KR20160017243A - MANUFACTURE METHOD OF POCKET TYPE Ni-Zn BATTERY - Google Patents

MANUFACTURE METHOD OF POCKET TYPE Ni-Zn BATTERY Download PDF

Info

Publication number
KR20160017243A
KR20160017243A KR1020140099069A KR20140099069A KR20160017243A KR 20160017243 A KR20160017243 A KR 20160017243A KR 1020140099069 A KR1020140099069 A KR 1020140099069A KR 20140099069 A KR20140099069 A KR 20140099069A KR 20160017243 A KR20160017243 A KR 20160017243A
Authority
KR
South Korea
Prior art keywords
active material
binder
battery
weight
pocket
Prior art date
Application number
KR1020140099069A
Other languages
Korean (ko)
Other versions
KR101641483B1 (en
Inventor
김래현
박동필
Original Assignee
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울과학기술대학교 산학협력단 filed Critical 서울과학기술대학교 산학협력단
Priority to KR1020140099069A priority Critical patent/KR101641483B1/en
Publication of KR20160017243A publication Critical patent/KR20160017243A/en
Application granted granted Critical
Publication of KR101641483B1 publication Critical patent/KR101641483B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • H01M4/762Porous or perforated metallic containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided in the present invention is a manufacturing method of a nickel-zinc pocket-type battery, capable of preventing the separation of a negative electrode active material from the inside of a strip, and extending the lifespan by coating a separation membrane of a negative electrode and a positive electrode with a polymer solution and preventing the leakage of active material powder. The method comprises the steps of: (a) manufacturing two sheets of surface-perforated Ni strip as a pocket shape formed with an insertion hole; (b) evenly charging the active material to the inside of the insertion hole; (c) contacting two sheets of metal plate to a capsulated negative electrode or positive electrode active material by applying external force to the metal plate; (d) manufacturing one electrode plate by inserting the needed amount of the strip in between a rug and a side bead, and coupling the same; (e) group-assembling the completed electrode plate, and connecting a pole rod to an external terminal; and (f) filling the group-assembled electrode plate with an electrolyte inside a case.

Description

니켈-아연 포켓 타입 전지의 제조방법{MANUFACTURE METHOD OF POCKET TYPE Ni-Zn BATTERY}TECHNICAL FIELD [0001] The present invention relates to a nickel-zinc pocket-type battery,

본 발명은 니켈-아연 포켓 타입 전지에 사용되는 음극 활물질을 개질하여 음극 활물질이 스트립 내부에서 쉽게 이탈되지 않도록 하고, 음극과 양극의 분리막에 고분자 용액을 코팅하여 활물질 분말의 유출을 방지하여 수명을 연장시킬 수 있는 니켈-아연 포켓 타입 전지의 제조방법을 제공하는 것이다.The present invention relates to a negative electrode active material for use in a nickel-zinc pocket-type battery, in which the negative active material is not easily detached from the inside of the strip, and a polymer solution is coated on the separator between the negative electrode and the positive electrode to prevent leakage of the active material powder, And a method of manufacturing a nickel-zinc pocket-type battery.

산업용 전지는 비상전원용이 일반적이다. 공장에 공급되는 전력의 전압은 대개 220V이며, 산업용 전지는 단전지를 집합으로 하여, 220V의 전압과 필요한 전류를 전지의 용량(Ah)으로 설계하여 무정전 전원장치(UPS)와 병렬 운전하게 된다. 이렇게 설계된 비상전원장치 하에서 산업 현장의 전력 공급이 불시에 단락되면 산업용 전지에서 비상전원을 공급하게 되는 것이다. Industrial batteries are generally used for emergency power sources. The voltage of the power supplied to the factory is usually 220V, and the industrial battery is a set of unit cells and operates in parallel with the uninterruptible power supply (UPS) by designing the voltage of 220V and the required current as the capacity of the battery (Ah). If the industrial power supply is suddenly short-circuited under the designed emergency power supply, the industrial battery will be supplied with emergency power.

산업용 전지의 종류로는 납(Lead Acid) 전지, 니켈 카드뮴(Ni-Cd), 니켈 금속수소(Ni-MH) 전지 등이 있다. 납전지는 공칭 전압이 2V로서 산업용 전압의 220V에 110 셀을 집합, 연결하여 사용한다. Ni-Cd와 Ni-MH 전지는 공칭 전압이 1.2V로서 220V 전압 공급을 위하여 184 셀을 집합, 연결하여 사용한다. 납과 카드뮴 전지의 유해성을 극복하기 위하여 니켈계 전지 가운데 공칭 전압의 보완과 저가 활물질의 전지 개발이 시급하다. Lead-acid batteries, nickel-cadmium (Ni-Cd), and nickel metal hydride (Ni-MH) batteries are examples of industrial batteries. The lead battery uses a nominal voltage of 2V and 110 cells at 220V of the industrial voltage. The Ni-Cd and Ni-MH cells have a nominal voltage of 1.2V, and 184 cells are used for 220V voltage supply. In order to overcome the harmful effects of lead and cadmium batteries, it is urgent to complement the nominal voltage among the nickel-based batteries and to develop batteries with low-cost active materials.

포켓 타입의 극판은 니켈 철(Ni-Fe)부터, Ni-Cd, Ni-MH 등 니켈계 대용량 전지에 적용된 기술이다. 저율, 중률 및 고율의 전지 출력을 위하여 각 각의 율별 철띠(Steel Strip) 크기에 천공하여 니켈 도금한 후, 상하 철띠 속에 활물질을 충전하고, 그 리본들을 극판 전기 용량에 맞추어 조립하는 방식으로 제작된다. 이는 활물질의 지지 뿐만 아니라 전극의 집전체의 역할도 한다. 동시에 전해액과 극판의 부반응을 방지하고, 강알칼리 성분인 전해액 내에서 극판의 내알칼리 성질을 증가시켜 내구성과 성능 신뢰성을 확보할 수 있다. 다량의 전해액을 함유함으로 충전 시 전지 간 전압 및 충전량을 균등하게 제어하는 방법으로 소폭의 과충전을 허용해도 별도의 제어장치 없이 전지의 균등 충전 및 플로팅충전이 가능해 진다. 이 때 발생하는 소량의 가스로 인해 소모되는 전해액은 외부에서 지속적으로 보충하여 준다. 전극 활물질이 외각의 전류 집전체에 둘러 싸여 있어 다른 타입의 전지에 비해 대전류 안정성이 뛰어나며, 이 때문에 대용량 전지의 제작이 용이하다. Pocket-type electrode plates are technologies applied to nickel-based large-capacity batteries such as Ni-Fe, Ni-Cd and Ni-MH. For battery output of low rate, medium rate and high rate, steel strips of each rate are perforated to nickel plating, the upper and lower steel strips are filled with active material, and the ribbons are assembled according to the electrode plate capacity . This not only serves to support the active material, but also serves as a current collector for the electrode. At the same time, side reactions of the electrolyte and the electrode plate are prevented, and the alkali resistance property of the electrode plate is increased in the electrolytic solution of the strong alkaline component, thereby ensuring durability and performance reliability. By containing a large amount of electrolytic solution, it is possible to uniformly charge and float the battery without additional control device even if a small overcharge is allowed by controlling the inter-cell voltage and charge amount evenly during charging. The electrolyte consumed by the small amount of gas generated at this time is continuously replenished from the outside. The electrode active material is surrounded by the current collector of the outer periphery, so that the large current stability is excellent compared with other types of cells.

Ni-Zn 포켓 타입 전지의 경우 1931년 J. Drumm이 440V/600Ah의 전동차용 대용량 전지를 개발하여, 1949년 까지 사용한 바 있으나 화석연료를 사용하는 엔진의 출현으로 실제로 포켓 타입 전지는 사라졌다고 볼 수 있다. 이와 같은 배경에도 불구하고 니켈-아연 포켓 타입 전지에 재조명이 필요한 것은 밀폐형 및 MF 전지의 경우 전지의 용량한계가 보이기 때문이다. In the case of Ni-Zn pocket-type batteries, J. Drumm developed a large-capacity battery for 440V / 600Ah in 1931 and used it until 1949. However, with the advent of engines using fossil fuels, have. Despite this background, it is necessary to review the nickel-zinc pocket-type battery because the closed capacity and MF capacity of the battery are limited.

니켈-아연 전지의 가장 문제가 되는 것은 음극 활물질로 쓰이는 아연 혹은 아연산화물이 알칼리 전해액에 용해된다는 것과, 이로 인하여 음극 극판 표면에 수지상 결정(dendrite)이 발생하는 것이다. 특히 포켓 타입 전지의 경우 극판이 전해액에 완전히 침적되는 flooded type이므로, 음극 활물질이 전해액에 용해되는 양이 증가하게 된다. 이런 특성은 음극 극판 속에 있는 음극 활물질이 이탈되어 전도도를 낮추거나 양극 활물질과의 반응이 원활하지 못해 용량을 감소시키는 원인이 된다. 또한 음극 극판 표면에 활물질이 쌓여 dendrite가 발생하는 이유가 되기도 한다.       The most problematic of the nickel-zinc battery is that the zinc or zinc oxide used as the anode active material is dissolved in the alkaline electrolyte and thus the dendrite is formed on the surface of the negative electrode plate. In particular, in the case of a pocket type battery, since the electrode plate is a flooded type in which the electrolyte is completely immersed in the electrolyte, the amount of the negative electrode active material dissolved in the electrolyte increases. This property causes the deterioration of the conductivity of the negative electrode active material in the negative electrode plate and the decrease in the capacity due to the insufficient reaction with the positive electrode active material. In addition, the active material may accumulate on the surface of the negative electrode plate to cause dendrite.

포켓 타입 전지는 활물질 내로 전해액을 함침 시켜주는 역할을 하는 micro hole이 생성되어 있는 strip을 전류집전체로 사용하기 때문에 표면이 매우 거칠다. 전극활물질이 이 전류집전체 역할의 Strip에 싸여 있음으로 전류집전체가 전해액과 직접 맞닿아 있어 전해액내로 용해된 아연, 아연산화물의 충전물질이 전류집전체 표면에서 석출될 가능성이 높다. 이렇게 석출된 dendrite는 내부 단락의 원인이 되기 때문에 이 문제를 해결하는 것은 전지 개발에 있어서 중요한 문제이다.     Pocket-type batteries have a very rough surface because they use a current collector as a strip that generates a micro-hole that serves to impregnate the electrolyte into the active material. Since the electrode active material is wrapped in the strip serving as the current collecting body, the current collector is in direct contact with the electrolyte, so that the filling material of zinc and zinc oxide dissolved in the electrolyte is likely to be deposited on the surface of the current collector. Since the precipitated dendrite causes an internal short circuit, solving this problem is an important issue in battery development.

본 발명은 위의 두 문제를 해결하기 위한 것으로 본 발명의 해결과제는 니켈-아연 포켓 타입 전지에 사용되는 음극 활물질을 개질하여 음극 활물질이 스트립 내부에서 쉽게 이탈되지 않도록 최적의 과립(granule)화시킬 수 있는 니켈-아연 포켓 타입 전지제조방법을 제공하는 것이다.Disclosure of the Invention The present invention has been made to solve the above two problems, and an object of the present invention is to modify an anode active material used in a nickel-zinc pocket-type battery to form an optimal granule so that the anode active material does not easily separate from the inside of the strip. And a method of manufacturing a nickel-zinc pocket-type battery.

본 발명의 다른 해결과제는 음극과 양극의 분리막에 고분자 용액을 코팅하여 활물질 분말의 유출을 방지하여 수명을 연장시킬 수 있는 니켈-아연 포켓 타입 전지제조방법을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing a nickel-zinc pocket-type battery in which a polymer solution is coated on a separator between a cathode and an anode to prevent leakage of the active material powder and prolong life.

본 발명의 또다른 해결과제는 케이스의 내부에 채워지는 전해액으로 EG-EKNL(ZnO 포화, KOH:NaOH:LiOH=3:2:1)을 사용하여 음극의 용해도가 감소시켜 니켈-아연 포켓 타입 전지제조방법을 제공하는 것이다.Another problem to be solved by the present invention is to reduce the solubility of the negative electrode by using EG-EKNL (ZnO saturation, KOH: NaOH: LiOH = 3: 2: 1) as an electrolyte filled in the case to form a nickel- And a method for manufacturing the same.

본 발명에 따른 포켓 타입 니켈-아연전지 제조방법은 (a) 표면이 천공된 두 장의 Ni 스트립(strip)을 ㄷ자 형태의 요철가공을 한 후에 서로 맞대어 삽입홀이 형성된 포켓 형태로 제작하는 단계; (b) 삽입홀의 내부로 준비된 활물질을 균일하게 충진하는 단계; (c) 금속판에 외력을 가하여 2장의 금속판을 캡슐화된 음극 또는 양극 활물질에 접촉시키는 단계; (d) 관통공이 외부로 돌출된 러그와 사이드 비드 사이에 필요한 용량만큼 상기 스트립을 삽입하고, 압착 프레스 등으로 결합시켜 1개의 극판(Plate) 제작하는 단계; 및 (e) 완성된 극판을 전지 용량에 맞게 음극, 분리막(separate) 및 양극을 교대로 적층하여, 극판 군조립하고 극주 단자를 외부 단자(Terminal Post)와 연결하는 단계; (f) 군조립된 극판을 케이스의 내부에 전해액을 채우는 단계를 포함하되, The method of manufacturing a pocket type nickel-zinc battery according to the present invention comprises the steps of: (a) fabricating two Ni strips whose surfaces are perforated in a U-shaped concavo-convex shape, (b) uniformly filling the prepared active material into the interior of the insertion hole; (c) applying an external force to the metal plate to bring the two metal plates into contact with the encapsulated negative electrode or the positive electrode active material; (d) inserting the strip by a required amount between a lug protruding through the through hole and the side bead, and bonding the strip with a press press or the like to manufacture one plate; And (e) laminating the completed electrode plate alternately with a cathode, a separator, and an anode according to a battery capacity, assembling the assembly into a plate assembly, and connecting the polarizer terminal to an external terminal post; (f) filling the assembled electrode plate with electrolytic solution inside the case,

양극용 활물질은 Ni(OH)2, CoO, Carbon을 혼합하여 사용하거나 또는 ZnO, AB, Ca(OH)2, Bi2O3, Acrylic Binder를 포함하여 사용하며, 음극용 활물질은 ZnO(S), AB, Acrylic, Ca(OH)2, Bi2O3, PTFE, Binder b, Binder c, CMC을 사용하는 것을 특징으로 한다.The anode active material is a mixture of Ni (OH) 2 , CoO and Carbon, or ZnO, AB, Ca (OH) 2 , Bi 2 O 3 , and Acrylic Binder. , AB, Acrylic, Ca (OH) 2 , Bi 2 O 3 , PTFE, Binder b, Binder c, and CMC.

바람직하게, 양극용 활물질은 전체 중량을 기준으로 Ni(OH)2 85중량%, CoO 7중량%, Carbon 8중량%가 사용되거나 또는 ZnO 89.0중량%, AB 2.0중량%, Ca(OH)2 4.0중량%, Bi2O3 3.0중량%, Acrylic Binder 2.0중량%가 사용되며, Based Preferably, the total weight of the positive electrode active material for a Ni (OH) 2 85% by weight, CoO 7% by weight, Carbon 8% by weight is used, or ZnO 89.0% by weight, AB 2.0% by weight, Ca (OH) 2 4.0 By weight, Bi 2 O 3 3.0% by weight, Acrylic Binder 2.0% by weight,

음극용 활물질은 전체중량을 기준으로 ZnO(S) 84~90중량%, AB 1.5~2중량%, Acrylic 0~3중량%, Ca(OH)2 2~3중량%, Bi2O3 3.5~4중량%, PTFE 0~0.6중량%, Binder b 0~2중량%, Binder c 0~0.4중량%, CMC 0~1중량%가 사용되는 것을 특징으로 한다.Negative electrode active material for 84 to 90% by weight, based on the total weight of ZnO (S), AB 1.5 ~ 2 weight%, Acrylic 0 ~ 3% by weight, Ca (OH) 2 2 ~ 3% by weight, Bi 2 O 3 3.5 ~ 4 to 4 wt%, PTFE 0 to 0.6 wt%, Binder b 0 to 2 wt%, Binder c 0 to 0.4 wt%, and CMC 0 to 1 wt% are used.

바람직하게, 음극과 양극의 표면 또는 분리막에 PAAK(Polyacrylic Acid partial Potasium Salt) 고분자 용액을 코팅한 것을 특징으로 한다.Preferably, the surface of the cathode and the anode or the separation membrane is coated with a solution of a polyacrylic acid partial potassium salt (PAAK) polymer.

바람직하게, 전해액은 ZnO로 포화된 EG-EKNL(KOH:NaOH:LiOH=3:2:1)인 것을 특징으로 한다.Preferably, the electrolytic solution is EG-EKNL (KOH: NaOH: LiOH = 3: 2: 1) saturated with ZnO.

도 1은 본 발명에 따른 Ni-Zn 포켓 타입 4종의 100Ah급 시험 셀의 충/방전 거동을 나타낸 그래프.
도 2는 도 1에서 조성(A)의 활물질을 사용하여 제조한 셀의 전해액에 따른 사이클 특성을 나타낸 그래프.
도 3은 본 발명에 따른 Ni-Zn 포켓 타입 300Ah급 전지의 거동을 나타낸 cycle 그래프.
도 4는 본 발명에 따른 Ni-Zn 포켓 타입 300Ah급 전지의 충/방전 그래프.
1 is a graph showing charge / discharge behaviors of 100Ah test cells of four types of Ni-Zn pocket type according to the present invention.
FIG. 2 is a graph showing the cycle characteristics according to an electrolyte solution of a cell manufactured using the active material of composition (A) in FIG.
3 is a cycle graph showing the behavior of a Ni-Zn pocket-type 300 Ah battery according to the present invention.
4 is a charge / discharge graph of a Ni-Zn pocket-type 300 Ah battery according to the present invention.

이하, 첨부된 도면을 참조하여 본 발명에 따른 니켈-아연 포켓 타입 전지에 대하여 자세히 살펴본다.Hereinafter, a nickel-zinc pocket-type battery according to the present invention will be described in detail with reference to the accompanying drawings.

니켈-아연 포켓 타입 전지는 (a) 표면이 천공된 두 장의 Ni 스트립(strip)(T=0.1mm, W=16, 23, 25mm)을 ㄷ자 형태의 요철가공을 한 후에 서로 맞대어 삽입홀이 형성된 포켓 형태로 제작하는 단계; (b) 삽입홀의 내부로 준비된 활물질을 균일하게 충진하는 단계; (c) 금속판에 외력을 가하여 2장의 금속판을 캡슐화된 음극 또는 양극 활물질에 접촉시키는 단계; (d) 관통공이 외부로 돌출된 러그와 사이드 비드 사이에 필요한 용량만큼 상기 스트립을 삽입하고, 압착 프레스 등으로 결합시켜 1개의 극판(Plate) 제작하는 단계; 및 (e) 완성된 극판을 전지 용량에 맞게 음극, 분리막(separate) 및 양극을 1 유니트(Unit)로 하여, 교대로 적층하여, 극판 군조립하고 극주 단자를 외부 단자(Terminal Post)와 연결하는 단계; (f) 군조립된 극판을 케이스의 내부에 전해액을 채워 포켓 타입 니켈-아연전지로 제작된다. 이러한 니켈-아연 포켓 타입 전지는 본 발명자에 의하여 선출원되어 등록된 등록번호 제10-0878343호에 자세히 기재되어 있으므로 이에 대한 자세한 설명은 생략한다.The nickel-zinc pocket-type battery is manufactured by (a) two Ni strips (T = 0.1 mm, W = 16, 23, 25 mm) having a perforated surface, Fabricating in the form of a pocket; (b) uniformly filling the prepared active material into the interior of the insertion hole; (c) applying an external force to the metal plate to bring the two metal plates into contact with the encapsulated negative electrode or the positive electrode active material; (d) inserting the strip by a required amount between a lug protruding through the through hole and the side bead, and bonding the strip with a press press or the like to manufacture one plate; And (e) The completed electrode plates are alternately stacked one by one with a cathode, a separator and an anode in accordance with the battery capacity, assembled into a plate assembly, and a polar terminal is connected to an external terminal step; (f) The assembled electrode plate is made of pocket-type nickel-zinc battery by filling electrolyte inside the case. This nickel-zinc pocket-type battery is described in detail in Registration No. 10-0878343, which was filed by the inventor of the present invention, and thus a detailed description thereof will be omitted.

한편, 본 발명은 니켈-아연 포켓 타입 전지의 양극용 활물질로는 Ni(OH)2, CoO, Carbon을 혼합하여 사용하거나 또는 ZnO, AB, Ca(OH)2, Bi2O3, Acrylic Binder을 포함하여 사용하며, 약 500~700 ㎛의 입자로 제조되는 것이 바람직하다. 이때, 전체 중량을 기준으로 Ni(OH)2 85중량%, CoO 7중량%, Carbon 8중량%가 사용되거나 또는 ZnO 89.0중량%, AB 2.0중량%, Ca(OH)2 4.0중량%, Bi2O3 3.0중량%, Acrylic Binder 2.0중량%가 사용되는 것이 바람직하다. 이러한 입자화된 양극용 활물질은 천공된 Ni 스트립 사이로 이탈되지 않아 손실량이 적으며, 작업성이 우수하여 극판 제조가 용이하고, Ni 스트립 내부에 일정한 양이 투입되어 극판의 편차가 줄어드는 장점이 있다. The present invention also provides a positive electrode active material for a nickel-zinc pocket-type battery, comprising Ni (OH) 2 , CoO and Carbon, or a mixture of ZnO, AB, Ca (OH) 2 , Bi 2 O 3 , And it is preferably made of particles of about 500 to 700 mu m. At this time, based on the total weight of Ni (OH) 2 85% by weight, CoO 7%, Carbon 8% by weight is used, or ZnO 89.0% by weight, AB 2.0% by weight, Ca (OH) 2 4.0% by weight, Bi 2 3.0 wt% of O 3 , and 2.0 wt% of Acrylic Binder are preferably used. Such granulated anode active material is not separated between the perforated Ni strips so that the amount of loss is small, and workability is excellent, so that it is easy to manufacture an electrode plate and a certain amount is injected into the Ni strip, thereby reducing the deviation of the electrode plate.

또한, 음극용 활물질로는 ZnO(S), AB, Acrylic, Ca(OH)2, Bi2O3, PTFE, Binder b, Binder c, CMC 등을 혼합하여 제조된다. 이때, 전체중량을 기준으로 ZnO(S) 84~90중량%, AB 1.5~2중량%, Acrylic 0~3중량%, Ca(OH)2 2~3중량%, Bi2O3 3.5~4중량%, PTFE 0~0.6중량%, Binder b 0~2중량%, Binder c 0~0.4중량%, CMC 0~1중량%가 사용되는 것이 바람직하다. 이러한 음극용 활물질은 Ni 스트립의 표면의 천공 크기보다 큰 입자로 성형되거나, 슬러리 제조 후 고온 건조하여 일정한 크기로 조형하거나 또는 일정한 크기의 사각 칩으로 제조하여 사용할 수 있으며, 특히 사각 칩으로 제조되는 것이 바람직하다.The anode active material is prepared by mixing ZnO (S), AB, Acrylic, Ca (OH) 2 , Bi 2 O 3 , PTFE, Binder b, Binder c, CMC and the like. Based on the total weight, 84 to 90 wt% of ZnO (S), 1.5 to 2 wt% of AB, 0 to 3 wt% of Acrylic, 2 to 3 wt% of Ca (OH) 2 , 3.5 to 4 wt% of Bi 2 O 3 0 to 0.6% by weight of PTFE, 0 to 2% by weight of Binder b, 0 to 0.4% by weight of Binder c and 0 to 1% by weight of CMC are preferably used. Such an anode active material may be formed into particles larger than the pore size of the surface of the Ni strip, or may be formed into a predetermined size by drying at a high temperature after the slurry is prepared, or may be manufactured into a square chip having a predetermined size. Particularly, desirable.

한편, 본 발명은 음극판과 양극판의 표면 또는 분리막에 PAAK(Polyacrylic Acid partial Potasium Salt) 고분자 용액을 코팅한다. 이러한 고분자 용액의 코팅에 의하여 활물질 분말의 유출을 방지하는 조처로 활물질의 결속이 덜 필요하게 된다.In the meantime, the surface of the anode plate and the cathode plate or the separation membrane is coated with a solution of a polyacrylic acid partial potassium salt (PAAK) polymer. As a measure to prevent leakage of the active material powder by the coating of the polymer solution, binding of the active material is less required.

또한, 본 발명은 케이스의 내부에 채워지는 전해액은 비중 1.226의 EG-EKNL(ZnO 포화, KOH:NaOH:LiOH=3:2:1)을 사용하는 것이 바람직하다. 이러한 ZnO로 EG-EKNL는 전해액에 포화된 ZnO로 인해 음극의 용해도가 감소시켜 전지의 효율 및 수명 증가시킬 수 있다.Further, in the present invention, it is preferable to use EG-EKNL (ZnO saturation, KOH: NaOH: LiOH = 3: 2: 1) having a specific gravity of 1.226 as an electrolyte to be filled in the case. With such ZnO, EG-EKNL can decrease the solubility of the cathode due to ZnO saturated in the electrolyte, thereby increasing the efficiency and lifetime of the battery.

이하, 본 발명의 실시예를 들어 자세히 설명하지만, 본 발명이 이들의 예로만 한정되는 것은 아니다.Hereinafter, the embodiments of the present invention will be described in detail, but the present invention is not limited to these examples.

<실시예 1> 100 Ah급 극판 및 전지 제조&Lt; Example 1 > Production of 100 Ah plate and battery

먼저, 전극에 제조되는 음극 활물질은 [표 1]의 조성표에 따라 슬러리를 만든 후, 90 ℃ 오븐에서 24시간 동안 건조하고, 일정한 크기의 입자로 잘게 조형하여, 최종적으로 500㎛ mesh에 걸러 분급하였다.First, a negative electrode active material to be produced on the electrode was prepared in accordance with the compositional table of Table 1, dried in an oven at 90 ° C for 24 hours, finely molded with particles of a predetermined size, and finally classified into 500 μm mesh .

조성물Composition Ni(OH)2 Ni (OH) 2 CoOCoO CarbonCarbon 조성비(wt%)Composition ratio (wt%) 8585 77 88

그리고, 양극 활물질은 [표 2]의 조성표에 따라 슬러리를 만든 후 약 500~700 ㎛의 입자화 하였다.The cathode active material was slurried according to the compositional table of Table 2, and then granulated to about 500 to 700 μm.

조성물Composition ZnO(S)ZnO (S) ABAB AcrylicAcrylic Ca(OH)2 Ca (OH) 2 Bi2O3 Bi 2 O 3 PTFEPTFE Binder bBinder b Binder cBinder c CMCCMC 조성비(A)Composition ratio (A) 89.089.0 2.02.0 3.03.0 2.252.25 3.753.75 00 00 00 00 조성비(B)Composition ratio (B) 85.5685.56 1.941.94 3.03.0 2.132.13 3.493.49 0.580.58 1.941.94 0.390.39 0.970.97 기본조성비wt%Basic composition ratio wt% 88.288.2 2.02.0 00 2.22.2 3.63.6 0.60.6 2.02.0 0.40.4 1.01.0

- 조성(A) 건식: 기존의 binder 대신 acrylic binder 3% 첨가- Composition (A) Drying: 3% acrylic binder instead of conventional binder

- 조성(B) 습식: 기존의 binder와 3%의 acrylic binder 모두 사용- Composition (B) Wetting: Use both conventional binder and 3% acrylic binder

한편, 전극 극판은 분급된 음극 활물질 양극 활물질을 0.8㎝ㅧ5㎝ 크기의 금형에 넣어 압축하여 사각형의 펠렛을 만들고 폭 16㎜의 스트립에 삽입하여 본드(bond)로 제작하였다. 이러한 본드를 전극제조공정에 따라 14㎝*21㎝ 크기의 매트로 만들어 제작하였다. 이때, 양극 1장당 용량은 15Ah, 음극과 양극의 용량비는 3:1로 되게 설계하였다. On the other hand, the electrode plate was prepared by forming a quadrangular pellet by inserting the classified anode active material into a mold having a size of 0.8 cm to 5 cm and inserting it into a strip having a width of 16 mm. These bonds were made into a mat having a size of 14 cm * 21 cm according to the electrode manufacturing process. At this time, the capacity per one anode was set to 15 Ah, and the capacity ratio between the cathode and the anode was set to 3: 1.

제작된 양극과 음극 각각 11장, 12장을 교대로 적층하여 방전용량 100Ah의 극판군을 형성하고 이를 밴딩기를 이용하여 압착 고정하였다. 극판과 극판사이는 양극의 경우 NKK사의 90㎛ 부직포 2장을 양극 분리막으로, 음극은 Celgard사의 microporous polyolefin 3407, 2장을 음극 분리막으로 사용하였다. 최종적으로 포켓 타입 니켈-아연전지를 조립하고, 비중 1.226의 EG-EKNL(ZnO 포화, KOH:NaOH:LiOH=3:2:1) 전해액을 극판 상부와 외부 연결단자 사이의 높이까지 채워준 후, 약 6시간 이상의 안정화 시간 이후, 충·방전 시험을 진행하였다. 총 4종의 시험 셀을 제작하고 각 시험 셀의 제조 특성과 충방전 조건에 대한 특성은 표 3에 나타냈다. The fabricated positive and negative electrodes were alternately laminated with 11 and 12 sheets, respectively, to form a group of electrode plates having a discharge capacity of 100 Ah, which were then compressed and fixed using a banding machine. For the anode, two 90 μm nonwoven fabrics of NKK were used as the anode separator, and a cathode was used as the cathode separator. Microporous polyolefin 3407 and CELGARD polyolefin 3407 were used as cathode separator. Finally, a pocket-type nickel-zinc battery was assembled and filled with electrolyte EG-EKNL (ZnO saturation, KOH: NaOH: LiOH = 3: 2: 1) having a specific gravity of 1.226 to the height between the upper part of the electrode plate and the external connection terminal, After a stabilization time of 6 hours or more, charge and discharge tests were carried out. A total of four test cells were fabricated, and the characteristics of each test cell in terms of manufacturing characteristics and charge / discharge conditions are shown in Table 3.

Cell No.Cell No. 양극
(No.)
anode
(No.)
음극
(No.)
cathode
(No.)
양극:음극
용량비
Anode: cathode
Capacity ratio
실험 목적
(음극 활물질 변경 시험)
Purpose of experiment
(Anode active material change test)
충방전 조건Charge / discharge condition 전해액Electrolyte
cell 1cell 1 1010 1212 1:3.441: 3.44 포켓식 전지 TEST, 100Ah급, 건혼합Pocket type battery TEST, 100Ah class, gun mixture 0.2C-0.1C,80%/0.3C0.2C-0.1C, 80% / 0.3C EG-EKNLEG-EKNL cell 2cell 2 1010 1212 1:3.441: 3.44 포켓식 전지 TEST, 100Ah급, 건혼합Pocket type battery TEST, 100Ah class, gun mixture 0.2C-0.1C,80%/0.3C0.2C-0.1C, 80% / 0.3C EG-EKNLEG-EKNL cell 3cell 3 1010 1212 1:3.511: 3.51 포켓식 전지 TEST, 100Ah급, 습혼합Pocket type battery TEST, 100Ah class, wet mixing 0.2C-0.1C,80%/0.3C0.2C-0.1C, 80% / 0.3C EG-EKNLEG-EKNL cell 4cell 4 1010 1212 1:4.101: 4.10 포켓식 전지 TEST, 100Ah급, 기준분말Pocket type battery TEST, 100Ah class, reference powder 0.2C-0.1C,80%/0.3C0.2C-0.1C, 80% / 0.3C EG-EKNLEG-EKNL

<시험 결과><Test Results>

100Ah급 시험 전지의 충/방전 조건은 표 4와 같다.The charging / discharging conditions of the 100Ah class test cell are shown in Table 4.

ChargeCharge DischargeDischarge FormationFormation 3 step3 step 0.1 C0.1 C
1.2 V cut-off

1.2 V cut-off
Chg./Dischg.Chg./Dischg. 0.2 C0.2 C 2.4 h2.4 h 0.3 C0.3 C 0.1 C0.1 C 3.2 h3.2 h

전지의 충/방전의 본격적인 시험에 앞서 전지의 활성화(formation/Activation) 공정을 거친다. 이 공정은 3step으로 진행되었으며 0.15C-0.05C-0.03C의 순서로 11시간에 걸처 91%까지 충전하고, 0.1C로 방전하여, 종지전압으로 1.2V에서 cut-off 하였다. 이 과정을 2회 반복한 후 충/방전 실험을 하였다. 충전의 경우 0.2C에서 2.4시간, 0.1C에서 3.2시간을 유지하여 용량의 80%까지 충전하고, 0.3C로 방전하여 1.2V에서 cut-off하였다. The battery is subjected to a formation / activation process prior to full-scale testing of charging / discharging of the battery. The process proceeded to 3 steps and was charged to 91% over 11 hours in the order of 0.15C-0.05C-0.03C, discharged at 0.1C, and cut off at 1.2V at the termination voltage. This process was repeated twice, and charge / discharge experiments were performed. The charge was maintained at 0.2 C for 2.4 hours and 0.1 C for 3.2 hours to charge up to 80% of the capacity and discharged at 0.3 C to cut off at 1.2 V. [

도 1은 4종의 100Ah급 시험 셀의 충/방전 거동을 나타낸 것이다. 도 1에 나타난 바와 같이 셀 1과 2는 조성(A), 셀 3은 조성(B), 그리고 셀 4는 기본조성의 음극 활물질을 이용하여 제조되었다. 활물질의 건식 혼합방식으로 제작한 셀 1과 셀 2는 활물질을 Acrylic binder만 첨가한 조성으로, 셀의 거동이 거의 유사하다. 이는 전극의 제작 과정에 따른 편차가 거의 없다는 것을 의미한다. Fig. 1 shows charge / discharge behavior of four 100Ah class test cells. As shown in Fig. 1, the cells 1 and 2 were made of the composition (A), the cell 3 was the composition (B), and the cell 4 was made of the negative electrode active material of the basic composition. Cells 1 and 2, fabricated by dry mixing of active materials, are composed of an active material with only an acrylic binder and have almost the same cell behavior. This means that there is little variation in electrode manufacturing process.

한편, Acrylic binder를 제거하고 기본 binder를 사용한 조성의 셀 4는 110 cycle까지 가장 우수한 용량을 보여주고 있으나, 그 이후는 급격히 저하된다. 이것은 약 3% 정도의 바인더 용량이 초기에는 내부 저항이 작아 우수한 특성을 보이다가 바인더의 약화로 급격히 용량이 저하되는 것으로 해석된다. 바인더가 약 6%로 과다 첨가된 셀 3은 내부 저항이 높아 전체적으로 낮은 용량을 보이고 있지만 셀 4에 비해서는 상대적으로 긴 수명을 보여주고 있다.On the other hand, the cell 4 of the composition using the basic binder after removing the acrylic binder shows the best capacity up to 110 cycles, but thereafter, it rapidly drops. It is interpreted that the binder capacity of about 3% initially exhibits excellent characteristics due to a small internal resistance, and the capacity is rapidly lowered due to the weakening of the binder. Cell 3, in which the binder was added in excess of about 6%, showed a low capacity as a whole due to its high internal resistance, but has a relatively longer life than Cell 4.

또한, 음극 조성의 변화 중에서, 특히 바인더의 변화에 따른 전지의 성능을 종합적으로 평가하면 Acrylic binder가 전지 성능에 크게 관여하는 것으로 판단된다. 전체적으로 바인더의 첨가량이 많으면 전지의 용량이 감소하는 반면, 적으면 수명이 짧아진다. 결론적으로 다른 바인더보다는 Acrylic binder의 량을 조절하여 전지의 수명과 용량을 최적화할 가능성을 보여주고 있다.In addition, it is considered that the Acrylic binder plays an important role in the battery performance, especially in the change of the cathode composition, especially the performance of the battery according to the change of the binder. If the amount of the binder added is large as a whole, the capacity of the battery is reduced, while if it is less, the life is shortened. As a result, it is possible to optimize battery life and capacity by adjusting the amount of acrylic binder rather than other binders.

그리고, 전지의 성능에 결정적인 영향을 주는 또 다른 요소는 전해액이다. 전해액은 양극과 음극 활물질이 반응할 때 이온들이 이동하는 경로가 된다. 전해액의 조성과 비중에 따라 이온 전도도를 조절하여 전지의 효율과 수명 특성을 최적화 할 수 있다. 일반적으로 전해액 비중이 높아질수록 이온 전도도는 높아지게 되고, 적정 비중 이상일 때는 오히려 저항으로 작용하여 이온 전도도를 낮추게 된다. Another factor that has a decisive influence on the performance of the battery is the electrolyte. The electrolyte is a path through which ions move when the anode and the anode active material react. The efficiency and lifetime characteristics of the battery can be optimized by adjusting the ionic conductivity according to the composition and specific gravity of the electrolyte. Generally, the higher the specific gravity of the electrolyte, the higher the ionic conductivity. When the specific gravity is higher than the specific gravity, the ionic conductivity is lowered by acting as a resistance.

니켈-아연 이차전지의 주요한 문제점인 아연음극 충전물질의 전해액 내로의 용해현상 때문에 주로 낮은 비중의 전해액을 사용한다. 그러나 이온 전도도를 향상시키기 위하여, 비중을 높이면서 전극 활물질의 용해를 최소화하기 위해, buffer의 첨가 및 아연 포화 전해액의 사용 등 전해액의 개질이 필요하다.Electrolyte of low specific gravity is mainly used for the dissolution phenomenon of the zinc anode filling material, which is a main problem of the nickel-zinc secondary battery, in the electrolyte solution. However, in order to improve the ionic conductivity, it is necessary to modify the electrolyte, such as the addition of buffer and the use of a zinc saturated electrolyte, in order to minimize the dissolution of the electrode active material while increasing the specific gravity.

도 2는 조성(A)의 활물질을 사용하여 제조한 셀의 전해액에 따른 사이클 특성을 나타낸 그래프이다. 시험 셀1과 셀2는 동일한 활물질의 조성으로 건식 혼합 방식으로 제작한 것인데 전해액만 다르다. 전해액은 동일한 농도의 3성분 전해액(EG-EKNL)에 ZnO를 포화시켜 EG-EKNLZ를 제조하여 전자는 셀 1에 후자는 셀 2에 적용하여 시험하였다.FIG. 2 is a graph showing the cycle characteristics according to an electrolyte solution of a cell manufactured using the active material of the composition (A). FIG. Test cell 1 and cell 2 were made by dry mixing with the same composition of active material, but differ only in the electrolytic solution. EG-EKNLZ was prepared by saturating ZnO with the same concentration of a three-component electrolytic solution (EG-EKNL). The former was applied to cell 1 and the latter was applied to cell 2.

전지의 거동을 관찰한 결과 ZnO를 포화시킨 전해액이 용량과 수명 특성 면에서 우수한 결과를 보였다. 이는 전해액에 포화된 ZnO로 인해 음극의 용해도가 감소하였기 때문이고, 음극의 용해 완화는 전지의 효율 및 수명 증가의 결정적인 요인으로 작용하였다.
As a result of observing the behavior of the battery, the electrolyte solution saturated with ZnO showed excellent capacity and life characteristics. This is because the solubility of the negative electrode was reduced due to the ZnO saturated in the electrolyte solution, and the dissolution of the negative electrode was a decisive factor in the efficiency and life span of the battery.

<실시예 2> 300Ah급 전지 제조 및 시험&Lt; Example 2 > Preparation and test of 300 Ah class batteries

300Ah급 전지는 전술한 100Ah전지를 병렬로 연결하여 제작하였다. 이는 수십 개의 극판을 하나의 극주에 연결하는 것이 실제로 어렵고 열 발생 문제 등 장점보다는 단점이 더 많다. 따라서 시험 셀의 제작은 전술한 100Ah 전지 제조과정과 거의 유사하며 다만 셀의 연결 단자와 셀 케이스가 커진 것이 가장 큰 차이점이다. The 300 Ah class battery was manufactured by connecting the above-described 100 Ah batteries in parallel. It is actually difficult to connect dozens of plates to one pole, and there are more disadvantages than the advantages of heat generation. Therefore, the fabrication of the test cell is almost the same as the fabrication of the 100 Ah cell described above, but the largest difference is that the cell connection terminal and the cell case are enlarged.

전극의 조성은 양극의 경우 100Ah급 전지와 동일하다. 음극의 조성은 [표 5]에 나타낸 바와 같이 바인더를 Acrylic Binder만 사용한 조성이다. 과다한 바인더의 사용은 전지의 내부저항을 키울 우려가 있다. 한편, 음극과 양극의 분리막에 5%의 PAAK(Polyacrylic Acid partial Potasium Salt)고분자 용액을 코팅하였다. 이는 극판에서 활물질 분말의 유출을 추가적으로 방지하는 조치이다. 시험 셀의 제작은 양극과 음극 분리막에 각각 PAAK를 도포한 전지를 제작하여 시험하였다. The composition of the electrode is the same as that of the battery of 100 Ah in the case of the anode. As shown in Table 5, the composition of the negative electrode was a composition using only Acrylic Binder as the binder. Use of an excessive binder may increase the internal resistance of the battery. On the other hand, 5% of a polymer solution of PAAC (Polyacrylic Acid Partial Potassium Salt) was coated on the separator between the cathode and the anode. This is an additional measure to prevent leakage of active material powder from the electrode plate. The test cell was fabricated by applying PAAK to the anode and anode separator.

ZnOZnO ABAB Ca(OH)2 Ca (OH) 2 Bi2O3 Bi 2 O 3 Acrylic BinderAcrylic Binder 조성(%)Furtherance(%) 89.089.0 2.02.0 4.04.0 3.03.0 2.02.0

전지의 극판 수는 각각 양극 34장, 음극 32장으로 전지를 구성하고, 전해액은 비중 1.31 EG-EP#7(KOH : NaOH = 3.86 : 1)로 채운 후, 상온에서 24시간의 숙성 과정을 거쳤다. 보충액으로는 EG-EP#12(비중 1.31)를 사용하였다. The battery was composed of 34 positive electrodes and 32 negative electrodes, and the electrolyte was filled with a specific gravity of 1.31 EG-EP # 7 (KOH: NaOH = 3.86: 1) and then aged at room temperature for 24 hours . EG-EP # 12 (specific gravity 1.31) was used as a replenisher.

<시험 결과><Test Results>

[표 6]에 나타낸 바와 같이 300Ah 급 전지의 충/방전 시험에서도 전술한 전지의 활성화(formation/activation) 공정을 거쳤다. 이 공정은 3step으로 진행되었으며 0.15C-0.05C-0.03C의 순서로 11시간에 걸쳐, 91%까지 충전하고, 0.1C로 방전하여, 1.2V에서 cut-off 하였다. 이 과정을 2회 반복한 후, 충/방전 시험을 하였다. 충전의 경우, 22cycle 까지는 0.2C에서 2.4시간, 0.1C에서 3.2시간을 유지하여 용량의 80% 까지 충전하고, 23 cycle부터는 0.2C로 80%까지 충전하였다. 방전은 0.3C로 1.2V에서 cut-off하였다. As shown in Table 6, in the charge / discharge test of the 300 Ah battery, the above-described formation / activation of the battery was performed. This process proceeded to 3 steps and was charged to 91% over 11 hours in the order of 0.15C-0.05C-0.03C, discharged at 0.1C, and cut off at 1.2V. This procedure was repeated two times and then charged / discharged. In the case of charging, the battery was charged up to 80% of the capacity while maintaining 0.2C for 2.4 hours and 0.1C for 3.2 hours until 22 cycles. The discharge was cut off at 1.2V at 0.3C.

ChargeCharge DischargeDischarge FormationFormation 3 step3 step 0.1C0.1 C 1.2 V cut-off1.2 V cut-off Chg./Dischg.(3~22cycle)Chg./Dischg.(3-22cycle) 0.2C → 0.1C0.2C? 0.1C 0.3C0.3 C Chg./Dischg.(23cycle~)Chg./Dischg.(23cycle~) 0.2C0.2C

도 3은 Ni-Zn 포켓 타입 300Ah급 전지의 거동을 나타낸 cycle 그래프이다. 그래프에서 적색은 충전, 청색은 방전을 나타낸다. 여기서 도 3(a)은 셀 1이고, 도 3(b)은 음극분리막 사이 PAAK 코팅(셀 2)이다.3 is a cycle graph showing the behavior of Ni-Zn pocket-type 300 Ah class batteries. In the graph, red indicates charge and blue indicates discharge. 3 (a) is a cell 1, and FIG. 3 (b) is a PAAK coating (cell 2) between cathode separators.

도 3과 같이 충전이 계단식으로 나타난 것은 초기 2 cycle의 formation 과정은 전지의 설계 용량보다 훨씬 많은 400Ah 이상 충전하고, 그 이후 22cycle 까지는 전지 활성화 단계로 350Ah 이상 충전하고, 23 cycle부터 설계 용량인 300 Ah로 충전한 3 step 방식을 보여준다. As shown in FIG. 3, the charging process is performed in a stepwise manner. In the initial 2 cycle formation process, the charging time is more than 400 Ah, which is much more than the design capacity of the battery. 3-step method.

시험 결과 양극과 음극 분리막 사이에 겔 전해액을 코팅한 셀 1과 2는 전술한 100Ah 급 전지 시험에 비해 향상된 거동을 보이고 있다. 특히 양극 분리막보다는 음극 분리막에 코팅하는 것이 더 효과적으로 나타났다. 음극 분리막에 코팅한 셀 2의 경우 350 cycle(@ 80% DOD 조건에서 75% 초기 용량의 보존까지 350cycle)을 상회한다. 이는 기존의 paste 식 전지에 버금가는 특성을 보였고, 300Ah 급에서, 산업용 전지로 적용 가능한 성능을 보여준다. Test results show that Cells 1 and 2 coated with a gel electrolyte between the anode and cathode separator have improved behavior compared to the above-described battery test of 100 Ah. In particular, it is more effective to coat the anode separator than the anode separator. In the case of cell 2 coated on the cathode separator, it exceeds 350 cycles (350 cycles from @ 80% DOD condition to 75% initial capacity retention). This is comparable to conventional paste-type batteries and shows performance applicable to industrial batteries at 300Ah.

도 4는 Ni-Zn 포켓 타입 300Ah급 전지의 충/방전 그래프이다. 도 4에 나타난 바와 같이 충전 그래프에서 10 cycle(적색) 커브에서 전지가 약 230Ah에서 전압의 드롭 현상은 0.2C 충전에서 0.1C 충전으로 충전 전류를 내려서 나타나는 현상이다. 그 이후 50 cycle 이상에서는 0.2C로 충전 전류를 단일하게 유지하여 전압의 드롭현상이 없다. 전체적으로 이와 같은 충전 조건에서는 과충전이나 기타 전지의 무리를 주지 않는 조건을 보여주고 있다. 한편 방전 커브에서도 전지 용량 250Ah 정도에서부터 급격히 용량 저하가 일어나 약 300 cycle 까지는 별 무리 없이 거동함을 볼 수 있다. 4 is a charge / discharge graph of a Ni-Zn pocket-type 300 Ah class battery. As shown in FIG. 4, in the charging curve, a drop of the voltage at about 230 Ah in a 10 cycle (red) curve is a phenomenon in which the charging current is lowered at 0.2 C charging and 0.1 C charging. Thereafter, the charge current is kept at 0.2C at over 50 cycles, and there is no voltage drop phenomenon. Overall, these charging conditions show conditions that do not cause overcharging or other battery run-down. On the other hand, the capacity curve of the discharge curve suddenly decreases from 250Ah to 300 cycles.

이상에서 확인할 수 있듯이, 본 발명에 따른 니켈-아연 포켓 타입 전지는 전지의 성능 향상에 활물질로 사용되는 바인더와 전해액의 역할은 매우 중요하게 나타남을 확인할 수 있다. 바인더는 Acrylic binder가 보다 효과적이며 전해액은 ZnO의 포화 용액이 수명 연장에 효과가 있었다. 바인더의 량이 많으면 전지의 내부 저항의 영향이 커지고, 포화 전해질은 아연의 용해를 억제하는 것으로 해석된다. As can be seen from the above, it can be confirmed that the nickel-zinc pocket-type battery according to the present invention plays a very important role in the binder and electrolyte used for the active material in improving the performance of the battery. Acrylic binders were more effective in binder and electrolyte solution was effective in extending the life of saturated solution of ZnO. If the amount of the binder is large, the influence of the internal resistance of the battery becomes large, and the saturated electrolyte is interpreted to suppress the dissolution of zinc.

또한, 300Ah급 전지의 시험에서는 PAAK 고분자를 양극보다는 음극 분리막에 코팅한 전지가 가장 우수한 성능을 보였다. 이는 양극보다는 음극의 활물질 탈리를 차단하여 수명 연장에 기여하는 것으로 사료된다. 종합적인 결론은 pocket type 300 Ah급 전지에 겔 고분자를 코팅한 경우, 80% DOD에서 350 cycle과 75% retention capacity를 유지하는 대용량 전지로서 우수한 전지성능을 보여주었다.
In addition, in the test of the 300 Ah battery cell, the battery in which the PAAK polymer was coated on the cathode separator rather than the anode showed the best performance. This is considered to contribute to the extension of the life span by blocking the active material release from the anode rather than the anode. The overall conclusion is that the cell type coated with the gel polymer exhibits excellent battery performance as a large capacity battery with a retention capacity of 350 cycles and 75% retention capacity at 80% DOD.

Claims (4)

(a) 표면이 천공된 두 장의 Ni 스트립(strip)을 ㄷ자 형태의 요철가공을 한 후에 서로 맞대어 삽입홀이 형성된 포켓 형태로 제작하는 단계; (b) 삽입홀의 내부로 준비된 활물질을 균일하게 충진하는 단계; (c) 금속판에 외력을 가하여 2장의 금속판을 캡슐화된 음극 또는 양극 활물질에 접촉시키는 단계; (d) 관통공이 외부로 돌출된 러그와 사이드 비드 사이에 필요한 용량만큼 상기 스트립을 삽입하고, 결합시켜 1개의 극판(Plate) 제작하는 단계; 및 (e) 완성된 극판을 전지 용량에 맞게 음극, 분리막(separate) 및 양극을 교대로 적층하여, 극판 군조립하고 극주 단자를 외부 단자(Terminal Post)와 연결하는 단계; (f) 군조립된 극판을 케이스의 내부에 전해액을 채우는 단계를 포함하되,
양극용 활물질은 Ni(OH)2, CoO, Carbon을 혼합하여 사용하거나 또는 ZnO, AB, Ca(OH)2, Bi2O3, Acrylic Binder를 포함하여 사용하며, 음극용 활물질은 ZnO(S), AB, Acrylic, Ca(OH)2, Bi2O3, PTFE, Binder b, Binder c, CMC을 사용하는 것을 특징으로 하는 니켈-아연 포켓 타입 전지의 제조방법.
(a) fabricating two Ni strips whose surfaces have been perforated in a U-shaped concavo-convex shape, and then making them into a pocket shape in which insertion holes are formed to oppose each other; (b) uniformly filling the prepared active material into the interior of the insertion hole; (c) applying an external force to the metal plate to bring the two metal plates into contact with the encapsulated negative electrode or the positive electrode active material; (d) inserting the strips into a gap between the lug protruding outwardly from the side beads and the side beads to form a plate; And (e) laminating the completed electrode plate alternately with a cathode, a separator, and an anode according to a battery capacity, assembling the assembly into a plate assembly, and connecting the polarizer terminal to an external terminal post; (f) filling the assembled electrode plate with electrolytic solution inside the case,
The anode active material may be a mixture of Ni (OH) 2 , CoO and Carbon, or ZnO, AB, Ca (OH) 2 , Bi 2 O 3 , Acrylic Binder, , AB, Acrylic, Ca (OH) 2 , Bi 2 O 3 , PTFE, Binder b, Binder c, and CMC are used.
청구항 1에 있어서, 양극용 활물질은 전체 중량을 기준으로 Ni(OH)2 85중량%, CoO 7중량%, Carbon 8중량%가 사용되거나 또는 ZnO 89.0중량%, AB 2.0중량%, Ca(OH)2 4.0중량%, Bi2O3 3.0중량%, Acrylic Binder 2.0중량%가 사용되며,
음극용 활물질은 전체중량을 기준으로 ZnO(S) 84~90중량%, AB 1.5~2중량%, Acrylic 0~3중량%, Ca(OH)2 2~3중량%, Bi2O3 3.5~4중량%, PTFE 0~0.6중량%, Binder b 0~2중량%, Binder c 0~0.4중량%, CMC 0~1중량%가 사용되는 것을 특징으로 하는 니켈-아연 포켓 타입 전지의 제조방법.
The positive electrode active material according to claim 1, wherein the positive electrode active material contains 85 wt% of Ni (OH) 2 , 7 wt% of CoO, 8 wt% of carbon, or 89.0 wt% of ZnO, 2.0 wt% 2 4.0 wt%, Bi 2 O 3 3.0 wt%, and Acrylic Binder 2.0 wt%
Negative electrode active material for 84 to 90% by weight, based on the total weight of ZnO (S), AB 1.5 ~ 2 weight%, Acrylic 0 ~ 3% by weight, Ca (OH) 2 2 ~ 3% by weight, Bi 2 O 3 3.5 ~ 4 to 4 wt%, PTFE 0 to 0.6 wt%, Binder b 0 to 2 wt%, Binder c 0 to 0.4 wt%, and CMC 0 to 1 wt% are used.
청구항 1에 있어서, 음극과 양극의 표면 또는 분리막에 PAAK(Polyacrylic Acid partial Potasium Salt) 고분자 용액을 코팅한 것을 특징으로 하는 니켈-아연 포켓 타입 전지의 제조방법.The method for manufacturing a nickel-zinc pocket-type battery according to claim 1, wherein the surface of the negative electrode and the positive electrode or the separation membrane is coated with a polyacrylic acid partial potassium salt (PAAK) polymer solution. 청구항 1에 있어서, 전해액은 ZnO로 포화된 EG-EKNL(KOH:NaOH:LiOH=3:2:1)인 것을 특징으로 하는 니켈-아연 포켓 타입 전지의 제조방법.The method of claim 1, wherein the electrolyte is EG-EKNL (KOH: NaOH: LiOH = 3: 2: 1) saturated with ZnO.
KR1020140099069A 2014-08-01 2014-08-01 MANUFACTURE METHOD OF POCKET TYPE Ni-Zn BATTERY KR101641483B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140099069A KR101641483B1 (en) 2014-08-01 2014-08-01 MANUFACTURE METHOD OF POCKET TYPE Ni-Zn BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140099069A KR101641483B1 (en) 2014-08-01 2014-08-01 MANUFACTURE METHOD OF POCKET TYPE Ni-Zn BATTERY

Publications (2)

Publication Number Publication Date
KR20160017243A true KR20160017243A (en) 2016-02-16
KR101641483B1 KR101641483B1 (en) 2016-07-22

Family

ID=55447780

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140099069A KR101641483B1 (en) 2014-08-01 2014-08-01 MANUFACTURE METHOD OF POCKET TYPE Ni-Zn BATTERY

Country Status (1)

Country Link
KR (1) KR101641483B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394151A (en) * 2017-07-18 2017-11-24 大连理工大学 A kind of preparation method of the nickel zinc battery cathode material based on porous carbon nanocapsule in-stiu coating zinc oxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080114328A (en) * 2007-06-27 2008-12-31 에너그린(주) Negative electrode for nickel/zinc secondary battery and fabrication method thereof
KR20120099031A (en) * 2009-10-13 2012-09-06 파워지닉스 시스템즈, 인코포레이티드 Cylindrical nickel-zinc cell with positive can

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080114328A (en) * 2007-06-27 2008-12-31 에너그린(주) Negative electrode for nickel/zinc secondary battery and fabrication method thereof
KR20120099031A (en) * 2009-10-13 2012-09-06 파워지닉스 시스템즈, 인코포레이티드 Cylindrical nickel-zinc cell with positive can

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHEELA BERCHMANS, JOURNAL OF MATERIALS CHEMISTRY A, 2014 *
박동필, 에너지공학, 2011 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394151A (en) * 2017-07-18 2017-11-24 大连理工大学 A kind of preparation method of the nickel zinc battery cathode material based on porous carbon nanocapsule in-stiu coating zinc oxide

Also Published As

Publication number Publication date
KR101641483B1 (en) 2016-07-22

Similar Documents

Publication Publication Date Title
CN102544599B (en) Nickel-zinc battery and manufacturing method thereof
JP2017147242A (en) Battery electrode pair
KR20100114516A (en) Pasted nickel hydroxide electrode for rechargeable nickel-zinc batteries
KR101641483B1 (en) MANUFACTURE METHOD OF POCKET TYPE Ni-Zn BATTERY
TW202130023A (en) Electrode assemblies incorporating ion exchange materials
US20050287438A1 (en) Alkaline electrochemical cell with improved lifetime
JP7128482B2 (en) lead acid battery
CN107636882B (en) Nonaqueous electrolyte secondary battery
US20030077512A1 (en) Electrolyte for alkaline rechargeable batteries
KR100878343B1 (en) Negative electrode for nickel/zinc secondary battery and fabrication method thereof
EP0800221B1 (en) Alkaline storage battery and method for manufacturing positive electrode plate therefor
JP4222761B2 (en) Non-aqueous electrolyte battery
KR100943751B1 (en) Nickel-metal hydride secondary battery
JP2884570B2 (en) Sealed alkaline secondary battery
WO2024043226A1 (en) Aqueous electrolyte secondary battery
Dong Pil et al. Fabrication of Industrial Ni-Zn Pocket-Type Secondary Battery
JP7256175B2 (en) Electrodes with multiple current collector arrays
CN115149215B (en) Lithium ion secondary battery
CN104362391A (en) Nickel-zinc battery and manufacturing method
JP6677436B1 (en) Lead storage battery
KR101589471B1 (en) Plate using emulsion-treated anode material and ni-mh battery having the same
JP4400113B2 (en) Nickel-hydrogen battery manufacturing method
JP2000182611A (en) Alkaline storage battery and its manufacture
JP4999309B2 (en) Alkaline storage battery
JP4626130B2 (en) Nickel-hydrogen storage battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right