Example 1 and Comparative Example 1 is shown. 実施例1において、オクチルシリル化酸化チタンとアマニ油の質量比率 が7.75:2.25における塗膜表面の状態を走査型電子顕微鏡を用いて観察し た写真を示す。In Example 1, the photograph which observed the state of the coating-film surface using the scanning electron microscope in the mass ratio of octyl silylated titanium oxide and linseed oil is 7.75: 2.25 is shown.

Claims (7)

微粒子金属酸化物、乾性油及び揮発性溶媒からなる微粒子金属酸化物分散型配合物を用いて基板表面に高撥水性表面を形成する方法において、該微粒子金属酸化物として一次粒子径が10nm〜50nmの範囲にある撥水化表面処理微粒子金属酸化物を使用し、かつ揮発性溶媒を除く配合物質量に対して撥水化表面処理微粒子金属酸化物の配合質量が60〜80質量%の範囲にある微粒子金属酸化物分散型配合物を、回転塗布法を用いて基板表面に塗工することを特徴とする高撥水性表面の形成方法。 In a method of forming a highly water-repellent surface on a substrate surface using a fine particle metal oxide dispersion type compound comprising fine particle metal oxide, drying oil and volatile solvent, the fine particle metal oxide has a primary particle size of 10 nm to 50 nm. The water-repellent surface-treated fine particle metal oxide is used in the range of 5 to 80% by mass, and the blended mass of the water-repellent surface-treated fine particle metal oxide is 60 to 80% by mass with respect to the amount of the compounded material excluding the volatile solvent. A method for forming a highly water-repellent surface, characterized in that a fine particle metal oxide dispersion type compound is applied to a substrate surface using a spin coating method. 回転塗布法がスピンコーターを用いるものであることを特徴とする請求項1記載の高撥水性表面の形成方法。   2. The method for forming a highly water-repellent surface according to claim 1, wherein the spin coating method uses a spin coater. 回転塗布法におけるスピンコーターの回転速度が、毎分2000〜6000回転の範囲にあることを特徴とする請求項1又は請求項2記載の高撥水性表面の形成方法。   The method for forming a highly water-repellent surface according to claim 1 or 2, wherein the spin coater has a rotational speed in the range of 2000 to 6000 revolutions per minute in the spin coating method. 微粒子金属酸化物分散型配合物中の微粒子金属酸化物が酸化チタン、酸化亜鉛、二酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化セリウム、酸化鉛、酸化錫、酸化鉄、酸化マンガン、酸化コバルト、酸化クロムの少なくとも1種であることを特徴とする請求項1記載の高撥水性表面の形成方法。   The fine metal oxide in the fine metal oxide dispersion compound is titanium oxide, zinc oxide, silicon dioxide, aluminum oxide, zirconium oxide, cerium oxide, lead oxide, tin oxide, iron oxide, manganese oxide, cobalt oxide, chromium oxide. The method for forming a highly water-repellent surface according to claim 1, wherein at least one of the above is used. 微粒子金属酸化物分散型配合物中に用いる乾性油が、アマニ油、ケシ油、胡桃油、ベニバナ油及びひまわり油の少なくとも1種であることを特徴とする請求項1記載の高撥水性表面の形成方法。   2. The highly water-repellent surface according to claim 1, wherein the drying oil used in the fine particle metal oxide dispersion type compound is at least one of linseed oil, poppy oil, walnut oil, safflower oil and sunflower oil. Forming method. 撥水化表面処理微粒子金属酸化物を得るための微粒子金属酸化物の撥水化表面処理が、アルキル鎖長が6〜12の範囲にあるアルキル基を有するモノアルキルトリアルコキシシラン類、トリメチルシラン、メチルハイドロジェンポリシロキサン、シリコーン樹脂、片末端反応性ジメチルポリシロキサン、金属石鹸、有機化チタネート、有機化アルミネート、フッ素化シラン、片末端反応性パーフルオロポリエーテル、シランカップリング剤の少なくとも1種を用いて行われたことを特徴とする請求項1記載の高撥水性表面の形成方法。 Water-repellent surface-treated fine-particle metal oxide water-repellent surface treatment for obtaining a fine-particle metal oxide, monoalkyltrialkoxysilanes having an alkyl group with an alkyl chain length in the range of 6 to 12, trimethylsilane, At least one of methyl hydrogen polysiloxane, silicone resin, one-end reactive dimethylpolysiloxane, metal soap, organic titanate, organicated aluminate, fluorinated silane, one-end reactive perfluoropolyether, silane coupling agent The method for forming a highly water-repellent surface according to claim 1, wherein 撥水化金属酸化物分散型配合物中の揮発性溶剤が、低級アルコール、n−ヘキサン、シクロヘキサン、トルエン、キシレン、イソパラフィン、フルオロカーボン、次世代フロン、n−ブタン、環状シロキサン、揮発性シリコーンの少なくとも1種であることを特徴とする請求項1記載の高撥水性表面の形成方法。   The volatile solvent in the water-repellent metal oxide dispersion type compound is at least a lower alcohol, n-hexane, cyclohexane, toluene, xylene, isoparaffin, fluorocarbon, next-generation fluorocarbon, n-butane, cyclic siloxane, and volatile silicone. The method for forming a highly water-repellent surface according to claim 1, which is one kind.
JP2006242821A 2006-09-07 2006-09-07 Method for forming a highly water-repellent surface Expired - Fee Related JP4877770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242821A JP4877770B2 (en) 2006-09-07 2006-09-07 Method for forming a highly water-repellent surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242821A JP4877770B2 (en) 2006-09-07 2006-09-07 Method for forming a highly water-repellent surface

Publications (2)

Publication Number Publication Date
JP2008062182A JP2008062182A (en) 2008-03-21
JP4877770B2 true JP4877770B2 (en) 2012-02-15

Family

ID=39285345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242821A Expired - Fee Related JP4877770B2 (en) 2006-09-07 2006-09-07 Method for forming a highly water-repellent surface

Country Status (1)

Country Link
JP (1) JP4877770B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511700B1 (en) 2016-09-06 2023-10-04 Keio University Method for measuring a uv or infrared protection effect of an aqueous composition and device for preparing a measurement sample

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635217B2 (en) * 2003-09-17 2011-02-23 学校法人慶應義塾 Surface treatment agent and material, and surface treatment method
JP2006022258A (en) * 2004-07-09 2006-01-26 Mitsubishi Rayon Co Ltd Composition, molding and manufacturing process of cured coated film

Also Published As

Publication number Publication date
JP2008062182A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP5466356B2 (en) High water-repellent composition
JP6843452B2 (en) How to prepare a composition containing carbon black
RU2687436C2 (en) Spray application system components with hydrophobic surface and methods
Binks et al. Influence of the degree of fluorination on the behaviour of silica particles at air–oil surfaces
JP4689467B2 (en) Functional film-coated article, manufacturing method thereof, and functional film-forming coating material
KR102301276B1 (en) Hydrophobic article
WO2005028579A1 (en) Surface finishing agent and finished material and method of surface finishing
Shafaamri et al. Effects of TiO2 nanoparticles on the overall performance and corrosion protection ability of neat epoxy and PDMS modified epoxy coating systems
JP2010089373A (en) Water repellent-oil repellent coating article and production of the same
JP2011140625A (en) Oil repellent coating article and method of producing the same
EP3922666A1 (en) Hydrophobic alginic acid particle group and method for producing same
KR102296571B1 (en) Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof
WO2020183149A1 (en) Improvements relating to superhydrophobic surfaces
JP6573482B2 (en) Zinc oxide-containing composite particles, method for producing zinc oxide-containing composite particles, ultraviolet shielding composition, and cosmetics
JP4877770B2 (en) Method for forming a highly water-repellent surface
Tigges et al. ZnO nanoparticle-containing emulsions for transparent, hydrophobic UV-absorbent films
JP6805538B2 (en) Silica particle dispersion and surface-treated silica particles
CN107353545A (en) Fluororesin metal oxide mixed dispersion liquid and preparation method thereof
KR20220006089A (en) Coating composition for hydrophobic film and article having hydrophobic surface
JP4325076B2 (en) Method for forming coating film
JP2020075845A (en) Hexagonal boron nitride powder
JP2009078952A (en) Porous inorganic powder having excellent re-dispersibility in water-based medium and method of manufacturing the same
Ullah et al. Fabrication and characterization of functionalized nano-silica based transparent superhydrophobic surface
Nimittrakoolchai et al. Preparation of stable ultrahydrophobic and superoleophobic silica-based coating
US8039517B2 (en) Colloidal particle sols and methods for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees