JP4999309B2 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP4999309B2
JP4999309B2 JP2005298600A JP2005298600A JP4999309B2 JP 4999309 B2 JP4999309 B2 JP 4999309B2 JP 2005298600 A JP2005298600 A JP 2005298600A JP 2005298600 A JP2005298600 A JP 2005298600A JP 4999309 B2 JP4999309 B2 JP 4999309B2
Authority
JP
Japan
Prior art keywords
charge
electrode plate
hydroxide
nickel
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005298600A
Other languages
Japanese (ja)
Other versions
JP2007109501A (en
Inventor
勲 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2005298600A priority Critical patent/JP4999309B2/en
Publication of JP2007109501A publication Critical patent/JP2007109501A/en
Application granted granted Critical
Publication of JP4999309B2 publication Critical patent/JP4999309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、アルカリ蓄電池、特に1C以上の急速充電を行う際、電池電圧を利用して充電制御を行う機器に使用するアルカリ蓄電池に関するものである。   The present invention relates to an alkaline storage battery, and more particularly to an alkaline storage battery that is used for a device that performs charge control using a battery voltage when performing rapid charging at 1C or higher.

ニッケル・カドミウム蓄電池をはじめとするアルカリ蓄電池は、近年の市場拡大に伴って電動工具や無人搬送車(以下、AGVと称する)、ハイブリット自動車(以下、HEVと称する)等への用途が拡大し、それに伴い蓄電池の高容量化や急速充電性能が望まれている。急速充電の制御方式は様々であり、例えば、電池電圧が所定の電圧(充電末期電圧等)に達すると急速充電を停止、又は充電電流を小さくする電池電圧検出方式、充電末期に一定値だけ電池電圧が下降した時点で急速充電を停止する−ΔV検出方式、電池の温度変化をサーミスタ等により検出し急速充電を停止する電池温度検出方式、充放電電気量の収支によるSOCを検出し一定値以上となったら急速充電を停止するSOC検出方式、更にそれらを2つ以上組み合わせた複合検出方式などが利用されている。 Alkaline storage batteries, including nickel-cadmium storage batteries, have expanded their use in power tools, automated guided vehicles (hereinafter referred to as AGV), hybrid automobiles (hereinafter referred to as HEV), and the like with the recent market expansion. Accordingly, higher capacity and quick charging performance of storage batteries are desired. There are various quick charge control methods. For example, when the battery voltage reaches a predetermined voltage (end-of-charge voltage, etc.), fast charge is stopped or the charge current is reduced. -ΔV detection method that stops rapid charging when the voltage drops, battery temperature detection method that detects battery temperature change with a thermistor, etc., and stops rapid charging, detects SOC due to the balance of charge and discharge electricity, and exceeds a certain value In this case, an SOC detection method for stopping the rapid charging when it becomes, and a composite detection method combining two or more of them are used.

近年、急速に普及が進んでいるAGVやHEV等では、電池電圧が所定の電圧に達すると電池温度の上昇が著しいため電池性能の劣化が激しくなり、電池電圧検出方式が良く使われる。この時、電池の放電出力性能と充電受入れ性能のバランスを考慮して、電池が満充電にならないように充電が制御され、部分充電状態で頻繁に大電流の充放電が繰り返すといった使われ方をすることが多い。このような用途で主に使用されるアルカリ蓄電池は、正極板に水酸化ニッケルを活物質とするニッケル極板が使用される。 In recent years, AGV, HEV, and the like, which are rapidly spreading, use a battery voltage detection method frequently because the battery temperature is remarkably increased when the battery voltage reaches a predetermined voltage, and the battery performance is greatly deteriorated. At this time, in consideration of the balance between the battery's discharge output performance and charge acceptance performance, charging is controlled so that the battery does not become fully charged, and charging and discharging with a large current are frequently repeated in a partially charged state. Often to do. In the alkaline storage battery mainly used for such applications, a nickel electrode plate using nickel hydroxide as an active material is used for the positive electrode plate.

このニッケル極板を充電すると活物質である水酸化ニッケルはβ形オキシ水酸化ニッケルとなるが、更に理論容量以上に過充電を行うとγ形オキシ水酸化ニッケルが生成する。これまで、このγ形オキシ水酸化ニッケルは、電池を過充電したときに生成するものと考えられてきたが、AGVやHEVなどのような使用用途で部分充放電によって急速充電を行っても生成すされることが分かって来た。その原因は極板内の導電性ネットワークの形成にばらつきがあり、急速充電電流が導電性ネットワークの良好な部分に集中し、その部分の活物質が過充電状態になるためと考えられている。β形オキシ水酸化ニッケルは放電でβ形水酸化ニッケルになるが、γ形オキシ水酸化ニッケルはα形水酸化ニッケルになる。γ形オキシ水酸化ニッケルやα形水酸化ニッケルが多く生成すると結晶単位体積の膨張のために体積変化が起き、低密度となり、電極の変形や集電体からの剥離が起き易くなり、電池寿命の低下を招く。また、このγ形オキシ水酸化ニッケルは電荷移動抵抗が高く、蓄電池のメモリー効果や充電分極の増大の原因となる。充電分極の増大は、電池電圧検出方式の場合、充電量が低下するという問題が発生する。このため頻繁に充放電を繰り返しているうちに充電不足となり、容量ダウンに至ってしまう。 When this nickel electrode plate is charged, the nickel hydroxide as the active material becomes β-type nickel oxyhydroxide. However, when the battery is overcharged beyond the theoretical capacity, γ-type nickel oxyhydroxide is generated. So far, this γ-type nickel oxyhydroxide has been thought to be generated when the battery is overcharged, but it can be generated even if it is rapidly charged by partial charge and discharge in applications such as AGV and HEV. I know that it will be done. The cause is considered to be that there is variation in the formation of the conductive network in the electrode plate, and the rapid charging current is concentrated in a good part of the conductive network, and the active material in that part is overcharged. β-type nickel oxyhydroxide becomes β-type nickel hydroxide by discharge, while γ-type nickel oxyhydroxide becomes α-type nickel hydroxide. When a large amount of γ-type nickel oxyhydroxide or α-type nickel hydroxide is produced, the volume changes due to the expansion of the crystal unit volume, resulting in low density, easy deformation of the electrode and exfoliation from the current collector, and battery life. Cause a decline. In addition, this γ-type nickel oxyhydroxide has a high charge transfer resistance and causes a memory effect of the storage battery and an increase in charge polarization. The increase in charge polarization causes a problem that the charge amount decreases in the battery voltage detection method. For this reason, while charging and discharging are frequently repeated, charging becomes insufficient, resulting in capacity reduction.

そこで、活物質に金属ニッケルを含まないプラスチックボンデッド電極の負極とモル濃度が7Mを越え14M以下のアルカリ水溶液の電解液とを備えた1C以上の急速充電をおこない、負極の分極に基づく電圧の変化を検出して充電を制御すること(特許文献1)や、水酸化ニッケルを主体とする活物質を有する正極と、負極と、セパレータと、アルカリ電解液とを含むアルカリ蓄電池において、正極の活物質の表面は、水酸化コバルトと、水酸化ニッケルと、Y、Al、Mn、ランタノイド元素の群から選ばれる少なくとも1種の水酸化物との固溶体で被覆されており、かつ、アルカリ電解液には、少なくとも水酸化カリウムが全アルカリに対して、モル比で、3〜50%添加すること(特許文献2)などがおこなわれている。 Therefore, rapid charging of 1C or more including a negative electrode of a plastic bonded electrode that does not contain metallic nickel in the active material and an electrolyte solution of an alkaline aqueous solution having a molar concentration of more than 7M and 14M or less is performed, and a voltage based on the polarization of the negative electrode is obtained. In an alkaline storage battery that includes detecting a change to control charging (Patent Document 1), a positive electrode having an active material mainly composed of nickel hydroxide, a negative electrode, a separator, and an alkaline electrolyte, The surface of the substance is coated with a solid solution of cobalt hydroxide, nickel hydroxide, and at least one hydroxide selected from the group of Y, Al, Mn, and lanthanoid elements, and the alkaline electrolyte is coated with an alkaline electrolyte. At least potassium hydroxide is added in a molar ratio of 3 to 50% with respect to the total alkali (Patent Document 2).

特許第3558082号公報Japanese Patent No. 3558082 特開2004−235086号公報JP 2004-235086 A

特許文献1と特許文献2は急速充電特性を改善したアルカリ蓄電池として提案されているが、これらは頻繁に急速充電・放電を繰り返すと容量ダウンに至ってしまう。また特許文献1で提案されているような高濃度の電解液と非焼結式カドミウム負極板を組合せるとカドミウムの溶解度が増し、マイグレーションが生じやすく短寿命となってしまう。 Patent Literature 1 and Patent Literature 2 have been proposed as alkaline storage batteries with improved rapid charging characteristics. However, if these batteries are repeatedly charged and discharged frequently, the capacity is reduced. Further, when a high concentration electrolyte solution proposed in Patent Document 1 and a non-sintered cadmium negative electrode plate are combined, the solubility of cadmium increases, and migration tends to occur, resulting in a short life.

このような背景の下、電解液組成の最適化を図ることで、頻繁な急速充電の繰り返しにも耐え、電池長寿命を向上させることが可能なアルカリ蓄電池を提供することが望まれる。 Under such circumstances, it is desired to provide an alkaline storage battery that can withstand repeated repeated rapid charging and improve the battery life by optimizing the electrolyte composition.

本発明は、1CA以上の電流で急速充電されて電池電圧が所定の電圧に達すると充電制御されるアルカリ蓄電池であって、ニッケル正極板とインジウム又はインジウム化合物を含んだ非焼結式カドミウム負極板と、水酸化カリウムと水酸化ナトリウムを主とし、これに水酸化リチウムを含んだアルカリ水溶液の電解液とを備え、前記電解液中に0.2〜0.7Mの水酸化リチウムを添加すると共に、電解液の合計モル濃度が5M以上7M以下で、水酸化カリウムと水酸化ナトリウムのモル濃度比が1:1から3:1であることを特徴とするものである。 The present invention is an alkaline storage battery that is rapidly charged with a current of 1 CA or more and is charged when the battery voltage reaches a predetermined voltage, and is a non-sintered cadmium negative electrode plate containing a nickel positive electrode plate and indium or an indium compound And an alkaline aqueous electrolyte containing lithium hydroxide and mainly potassium hydroxide and sodium hydroxide , and 0.2 to 0.7 M lithium hydroxide is added to the electrolytic solution. the total molar concentration of the electrolyte solution in the following 7M least 5M, the molar concentration ratio of potassium hydroxide and sodium hydroxide is 1: 1 to 3: characterized in that it is 1.

急速充電による部分充放電の繰り返しによって生成するニッケル正極板のγ形オキシ水酸化ニッケルは、前述したように極板内の導電性ネットワークの形成にばらつきがあり、急速充電電流が導電性ネットワークの良好な部分に集中し、その部分の活物質が過充電状態になるためと考えられている。水酸化カリウム水溶液は水酸化ナトリウム水溶液に比べ抵抗が少なく、またカリウムは水酸化ニッケルの層間へのインターカレーションが少ない。ここへ水酸化ナトリウムを加えると水酸化ニッケルの層間へのインターカレーションが多くなる。但し、その量が多いと抵抗が増加する。そこで電解液の水酸化カリウムと水酸化ナトリウムのモル濃度比を1:1から3:1にすることで極板内の導電性ネットワークのばらつきと充電効率が改善され、γ形オキシ水酸化ニッケルの生成が抑制されるものと考えられる。また、電解液のモル濃度比を1:2のように水酸化ナトリウムの量を水酸化カリウムの量より多くすると、メモリー効果が生じやすくなってしまう。
なお、電解液のモル濃度を5Mより少なくすると、急速充電反応に必要なOHイオンの量が不足し充電分極が増大する。
更に、水酸化リチウムは正極の充電効率を改善するため一般的に用いられており、0.2〜0.7Mの水酸化リチウムを電解液に添加する。しかし、水酸化リチウムの添加量が多いと電解液中のイオン濃度が上昇し、液抵抗が大きくなるなど電池寿命が短くなる。
The γ-type nickel oxyhydroxide of the nickel positive electrode plate produced by repeated partial charge and discharge by rapid charge has variations in the formation of the conductive network in the electrode plate as described above, and the rapid charge current is good for the conductive network. This is thought to be because the active material in this part is overcharged. The aqueous potassium hydroxide solution has less resistance than the aqueous sodium hydroxide solution, and potassium has less intercalation between nickel hydroxide layers. When sodium hydroxide is added here, intercalation between nickel hydroxide layers increases. However, if the amount is large, the resistance increases. Therefore, by changing the molar concentration ratio of potassium hydroxide and sodium hydroxide in the electrolyte from 1: 1 to 3: 1, the dispersion of the conductive network in the electrode plate and the charging efficiency are improved. It is thought that generation is suppressed. Further, if the amount of sodium hydroxide is larger than the amount of potassium hydroxide such that the molar concentration ratio of the electrolytic solution is 1: 2, the memory effect tends to occur.
When the molar concentration of the electrolytic solution is less than 5M, the amount of OH ions necessary for the rapid charge reaction is insufficient, and the charge polarization increases.
Further, lithium hydroxide is generally used to improve the charging efficiency of the positive electrode, and 0.2 to 0.7 M lithium hydroxide is added to the electrolyte. However, when the amount of lithium hydroxide added is large, the ion concentration in the electrolytic solution increases and the battery life is shortened, for example, the liquid resistance is increased.

また、インジウムまたはインジウム化合物を負極板に添加することにより、利用率が向上し高容量化ができるが、インジウムまたはインジウム化合物を添加した非焼結式カドミウム負極板と、電解液として一般的な水酸化カリウム水溶液を使用した蓄電池を、1CA以上の急速充電を行うと、充電の中間に充電分極挙動が顕著に表れ、この原因は、インジウムが添加されていない非焼結式カドミウム負極板は、放電時粒径が小さいβ形水酸化カドミウムになるが、負極板にインジウムを添加することにより、インジウムが進入しているカドミウムは粒径が大きくなり、インジウムが進入していないカドミウムは粒径が小さくなり、粒径の大きさが異なるカドミウムが活物質中に存在する為に充電分極挙動が起きる。そこで、放電時に比較的大きな粒径のγ形水酸化カドミウムになる水酸化ナトリウムをある一定量加えることによって、インジウムの進入の有無に関わらず電解液のモル濃度比を3:1以下とすると粒径のばらつきを少なくすることが出来き、充電の中間に表れる充電分極挙動が抑制されるものと考えられる。 In addition, by adding indium or an indium compound to the negative electrode plate, the utilization rate can be improved and the capacity can be increased. However, a non-sintered cadmium negative electrode plate to which indium or an indium compound is added, and water that is commonly used as an electrolyte solution are used. When a storage battery using an aqueous potassium oxide solution is rapidly charged at 1 CA or more, the charge polarization behavior appears prominently in the middle of charging, and this is caused by the fact that the non-sintered cadmium negative electrode plate to which indium is not added is discharged. Β-type cadmium hydroxide has a small particle size, but by adding indium to the negative electrode plate, cadmium into which indium has entered becomes larger in particle size, and cadmium into which indium has not entered has a smaller particle size. Thus, cadmium having a different particle size is present in the active material, so that charge polarization behavior occurs. Therefore, by adding a certain amount of sodium hydroxide which becomes γ-type cadmium hydroxide having a relatively large particle size at the time of discharging, the molar concentration ratio of the electrolyte is 3: 1 or less regardless of whether or not indium enters. It is considered that the variation in diameter can be reduced, and the charging polarization behavior appearing in the middle of charging is suppressed.

本発明は、電解液組成の最適化を図ることで、ニッケル正極板のγ形オキシ水酸化ニッケルの生成を抑制することができ、さらにインジウム又はインジウム化合物を含んだ非焼結式負極板を使用することにより充電分極挙動を抑制することができ、頻繁な急速充電の繰り返しにも耐え、電池長寿命を向上させることが可能である。 The present invention can suppress the formation of γ-type nickel oxyhydroxide on the nickel positive electrode plate by optimizing the electrolyte composition, and further uses a non-sintered negative electrode plate containing indium or an indium compound. By doing so, it is possible to suppress the charge polarization behavior, endure frequent repeated quick charge, and improve the battery life.

公知の方法により焼結式正極板およびインジウム又はインジウム化合物を添加した非焼結式負極板を作製し、正極板と負極板をセパレータを介して交互に積層した後、同極性極板の耳を集電体と溶接し、その後、集電体と極柱を溶接で接合して極板群を作製した。この極板群を電槽に挿入し、所定組成の水酸化カリウムと水酸化ナトリウム各々のアルカリ水溶液を適量注液して密閉角型ニッケル・カドミウムアルカリ蓄電池を作製する。 After preparing a sintered positive electrode plate and a non-sintered negative electrode plate to which indium or an indium compound is added by a known method, the positive electrode plate and the negative electrode plate are alternately laminated via a separator, The current collector was welded, and then the current collector and the pole column were joined by welding to produce an electrode plate group. The electrode plate group is inserted into a battery case, and an appropriate amount of each of an alkaline aqueous solution of potassium hydroxide and sodium hydroxide having a predetermined composition is injected to produce a sealed prismatic nickel-cadmium alkaline storage battery.

(正極板の製造)
金属ニッケル粉末をニッケルメッキ多孔シートに焼結した焼結式基板に、硝酸コバルトを含む硝酸ニッケル水溶液を含浸し、熱処理、アルカリ処理、水洗及び乾燥という一連の工程を所定回数繰返し、主活物質が略所定量得られるようにした。その後、所定の濃度の硝酸カドミウム水溶液を含浸し、熱処理、アルカリ処理、水洗及び乾燥をすることで活物質表面に水酸化カドミウムを付与し、所定の寸法に切断して設計容量3.4Ahの焼結式ニッケル正極板を作製した。
(負極板の製造)
次に、酸化カドミウムと約20%のプリチャージに相当する量の金属カドミウムを主活物質とし、インジウムを所定量添加した活物質ペーストを、ニッケルメッキ多孔シートに塗着、乾燥し、所定の寸法に切断して設計容量5.8Ahの非焼結式カドミウム負極板を作製した。
(電池組立、電解液の調製と化成)
そして、これらの焼結式ニッケル正極板を24枚と非焼結式カドミウム負極板を25枚とを厚み0.2mmのセパレータを介して交互に積層した後、同極性極板の耳を集電体と溶接し、その後、集電体と極柱を溶接で接合して極板群を作製した。これを金属性電池ケースに収納し、各々のモル濃度およびモル濃度比のアルカリ水溶液の電解液を所定量注入した後に、金属製電池ケースを密閉して、公称容量60Ahの角型密閉式ニッケル・カドミウム蓄電池を各々作製した。なお、該電解液は水酸化カリウムと水酸化ナトリウムを主とし少量の水酸化リチウム(水酸化リチウムの添加量は約10g/l:0.5Mとし、以下、水酸化リチウムの添加量は約10g/lとする)を含み、電解液の合計モル濃度が6Mで、水酸化カリウムと水酸化ナトリウムのモル濃度比が1:1(本発明品1)、2:1(本発明品2)、3:1(本発明品3)としたものである。
(Manufacture of positive electrode plate)
A sintered substrate obtained by sintering metallic nickel powder into a nickel-plated porous sheet is impregnated with a nickel nitrate aqueous solution containing cobalt nitrate, and a series of steps of heat treatment, alkali treatment, water washing and drying are repeated a predetermined number of times, An approximately predetermined amount was obtained. Then, impregnated with a cadmium nitrate aqueous solution of a predetermined concentration, heat treated, alkali treated, washed with water and dried to give cadmium hydroxide to the surface of the active material, cut to a predetermined size, and fired with a design capacity of 3.4 Ah. A sintered nickel positive electrode plate was produced.
(Manufacture of negative electrode plate)
Next, cadmium oxide and metal cadmium in an amount equivalent to about 20% precharge are used as the main active material, and an active material paste to which a predetermined amount of indium is added is applied to a nickel-plated porous sheet, dried, and a predetermined dimension. And a non-sintered cadmium negative electrode plate having a design capacity of 5.8 Ah was produced.
(Battery assembly, electrolyte preparation and formation)
Then, 24 of these sintered nickel positive plates and 25 of non-sintered cadmium negative plates were alternately stacked via a 0.2 mm thick separator, and then the ears of the same polarity plate were collected. Then, the current collector and the pole column were joined together by welding to prepare an electrode plate group. This is housed in a metallic battery case, and after injecting a predetermined amount of an alkaline aqueous electrolyte solution having a molar concentration and a molar concentration ratio, the metallic battery case is sealed, and a rectangular sealed nickel nickel alloy with a nominal capacity of 60 Ah is sealed. Cadmium storage batteries were produced respectively. The electrolyte is mainly composed of potassium hydroxide and sodium hydroxide, and a small amount of lithium hydroxide (the addition amount of lithium hydroxide is about 10 g / l: 0.5 M, hereinafter, the addition amount of lithium hydroxide is about 10 g. / L), the total molar concentration of the electrolyte is 6M, and the molar concentration ratio of potassium hydroxide and sodium hydroxide is 1: 1 (invention product 1), 2: 1 (invention product 2), 3: 1 (Invention product 3).

水酸化カリウムと水酸化ナトリウムのモル濃度比を2:1として、電解液の合計モル濃度をそれぞれ5Mと7Mとした(本発明品4、5)以外は、実施例1と同様に公称容量60Ahの角型密閉式ニッケル・カドミウム蓄電池を各々作製した。 The nominal capacity of 60 Ah was the same as in Example 1 except that the molar concentration ratio of potassium hydroxide and sodium hydroxide was 2: 1 and the total molar concentration of the electrolyte was 5 M and 7 M, respectively (Products 4 and 5 of the present invention). Each of the square sealed nickel-cadmium storage batteries was prepared.

(比較例1)
電解液に水酸化カリウムを添加せず電解液の合計モル濃度を6Mとした以外は、実施例1と同様に公称容量60Ahの角型密閉式ニッケル・カドミウム蓄電池を作製した。
(比較例2)
水酸化カリウムと水酸化ナトリウムのモル濃度比を5:1とし、電解液の合計モル濃度を6Mとした以外は、実施例1と同様に公称容量60Ahの角型密閉式ニッケル・カドミウム蓄電池を作製した。
(比較例3、4)
水酸化カリウムと水酸化ナトリウムのモル濃度比を2:1とし、電解液の合計モル濃度をそれぞれ4Mと8Mとした(比較例3、4)以外は、実施例1と同様に公称容量60Ahの角型密閉式ニッケル・カドミウム蓄電池を各々作製した。
(比較例5)
水酸化カリウム水溶液のモル濃度を7Mとし、水酸化ナトリウムを添加しない以外は、実施例1と同様に公称容量60Ahの角型密閉式ニッケル・カドミウム蓄電池を各々作製した。
上記の実施例1〜5と比較例1〜5のモル濃度比、電解液モル濃度および電解液合計モル濃度を表1に示す。
(Comparative Example 1)
A square sealed nickel-cadmium storage battery having a nominal capacity of 60 Ah was prepared in the same manner as in Example 1 except that potassium hydroxide was not added to the electrolyte and the total molar concentration of the electrolyte was 6M.
(Comparative Example 2)
A square sealed nickel-cadmium storage battery with a nominal capacity of 60 Ah was prepared in the same manner as in Example 1 except that the molar concentration ratio of potassium hydroxide and sodium hydroxide was 5: 1 and the total molar concentration of the electrolyte was 6M. did.
(Comparative Examples 3 and 4)
The nominal capacity of 60 Ah was the same as in Example 1 except that the molar concentration ratio of potassium hydroxide and sodium hydroxide was 2: 1 and the total molar concentration of the electrolyte was 4 M and 8 M, respectively (Comparative Examples 3 and 4). Each of the square sealed nickel-cadmium storage batteries was produced.
(Comparative Example 5)
A square sealed nickel-cadmium storage battery having a nominal capacity of 60 Ah was prepared in the same manner as in Example 1 except that the molar concentration of the potassium hydroxide aqueous solution was 7 M and sodium hydroxide was not added.
Table 1 shows the molar concentration ratio, the electrolytic solution molar concentration, and the total electrolytic solution molar concentration of Examples 1 to 5 and Comparative Examples 1 to 5.

(急速充電サイクル試験)
上記作製した各角型密閉式ニッケル・カドミウム蓄電池のサイクル寿命試験を次の様に実施した。まず、活性化充放電として0.1CAの定電流で150%の充電し、0.2CAの電流で蓄電池電圧が1.0Vになるまで放電をして活性化充放電を行った。
そして、活性化充放電を行った後、急速充電サイクル試験として、0.2CAの電流で5.5Hrの定電流充電を行い各々の角型密閉式ニッケル・カドミウム蓄電池を満充電状態とした。そして、0.2CAの電流で5分放電、3CAの電流で1.56Vまで充電するサイクル試験を90日間繰り返した。なお、試験は、周囲温度25±5℃で行った。図1は急速充電サイクル試験のサイクル中の放電末期電圧の推移特性を示したものである。
(Quick charge cycle test)
A cycle life test of each of the square sealed nickel-cadmium storage batteries prepared above was performed as follows. First, as activation charge / discharge, 150% charge was performed with a constant current of 0.1 CA, and discharge was performed with a current of 0.2 CA until the storage battery voltage became 1.0 V, and activation charge / discharge was performed.
Then, after performing activation charge / discharge, as a rapid charge cycle test, a constant current charge of 5.5 Hr was performed at a current of 0.2 CA, and each of the square sealed nickel-cadmium storage batteries was fully charged. Then, a cycle test in which the battery was discharged at a current of 0.2 CA for 5 minutes and charged to 1.56 V at a current of 3 CA was repeated for 90 days. The test was conducted at an ambient temperature of 25 ± 5 ° C. FIG. 1 shows the transition characteristics of the end-of-discharge voltage during the cycle of the quick charge cycle test.

比較例1はA、本発明品1はB、本発明品2はC、本発明品3はD、比較例2はE、比較例3はF、本発明品4はG、本発明品5はH、比較例4はI、比較例5はJとしてそれぞれ特性を図中に示した。図1に示すように、B、C、D、G、HおよびIで示す本発明品1〜3、本発明品4と5および比較例4は何れも放電末期電圧の低下がほとんど見られず90日間良好に充放電のサイクル試験ができたのに対し、A、EおよびJで示す比較例1〜2および比較例5は早期に放電末期電圧が低下し充放電のサイクル試験が途中で出来なくなってしまった。本発明品1〜3(B、C、D)、本発明品5(H)および比較例4(I)は、正極板のγ形オキシ水酸化ニッケルの生成と負極板のインジウムによる充電分極挙動の抑制が出来たものと考えられる。これに対し、早期に放電末期電圧が低下した比較例1、2(A、E)および比較例5(J)の極板の電位挙動を測定した結果、極板の電位挙動を測定した結果、比較例1(A)は、正極の充電分極が大きくなっていたことからγ形オキシ水酸化ニッケルが生成され充電量が低下したものと考えられ、比較例2、5(E、I)は、充電の所定より早期の段階で負極にインジウムによる充電分極挙動が表れ、電池電圧が上昇し、所定の充電量よりも早期に充電が止まってしまっていた。また、本発明品4(G)は放電末期電圧が上下し多少不安定な挙動が認められたが、90日間の充放電のサイクル試験を持続することが可能であった。比較例3(F)は早期に放電末期電圧の低下とはならなかったが、放電末期電圧の上下が大きく90日間持続することはできなかった。本発明品4(G)および比較例3(F)において、放電末期電圧が上下し不安定な挙動が見られたのは、放電末期電圧が低下した部分で負極の充電開始分極が大きくなっており、急速充電反応に必要なOHイオンの量が不足しているものと考えられる。 Comparative Example 1 is A, Invention Product 1 is B, Invention Product 2 is C, Invention Product 3 is D, Comparison Example 2 is E, Comparison Example 3 is F, Invention Product 4 is G, Invention Product 5 The characteristics are shown in the figure as H, Comparative Example 4 as I, and Comparative Example 5 as J. As shown in FIG. 1, none of the present invention products 1 to 3, present invention products 4 and 5 and Comparative Example 4 indicated by B, C, D, G, H and I show almost no decrease in the end-of-discharge voltage. The charge / discharge cycle test was successfully performed for 90 days, whereas in Comparative Examples 1-2 and 5 shown by A, E, and J, the end-of-discharge voltage decreased early, and the charge / discharge cycle test could be performed halfway I'm gone. The inventive products 1 to 3 (B, C, D), the inventive product 5 (H), and Comparative Example 4 (I) are the production of γ-type nickel oxyhydroxide in the positive electrode plate and the charge polarization behavior due to indium in the negative electrode plate. It is thought that this has been achieved. On the other hand, as a result of measuring the potential behavior of the electrode plates of Comparative Examples 1 and 2 (A, E) and Comparative Example 5 (J) in which the end-of-discharge voltage decreased early, as a result of measuring the potential behavior of the electrode plate, In Comparative Example 1 (A), the charge polarization of the positive electrode was large, and thus it is considered that γ-type nickel oxyhydroxide was generated and the charge amount was reduced. Comparative Examples 2, 5 (E, I) were Charge polarization behavior due to indium appeared on the negative electrode at an earlier stage than the predetermined charge, the battery voltage increased, and the charge stopped earlier than the predetermined charge amount. In addition, although the product 4 (G) of the present invention showed a somewhat unstable behavior with the end-of-discharge voltage increasing and decreasing, it was possible to continue the 90-day charge / discharge cycle test. In Comparative Example 3 (F), the end-of-discharge voltage did not decrease early, but the upper and lower ends of the end-of-discharge voltage were large and could not be sustained for 90 days. In the product 4 (G) of the present invention and the comparative example 3 (F), the end-of-discharge voltage was increased and unstable behavior was observed because the charge start polarization of the negative electrode increased at the portion where the end-of-discharge voltage decreased. Therefore, it is considered that the amount of OH ions necessary for the quick charge reaction is insufficient.

(急速充放電寿命試験)
次に、作製した角型密閉式ニッケル・カドミウム蓄電池について、急速充放電寿命試験を実施した。まず、活性化充放電として0.1CAの電流で150%の定電流充電、0.2CAの電流で電圧が1.0Vまで放電を本発明品2、4、5および比較例3、4の各々の角型密閉式ニッケル・カドミウム蓄電池について行った。そして、活性化充放電を行った後、急速充電寿命試験としてまず、0.2CAの電流で5.5Hrの定電流充電を行い各々の角型密閉式ニッケル・カドミウム蓄電池を満充電状態とした。そして、3CAの電流で2分間放電、3CAの電流で1.6Vまで充電するサイクルを繰り返して急速充放電寿命試験を行った。なお、2、000回毎に放電容量の確認をした。該放電容量の確認は、0.2CAの電流で電池電圧が1.0Vまで放電を行い、次いで0.2CAの電流で5.5Hrの定電流充電を行った。なお、周囲温度は活性過充電試験を25±5℃、急速充放電寿命試験を20±5℃で行った。また、急速充電寿命試験は40、000サイクルを超えても各々の電池が寿命となるまで行った。図2に急速充放電寿命試験における放電特性を示す。縦軸は各放電容量を定格容量を100とした割合で示した容量維持率である。横軸はサククル数である。
(Rapid charge / discharge life test)
Next, a rapid charge / discharge life test was performed on the prepared square sealed nickel-cadmium storage battery. First, as activation charge / discharge, a constant current charge of 150% with a current of 0.1 CA, and a discharge with a current of 0.2 CA up to a voltage of 1.0 V, each of the present invention products 2, 4, 5 and Comparative Examples 3, 4 This was performed on a rectangular sealed nickel-cadmium storage battery. Then, after the activation charge / discharge, as a quick charge life test, first, a constant current charge of 5.5 Hr was performed with a current of 0.2 CA, and each of the square sealed nickel-cadmium storage batteries was fully charged. Then, a rapid charge / discharge life test was conducted by repeating the cycle of discharging at 3 CA current for 2 minutes and charging to 1.6 V at 3 CA current. The discharge capacity was confirmed every 2,000 times. The discharge capacity was confirmed by discharging the battery voltage to 1.0 V with a current of 0.2 CA, and then performing a constant current charge of 5.5 Hr with a current of 0.2 CA. The ambient temperature was an active overcharge test at 25 ± 5 ° C. and a rapid charge / discharge life test at 20 ± 5 ° C. In addition, the quick charge life test was conducted until each battery reached the end of its life even after exceeding 40,000 cycles. FIG. 2 shows discharge characteristics in the rapid charge / discharge life test. The vertical axis represents the capacity maintenance ratio in which each discharge capacity is shown as a ratio with the rated capacity being 100. The horizontal axis is the number of cycles.

図1と同様に、本発明品2はC、本発明品4はG、本発明品5はH、比較例3はF、比較例4はIとしてそれぞれ特性を図中に示した。図2に示すように、本発明品2(C)、本発明品4(G)、本発明品5(H)および比較例3(F)は、40、000サイクルを超えたが、比較例4(I)は40、000サイクルを超えることが出来なかった。また本発明品5(H)および比較例4(I)は突然寿命となった。寿命となった各々の電池を解体調査した結果、突然寿命となった本発明品5(H)および比較例4(I)はカドミウムのマイグレーションにより内部短絡が生じていることが確認された。このことから電解液モル濃度が大きい程カドミウムのマイグレーションが生じやすいことが確認された。 As in FIG. 1, the product of the present invention 2 is C, the product 4 of the present invention is G, the product of the present invention 5 is H, the comparative example 3 is F, and the comparative example 4 is I. As shown in FIG. 2, the inventive product 2 (C), the inventive product 4 (G), the inventive product 5 (H) and the comparative example 3 (F) exceeded 40,000 cycles. 4 (I) could not exceed 40,000 cycles. Further, the product 5 (H) of the present invention and the comparative example 4 (I) suddenly reached the end of their lives. As a result of disassembling and investigating each battery that had reached the end of its life, it was confirmed that an internal short circuit occurred due to migration of cadmium in the product 5 (H) and Comparative Example 4 (I) that suddenly reached the end of life. From this, it was confirmed that migration of cadmium tends to occur as the molar concentration of the electrolytic solution increases.

以上、急速充電サイクル寿命試験および急速充放電寿命試験の結果より、前記電解液中に0.2〜0.7Mの水酸化リチウムを添加すると共に、電解液の合計モル濃度が5M以上7M以下で、水酸化カリウムと水酸化ナトリウムのモル濃度比が1:1から3:1とすることで、ニッケル正極板のγ形オキシ水酸化ニッケルの生成を抑制することができ、またインジウム又はインジウム化合物を含んだ非焼結式負極板を使用することにより充電分極挙動を抑制することができ、頻繁な急速充電の繰り返しにも耐え、電池長寿命を向上させることが可能である。 As described above, from the results of the quick charge cycle life test and the quick charge / discharge life test , 0.2 to 0.7 M lithium hydroxide is added to the electrolyte solution, and the total molar concentration of the electrolyte solution is 5 M or more and 7 M or less. By making the molar concentration ratio of potassium hydroxide and sodium hydroxide 1: 1 to 3: 1, the formation of γ-type nickel oxyhydroxide on the nickel positive electrode plate can be suppressed, and indium or an indium compound is added. By using the included non-sintered negative electrode plate, it is possible to suppress the charge polarization behavior, withstand repeated frequent rapid charging, and to improve the battery long life.

本発明の急速充電サイクルにおける放電末期電圧の推移。Transition of end-of-discharge voltage in the quick charge cycle of the present invention. 本発明に急速充放電寿命試験における放電容量維持率の推移。Transition of discharge capacity maintenance rate in the rapid charge / discharge life test of the present invention.

Claims (1)

1CA以上の電流で急速充電されて電池電圧が所定の電圧に達すると充電制御されるアルカリ蓄電池であって、ニッケル正極板とインジウム又はインジウム化合物を含んだ非焼結式カドミウム負極板と、水酸化カリウムと水酸化ナトリウムを主とし、これに水酸化リチウムを含んだアルカリ水溶液の電解液とを備え、前記電解液中に0.2〜0.7Mの水酸化リチウムを添加すると共に、電解液の合計モル濃度が5M以上7M以下で、水酸化カリウムと水酸化ナトリウムのモル濃度比が1:1から3:1であることを特徴とするアルカリ蓄電池。 An alkaline storage battery that is rapidly charged with a current of 1 CA or more and is charged when the battery voltage reaches a predetermined voltage, a nickel positive electrode plate, a non-sintered cadmium negative electrode plate containing indium or an indium compound, An alkaline aqueous electrolyte containing potassium hydroxide and sodium hydroxide , and 0.2 to 0.7 M lithium hydroxide is added to the electrolytic solution. An alkaline storage battery having a total molar concentration of 5 M or more and 7 M or less and a molar concentration ratio of potassium hydroxide and sodium hydroxide of 1: 1 to 3: 1.
JP2005298600A 2005-10-13 2005-10-13 Alkaline storage battery Active JP4999309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298600A JP4999309B2 (en) 2005-10-13 2005-10-13 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298600A JP4999309B2 (en) 2005-10-13 2005-10-13 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2007109501A JP2007109501A (en) 2007-04-26
JP4999309B2 true JP4999309B2 (en) 2012-08-15

Family

ID=38035216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298600A Active JP4999309B2 (en) 2005-10-13 2005-10-13 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4999309B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724216B2 (en) * 1986-07-07 1995-03-15 三洋電機株式会社 Non-sintered cadmium cathode for alkaline storage batteries
JPS63264863A (en) * 1987-04-21 1988-11-01 Japan Storage Battery Co Ltd Sealed nickel-cadmium storage battery and its manufacture
JPH04355054A (en) * 1991-05-30 1992-12-09 Sanyo Electric Co Ltd Manufacture of cadimium negative electrode for alkaline storage battery
JP3456217B2 (en) * 1992-12-14 2003-10-14 日本電池株式会社 Nickel-based secondary battery
JPH09274932A (en) * 1996-04-05 1997-10-21 Toshiba Battery Co Ltd Manufacture of alkaline secondary battery
JPH10334898A (en) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd Alkaline storage battery, its electrode and manufacture thereof
JP3695927B2 (en) * 1998-01-30 2005-09-14 三洋電機株式会社 Non-sintered nickel positive electrode for alkaline storage battery, electrolytic solution for alkaline storage battery, and alkaline storage battery using these nickel positive electrode and electrolytic solution
JP2000133302A (en) * 1998-10-29 2000-05-12 Sanyo Electric Co Ltd Alkaline storage battery
JP2004235086A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Alkaline storage battery
JP3558082B2 (en) * 2003-04-17 2004-08-25 日本電池株式会社 Nickel-cadmium secondary battery

Also Published As

Publication number Publication date
JP2007109501A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP2013114888A (en) Alkali storage battery, and alkali storage battery system with the same
JP5849768B2 (en) Alkaline storage battery and alkaline storage battery system
JP4999309B2 (en) Alkaline storage battery
JP5213312B2 (en) Alkaline storage battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP2004281289A (en) Alkaline storage battery
JP2008259260A (en) Charging method of power supply
JP3788485B2 (en) Alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP4626130B2 (en) Nickel-hydrogen storage battery
JP3339327B2 (en) Storage battery
Dong Pil et al. Fabrication of Industrial Ni-Zn Pocket-Type Secondary Battery
JP4400113B2 (en) Nickel-hydrogen battery manufacturing method
WO2020230204A1 (en) Nickel zinc battery
JP2007157417A (en) Charge control method of nickel cadmium storage battery
JP2000012027A (en) Nonaqueous electrolyte secondary battery
JP2006155901A (en) Control valve type lead-acid storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
Soserov et al. Effect of surfactants and wetting agents on the electrochemical characteristics of Ni/Zn batteries
JP4783980B2 (en) Cylindrical secondary battery
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
WO2021041124A1 (en) Method and system for improved performance of silicon anode containing cells through formation
JP2001338677A (en) Method of manufacturing alkalistorage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4999309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3