KR20160029918A - Method for improving the resistance to the drought or salt stress using CaLOX1 in plants - Google Patents

Method for improving the resistance to the drought or salt stress using CaLOX1 in plants Download PDF

Info

Publication number
KR20160029918A
KR20160029918A KR1020140118703A KR20140118703A KR20160029918A KR 20160029918 A KR20160029918 A KR 20160029918A KR 1020140118703 A KR1020140118703 A KR 1020140118703A KR 20140118703 A KR20140118703 A KR 20140118703A KR 20160029918 A KR20160029918 A KR 20160029918A
Authority
KR
South Korea
Prior art keywords
calox1
leu
glu
plants
asp
Prior art date
Application number
KR1020140118703A
Other languages
Korean (ko)
Other versions
KR101639478B1 (en
Inventor
이성철
임채우
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020140118703A priority Critical patent/KR101639478B1/en
Publication of KR20160029918A publication Critical patent/KR20160029918A/en
Application granted granted Critical
Publication of KR101639478B1 publication Critical patent/KR101639478B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention relates to a method for enhancing resistance against desiccation or salt stress in plants. More specifically, the present invention relates to a method for enhancing resistance against desiccation or salt stress in plants, by regulating expression of capsicum lipoxygenase 1 (CaLOX1) protein. A transgenic plant (CaLOX1-OX) in which CaLOX1 of the present invention is over-expressed has shown effects of reducing sensitivity for abscisic acid and enhancing resistance against desiccation or salt stress. Thus the method of the present invention can be useful for improving crops that men can use.

Description

CaLOX1을 이용한 식물체의 건조 또는 염 스트레스 저항성 증진방법 {Method for improving the resistance to the drought or salt stress using CaLOX1 in plants}[0001] The present invention relates to a method for improving dryness or salt stress resistance of plants using CaLOX1,

본 발명은 식물체의 건조 또는 염 스트레스 저항성을 증진시키는 방법에 관한 것으로서, 보다 구체적으로는 CaLOX1(Capsicum Lipoxygenase 1) 단백질의 발현을 조절하여 식물체의 건조 또는 염 스트레스에 대한 저항성을 증진시키는 방법에 관한 것이다.More particularly, the present invention relates to a method for improving the resistance to drying or salt stress of a plant by controlling the expression of CaLOXl (Capsicum Lipoxygenase 1) protein .

건조(drought), 고염과 같은 환경 스트레스들은 직접적으로 곡물의 성장 및 생산에 해로운 효과들을 야기한다. 특히, 오늘날 사막화가 진행됨에 따라 물 부족이 농업과 환경에 큰 문제점을 초래하고 있으며, 이에 물을 적게 사용하여도 건조한 환경에서 견디고 살 수 있는 식물의 개발이 필요한 실정이다. 이러한 기술이 개발되어 작물에 적용되면 농업 생산량이 크게 증가할 것으로 기대되며, 특히 건조한 지역의 경우, 건조 저항성이 향상된 식물, 즉 증산 작용을 낮출 수 있는 식물들은 생존에 유리하므로, 농업 생산성 향상에 기여할 수 있을 뿐 아니라, 환경이 매우 건조한 지역에서 환경정화에도 유용할 수 있다.Environmental stresses, such as drought and high salinity, directly affect grain growth and production. Especially, as the desertification progresses today, water shortages cause big problems in agriculture and the environment. Therefore, it is necessary to develop plants that can survive in a dry environment even when water is used less. When these techniques are developed and applied to crops, agricultural production is expected to increase greatly. Especially in dry areas, plants with improved resistance to dryness, that is, plants capable of lowering the transpiration rate, are favorable to survival, And may be useful for environmental purification in areas where the environment is very dry.

한편, 식물은 가뭄, 염, 추위, 더위, 병충해 등의 다양한 환경적 스트레스에 자주 노출되기 때문에 스트레스의 해로운 효과에 대처하는 생리학적, 생화학적, 분자적 방어 기작을 발전시켜왔으며, 특히 앱시스산(abscisic acid: ABA) 신호 변환 조절은 식물이 상기 스트레스를 극복할 수 있도록 한다. 보고된 바에 의하면, 앱시스산을 미리 처리하고 스트레스를 준 식물은 그렇지 않은 식물에 비해 스트레스에 잘 저항하는 반면 앱시스산을 생성하지 못하거나, 앱시스산에 반응하지 못하는 돌연변이 식물들은 스트레스에 약한 것으로 알려졌다. 따라서 앱시스산의 반응에 관여하는 단백질들을 이용하면, 환경 스트레스에 대한 저항성이 향상된 식물을 개발할 수 있을 것으로 기대되고 있다.Plants, on the other hand, have been developing physiological, biochemical and molecular defense mechanisms to cope with the harmful effects of stress because they are frequently exposed to various environmental stresses such as drought, salt, cold, heat, abscisic acid: ABA) signal transduction regulation allows plants to overcome these stresses. It has been reported that plants pretreated with abscisic acid and stressed are resistant to stress compared to plants that do not produce stress, while mutant plants that fail to produce abscisic acid or fail to respond to abscisic acid are known to be stress-free. Therefore, it is expected that the use of proteins involved in the reaction of abscisic acid will enable to develop plants with improved resistance to environmental stress.

이에, 식물체의 건조 또는 염 저항성 증진방법이 주요한 과제의 대상이 되고 있으며, 앱시스산의 반응에 관여하는 단백질을 이용하는 방법에 대한 연구가 이루어지고 있으나(한국 특허 공개번호 10-2010-0040789), 아직 미비한 실정이다. Accordingly, a method of increasing the drying or salt resistance of plants has been a major subject of study, and studies have been conducted on the use of proteins involved in the reaction of abscisic acid (Korean Patent Publication No. 10-2010-0040789) It is not enough.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명자들은, CaLOX1이 과발현된 형질전환 식물체(CaLOX1-OX)의 앱시스산 민감도 감소효과, 건조 또는 염 스트레스에 대한 저항성 증진효과를 확인하고, 이에 기초하여 본 발명을 완성하게 되었다. Disclosure of the Invention The present invention was conceived to solve such problems as described above. The present inventors have confirmed that the effect of reducing the sensitivity of abscisic acid and the resistance to drying or salt stress of the transgenic plant ( CaLOX1- OX) overexpressing CaLOX1 , Thereby completing the present invention.

이에, 본 발명의 목적은 CaLOX1 단백질을 암호화하는 유전자를 식물체에 형질전환하는 단계 및 상기 형질전환된 식물체에서 CaLOX1 단백질을 과발현시키는 단계를 포함하는 식물체의 건조 또는 염 스트레스 저항성 증진방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for promoting drying or salt stress resistance of a plant comprising transforming a gene encoding a CaLOX1 protein into a plant, and overexpressing the CaLOX1 protein in the transformed plant.

또한, 본 발명의 다른 목적은 상기 방법에 의해 건조 또는 염 스트레스 저항성이 증진된 형질전환 식물체를 제공하는 것이다.
It is another object of the present invention to provide a transgenic plant having improved drying or salt stress resistance by the above method.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 CaLOX1단백질을 암호화하는 유전자를 식물체에 형질전환하는 단계, 및 상기 형질전환된 식물체에서 CaLOX1 단백질을 과발현시키는 단계를 포함하는 식물체의 건조 또는 염 스트레스 저항성 증진방법을 제공한다.In order to accomplish the object of the present invention, the present invention provides a method for producing a plant, comprising the step of transforming a gene encoding a CaLOX1 protein into a plant, and a step of overexpressing the CaLOX1 protein in the transformed plant, Thereby providing a method of enhancing stress resistance.

본 발명의 일 구현예로서, 상기 CaLOX1 단백질은 서열번호 1의 아미노산 서열로 이루어질 수 있다.In one embodiment of the present invention, the CaLOX1 protein may be composed of the amino acid sequence of SEQ ID NO: 1.

본 발명의 다른 구현예로서, 상기 CaLOX1 단백질을 암호화하는 유전자는 서열번호 2의 염기서열로 이루어질 수 있다.In another embodiment of the present invention, the gene coding for the CaLOX1 protein may comprise the nucleotide sequence of SEQ ID NO: 2.

본 발명은 상기 방법에 의해 건조 또는 염 스트레스 저항성이 증진된 형질전환 식물체를 제공한다. The present invention provides a transgenic plant improved in drying or salt stress resistance by the above method.

본 발명의 일 구현예로서, 상기 형질전환 식물체는 애기장대(Arabidopsis)일 수 있다. In one embodiment of the present invention, the transgenic plant may be Arabidopsis .

본 발명은 후보 물질을 처리한 후, CaLOX1 단백질의 과발현 여부를 측정하는 단계를 포함하는, 식물체의 건조 또는 염 스트레스 저항성 증진제 스크리닝 방법을 제공한다. The present invention provides a method of screening a plant for drying or salt stress resistance enhancer, comprising the step of treating the candidate substance and then measuring the overexpression of the CaLOX1 protein.

본 발명에 따른 식물체의 건조 또는 염 스트레스 저항성 증진방법은 CaLOX1 단백질을 과발현시키는 단계를 포함하며, 상기 CaLOX1이 과발현된 형질전환 식물체(CaLOX1-OX)의 앱시스산 민감도 감소효과, 및 건조 또는 염 스트레스에 대한 저항성 증진효과를 확인하였는바, CaLOX1 발현조절을 통해 인류가 이용할 수 있는 작물 등의 개량에 유용하게 활용될 수 있을 것으로 기대된다. The method for enhancing dryness or salt stress resistance of a plant according to the present invention includes overexpression of CaLOX1 protein. The method of the present invention is characterized in that the CaLOX1 overexpressed transgenic plant ( CaLOX1- OX) has an abscisic acid sensitivity reduction effect, As a result, the CaLOX1 expression is expected to be useful for the improvement of human crops.

도 1은 (A) 앱시스산(ABA), (B) 건조, 및 (C) 염 스트레스 조건에서, CaLOX1 발현량의 변화를 qRT-PCR을 통하여 확인한 결과이다.
도 2는 CaLOX1이 과발현된 형질전환 애기장대 식물체(CaLOX1-OX #12, #16)와 야생형(WT)인 대조군간의 (A) 발아 전 ABA 처리 또는 (B) 발아 후 ABA처리에 의한 뿌리 길이를 육안으로 관찰한 결과이며, (C) 발아 후 ABA 처리에 의한 뿌리 길이를 수치화한 결과이다.
도 3은 삼투적 스트레스 조건에서, CaLOX1이 과발현된 형질전환 애기장대 식물체와 야생형인 대조군간의 (A) 뿌리 길이를 육안으로 관찰한 결과, (B) 뿌리 길이를 수치화한 결과, (C) 발아율, 및 (D) 녹색 자엽의 비율을 수치화한 결과이다.
도 4는 염 스트레스 조건에서, CaLOX1이 과발현된 형질전환 애기장대 식물체와 야생형인 대조군간의 (A) 발아율, (B) 녹색 자엽의 비율을 수치화한 결과, 및 (C) 녹색 자엽의 비율을 육안으로 관찰안 결과이다.
도 5는 염 스트레스 조건에서, CaLOX1이 과발현된 형질전환 애기장대 식물체와 야생형인 대조군간의 발아 후 NaCl 처리에 의한 (A) 잎의 변색을 육안으로 관찰한 결과, (B) 엽록소의 농도, (C) 뿌리를 육안으로 관찰한 결과, 및 (D) 뿌리길이를 수치화한 결과이다.
도 6은 염 스트레스 조건에서, 유식물체 상태의 CaLOX1이 과발현된 형질전환 애기장대 식물체와 야생형인 대조군간의 (A) 황백화 현상을 육안으로 관찰한 결과, (B) 생존률, (C) 생중량, (D) 엽록소의 농도, 및 (F) 갈색반점을 육안으로 관찰한 결과이다.
도 7은 염 스트레스 조건에서, 유식물체 상태의 CaLOX1이 과발현된 형질전환 애기장대 식물체와 야생형인 대조군간의 DREB2A, RD20, RD29a, RD29b, P5CS 유전자의 발현양상을 비교한 결과이다.
도 8은 건조 스트레스 조건에서, CaLOX1이 과발현된 형질전환 애기장대 식물체와 야생형인 대조군간의 (A) 생존률, (B) 수분 손실량, (C) 기공개도, (D) MDA 농도, 및 (E) 갈색반점을 육안으로 관찰한 결과이다.
도 9는 건조 스트레스 조건에서, CaLOX1이 과발현된 형질전환 애기장대 식물체와 야생형인 대조군간의 COR15A, DREB2A, RD20, RD29a, RD29b 유전자 발현양상을 비교한 결과이다.
FIG. 1 shows the results of qRT-PCR for the change in the amount of CaLOX1 expression under the conditions of (A) abscisic acid (ABA), (B) drying, and (C) salt stress.
Fig. 2 shows the root lengths obtained by ABA treatment before germination (A) or ABA treatment after germination (A) between the CaLOX1 overexpressed transgenic Arabidopsis thaliana ( CaLOX1- OX # 12, # 16) and the wild type (WT) And (C) the result of quantifying root length by ABA treatment after germination.
FIG. 3 shows (A) root lengths of (A) root length between transgenic Arabidopsis plants overexpressing CaLOX1 over osmotic stress conditions, (B) root length, (C) germination rate, And (D) green cotyledon.
FIG. 4 is a graph showing the ratio of (A) germination rate, (B) green cotyledon percentage and (C) percentage of green cotyledons between the transgenic Arabidopsis plants overexpressing CaLOX1 and the wild type control under salt stress conditions Observation results.
FIG. 5 shows the results of visual observation of discoloration of (A) leaves after germination by NaCl treatment between the transgenic Arabidopsis thaliana plants overexpressing CaLOX1 under salt stress conditions, (B) chlorophyll concentration, (C ), And (D) the result of quantifying the root length.
FIG. 6 shows (B) the survival rate, (C) fresh weight, and (C) the yellowing phenomenon (A) between the transformed Arabidopsis thaliana plants overexpressing CaLOX1 in the vegetative state and the wild- (D) concentration of chlorophyll, and (F) brown spots.
7 is a result of comparing the expression patterns of genes DREB2A, RD20, RD29a, RD29b, P5CS between the salt stress conditions, the seedlings state CaLOX1 the transgenic Arabidopsis thaliana plants with the wild type control group.
Figure 8 shows the survival rate, (B) the water loss, (C) the degree of air release, (D) the MDA concentration, and (E) the survival rate between the transgenic Arabidopsis plants overexpressing CaLOX1 and the wild- This is the result of visual observation of brown spots.
9 is a result of a comparison COR15A, DREB2A, RD20, RD29a, RD29b gene expression profile between the stress in a dry condition, the CaLOX1 the transgenic Arabidopsis thaliana plants with the wild type control group.

본 발명자들은, 건조 또는 염 스트레스 조건에서 CaLOX1(Capsicum Lipoxygenase 1) 발현 증가 및 CaLOX1이 과발현된 형질전환 애기장대에서 앱시스산 민감도 감소효과, 건조 또는 염 스트레스에 대한 저항성 증진효과를 확인하고, 이에 기초하여 본 발명을 완성하였다.
The present inventors confirmed the effect of increasing the expression of CaLOX1 (Capsicum Lipoxygenase 1) in the dry or salt stress condition and the effect of decreasing the sensitivity of abscisic acid sensitivity and the resistance to drying or salt stress in transgenic Arabidopsis thaliana overexpressing CaLOX1 , Thus completing the present invention.

이하 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 CaLOX1 단백질을 암호화하는 유전자를 식물체에 형질전환하는 단계 및 상기 형질전환된 식물체에서 CaLOX1 단백질을 과발현시키는 단계를 포함하는 식물체의 건조 또는 염 스트레스 저항성 증진방법을 제공한다.The present invention provides a method for promoting drying or salt stress resistance of a plant comprising transforming a gene encoding a CaLOX1 protein into a plant and overexpressing the CaLOX1 protein in the transformed plant.

본 발명에서 과발현시키는 CaLOX1은 고추로부터 유래하는, 리폭시나제나제(Lipoxygenase) 단백질이다. Lipoxygenase 단백질은 식물을 비롯하여 동물과 곰팡이에서 발견되었으며, 세포에서 다양한 기능을 하는 것으로 알려져 있는 효소의 한 종류이다 CaLOX1 overexpressed in the present invention is a lipoxygenase protein derived from red pepper. Lipoxygenase proteins are found in plants, animals and molds, and are a class of enzymes known to function in cells

Lipoxygenase는 대부분의 식물에서 리폭시제나제 불포화 지방산의 산화를 촉매하는 효소로서 작용하며, 곤충에 대한 저항성, 상처에 의한 반응과 노화, 및 식물병에 대한 저항성등에 관여하는 것으로 알려져 있으나, 건조 또는 고염 스트레스 저항성과 관련하여 보고된바가 없는 실정이다. 이에, 본 발명은 CaLOX1 단백질을 과발현시킴으로써, 식물체의 건조 또는 염 스트레스 저항성을 증진시키는 것을 특징으로 한다. Lipoxygenase acts as an enzyme that catalyzes the oxidation of lipoxygenase and unsaturated fatty acid in most plants and is known to be involved in resistance to insects, response to wounds, aging, and resistance to plant diseases. However, There is no report on stress resistance. Accordingly, the present invention is characterized by overexpression of the CaLOX1 protein, thereby enhancing the drying or salt stress resistance of the plant.

또한, 본 발명의 CaLOX1 단백질은 바람직하게는 서열번호 1의 아미노산 서열로 이루어져 있으며, 상기 CaLOX1 단백질을 암호화하는 유전자는 바람직하게는 서열번호 2로 이루어질 수 있으나, 이에 제한되는 것은 아니다. In addition, the CaLOX1 protein of the present invention is preferably composed of the amino acid sequence of SEQ ID NO: 1, and the gene encoding the CaLOX1 protein may preferably be of SEQ ID NO: 2, but is not limited thereto.

본 발명의 일실시예에서는 건조 또는 염 스트레스 조건에서, CaLOX1 발현 증가를 확인하였으며(실시예 1 참조), CaLOX1이 과발현된 형질전환 애기장대를 제조하여(실시예 2 참조), 앱시스산(Abscisic acid, ABA) 처리에 의한 민감도 감소효과를 확인하였다(실시예 3 참조). 또한, CaLOX1이 과발현된 형질전환 애기장대에서, mannitol 처리에 의한 삼투적 스트레스, NaCl 처리에 의한 염 스트레스, 및 탈수 처리에 의한 건조 스트레스에 대한 저항성 증진 효과를 확인하였는바(실시예 4 내지 6 참조), CaLOX1의 발현을 조절함으로써, 건조 또는 염 스트레스 저항성이 증진된 식물체를 제공할 수 있음을 확인하였다.In one embodiment of the present invention, an increase in CaLOX1 expression was observed under dry or salt stress conditions (see Example 1), and a transgenic Arabidopsis thaliana overexpressing CaLOX1 was prepared (see Example 2), and abscisic acid , ABA) treatment (see Example 3). In addition, in the transgenic Arabidopsis thaliana overexpressing CaLOX1 , osmotic stress caused by mannitol treatment, salt stress due to NaCl treatment, and resistance to drying stress by dehydration treatment were confirmed (see Examples 4 to 6 ), And by controlling the expression of CaLOX1 , it was confirmed that plants with improved dry or salt stress resistance could be provided.

이에, 본 발명은 CaLOX1(Capsicum lipoxygenase 1) 단백질이 과발현되어 건조 또는 염 스트레스 저항성이 증진된 형질전환 식물체를 제공한다. Accordingly, the present invention provides a transgenic plant in which CaLOX1 (Capsicum lipoxygenase 1) protein is overexpressed to enhance dryness or salt stress resistance.

본 발명에 따른 식물체는 벼, 밀, 보리, 옥수수, 콩, 감자, 팥, 귀리, 수수를 포함하는 식량작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파, 당근을 포함하는 채소작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩, 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구, 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합, 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐, 페레니얼라이그라스를 포함하는 사료작물류 등일 수 있으며, 바람직하게는 애기장대(Arabidopsis)일 수 있으나, 이에 한정되는 것은 아니다.
The plant according to the present invention is a food crop including rice, wheat, barley, corn, soybean, potato, red bean, oats, sorghum; Vegetable crops including Arabidopsis, cabbage, radish, red pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, squash, onions, onions and carrots; Special crops including ginseng, tobacco, cotton, sesame seed, sugar cane, beet, perilla, peanut, and rapeseed; Fruit trees including apple trees, pears, jujube trees, peaches, sheep grapes, grapes, citrus fruits, persimmons, plums, apricots, and bananas; Roses, gladiolus, gerberas, carnations, chrysanthemums, lilies, tulips; And feed crops including ragras, red clover, orchardgrass, alpha-alpha, tall fescue, perenniallaigrus, and the like, preferably Arabidopsis , but are not limited thereto.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.

실시예 1. ABA, 염 또는 건조 스트레스에 의한 EXAMPLES Example 1: Effect of ABA, salt or dry stress CaLOX1CaLOX1 유전자의 유도 Induction of gene

CaLOX1 유전자가 ABA, 염(NaCl) 또는 건조(drought) 스트레스에 의해 촉진되는지 알아보기 위해, qRT-PCR을 통하여 상기 조건하에서, CaLOX1 유전자 발현양상을 확인하였다. To determine whether the CaLOX1 gene is promoted by ABA, salt (NaCl) or drought stress, the expression pattern of CaLOX1 gene was confirmed under the above conditions through qRT-PCR.

ABA (100μM), drought(탈수), NaCl (200mM)을 각각 처리한 후, 샘플링한 고추 잎으로부터 RNA를 추출하였다. 추출된 RNA 샘플은 genomic DNA를 제거하기 위하여 RNA-free DNase 처리를 하였으며, -20℃에서 보관되었다. reverse transcription PCR을 위하여, Transcript First Strand cDNA Synthesis kit (Roche)를 이용하였다. 이와 동시에 역전사효소없이 PCR을 수행하고, cDNA 샘플에서 genomic DNA의 오염을 재확인하기 위한 qRT-PCR에 PCR 산물을 사용하였다. 합성한 cDNA는 iQTMSYBR Green Supermix 및 하기 표 1에 나타낸 특이 프라이머와 함께 CFX96 Touch™ Real-Time PCR detection system (Bio-Rad, Hercules, CA, USA)을 이용하여 증폭시켰다. 모든 반응은 세 번 반복하여 수행하였으며, PCR 조건은 다음과 같다: 95℃에서 5분 가열 후, [95℃에서 20초, 60℃에서 20초, 72℃에서 20초]를 한 사이클로 하여 45 사이클 반복. qRT-PCR은 반복 실험(biological 및 technical replicate)을 각각 적어도 두 번씩 수행하였다. 각 유전자의 상대적 발현량은 ΔΔCt 방법(Livak and Schmittgen 2001)으로 계산하였으며, 타겟 유전자 발현의 정확한 측정을 위해 내부 대조군 유전자(18S rRNA)를 정규화에 이용하였다.After treating ABA (100 μM), drought (dehydrated) and NaCl (200 mM), RNA was extracted from the sampled pepper leaves. Extracted RNA samples were treated with RNA-free DNase to remove genomic DNA and stored at -20 ° C. For reverse transcription PCR, Transcript First Strand cDNA synthesis kit (Roche) was used. At the same time, PCR was performed without reverse transcriptase, and PCR products were used for qRT-PCR to reaffirm genomic DNA contamination in cDNA samples. The synthesized cDNA was amplified using a CFX96 Touch ™ real-time PCR detection system (Bio-Rad, Hercules, CA, USA) together with iQ SYBR Green Supermix and the specific primers shown in Table 1 below. All reactions were repeated three times. The PCR conditions were as follows: After heating for 5 minutes at 95 ° C, 45 cycles (95 ° C for 20 seconds, 60 ° C for 20 seconds, and 72 ° C for 20 seconds) repeat. qRT-PCR was performed at least twice each in biological and technical replicates. The relative expression level of each gene was calculated by the ΔΔCt method (Livak and Schmittgen 2001), and an internal control gene (18S rRNA) was used for normalization to accurately measure target gene expression.

Figure pat00001
Figure pat00001

도 1에 나타낸 바와 같이, ABA 스트레스 조건에서, ABA 처리 후, 2~4시간 경과 후에 CaLOX1 발현이 증가하였으나 유의성을 확인할 수 없었으며, 건조 스트레스 조건에서는 탈수처리 후, 6시간이 경과한 때부터 CaLOX1 발현이 증가하여 12시간 경과 후에 유의적인 발현 증가를 확인하였다. 또한, 염 스트레스 조건에서는 염 처리후, 2시간이 경과한 때부터 CaLOX1 발현이 증가하여 6시간 경과 후에 유의적인 발현 증가를 확인하였다.As shown in FIG. 1, in the ABA stress condition, the expression of CaLOX1 increased after 2 to 4 hours after the ABA treatment, but the significance could not be confirmed. In the dry stress condition, after 6 hours from the dehydration treatment, CaLOX1 Expression was increased and expression was significantly increased after 12 hours. In salt stress condition, CaLOX1 expression was increased from 2 hours after salt treatment, and significant increase was observed after 6 hours.

상기 결과는 CaLOX1 유전자의 발현은 염 및 건조 스트레스와 밀접한 관련성을 갖는다는 것을 의미한다.
These results indicate that the expression of CaLOX1 gene is closely related to salt and dry stress.

실시예Example 2.  2. CaLOX1CaLOX1 과발현 애기장대 돌연변이 식물체의 제조Production of overexpressed Arabidopsis mutant plants

CaLOX1 유전자에 대해 식물체 내에서의 그 기능을 확인하기 위해 모델식물인 애기장대에 형질전환하였다. CaMV 35S promoter와의 결합으로 CaLOX1 유전자가 과발현될 수 있게 벡터를 구축하고 Agrobacterium에 형질전환하여 최종적으로 애기장대에 형질전환을 시도하여 2 라인(#12, #16)을 선발하였다.
The CaLOX1 gene was transformed into Arabidopsis thaliana, a model plant, to confirm its function in the plant. A vector was constructed to overexpress the CaLOX1 gene by binding with the CaMV 35S promoter, and 2 lines (# 12, # 16) were selected by transfection into Agrobacterium and finally to Arabidopsis.

실시예 3. Example 3. CaLOX1CaLOX1 과발현 애기장대 돌연변이 식물체의 ABA 스트레스에 대한 감소된 민감도 확인 Identified reduced sensitivity to ABA stress in overexpressed Arabidopsis mutant plants

앱시스산(Abscisic acid, ABA) 처리에 의하여 CaLOX1 유전자의 유의적인 발현 증가를 확인할 수 없었으나, ABA 민감도에 대한 CaLOX1 유전자의 역할을 알아보기 위하여 CaLOX1이 과발현된 형질전환 애기장대 식물체(CaLOX1-OX #12, #16)와 야생형(WT)인 대조군간의 발아 전 또는 발아 후 ABA 처리에 의한 뿌리의 길이를 비교하였다. No significant increase in expression of CaLOX1 gene was observed by treatment with abscisic acid (ABA) To investigate the role of the CaLOX1 gene, we compared the lengths of roots from pre-germination or germinated ABL- treated roots between CaLOX1 overexpressed transgenic Arabidopsis plants ( CaLOX1- OX # 12, # 16) and wild-type (WT) .

CaLOX1이 과발현된 형질전환 및 야생형 애기장대 묘목을 ABA(0. 0.5, 1.0 μM)가 포함된 0.5X MS에서 7일 동안 수직 성장시킨 후, 뿌리 길이를 비교하였다. 또한, 발아 후 ABA 처리에 의한, CaLOX1이 과발현된 형질전환 및 야생형 애기장대 묘목의 뿌리 길이를 비교하기 위하여, 0,5X MS에서 4일 동안 성장 시킨 후, ABA(0. 20 μM)가 포함된 0,5X MS에서 7일 동안 성장시켰으며, 상기 실험은 20개의 종자(seed)를 대상으로 실시되었으며, 독립적으로 3번 반복 수행하였다.
Transgenic and wild-type Arabidopsis plants overexpressing CaLOX1 were grown vertically for 7 days in 0.5X MS containing ABA (0.5 μM, 1.0 μM), and then root lengths were compared. In addition, in order to compare the roots length of the transgenic and wild-type Arabidopsis seedlings overgrown with CaLOX1 by germination after ABA treatment, the plants were grown for 4 days in 0.5X MS and then cultured in the medium containing ABA (0.20 μM) 0,5X MS for 7 days, and the experiment was conducted on 20 seeds and performed independently 3 times.

도 2에 나타낸 바와 같이, ABA의 처리농도가 증가함에 따라, CaLOX1이 과발현된 형질전환 및 야생형 애기장대 묘목의 뿌리 길이는 감소하였으나, CaLOX1이 과발현된 형질전환 애기장대는 야생형인 대조군과 비교하여 뿌리길이가 더디게 감소하였다. 또한, 발아 후 ABA를 처리한 식물체에서도 유사한 결과를 확인하였다. 2, the to as the concentration of ABA is increased, but CaLOX1 the root length of the transgenic and wild-type Arabidopsis seedlings are reduced, transgenic Arabidopsis a CaLOX1 overexpression compared to the wild type of control roots The length decreased slowly. Similar results were also obtained in plants treated with ABA after germination.

상기 결과는 CaLOX1 유전자가 과발현된 애기장대에서 앱시스산(ABA)에 대한 민감도가 감소되었음을 의미한다.
The above results indicate that the sensitivity to abscisic acid (ABA) is decreased in the Arabidopsis overexpressing CaLOX1 gene.

실시예 4.Example 4. CaLOX1 CaLOX1 과발현 애기장대 돌연변이 식물체의 삼투적 스트레스에 대한 증진된 저항성 확인 Increased resistance to osmotic stress in overexpressed Arabidopsis mutant plants

삼투적 스트레스에 대한 반응에서 CaLOX1 유전자의 역할을 알아보기 위해, 삼투적 스트레스 조건에서 CaLOX1-OX 애기장대 및 야생형인 대조군간의 뿌리길이, 발아율 및 녹색자엽의 비율을 비교하였다.To investigate the role of the CaLOX1 gene in response to osmotic stress, we compared the root length, germination rate and green cotyledon percentage between CaLOX1- OX and wild-type controls under osmotic stress conditions.

CaLOX1이 과발현된 형질전환 및 야생형 애기장대 묘목(seedling)을 mannitol(0. 300, 400, 500 mM)이 포함된 0.5X MS에서 7일 동안 수직 성장시킨 후, 뿌리 길이를 비교하였다. 또한, mannitol(500 mM)이 포함된 0.5X MS 아가 배지가 담긴 플레이트에 CaLOX1이 과발현된 형질전환 및 야생형 애기장대를 파종하고 발아시켰으며, 이로부터 5일 후, 각각의 발아율을 측정하였으며, 상기와 같은 방법으로 mannitol(400 mM)이 포함된 0.5X MS 아가 배지가 담긴 플레이트에 파종 및 발아시켜 7일 후, 녹색 자엽의 비율을 확인하였다. Transformed and wild type Arabidopsis seedlings overexpressing CaLOX1 were grown vertically for 7 days in 0.5X MS containing mannitol (0. 300, 400, 500 mM), and then root lengths were compared. In addition, transgenic and wild type Arabidopsis thaliana overexpressing CaLOX1 was inoculated and germinated on a plate containing 0.5X MS agar medium containing mannitol (500 mM), and germination rate was measured after 5 days from each of them. And seeded on a plate containing 0.5X MS agar medium containing mannitol (400 mM) in the same manner as in Example 1. After 7 days, the ratio of green cotyledons was confirmed.

도 3에 나타낸 바와 같이, mannitol의 처리농도가 증가함에 따라, CaLOX1이 과발현된 형질전환 및 야생형 애기장대 묘목의 뿌리 길이는 감소하였으나, CaLOX1이 과발현된 형질전환 애기장대는 야생형인 대조군과 비교하여 뿌리길이가 더디게 감소하였으며, 상대적으로 높은 발아율 및 녹색 자엽의 비율을 확인하였다.As shown in FIG. 3, as the treatment concentration of mannitol increased, the lengths of transgenic and wild-type Arabidopsis seedlings overexpressing CaLOX1 decreased, but the transgenic Arabidopsis thaliana overexpressing CaLOX1 showed a longer root And the ratio of germination and green cotyledons was relatively high.

상기 결과는 CaLOX1 유전자가 과발현된 애기장대에서 mannitol 처리에 의한 삼투적 스트레스에 대한 저항성이 증진되었음을 의미한다.
These results indicate that the tolerance to osmotic stress by mannitol treatment in the Arabidopsis thaliana overexpressing CaLOX1 gene was improved.

실시예 5. Example 5. CaLOX1CaLOX1 과발현 애기장대 돌연변이 식물체의 염 스트레스에 대한 증진된 저항성 확인 Increased resistance to salt stress in overexpressing Arabidopsis mutants

염 스트레스에 대한 반응에서 CaLOX1 유전자의 역할을 알아보기 위해, 발아 전 CaLOX1-OX 애기장대 및 야생형인 대조군에 염 스트레스 처리를 한 경우, 양자간 발아율, 녹색자엽의 비율을 비교하였으며, 발아 후 CaLOX1-OX 애기장대 및 야생형인 대조군에 염 스트레스 처리를 한 경우, 양자간 엽록소의 농도 및 뿌리의 길이를 비교하였다. 또한, 유식물체 상태의 CaLOX1-OX 애기장대 및 야생형인 대조군에 염 스트레스 처리를 한 경우, 양자간 황백화 현상, 생존률, 생중량, 엽록소 농도, 과산화수소 생산량 및 염스트레스와 관련된 유전자의 발현양상을 비교하였다. In order to investigate the role of CaLOX1 gene in response to salt stress, the ratio of gonadal germination rate and green cotyledon when germination stress was applied to the pre-germination CaLOX1- OX Arabidopsis and wild-type control were compared. The concentration of chlorophyll and the length of root were compared in the case of salt stress treatment of OX Arabidopsis and wild type control. In addition, the expression patterns of genes related to bilateral yellowing, survival rate, fresh weight, chlorophyll concentration, hydrogen peroxide yield, and salt stress were compared when salt stress treatment was applied to CaLOX1- OX Arabidopsis and wild type control plants Respectively.

CaLOX1이 과발현된 형질전환 및 야생형 애기장대 묘목(seedling)을 NaCl (200 mM)이 포함된 0.5X MS 아가 배지가 담긴 플레이트에 파종시켰으며, 이로부터 7일 후 발아율 및 녹색자엽의 비율을 확인하였다. 또한, 발아 후의 식물체에서는, 0.5X MS 아가 배지가 담긴 플레이트에서 성장시킨 4일된 CaLOX1이 과발현된 형질전환 및 야생형 애기장대를 NaCl (175 mM)이 포함된 0.5X MS 액체배지에 옮기고 7일이 경과한 후, 각각의 엽록소 농도를 측정하였으며, 상기와 같은 방법으로 NaCl (100mM)이 포함된 0.5X MS 액체배지에 옮기고 7일이 경과한 후, 각각의 뿌리 길이를 확인하였다. 또한, 유식물체 상태에서는, 토양에서 키운 2주된 CaLOX1이 과발현된 형질전환 및 야생형 애기장대에 NaCl(250mM)을 처리하고 12일 동안 성장시킨 후, 황백화 현상, 생존률, 생중량의 손실 및 엽록소 농도를 측정하였으며, 애기장대 잎을 DAB 용액으로 염색하여 3, 6시간 후 갈색 반점을 확인함으로써 산화적 스트레스에 의한 과산화수소 생산량을 확인하였다. 또한, 염 스트레스와 관련된 유전자의 발현양상을 하기 표 2의 프라이머를 사용하여 qRT-PCR로 분석하였다.Transgenic and wild type Arabidopsis seedlings overexpressing CaLOX1 were seeded on a plate containing 0.5X MS agar medium containing NaCl (200 mM), after which the germination rate and percentage of green cotyledons were determined after 7 days . Also, in the germinated plants, transgenic and wild-type Arabidopsis cells overexpressing 4-day-old CaLOX1 grown on a plate containing 0.5X MS agar medium were transferred to 0.5X MS liquid medium containing NaCl (175 mM), and after 7 days Then, the chlorophyll concentration was measured and transferred to a 0.5X MS liquid medium containing NaCl (100 mM) in the same manner as described above. After 7 days, each root length was confirmed. Transgenic and wild type Arabidopsis plants overexpressing 2-week-old CaLOX1 grown in soil were treated with NaCl (250 mM) and grown for 12 days. Then, the occurrence of yellowing, survival rate, loss of fresh weight and chlorophyll concentration , And Arabidopsis thaliana leaf was stained with DAB solution. After 3 and 6 hours, brown spot was observed to confirm the production of hydrogen peroxide by oxidative stress. Expression patterns of the genes related to salt stress were analyzed by qRT-PCR using the primers shown in Table 2 below.

Figure pat00002
Figure pat00002

도 4 및 도 5에 나타낸 바와 같이, 발아 전, NaCl을 처리한 식물체에서, 발아률 및 녹색 자엽의 비율이 감소함을 확인하였으며, CaLOX1이 과발현된 형질전환 애기장대는 야생형인 대조군과 비교하여 발아율 및 녹색자엽의 비율이 더디게 감소하였다. 또한, 발아 후, NaCl을 처리한 식물체에서, 엽록소의 농도 및 뿌리 길이의 감소를 확인하였으며, CaLOX1이 과발현된 형질전환 애기장대는 야생형인 대조군과 비교하여 엽록소의 농도 및 뿌리 길이가 더디게 감소함을 확인하였다.As shown in Figs. 4 and 5, it was confirmed that the germination rate and green cotyledon ratio were decreased in the plants treated with NaCl before germination, and the transformed Arabidopsis thaliana overexpressing CaLOX1 had a germination rate And green cotyledons decreased slowly. In addition, the reduction of chlorophyll concentration and root length was observed in plants treated with NaCl after germination, and the transgenic Arabidopsis thaliana overexpressing CaLOX1 showed a slow decrease in chlorophyll concentration and root length compared with the wild type control Respectively.

도 6 및 도 7에 나타낸 바와 같이, 유식물체 상태에서의 NaCl을 처리한 경우, CaLOX1이 과발현된 형질전환 애기장대는 야생형인 대조군과 비교하여 황백화 현상 및 고사한 식물체의 수가 적음을 확인하였다. 또한, 생중량 및 엽록체의 손실 또는 감소량도 마찬가지로 더디게 감소하였으며, DAB 염색결과 적은 갈색반점을 확인함으로서, 적은 과산화 수소 생산량을 확인하였다. 또한, 염 스트레스와 관련된 유전자인 DREB2A, RD20, RD29a, RD29b, P5CS의 발현량은 대조군에 비해 CaLOX1 과발현된 애기장대 식물체에서 대체적으로 높게 확인되었다.As shown in Figs. 6 and 7, in the case of treatment with NaCl in the vegetative state, it was confirmed that the transgenic Arabidopsis thaliana overexpressing CaLOX1 had a reduced yellowing phenomenon and reduced number of dead plants as compared with the wild type control. In addition, the loss or decrease of the weight and chloroplast was also decreased slowly, and the amount of hydrogen peroxide production was confirmed by confirming the brown spots as a result of DAB staining. In addition, the expression level of the gene, DREB2A, RD20, RD29a, RD29b, P5CS related to salt stress was found to increase substantially as in Arabidopsis thaliana plants over-expressing the CaLOX1 compared to the control group.

상기 결과는 CaLOX1 유전자가 과발현된 애기장대에서 NaCl 처리에 의한 염 스트레스에 대한 저항성이 증진되었음을 의미한다.
These results indicate that the resistance to salt stress by NaCl treatment is enhanced in Arabidopsis thaliana overexpressing CaLOX1 gene.

실시예Example 6.  6. CaLOX1CaLOX1 과발현 애기장대 돌연변이 식물체의  Overexpressed Arabidopsis mutant plants 건조스트레스에On dry stress 대한 증진된 저항성 확인 Identify enhanced resistance to

건조 스트레스에 대한 반응에서 CaLOX1 유전자의 역할을 알아보기 위해, 건조 스트레스 조건에서 CaLOX1-OX 애기장대 및 야생형인 대조군간의 생존률, 수분 손실량, 기공개도(Stomatal aperture), MDA 농도, 및 건조 스트레스와 관련된 유전자의 발현양상을 하기 표 3의 프라이머를 사용하여 qRT-PCR로 분석하였다. In order to investigate the role of the CaLOX1 gene in response to dry stress, we compared the survival rate, moisture loss, stomatal aperture, MDA concentration, and dry stress among CaLOX1- OX Arabidopsis and wild type controls in dry stress conditions Expression patterns of the genes were analyzed by qRT-PCR using the primers shown in Table 3 below.

Figure pat00003
Figure pat00003

3주된 CaLOX1이 과발현된 형질전환 및 야생형 애기장대 식물체에 대하여 11일 동안 물주기를 중단함으로써 탈수 스트레스를 주었다. 이 후, 탈수로부터 회복되도록 2일 동안 다시 식물체에 물을 주고, 재수화된 녹색 잎을 가지는 식물체의 생존률을 확인하였으며, 애기장대 잎을 채취하여 수분 손실량, 기공개도를 확인하였다. 또한, 탈수 처리 4, 8시간 후 채취한 잎으로부터 MDA 농도를 측정하여 지질 과산화 정도를 확인하였으며, 탈수 처리 1, 3시간 후 채취한 잎으로부터 산화적 스트레스에 의한 과산화수소 생산량을 확인하였다. 아울러, 건조 스트레스와 관련된 유전자의 발현양상을 qRT-PCR로 분석하였다.Transgenic and wild type Arabidopsis plants overexpressing 3 weeks of CaLOX1 were dehydrated by stopping watering for 11 days. After that, water was added to the plants again for 2 days so as to recover from dehydration, the survival rate of the plants having rehydrated green leaves was confirmed, and the leaf loss and pore opening degree of the Arabidopsis leaves were checked. In addition, the MDA concentration was measured from the leaves taken 4 and 8 hours after dehydration, and the degree of lipid peroxidation was confirmed. The amount of hydrogen peroxide production by oxidative stress was determined from the leaves collected after 1 and 3 hours of dehydration treatment. Expression patterns of genes related to dry stress were analyzed by qRT-PCR.

도 8 내지 도 9에 나타낸 바와 같이, 건조 스트레스 조건에서, CaLOX1이 과발현된 형질전환 애기장대는 야생형인 대조군과 비교하여 높은 생존률, 낮은 수분 손실, 및 높은 기공차단 정도를 확인하였으며, 낮은 지질과산화 및 산화 스트레스를 확인하였다. 또한, 건조 스트레스와 관련된 유전자인 COR15A, DREB2A, RD20, RD29a, RD29b의 발현량은 대조군에 비해 CaLOX1 과발현된 애기장대 식물체에서 대체적으로 높게 확인되었다.As shown in FIGS. 8 to 9, in the dry stress condition, the transgenic Arabidopsis thaliana overexpressing CaLOX1 showed high survival rate, low water loss, and high pore blocking degree as compared with the wild type control, and low lipid peroxidation Oxidative stress was confirmed. In addition, the COR15A gene, DREB2A, RD20, RD29a, expression of RD29b related to drought stress was found to increase substantially as in Arabidopsis thaliana plants over-expressing the CaLOX1 compared to the control group.

상기 결과는 CaLOX1 유전자가 과발현된 애기장대에서 탈수 처리에 의한 건조 스트레스에 대한 저항성이 증진되었음을 의미한다.
The above results indicate that the resistance against the dry stress by the dehydration treatment in the Arabidopsis thaliana overexpressing CaLOX1 gene is improved.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

<110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Method for improving the resistance to the drought or salt stress using CaLOX1 in plants <130> Cau20141520KR_PB14-12160 <160> 18 <170> KopatentIn 2.0 <210> 1 <211> 2586 <212> DNA <213> Artificial Sequence <220> <223> CaLOX1 <400> 1 atgttactgg aaaagattgt ggacgtaatc tctgggaaaa atgacgatgg aaaaaagatg 60 aaaggaactg ttgtgttgat gaagaagaat gcattggact ttaatgatgt caatgcttct 120 tttcttgatg gagttcttga gttccttggc aagagagtct ctttgcagtt gatcagctct 180 gttcatggtg atcctgcgaa tggtttacaa gggaaacgta gcaagccagc ttacttggag 240 aactggctca ctacgcgaac cccattagtc gcaggcgaat cagcctttga tgtcacgttt 300 gattgggacg aggatattgg agttccaggg gcatttatca tcaataattt gcacttcaat 360 gagtttttcc ttaaatcact cactcttgaa gacgttccca atcatggcaa gattcatttt 420 gtctgtaatt cttgggttta tcctgctaaa agatacaaat cagaacggat tttctttgct 480 aatcaggcat atcttcccca cgaaactcca gaaccattgc gcgaatacag agaaaaagaa 540 ttagtgacct taagaggaga tggaaatgga aagcttgagg aatgggacag ggtttatgac 600 tatgctttct acaacgactt gggtgatcca gaaagaggcg aagcgtatgc taggactatc 660 ttgggaggat ctgctgagtt cccataccct cggagaggaa gaacaggcag aaagtcaaca 720 aaagcagatc ctaaaagtga aagtaggatt ccattgctta tgagtttaga catctatgta 780 ccaagagatg agcgttttgg acacattaag ttgtcggact tcccgacata tgctttgaaa 840 tccattgttc agttccttat ccccgagttt caggctctct ttgatagcac tcctggtgag 900 tttgacagct ttgaggatgt actgaggctt tatgaaggag gaatcaaatt gccgcaaggc 960 ccttttctca aagccctcac tgacagcatt cctctatcga ttctaaaaga aatcatccga 1020 actgatggtg aagggaaatt caaattccca actcctcaag tcattcaagc ggataaaagt 1080 tcatggagga ctgatgaaga atttgcaaga gaaatgcttg ccggagtaaa tcctgtcata 1140 atcagcagac tccaagagtt ccctccaaaa agcaagctag atactgaagt atatggaaac 1200 caaaacagta caataaccaa agaacatata gagaatgcac tggatgggct aactatcgat 1260 gatgcaatca agacaaacag gctttacata ttaaaccatc atgacatgct tatgccgtat 1320 gtgaggagaa taaacacgac aaacacaaaa ctctacgcct caagaactct gcttttcttg 1380 caagacgatg gaacaatgaa gccaatagca attgaactaa gcttgccaca tccggatgga 1440 gatgaacttg gggctgttag caaagtttat accccagccg atcgagatgt tgagggtacg 1500 atctggcaat tggctaaagc ttatgttgca gtgaatgact cgggtgttca tcagctaatc 1560 agtcactggt tgaatacaca tgcagcaatt gagccgtttg tgattgcaac aaacaggcaa 1620 ctaagcgtgc ttcacccgat tcataaactt ttacatcctc attttcggga cacgatgaac 1680 ataaacgctt tggcaagaca gatcttaatc aatgctggtg gagttcttga gctgacagtt 1740 tttccttcca aatatgcgat ggaaatgtct gctgtagttt acagaaattg ggtcttccct 1800 gaacaagcac ttccggttga tctcgttaag agaggagttg cagtagagga ctcgagttcc 1860 ccacatggcg ttcgcttact aattcaagac tacccatacg ctgttgatgg tttagaaata 1920 tggtcagcaa tcaaaatttg ggtaacagaa tattgcaact tctattataa atcagatgaa 1980 tcagttctga aagatgatga actccaagcc tggtggaaag aagttcggga agaagggcat 2040 ggtgacaaga aagatgaacc ctggtggcct aaaatgcaaa cacgtcaaga gctaatagat 2100 tcttgcacca ttattatttg gatagcatca gcacttcatg cagcagtcaa ttttgggcaa 2160 tacccttatg caggttacct cccaaatcgc ccaacattaa gtcgaagatt catgcctgag 2220 ccaggaactc ctgagtatga agaacttaag acaaatcctg atctggcata cttgaaaaca 2280 atcactcctc aactgcagac attactagga atttctctca tagagatatt gtcaaggcat 2340 acatcagatg aggtttacct tggacagaga gactcatctg aatggacaaa ggaccaagaa 2400 cctcttgctg cttttgagag gtttgggaaa aagttgagtg aaatcgagga tcaaattgta 2460 cagatgaatg gcgatgagaa ttggaaaaat aggtcggggc ctgttaaggt tccatatacg 2520 ttgctctttc ctacaagtga agaaggactc acaggcaaag gaatacccaa cagtgtgtcg 2580 atatag 2586 <210> 2 <211> 861 <212> PRT <213> Artificial Sequence <220> <223> CaLOX1 protein <400> 2 Met Leu Leu Glu Lys Ile Val Asp Val Ile Ser Gly Lys Asn Asp Asp 1 5 10 15 Gly Lys Lys Met Lys Gly Thr Val Val Leu Met Lys Lys Asn Ala Leu 20 25 30 Asp Phe Asn Asp Val Asn Ala Ser Phe Leu Asp Gly Val Leu Glu Phe 35 40 45 Leu Gly Lys Arg Val Ser Leu Gln Leu Ile Ser Ser Val His Gly Asp 50 55 60 Pro Ala Asn Gly Leu Gln Gly Lys Arg Ser Lys Pro Ala Tyr Leu Glu 65 70 75 80 Asn Trp Leu Thr Thr Arg Thr Pro Leu Val Ala Gly Glu Ser Ala Phe 85 90 95 Asp Val Thr Phe Asp Trp Asp Glu Asp Ile Gly Val Pro Gly Ala Phe 100 105 110 Ile Ile Asn Asn Leu His Phe Asn Glu Phe Phe Leu Lys Ser Leu Thr 115 120 125 Leu Glu Asp Val Pro Asn His Gly Lys Ile His Phe Val Cys Asn Ser 130 135 140 Trp Val Tyr Pro Ala Lys Arg Tyr Lys Ser Glu Arg Ile Phe Phe Ala 145 150 155 160 Asn Gln Ala Tyr Leu Pro His Glu Thr Pro Glu Pro Leu Arg Glu Tyr 165 170 175 Arg Glu Lys Glu Leu Val Thr Leu Arg Gly Asp Gly Asn Gly Lys Leu 180 185 190 Glu Glu Trp Asp Arg Val Tyr Asp Tyr Ala Phe Tyr Asn Asp Leu Gly 195 200 205 Asp Pro Glu Arg Gly Glu Ala Tyr Ala Arg Thr Ile Leu Gly Gly Ser 210 215 220 Ala Glu Phe Pro Tyr Pro Arg Arg Gly Arg Thr Gly Arg Lys Ser Thr 225 230 235 240 Lys Ala Asp Pro Lys Ser Glu Ser Arg Ile Pro Leu Leu Met Ser Leu 245 250 255 Asp Ile Tyr Val Pro Arg Asp Glu Arg Phe Gly His Ile Lys Leu Ser 260 265 270 Asp Phe Pro Thr Tyr Ala Leu Lys Ser Ile Val Gln Phe Leu Ile Pro 275 280 285 Glu Phe Gln Ala Leu Phe Asp Ser Thr Pro Gly Glu Phe Asp Ser Phe 290 295 300 Glu Asp Val Leu Arg Leu Tyr Glu Gly Gly Ile Lys Leu Pro Gln Gly 305 310 315 320 Pro Phe Leu Lys Ala Leu Thr Asp Ser Ile Pro Leu Ser Ile Leu Lys 325 330 335 Glu Ile Ile Arg Thr Asp Gly Glu Gly Lys Phe Lys Phe Pro Thr Pro 340 345 350 Gln Val Ile Gln Ala Asp Lys Ser Ser Trp Arg Thr Asp Glu Glu Phe 355 360 365 Ala Arg Glu Met Leu Ala Gly Val Asn Pro Val Ile Ile Ser Arg Leu 370 375 380 Gln Glu Phe Pro Pro Lys Ser Lys Leu Asp Thr Glu Val Tyr Gly Asn 385 390 395 400 Gln Asn Ser Thr Ile Thr Lys Glu His Ile Glu Asn Ala Leu Asp Gly 405 410 415 Leu Thr Ile Asp Asp Ala Ile Lys Thr Asn Arg Leu Tyr Ile Leu Asn 420 425 430 His His Asp Met Leu Met Pro Tyr Val Arg Arg Ile Asn Thr Thr Asn 435 440 445 Thr Lys Leu Tyr Ala Ser Arg Thr Leu Leu Phe Leu Gln Asp Asp Gly 450 455 460 Thr Met Lys Pro Ile Ala Ile Glu Leu Ser Leu Pro His Pro Asp Gly 465 470 475 480 Asp Glu Leu Gly Ala Val Ser Lys Val Tyr Thr Pro Ala Asp Arg Asp 485 490 495 Val Glu Gly Thr Ile Trp Gln Leu Ala Lys Ala Tyr Val Ala Val Asn 500 505 510 Asp Ser Gly Val His Gln Leu Ile Ser His Trp Leu Asn Thr His Ala 515 520 525 Ala Ile Glu Pro Phe Val Ile Ala Thr Asn Arg Gln Leu Ser Val Leu 530 535 540 His Pro Ile His Lys Leu Leu His Pro His Phe Arg Asp Thr Met Asn 545 550 555 560 Ile Asn Ala Leu Ala Arg Gln Ile Leu Ile Asn Ala Gly Gly Val Leu 565 570 575 Glu Leu Thr Val Phe Pro Ser Lys Tyr Ala Met Glu Met Ser Ala Val 580 585 590 Val Tyr Arg Asn Trp Val Phe Pro Glu Gln Ala Leu Pro Val Asp Leu 595 600 605 Val Lys Arg Gly Val Ala Val Glu Asp Ser Ser Ser Pro His Gly Val 610 615 620 Arg Leu Leu Ile Gln Asp Tyr Pro Tyr Ala Val Asp Gly Leu Glu Ile 625 630 635 640 Trp Ser Ala Ile Lys Ile Trp Val Thr Glu Tyr Cys Asn Phe Tyr Tyr 645 650 655 Lys Ser Asp Glu Ser Val Leu Lys Asp Asp Glu Leu Gln Ala Trp Trp 660 665 670 Lys Glu Val Arg Glu Glu Gly His Gly Asp Lys Lys Asp Glu Pro Trp 675 680 685 Trp Pro Lys Met Gln Thr Arg Gln Glu Leu Ile Asp Ser Cys Thr Ile 690 695 700 Ile Ile Trp Ile Ala Ser Ala Leu His Ala Ala Val Asn Phe Gly Gln 705 710 715 720 Tyr Pro Tyr Ala Gly Tyr Leu Pro Asn Arg Pro Thr Leu Ser Arg Arg 725 730 735 Phe Met Pro Glu Pro Gly Thr Pro Glu Tyr Glu Glu Leu Lys Thr Asn 740 745 750 Pro Asp Leu Ala Tyr Leu Lys Thr Ile Thr Pro Gln Leu Gln Thr Leu 755 760 765 Leu Gly Ile Ser Leu Ile Glu Ile Leu Ser Arg His Thr Ser Asp Glu 770 775 780 Val Tyr Leu Gly Gln Arg Asp Ser Ser Glu Trp Thr Lys Asp Gln Glu 785 790 795 800 Pro Leu Ala Ala Phe Glu Arg Phe Gly Lys Lys Leu Ser Glu Ile Glu 805 810 815 Asp Gln Ile Val Gln Met Asn Gly Asp Glu Asn Trp Lys Asn Arg Ser 820 825 830 Gly Pro Val Lys Val Pro Tyr Thr Leu Leu Phe Pro Thr Ser Glu Glu 835 840 845 Gly Leu Thr Gly Lys Gly Ile Pro Asn Ser Val Ser Ile 850 855 860 <210> 3 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> CaLOX1-Forward <400> 3 acgtaatctc tgggaaaaat gacgat 26 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CaLOX1-Reverse <400> 4 acgtgacatc aaaggctgat tcgc 24 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 18S rRNA-Forward <400> 5 tatggtgtgc accggtcgtc tcgt 24 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 18S rRNA-Reverse <400> 6 gcagttgttc gtctttcata aatccaa 27 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> DREB2A-Forward <400> 7 ctacaaagcc tcaactacgg aatac 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> DREB2A-Reverse <400> 8 aaactcggat agagaatcaa cagtc 25 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RD20-Forward <400> 9 tggtttccta tctaaagaag ctgtg 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RD20-Reverse <400> 10 atacaaatcc ccaaactgaa taaca 25 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RD29A-Forward <400> 11 cacaatcact tggctccact gttg 24 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RD29A-Reverse <400> 12 acctagtagc tggtatggag gaact 25 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RD29B-Forward <400> 13 gttgaagagt ctccacaatc acttg 25 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RD29B-Reverse <400> 14 attaacccaa tctctttttc acaca 25 <210> 15 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> P5CS-Forward <400> 15 gaaggattac ttacaacgag atgga 25 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> P5CS-Reverse <400> 16 ctctcctcaa gtctcaacca aatac 25 <210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> COR15A-Forward <400> 17 gatacattgg gtaaagaagc tgaga 25 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> COR15A-Reverse <400> 18 acatgaagag agaggatatg gatca 25 <110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Method for improving resistance to the drought or salt stress          using CaLOX1 in plants <130> Cau20141520KR_PB14-12160 <160> 18 <170> Kopatentin 2.0 <210> 1 <211> 2586 <212> DNA <213> Artificial Sequence <220> <223> CaLOX1 <400> 1 atgttactgg aaaagattgt ggacgtaatc tctgggaaaa atgacgatgg aaaaaagatg 60 aaaggaactg ttgtgttgat gaagaagaat gcattggact ttaatgatgt caatgcttct 120 tttcttgatg gagttcttga gttccttggc aagagagtct ctttgcagtt gatcagctct 180 gttcatggtg atcctgcgaa tggtttacaa gggaaacgta gcaagccagc ttacttggag 240 aactggctca ctacgcgaac cccattagtc gcaggcgaat cagcctttga tgtcacgttt 300 gattgggacg aggatattgg agttccaggg gcatttatca tcaataattt gcacttcaat 360 gagtttttcc ttaaatcact cactcttgaa gacgttccca atcatggcaa gattcatttt 420 gtctgtaatt cttgggttta tcctgctaaa agatacaaat cagaacggat tttctttgct 480 aatcaggcat atcttcccca cgaaactcca gaaccattgc gcgaatacag agaaaaagaa 540 ttagtgacct taagaggaga tggaaatgga aagcttgagg aatgggacag ggtttatgac 600 tatgctttct acaacgactt gggtgatcca gaaagaggcg aagcgtatgc taggactatc 660 ttgggaggat ctgctgagtt cccataccct cggagaggaa gaacaggcag aaagtcaaca 720 aaagcagatc ctaaaagtga aagtaggatt ccattgctta tgagtttaga catctatgta 780 ccaagagatg agcgttttgg acacattaag ttgtcggact tcccgacata tgctttgaaa 840 tccattgttc agttccttat ccccgagttt caggctctct ttgatagcac tcctggtgag 900 tttgacagct ttgaggatgt actgaggctt tatgaaggag gaatcaaatt gccgcaaggc 960 ccttttctca aagccctcac tgacagcatt cctctatcga ttctaaaaga aatcatccga 1020 actgatggtg aagggaaatt caaattccca actcctcaag tcattcaagc ggataaaagt 1080 tcatggagga ctgatgaaga atttgcaaga gaaatgcttg ccggagtaaa tcctgtcata 1140 atcagcagac tccaagagtt ccctccaaaa agcaagctag atactgaagt atatggaaac 1200 caaaacagta caataaccaa agaacatata gagaatgcac tggatgggct aactatcgat 1260 gatgcaatca agacaaacag gctttacata ttaaaccatc atgacatgct tatgccgtat 1320 gtgaggagaa taaacacgac aaacacaaaa ctctacgcct caagaactct gcttttcttg 1380 caagacgatg gaacaatgaa gccaatagca attgaactaa gcttgccaca tccggatgga 1440 gatgaacttg gggctgttag caaagtttat accccagccg atcgagatgt tgagggtacg 1500 atctggcaat tggctaaagc ttatgttgca gtgaatgact cgggtgttca tcagctaatc 1560 agtcactggt tgaatacaca tgcagcaatt gagccgtttg tgattgcaac aaacaggcaa 1620 ctaagcgtgc ttcacccgat tcataaactt ttacatcctc attttcggga cacgatgaac 1680 ataaacgctt tggcaagaca gatcttaatc aatgctggtg gagttcttga gctgacagtt 1740 tttccttcca aatatgcgat ggaaatgtct gctgtagttt acagaaattg ggtcttccct 1800 gaacaagcac ttccggttga tctcgttaag agaggagttg cagtagagga ctcgagttcc 1860 ccacatggcg ttcgcttact aattcaagac tacccatacg ctgttgatgg tttagaaata 1920 tggtcagcaa tcaaaatttg ggtaacagaa tattgcaact tctattataa atcagatgaa 1980 tcagttctga aagatgatga actccaagcc tggtggaaag aagttcggga agaagggcat 2040 ggtgacaaga aagatgaacc ctggtggcct aaaatgcaaa cacgtcaaga gctaatagat 2100 tcttgcacca ttattatttg gatagcatca gcacttcatg cagcagtcaa ttttgggcaa 2160 tacccttatg caggttacct cccaaatcgc ccaacattaa gtcgaagatt catgcctgag 2220 ccaggaactc ctgagtatga agaacttaag acaaatcctg atctggcata cttgaaaaca 2280 atcactcctc aactgcagac attactagga atttctctca tagagatatt gtcaaggcat 2340 acatcagatg aggtttacct tggacagaga gactcatctg aatggacaaa ggaccaagaa 2400 cctcttgctg cttttgagag gtttgggaaa aagttgagtg aaatcgagga tcaaattgta 2460 cagatgaatg gcgatgagaa ttggaaaaat aggtcggggc ctgttaaggt tccatatacg 2520 ttgctctttc ctacaagtga agaaggactc acaggcaaag gaatacccaa cagtgtgtcg 2580 atatag 2586 <210> 2 <211> 861 <212> PRT <213> Artificial Sequence <220> <223> CaLOX1 protein <400> 2 Met Leu Leu Glu Lys Ile Val Asp Val Ile Ser Gly Lys Asn Asp Asp   1 5 10 15 Gly Lys Lys Met Lys Gly Thr Val Val Leu Met Lys Lys Asn Ala Leu              20 25 30 Asp Phe Asn Asp Val Asn Ala Ser Phe Leu Asp Gly Val Leu Glu Phe          35 40 45 Leu Gly Lys Arg Val Ser Leu Gln Leu Ile Ser Ser Val His Gly Asp      50 55 60 Pro Ala Asn Gly Leu Gln Gly Lys Arg Ser Lys Pro Ala Tyr Leu Glu  65 70 75 80 Asn Trp Leu Thr Thr Arg Thr Pro Leu Val Ala Gly Glu Ser Ala Phe                  85 90 95 Asp Val Thr Phe Asp Trp Asp Glu Asp Ile Gly Val Pro Gly Ala Phe             100 105 110 Ile Ile Asn Asn Leu His Phe Asn Glu Phe Phe Leu Lys Ser Leu Thr         115 120 125 Leu Glu Asp Val Pro Asn His Gly Lys Ile His Phe Val Cys Asn Ser     130 135 140 Trp Val Tyr Pro Ala Lys Arg Tyr Lys Ser Glu Arg Ile Phe Phe Ala 145 150 155 160 Asn Gln Ala Tyr Leu Pro His Glu Thr Pro Glu Pro Leu Arg Glu Tyr                 165 170 175 Arg Glu Lys Glu Leu Val Thr Leu Arg Gly Asp Gly Asn Gly Lys Leu             180 185 190 Glu Glu Trp Asp Arg Val Tyr Asp Tyr Ala Phe Tyr Asn Asp Leu Gly         195 200 205 Asp Pro Glu Arg Gly Glu Ala Tyr Ala Arg Thr Ile Leu Gly Gly Ser     210 215 220 Ala Glu Phe Pro Tyr Pro Arg Arg Gly Arg Thr Gly Arg Lys Ser Thr 225 230 235 240 Lys Ala Asp Pro Lys Ser Glu Ser Arg Ile Pro Leu Leu Met Ser Leu                 245 250 255 Asp Ile Tyr Val Pro Arg Asp Glu Arg Phe Gly His Ile Lys Leu Ser             260 265 270 Asp Phe Pro Thr Tyr Ala Leu Lys Ser Ile Val Gln Phe Leu Ile Pro         275 280 285 Glu Phe Gln Ala Leu Phe Asp Ser Thr Pro Gly Glu Phe Asp Ser Phe     290 295 300 Glu Asp Val Leu Arg Leu Tyr Glu Gly Gly Ile Lys Leu Pro Gln Gly 305 310 315 320 Pro Phe Leu Lys Ala Leu Thr Asp Ser Ile Pro Leu Ser Ile Leu Lys                 325 330 335 Glu Ile Ile Arg Thr Asp Gly Glu Gly Lys Phe Lys Phe Pro Thr Pro             340 345 350 Gln Val Ile Gln Ala Asp Lys Ser Ser Trp Arg Thr Asp Glu Glu Phe         355 360 365 Ala Arg Glu Met Leu Ala Gly Val Asn Pro Val Ile Ile Ser Arg Leu     370 375 380 Gln Glu Phe Pro Pro Lys Ser Lys Leu Asp Thr Glu Val Tyr Gly Asn 385 390 395 400 Gln Asn Ser Thr Ile Thr Lys Glu His Ile Glu Asn Ala Leu Asp Gly                 405 410 415 Leu Thr Ile Asp Asp Ala Ile Lys Thr Asn Arg Leu Tyr Ile Leu Asn             420 425 430 His His Asp Met Leu Met Pro Tyr Val Arg Arg Ile Asn Thr Thr Asn         435 440 445 Thr Lys Leu Tyr Ala Ser Arg Thr Leu Leu Phe Leu Gln Asp Asp Gly     450 455 460 Thr Met Lys Pro Ile Ala Ile Glu Leu Ser Leu Pro His Pro Asp Gly 465 470 475 480 Asp Glu Leu Gly Ala Val Ser Lys Val Tyr Thr Pro Ala Asp Arg Asp                 485 490 495 Val Glu Gly Thr Ile Trp Gln Leu Ala Lys Ala Tyr Val Ala Val Asn             500 505 510 Asp Ser Gly Val His Gln Leu Ile Ser His His Trp Leu Asn Thr His Ala         515 520 525 Ala Ile Glu Pro Phe Val Ile Ala Thr Asn Arg Gln Leu Ser Val Leu     530 535 540 His Pro Ile His Lys Leu Leu His Pro His Phe Arg Asp Thr Met Asn 545 550 555 560 Ile Asn Ala Leu Ala Arg Gln Ile Leu Ile Asn Ala Gly Gly Val Leu                 565 570 575 Glu Leu Thr Val Phe Pro Ser Lys Tyr Ala Met Glu Met Ser Ala Val             580 585 590 Val Tyr Arg Asn Trp Val Phe Pro Glu Gln Ala Leu Pro Val Asp Leu         595 600 605 Val Lys Arg Gly Val Ala Val Glu Asp Ser Ser Ser Pro His Gly Val     610 615 620 Arg Leu Leu Ile Gln Asp Tyr Pro Tyr Ala Val Asp Gly Leu Glu Ile 625 630 635 640 Trp Ser Ala Ile Lys Ile Trp Val Thr Glu Tyr Cys Asn Phe Tyr Tyr                 645 650 655 Lys Ser Asp Glu Ser Val Leu Lys Asp Asp Glu Leu Gln Ala Trp Trp             660 665 670 Lys Glu Val Arg Glu Glu Gly His Gly Asp Lys Lys Asp Glu Pro Trp         675 680 685 Trp Pro Lys Met Gln Thr Arg Gln Glu Leu Ile Asp Ser Cys Thr Ile     690 695 700 Ile Ile Trp Ile Ala Ser Ala Leu His Ala Ala Val Asn Phe Gly Gln 705 710 715 720 Tyr Pro Tyr Ala Gly Tyr Leu Pro Asn Arg Pro Thr Leu Ser Arg Arg                 725 730 735 Phe Met Pro Glu Pro Gly Thr Pro Glu Tyr Glu Glu Leu Lys Thr Asn             740 745 750 Pro Asp Leu Ala Tyr Leu Lys Thr Ile Thr Pro Gln Leu Gln Thr Leu         755 760 765 Leu Gly Ile Ser Leu Ile Glu Ile Leu Ser Arg His Thr Ser Asp Glu     770 775 780 Val Tyr Leu Gly Gln Arg Asp Ser Ser Glu Trp Thr Lys Asp Gln Glu 785 790 795 800 Pro Leu Ala Ala Phe Glu Arg Phe Gly Lys Lys Leu Ser Glu Ile Glu                 805 810 815 Asp Gln Ile Val Gln Met Asn Gly Asp Glu Asn Trp Lys Asn Arg Ser             820 825 830 Gly Pro Val Lys Val Pro Tyr Thr Leu Leu Phe Pro Thr Ser Glu Glu         835 840 845 Gly Leu Thr Gly Lys Gly Ile Pro Asn Ser Ser Ser Ile     850 855 860 <210> 3 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> CaLOX1-Forward <400> 3 acgtaatctc tgggaaaaat gacgat 26 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CaLOX1-Reverse <400> 4 acgtgacatc aaaggctgat tcgc 24 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 18S rRNA-Forward <400> 5 tatggtgtgc accggtcgtc tcgt 24 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 18S rRNA-Reverse <400> 6 gcagttgttc gtctttcata aatccaa 27 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> DREB2A-Forward <400> 7 ctacaaagcc tcaactacgg aatac 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> DREB2A-Reverse <400> 8 aaactcggat agagaatcaa cagtc 25 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RD20-Forward <400> 9 tggtttccta tctaaagaag ctgtg 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RD20-Reverse <400> 10 atacaaatcc ccaaactgaa taaca 25 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RD29A-Forward <400> 11 cacaatcact tggctccact gttg 24 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RD29A-Reverse <400> 12 acctagtagc tggtatggag gaact 25 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RD29B-Forward <400> 13 gttgaagagt ctccacaatc acttg 25 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RD29B-Reverse <400> 14 attaacccaa tctctttttc acaca 25 <210> 15 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> P5CS-Forward <400> 15 gaaggattac ttacaacgag atgga 25 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> P5CS-Reverse <400> 16 ctctcctcaa gtctcaacca aatac 25 <210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> COR15A-Forward <400> 17 gatacattgg gtaaagaagc tgaga 25 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> COR15A-Reverse <400> 18 acatgaagag agaggatatg gatca 25

Claims (5)

하기의 단계를 포함하는, 식물체의 건조 또는 염 스트레스 저항성 증진방법:
(a) CaLOX1(Capsicum Lipoxygenase 1) 단백질을 암호화하는 유전자를 식물체에 형질전환하는 단계; 및
(b) 상기 형질전환된 식물체에서 CaLOX1 단백질을 과발현시키는 단계.
A method of promoting dry or salt stress resistance of a plant comprising the steps of:
(a) transforming a gene encoding a CaLOX1 (Capsicum Lipoxygenase 1) protein into a plant; And
(b) overexpressing the CaLOX1 protein in the transformed plant.
제 1항에 있어서, 상기 CaLOX1 단백질은 서열번호 1의 아미노산 서열로 이루어지는 것을 특징으로 하는, 방법.
2. The method of claim 1, wherein the CaLOX1 protein comprises the amino acid sequence of SEQ ID NO: 1.
제 1항에 있어서, 상기 CaLOX1 단백질을 암호화하는 유전자는 서열번호 2의 염기서열로 이루어지는 것을 특징으로 하는, 방법.
2. The method according to claim 1, wherein the gene encoding the CaLOX1 protein comprises the nucleotide sequence of SEQ ID NO: 2.
제 1항의 방법에 의해 건조 또는 염 스트레스 저항성이 증진된 형질전환 식물체.
A transgenic plant having improved dry or salt stress resistance by the method of claim 1.
제 4항에 있어서, 상기 형질전환 식물체는 애기장대(Arabidopsis)인 것을 특징으로 하는, 식물체.

















The method of claim 4, wherein the transgenic plant is a plant which is characterized in that the Arabidopsis thaliana (Arabidopsis).

















KR1020140118703A 2014-09-05 2014-09-05 Method for improving the resistance to the drought or salt stress using CaLOX1 in plants KR101639478B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140118703A KR101639478B1 (en) 2014-09-05 2014-09-05 Method for improving the resistance to the drought or salt stress using CaLOX1 in plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140118703A KR101639478B1 (en) 2014-09-05 2014-09-05 Method for improving the resistance to the drought or salt stress using CaLOX1 in plants

Publications (2)

Publication Number Publication Date
KR20160029918A true KR20160029918A (en) 2016-03-16
KR101639478B1 KR101639478B1 (en) 2016-07-14

Family

ID=55649743

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140118703A KR101639478B1 (en) 2014-09-05 2014-09-05 Method for improving the resistance to the drought or salt stress using CaLOX1 in plants

Country Status (1)

Country Link
KR (1) KR101639478B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101006300B1 (en) * 2008-04-30 2011-01-06 고려대학교 산학협력단 Pepper CaLOX1 gene from Capsicum annuum and screening method of plant disease resistance using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101006300B1 (en) * 2008-04-30 2011-01-06 고려대학교 산학협력단 Pepper CaLOX1 gene from Capsicum annuum and screening method of plant disease resistance using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GenBank Accession Number FJ377708 (2010.03.10.) *

Also Published As

Publication number Publication date
KR101639478B1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
Wang et al. The expression profiling of the CsPYL, CsPP2C and CsSnRK2 gene families during fruit development and drought stress in cucumber
KR101775788B1 (en) Method for improving the resistance to the drought stress using CaDRT1 in plants
KR101894179B1 (en) Method for improving the resistance to drought stress using pepper transcription factor CaAIEF1 in plants
Liu et al. Overexpression of MhYTP2 enhances apple water-use efficiency by activating ABA and ethylene signaling
KR101803500B1 (en) Novel Gene Implicated in Plant Cold Stress Tolerance and Use Thereof
KR102076318B1 (en) Method for improving the resistance to the drought stress using pepper protein kinase CaAIMK1 in plants
KR101775789B1 (en) CaMAF1 protein imlicated in drought tolerance and the use thereof
KR102101690B1 (en) Method for improving the resistance to drought stress using bZIP transcription factor CaAIBZ1 in plants
Wang et al. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.)
KR101876635B1 (en) Method for improving the resistance to the drought stress using pepper E3 ligase CaDSR1 in plants
KR101668917B1 (en) Method for improving the resistance to the drought stress using ABA receptor, CaRCAR1, in plants
KR101710806B1 (en) Method for improving the resistance to the abiotic stresses using CaAINR1 in plants
KR101639478B1 (en) Method for improving the resistance to the drought or salt stress using CaLOX1 in plants
EGASHIRA et al. Physiological responses of cowpea (Vigna unguiculata (L.) Walp) to drought stress during the pod-filling stage
KR20190083578A (en) Novel Gene Implicated in Plant Environmental Stresses Tolerance and Use Thereof
KR20180039212A (en) Method for improving the resistance to the drought stress using pepper E3 ligase CaREL1 in plants
KR100935339B1 (en) Expansin 5 protein of Arabidopsis thaliana, transgenic plant thereof and its use
KR101876634B1 (en) Method for improving the resistance to the drought stress using pepper transcription factor CaDILZ1 in plants
KR101582047B1 (en) Method for improving the resistance to the drought stress using CaAIP1 in plants
KR101894180B1 (en) Method for improving the resistance to drought stress using pepper transcription factor CaDRHB1 in plants
KR100475359B1 (en) Method for delaying senescence of plants using the gene regulating leaf longevity in plants
KR101840044B1 (en) Method for improving the resistance to the drought stress using pepper E3 ligase, CaDTR1, in plants
Pan et al. Analysis of the auxin response factor 5 (ARF5) gene in lettuce (Lactuca sativa) and its expression pattern during bolting in response to high temperature.
KR101781735B1 (en) Method for improving the resistance to the abiotic stresses using CaOSR1 in plants
KR101485825B1 (en) Gene Implicated in Salt Stress Tolerance and Transformed Plants with the Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 6