KR20150133559A - 레이저 조명 장치 - Google Patents

레이저 조명 장치 Download PDF

Info

Publication number
KR20150133559A
KR20150133559A KR1020140060506A KR20140060506A KR20150133559A KR 20150133559 A KR20150133559 A KR 20150133559A KR 1020140060506 A KR1020140060506 A KR 1020140060506A KR 20140060506 A KR20140060506 A KR 20140060506A KR 20150133559 A KR20150133559 A KR 20150133559A
Authority
KR
South Korea
Prior art keywords
optical waveguide
laser light
waveguide
laser
laser beam
Prior art date
Application number
KR1020140060506A
Other languages
English (en)
Inventor
주영구
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020140060506A priority Critical patent/KR20150133559A/ko
Publication of KR20150133559A publication Critical patent/KR20150133559A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/61Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/65Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction specially adapted for changing the characteristics or the distribution of the light, e.g. by adjustment of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

본원 발명은, 입사한 레이저 광을 산란시켜 조명장치로 사용하는 레이저 조명장치에 있어서, 레이저 광원; 상기 레이저 광원으로부터 출사한 레이저 광을 집속하는 집속렌즈; 상기 집속렌즈를 통하여 입사한 상기 레이저 광을 가이드 하는 광도파로; 상기 광도파로 내부에 배치된 산란체; 및 상기 광도파로의 양 단에 설치되며, 입사한 상기 레이저 광을 상기 광도파로 내부로 반사하는 제1 및 제2 반사경;을 포함하며, 상기 제1 반사경은 광도파로의 입사단에 설치되고, 상기 레이저 광이 통과하는 투과구멍을 형성하는 것을 특징으로 하는 레이저 조명장치를 제공한다. 레이저광은 렌즈에 의하여 작은 직경의 스폿으로 집속되고 광도파로 한쪽에 설치된 반사경의 투과 구멍을 통과해 광도파로에 입사한다. 광도파로에 입사한 레이저 광은 내부 전반사에 의해서 광도파로를 따라 이동하다가 광도파로에 균일하게 분포된 산란체를 만나게 되면 산란되며 광도파로 외부로 방출된다. 산란체에 의해서 방출되는 레이저 광은 일반적으로 광도파로의 길이 방향으로 진행함에 따라 지수 함수적으로 세기가 감소하는데 본 발명에서는 광도파로의 양 단에 반사경을 설치하여 광도파로 양 단을 여러 번 왕복함으로써 조명의 균일도를 크게 향상할 수 있다. 또한, 레이저 입사단에 있는 반사경에 설치된 작은 투과 구멍은 레이저 광을 입사시키면서도 광도파로 내부에서 왕복하는 레이저 광은 대부분 반사함으로써 레이저 조명 장치의 균일도와 에너지 효율을 향상하는 효과가 있다.

Description

레이저 조명 장치{laser illuminator}
본 발명은 디스플레이 장치의 광원이나 자동차의 헤드라이트 등에 사용되는 조명 장치에 대한 것이다. 상세하게는 레이저광을 렌즈를 사용하여 광도파로에 집속하고 광도파로 안에 채워진 산란체에서 레이저 광을 산란 시켜 광도파로 전체에서 균일한 레이저 광이 나오도록 하는 조명 장치에 대한 것이다.
도 1은 종래의 레이저 조명장치에 대한 개략도이다. 도 1을 참조하면, 광도파로 또는 광섬유에 산란 입자를 섞고 레이저 광을 입사시킨 경우를 보이고 있다. 광도파로의 단면은 원 또는 다각형이고 광도파로는 PMMA와 같은 투명 플라스틱이나 유리로 만들어져 있다. 이러한 광도파로는 내부 전반사의 원리에 의해서 일정한 입사각 이상으로 입사하는 레이저 광을 내부 전반사시켜 광도파로의 길이 방향으로 광 손실 없이 진행하게 한다. 광도파로 내부에 광도파로의 굴절률과 다른 굴절률로 이루어진 산란 비드를 섞어 놓으면 산란 현상에 의해서 레이저 광은 사방으로 흩어지고 이러한 산란광들은 내부 전반사 조건을 만족하지 않으므로 광도파로 외부로 퍼져나가게 된다. 광도파로의 가장 간단한 예는 광섬유를 들 수 있다. 광섬유는 단면이 보통 원형이고 플라스틱이나 유리 재질로서 적은 광 손실을 유지하며 레이저 광을 먼 거리까지 가이딩 하는 광도파로의 한 종류이다.
산란체의 체적 밀도를 n, cross-section 을 σ, 입사하는 포톤(photon)의 개수를 N, 막대 조명의 두께 dx에서 산란되는 포톤의 개수 dN은 다음 식에 의해서 표현된다. cross-section σ는 포톤과 산란 입자가 상호 충돌할 확률에 비례하는 양이다.
Figure pat00001
     (식 1)
막대 조명 시작점에서의 포톤의 개수를 N0라고 하면 광도파로의 길이 방향의 위치 x에 대하여 포톤의 개수는 다음 식을 따른다.
  
Figure pat00002
   (식 2)
단위 길이당 산란 입자에 의해서 산란되는 포톤의 개수는 다음과 같다.
     
Figure pat00003
    (식 3)
도 2는 광도파로의 길이 방향의 위치에 따른 조도 분포를 나타낸 그래프이다. 실제로 산란 비드 밀도를 결정하고 조명 소프트웨어를 사용해서 산란되는 레이저 광의 세기를 계산해 보면 도 2와 같은 조도 분포를 얻게 된다. 광도파로의 길이 방향의 위치에 따라 산란되는 레이저 광의 세기는 지수 함수적으로 감소하는데 식 3에 나온 결과와 일치한다.
광도파로에 산란 입자를 균일하게 혼합하게 되면 레이저가 입사단에 가까울수록 조도는 강하고 입사단으로부터 멀어질수록 조도가 급격히 줄어드는 조도 분포를 얻게 된다. 종래의 레이저 조명 장치에 대하여 다른 이차 광학계를 이용하여 조도 분포에 변화를 주기 위해서는 광도파로의 길이 방향으로 균일한 조도 분포가 필요하므로 도 2에 나온 광도파로의 길이 방향의 위치에 따른 조도 분포는 실제 응용에 있어 바람직하지 않은 결과이다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 광도파로의 양 단에 반사경을 설치하여 광도파로의 길이 방향으로 균일한 세기의 조도 분포를 갖는 레이저 조명 장치를 제공하는데 목적이 있다.
상기 목적을 달성하기 위해, 본 발명은 레이저 광원; 상기 레이저 광원으로부터 출사한 레이저 광을 집속하는 집속렌즈; 상기 집속렌즈를 통하여 입사한 상기 레이저 광을 가이드 하는 광도파로; 상기 광도파로 내부에 배치된 산란체; 및 상기 광도파로의 양 단에 설치되며, 입사한 상기 레이저 광을 상기 광도파로 내부로 반사하는 제1 및 제2 반사경;을 포함하며, 상기 제1 반사경은 광도파로의 입사단에 설치되고, 상기 레이저 광이 통과하는 투과구멍을 형성하는 것을 특징으로 하는 레이저 조명장치를 제공한다.
상기 제1 및 제2 반사경은 상기 광도파로 내부에서 상호 마주볼 수 있다.
상기 광도파로는 내부에 상기 광도파로의 길이방향을 따라 배치되는 산란체 기둥을 더 포함하며, 상기 산란체는 상기 산란체 기둥 내부에 배치돌 수 있다.
상기 산란체 기둥은 상기 산란체가 밀집되는 밀도에 따라 부분적으로 상이한 단면적을 가질 수 있다.
상기 산란체 기둥은 상기 광도파로의 상기 입사단으로부터 멀어질수록 상기 산란체 기둥의 단면적이 점차 증가할 수 있다.
상기 광도파로의 단면이 직사각형일 수 있다.
상기 광도파로는 마주보는 두 측면에 설치되는 제3 및 제4 반사경을 더 포함할 수 았다.
상기 산란체가 실리카입자, 이산화타이타늄(TiO2)입자 또는 형광 입자일 수 있다. 이에 따라 산란체는 높은 에너지 포톤을 흡수하고 낮은 에너지 포톤을 사방으로 방출하므로, 광도파로 밖으로 파장이 짧아진 레이저광을 방출하게 하는 역할을 할 수 있다.
또한, 본 발명은 레이저 광원; 상기 레이저 광원으로부터 출사한 레이저 광을 집속하는 집속렌즈; 상기 집속렌즈를 통하여 입사한 상기 레이저 광을 가이드 하는 광도파로; 상기 광도파로 내부에 상기 광도파로의 길이방향을 따라 배치되는 산란체 기둥;상기 산란체 기둥 내부에 배치된 산란체; 및 상기 광도파로의 입사단의 반대 측단에 배치되어 상기 레이저 광을 상기 광도파로 내부로 반사하는 반사경;을 포함하며, 상기 산란체 기둥은 상기 광도파로의 상기 입사단으로부터 멀어질수록 상기 산란체 기둥의 단면적이 점차 증가하는 것을 특징으로 하는 레이저 조명장치를 제공한다.
본 발명에 따른 레이저 조명 장치는 광도파로 전체 길이에서 균일한 세기의 빛이 방출되는 효과가 있다. 또한, 본 발명에 따른 레이저 조명 장치는 단 면적이 작은 광섬유에도 적용할 수 있으므로 매우 가는 선 광원을 만들 수 있는 효과가 있다.
도 1은 산란체가 배치된 광도파로에 레이저 광이 입사해 산란되는 모습을 보이는 개념도이다.
도 2는 도 1에 따른 광도파로의 길이 방향의 위치에 따른 산란광의 세기이다.
도 3a는 본 발명의 제1 실시예에 의한 레이저 조명장치에 대한 길이방향의 단면을 개략적으로 도시한 개념도이다.
도 3b는 본 발명의 제1 실시예에 의한 레이저 조명장치의 광도파로의 사시도이다.
도 4는 본 발명의 제1실시예에 의한 레이저 조명 장치의 광도파로를 왕복하는 레이저 광을 추적하여 산란광의 세기를 나타낸 그래프이다.
도 5는 본 발명의 제1실시예에 의한 레이저 조명 장치의 광도파로 내부로부터의 산란광의 세기를 레이저광이 산란되는 위치에 따라 표시한 그래프이다.
도 6a는 본 발명의 제1실시예에 의한 레이저 조명 장치의 광도파로의 길이방향에 따른 조도 분포를 음영으로 나타낸 그래프이다.
도 6b는 도 6a에서의 음영에 대응하는 산란광의 세기를 나타낸 그래프이다.
도 7은 본 발명의 제1실시예에 의한 레이저 조명 장치의 길이방향에 따른 조도 분포를 표시한 그래프이다.
도 8a은 본 발명의 제2실시예에 의한 레이저 조명 장치에 대한 길이방향의 단면을 개략적으로 도시한 개념도이다.
도 8b는 본 발명의 제2실시예에 의한 레이저 조명 장치의 광도파로의 사시도이다.
도 9a는 본 발명의 제3실시예에 의한 레이저 조명 장치에 대한 길이방향의 단면을 개략적으로 도시한 개념도이다.
도 9b 본 발명의 제3실시예에 의한 레이저 조명 장치의 광도파로의 사시도이다.
도 10a은 본 발명의 제4실시예에 의한 레이저 조명 장치에 대한 길이방향의 단면을 개략적으로 도시한 개념도이다.
도 10b 본 발명의 제4실시예에 의한 레이저 조명 장치의 광도파로의 사시도이다.
도 11은 본 발명의 제4실시예에 의한 레이저 조명 장치 내에서 광선의 궤적을 개략적으로 도시한 개념도이다.
이하, 첨부된 도면을 이용하여 본 발명의 실시예에 따른 레이저 조명장치를 상세하게 설명한다. 그러나 명세서 및 청구범위에서 구체적으로 제시된 실시 형태는 본 발명을 더욱 명확하게 이해시키기 위한 목적으로 제공되는 것이며 본 발명의 범위를 제한하기 위한 것이 아니다.
도 3a는 본 발명의 제1 실시예에 따른 레이저 조명장치에 대한 길이방향의 단면을 개략적으로 도시한 개념도이고, 도 3b는 본 발명의 제1 실시예에 따른 레이저 조명장치의 광도파로(25)의 사시도이다.
도 3a를 참조하면, 본 발명의 바람직한 제 1 실시예의 의한 레이저 조명장치는 레이저 광원(20); 상기 레이저 광원으로부터 출사한 레이저 광을 집속하는 집속렌즈(21); 상기 집속렌즈(21)를 통하여 입사한 상기 레이저 광을 가이드 하는 광도파로(25); 상기 광도파로(25) 내부에 배치된 산란체(26); 및 상기 광도파로의 양 단에 설치되며, 입사한 상기 레이저 광을 상기 광도파로(25) 내부로 반사하는 제1 및 제2 반사경(23, 27);을 포함하며, 상기 제1 반사경(23)은 광도파로(25)의 입사단에 설치되고, 상기 레이저 광이 통과하는 투과구멍(231)을 형성하는 것을 특징으로 하는 레이저 조명장치를 제공한다.
레이저 광원(20)은 집속 렌즈(21)에 의해 집속되어 반사경(23)에 있는 투과 구멍(231)을 통과한다. 이때 레이저 광원(20)의 직경과 렌즈(21) 초점 거리의 비율은 일정한 수치 구경(numerical aperture)보다 작아서 광도파로(25)에 입사한 후에 내부 전반사를 통해 막대 길이 방향으로 광 손실 없이 전파할 수 있다. 도 3a를 참조하면, 광도파로(25) 측면에서 내부 전반사 되는 광선의 예를 보이고 있다. 이렇게 전달되는 광선은 산란체(26)을 만나면 사방으로 흩어지게 되는데 산란되는 각도와 에너지 분포는 산란체(26)의 특성에 따라 다르다. 산란체(26)는 보통 산란 비드를 사용하는데 작은 크기의 실리카 입자 또는 이산화타이타늄(TiO2)입자를 광도파로(25)의 재질에 섞어서 균일하게 분포하도록 만든다. 산란체(26)로 산란 비드를 예로 들었지만 형광 입자를 사용해도 같은 효과를 얻을 수 있다. 형광 입자는 높은 에너지 포톤을 흡수하고 낮은 에너지 포톤을 사방으로 방출하기 때문에 광도파로(25) 외부로 산란광을 방출하게 하는 역할을 한다. 이 경우 산란광의 파장이 입사시의 레이저광보다 길어지게 된다.
도 2에서와 같이, 산란체(12)의 밀도가 균일하면 광도파로(11)의 길이방향으로 진행함에 따라 광도파로(11)의 외부로 방출하는 레이저 광의 세기는 지수 함수적으로 감소하게 되어 광도파로(11)의 길이방향으로 균일한 조명을 구현하기 힘들다.
따라서 도 3a에서와 같이 광도파로(25)의 양 단에 제1 및 제2 반사경(23, 27)을 설치한다. 이 경우 제1 및 제2 반사경은 상호 마주보는 것이 바람직하다. 광도파로(25)를 따라 진행하는 광선은 제1 및 제2 반사경(27) 사이에서 계속적으로 반사되며, 따라서 광도파로(25)의 길이방향으로 왕복하게 된다. 이 경우 산란광의 세기는 레이저광의 왕복이 반복됨에 따라 감소하기는 하지만 왕복할 때마다 각각의 위치에서 산란체에 의해 산란되는 산란광의 세기의 총 합은 위치에 따라 거의 변함이 없다.
레이저 광의 왕복을 위해서 광도파로(25) 양 단에 제1 및 제2 반사경(23, 27)을 설치하는데, 제1 반사경(23)은 레이저가 입사할 수 있도록 작은 투과 구멍(231)을 형성한다. 투과 구멍(231)은 제1 반사경(23)의 면적보다 매우 작게 해서 반사율을 크게 감소시키지 않는 것이 바람직하다. 예를 들어 직경 1 mm 의 광도파로(25) 경우 구멍의 크기가 0.1 mm 이면 면적을 볼 때 1 % 에 해당하므로 구멍에 의한 반사율 손실은 1 % 밖에 되지 않는다. 따라서 반사경(27)에서 반사되어 진행하는 레이저 광의 대부분은 반사경(23)에서 다시 반사되어 방향을 바꾸게 된다. 투과 구멍(231)의 크기가 너무 크면 반사경(23)으로 오는 레이저 광의 일부가 투과 구멍(231)를 통과해 반사경 너머로 빠져나가기 때문에 레이저 조명장치 입장에서는 손실에 해당한다.
도 4를 참조하면, 위치 1은 제1 반사경의 위치를 나타내며, 위치 10은 제2 반사경의 위치를 나타내며, 레이저 광이 제1 및 제2 반사경을 왕복할 때마다 레이저 광을 추적하여 산란광의 세기를 그래프로 나타내었다. 광도파로(25)의 각각의 위치에서 발생하는 산란광의 세기는 여러 번 겹친 레이저 광의 경로에서 나오는 세기를 더한 값과 같다.
도 5를 참조하면, 위치 1은 제1 반사경의 위치를 나타내며, 위치 10은 제2 반사경의 위치를 나타내며, 여러 번 중첩된 레이저광의 경로에서 발생한 산란광을 합산한 결과를 그래프로 보이고 있다. 광도파로(25)의 길이방향 상의 위치에 관계없이 거의 일정한 세기의 광선이 나오고 있는 것을 확인할 수 있다.
도 6a 를 참조하면, -100 mm 지점의 위치는 제1 반사경(23) 위치를 나타내며, 100 mm 지점의 위치는 제2 반사경(27)의 위치를 나타낸다. 방출되는 산란광의 세기 분포를 좀 더 자세히 조사하기 위해서 소프트웨어 상에서 광도파로(25) 윗면에 광 검출기를 설치하고 검출기 면의 조도를 계산하면, 광도파로(25)의 길이 방향 상의 위치(z)에 관계없이 거의 동일한 값의 조도가 나타난다. 여기서 조도 크기는 음영으로 나타내었다. 도 6b를 참조하면, 음영의 정도에 따라 산란광의 세기를 수치화하여 나타내었다. 이러한 결과는 본 발명의 구조가 균일한 조도 분포를 가지는 레이저 조명으로 사용될 수 있음을 알려주고 있다.
도 7을 참조하면, 광도파로(25)의 길이 방향상의 위치에 따른 조도 분포를 그래프로 나타낸다. 그래프 상에는 조도가 많이 변화하는 것처럼 보이지만 실제 수치를 보면 전체 길이에서 조도 변화는 3 % 이내이다.
도 8a는 본 발명의 제2 실시예에 의한 레이저 조명장치의 단면을 개략적으로 도시한 개념도이고, 도 8b는 본 발명의 제2 실시예에 의한 레이저 조명장치의 광도파로(35)의 사시도이다.
도 8a를 참조하면, 본 발명의 바람직한 제2 실시예에 의한 레이저 조명장치는 광도파로(35) 내부에 상기 광도파로(35)의 길이방향을 따라 배치되는 산란체 기둥(39)을 더 포함한다. 레이저 광원(30)으로부터 출사한 레이저 광이 집속렌즈(31)를 통하여 광도파로(35)에 입사한 후 광도파로(35) 측면에서 전 반사되고, 양 단에 설치된 제1 및 제2 반사경(33,37)에서 반사되면서 광도파로(35) 내부를 길이방향으로 왕복한다. 이때 광도파로(35) 내부를 왕복하는 레이저 광은 산란체 기둥(39)에 배치된 산란체(36)에 의해 산란되어 광도파로(35) 외부로 출사된다.
산란체(36)는 광도파로(35)의 내부에 길이방향으로 배치된 산란체 기둥(39)에만 배치된다. 이러한 제2실시예에 의한 본 발명의 구조는 속이 빈 광 섬유(hollow fiber)의 내부에 산란 비드나 형광 입자를 채워 넣는 방식으로 제작할 수 있다. 레이저 광이 입사하여 전반사 조건을 만족하면서 광도파로(35)내에서 왕복하는 동안 레이저 광은 광도파로(35)의 내부에 배치된 산란체 기둥(39)에서만 산란한다. 이러한 구조의 장점은 단면이 작은 산란체 기둥(39)을 사용하여 직경이 작은 선 형태의 광원을 제작할 수 있다는 것이다. 즉, 더욱 이상적인 선광원에 가까워지고 조명의 특성도 좋아진다.
본원발명의 제2실시예와 같이 광도파로(35) 내부에 상기 광도파로(35)의 길이방향을 따라 산란체 기둥(39)이 배치되는 경우, 광도파로(35)로 입사된 레이저 광이 산란체 기둥(39)에 집중되므로, 광도파로(35)와 산란체 기둥(39)사이의 공간에는 레이저 광의 에너지 밀도가 낮아진다. 따라서, 광도파로(35) 내부에 산란체 기둥(39) 없이 광도파로(35) 내부 전체에 산란체가 분포된 경우에 비해 레이저 광에 의해 광도파로(35)가 받는 손상을 줄일 수 있다. 광도파로(35) 내부에 산란체 기둥(39)이 없는 경우, 광도파로(35)의 직경을 그 산란체 기둥(39)이 차지하던 공간이 갖는 직경으로까지 줄여야하므로, 산란체 기둥(39)을 포함하지 않는 광도파로(35) 내부에 존재하는 레이저 광의 에너지 밀도는 상대적으로 높아진다.
또한, 레이저 광은 산란체 기둥(39)에서만 외부로 방출하므로 광학적 설계가 훨씬 용이해진다. 예를 들어 광도파로(35) 외부 직경이 1 mm 이고 산란체 기둥(39) 직경이 0.1 mm 이면 투과 구멍(331)의 크기는 0.1 mm 정도로 크게 해도 반사면(33)에서 레이저 광의 손실은 1 % 정도 불과하다. 산란체 기둥(39)이 없을 경우 산란체(36)는 광도파로(35)에 골고루 분포해야 하고 광선이 광도파로(35) 단면 전체를 통과하기 때문에 선 형태의 광원의 직경을 앞의 경우와 동일하게 하기 위해서는 광도파로(35)의 직경을 0.1 mm로 해야 한다. 따라서 투과구멍(331)의 직경은 광도파로(35)의 직경의 1/10 정도인 0.01 mm로 해야 하는데 이러한 투과구멍(331)은 가공하기도 힘들고, 레이저 광이 투과구멍(331)을 통과할 수 있도록 집속렌즈(31)에 의해 레이저 광을 한 스폿으로 집중하게 하는 것에도 어려움이 있다. 레이저 광이 집속렌즈(31)에 의해 집중하는 스폿을 작게 만들려면 레이저 모드 특성 및 렌즈 특성이 좋아져야 하고 기구물의 조립 공차가 작아져야 하는 문제가 발생한다.
도 9a는 본 발명의 제3 실시예에 의한 레이저 조명장치의 단면을 개략적으로 도시한 개념도이고, 도 9b는 본 발명의 제3 실시예에 의한 레이저 조명장치의 광도파로(45)의 사시도이다.
본 발명의 바람직한 제3 실시예에 의한 레이저 조명장치는 산란체 기둥(49)은 부분적으로 상이한 단면적을 가지며, 광도파로(45)의 길이방향에 따라 배치된 산란체 기둥(49)을 포함한다. 레이저 광원(40)으로부터 출사한 레이저 광이 집속렌즈(41)를 통하여 광도파로(45)에 입사한 후 광도파로(45) 측면에서 전 반사되고, 양 단에 설치된 반사경(43,47)에서 반사되면서 광도파로(45) 내부를 길이방향으로 왕복한다. 이때 광도파로(45) 내부를 왕복하는 레이저 광은 부분적으로 상이한 단면적을 가지는 산란체 기둥(49)에 배치된 산란체(46)에 의해 산란되어 광도파로(45) 외부로 출사된다.
산란체 기둥(49)의 단면적이 부분적으로 변하게 되면 광도파로(45)내에서 가이드 되는 레이저 광이 산란되는 양도 달라지며, 산란체 기둥(49)의 단면적이 클수록 그 단면적이 커진 위치에서 산란광의 양은 많아진다.
이러한 구조는 산란체(46)의 밀도를 제어하기 힘든 경우 사용할 수 있는 장점이 있다. 이를 더 응용하면 레이저광이 광도파로(45)의 양 단에 설치된 제1 및 제2 반사경(43,47) 사이를 왕복하는 숫자가 적어질 때 산란광 세기의 불균일성을 줄이기 위해 산란체 기둥(49)의 모양을 쐐기 모양이나 임의의 모양으로 제어할 수 있는 장점을 가진다. 또한, 광도파로(45) 내부에서 레이저 광이 왕복하는 횟수가 줄어들수록 반사경(43,47)에서 발생하는 광 손실을 줄일 수 있어서 조명 장치의 에너지 효율은 증가한다. 극단적으로는 광도파로(45)의 입사단에 설치된 반사경(43) 없이 레이저 광이 광도파로(45)에서 1회 왕복하는 것만으로도 어느 정도 조명의 균일도를 얻어낼 수 있다.
도 9a를 참조하면, 광도파로는(45)는 상기 광도파로(45)의 입사단으로부터 멀어질수록 단면적이 증가하는 산란체 기둥(49)을 포함한다. 산란체 기둥(49)의 단면적이 증가하면 그에 따라 방출되는 산란광의 양이 더 많다.
도 10a는 본 발명의 제4 실시예에 의한 레이저 조명장치의 단면을 개략적으로 도시한 개념도이고, 도 10b는 본 발명의 제4 실시예에 의한 레이저 조명장치의 광도파로(55)의 사시도이다.
도 10a를 참조하면, 본 발명의 바람직한 제4 실시예에 의한 레이저 조명 장치의 광도파로(55)는 단면적이 작은 광섬유가 아니고, 단면적이 크고 직사각형인 평면형 광도파로 또는 슬랩형 광도파로(slab waveguide)의 구조이다. 레이저 광원(50)으로부터 출사한 레이저 광이 집속렌즈(51)를 통하여 광도파로(55)에 입사한 후 광도파로(55)의 마주보는 양 측면에 설치된 제3 및 제4 반사경(54, 54')에서 반사되고, 양 단에 설치된 제1 및 제2 반사경(53,57)에서 반사되면서 광도파로(55) 내부를 왕복한다. 이때 광도파로(55) 내부를 왕복하는 레이저 광은 산란체(46)에 의해 산란되어 광도파로(45) 외부로 출사된다.
이러한 경우에도 마찬가지로 입사단에 설치된 반사경(53)에 작은 투과 구멍(531)를 만들어 반사율 손실을 줄이고 레이저광이 왕복하면서 균일한 면 광원을 만들 수 있다. 이 경우, 레이저광이 광도파로(55)의 내부를 균일하게 왕복할 수 있도록 입사하는 각도는 입사단면에 수직이 아닌 것이 바람직하다. 또한 광도파로(55)의 마주보는 두 측면에도 반사경(54,54')을 설치하는 것이 바람직하다.
도 10b를 참조하면, 레이저 광은 내부 전반사를 만족하지 않는 각도로 광도파로(55)내부로 입사되는 경우에도 제1 내지 제4 반사경(53, 57, 54, 54')에 의해 반사가 된다. 반사된 레이저 광은 광도파로(55) 내부에 분포한 산란체(56)에 의해 산란된 뒤 광도파로(55)의 상면이나 저면을 통해서만 외부로 방출된다.
도 11을 참조하면, 광도파로(55)를 위에서 관찰할 때, 입사한 레이저 광선이 광도파로(55)에 설치된 제1 내지 제4 반사경(53, 57, 54, 54')에서 반사되면서 산란체(56)에 의해 산란되기 직전까지 이동하는 궤적을 보이고 있다. 이론적으로는 입사하는 레이저 광선이 광도파로(55)의 입사단 통과한 후 유리수 값이 아닌 기울기를 가지며 상면 또는 저면과 수평한 평면상에서 진행한다면, 레이저 광선은 상기 상면 또는 저면과 수평한 상기 평면의 전부를 채우게 된다. 입사할 때 레이저 광은 일정한 수치의 투과 구멍(531)을 통과하는 레이저 광을 모두 포함하고, 레이더 광의 궤적은 광도파로(55) 전체를 채우게 된다. 산란체(56)에 의해 외부로 방출되는 산란광의 세기는 광도파로(55)의 상면 및 저면 전체에 걸쳐서 균일성을 유지한다.
본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 마련되는 본 발명의 정신이나 분야를 벗어나지 않는 한도 내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것을 당업계에서 통상의 지식을 가진 자는 용이하게 알 수 있음을 밝혀두고자 한다.
10, 20, 30, 40, 50:레이저  광원           
21, 31, 41, 51: 집속렌즈
11, 25, 35, 45, 55: 광도파로   
23, 33, 43, 53: 제1 반사경
27, 37, 47, 57: 제2 반사경
231, 331, 431, 531: 투과 구멍
12, 26, 36, 46, 56: 산란체
39, 49:산란체 기둥
54: 제3 반사경
54': 제4 반사경

Claims (9)

  1. 레이저 광원;
    상기 레이저 광원으로부터 출사한 레이저 광을 집속하는 집속렌즈;
    상기 집속렌즈를 통하여 입사한 상기 레이저 광을 가이드 하는 광도파로;
    상기 광도파로 내부에 배치된 산란체; 및
    상기 광도파로의 양 단에 설치되며, 입사한 상기 레이저 광을 상기 광도파로 내부로 반사하는 제1 및 제2 반사경;을 포함하며,
    상기 제1 반사경은 광도파로의 입사단에 설치되고, 상기 레이저 광이 통과하는 투과구멍을 형성하는 것을 특징으로 하는 레이저 조명장치.
  2. 제1항에 있어서,
    상기 제1 및 제2 반사경은 상기 광도파로 내부에서 상호 마주보는 것을 특징으로 하는 레이저 조명장치.
  3. 제1항에 있어서,
    상기 광도파로는 내부에 상기 광도파로의 길이방향을 따라 배치되는 산란체 기둥을 더 포함하며,
    상기 산란체는 상기 산란체 기둥 내부에 배치된 것을 특징으로 하는 레이저 조명장치.
  4. 제3항에 있어서,
    상기 산란체 기둥은 부분적으로 상이한 단면적을 가지는 것을 특징으로 하는 레이저 조명장치.
  5. 제4항에 있어서,
    상기 산란체 기둥은 상기 광도파로의 입사단으로부터 멀어질수록 상기 산란체 기둥의 단면적이 점차 증가하는 것을 특징으로 하는 레이저 조명장치.
  6. 제1항에 있어서,
    상기 광도파로의 단면이 직사각형인 것을 특징으로 하는 레이저 조명장치.
  7. 제6항에 있어서,
    상기 광도파로는 마주보는 두 측면에 설치되는 제3 및 제4 반사경을 더 포함하는 것을 특징으로 하는 레이저 조명장치.
  8. 제1항에 있어서,
    상기 산란체가 실리카입자, 이산화타이타늄(TiO2)입자 또는 형광 입자인 것을 특징으로 하는 레이저 조명장치.
  9. 레이저 광원;
    상기 레이저 광원으로부터 출사한 레이저 광을 집속하는 집속렌즈;
    상기 집속렌즈를 통하여 입사한 상기 레이저 광을 가이드 하는 광도파로;
    상기 광도파로 내부에 상기 광도파로의 길이방향을 따라 배치되는 산란체 기둥;
    상기 산란체 기둥 내부에 배치된 산란체; 및
    상기 광도파로의 입사단의 반대 측단에 배치되어 상기 레이저 광을 상기 광도파로 내부로 반사하는 반사경;을 포함하며,
    상기 산란체 기둥은 상기 광도파로의 입사단으로부터 멀어질수록 상기 산란체 기둥의 단면적이 점차 증가하는 것을 특징으로 하는 레이저 조명장치.
KR1020140060506A 2014-05-20 2014-05-20 레이저 조명 장치 KR20150133559A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140060506A KR20150133559A (ko) 2014-05-20 2014-05-20 레이저 조명 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140060506A KR20150133559A (ko) 2014-05-20 2014-05-20 레이저 조명 장치

Publications (1)

Publication Number Publication Date
KR20150133559A true KR20150133559A (ko) 2015-11-30

Family

ID=54868004

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140060506A KR20150133559A (ko) 2014-05-20 2014-05-20 레이저 조명 장치

Country Status (1)

Country Link
KR (1) KR20150133559A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190077627A (ko) * 2016-12-03 2019-07-03 웨이모 엘엘씨 애퍼쳐를 사용하는 광 검출을 위한 도파관 확산기

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190077627A (ko) * 2016-12-03 2019-07-03 웨이모 엘엘씨 애퍼쳐를 사용하는 광 검출을 위한 도파관 확산기

Similar Documents

Publication Publication Date Title
JP6181389B2 (ja) 光束制御部材、発光装置および照明装置
KR100474233B1 (ko) 광조준광학구조체
JP5656461B2 (ja) 発光装置
JP5172592B2 (ja) 光学素子および発光装置
JP5543157B2 (ja) 光学素子および発光装置
US10309601B2 (en) Light source device, lighting apparatus, and vehicle lamp device
JP5418759B2 (ja) 車両用灯具
JP6012936B2 (ja) 照明装置
EP3193077B1 (en) Light flux control member, light-emitting device, and illumination device
JP2013190788A (ja) 光学素子及び照明装置
CN110382949B (zh) 用于交通工具的照明装置
KR101527002B1 (ko) 레이저빔 발생장치
JP5228998B2 (ja) 車両用灯具
JP5212719B2 (ja) 車両用灯具
KR20150133559A (ko) 레이저 조명 장치
JP6849146B2 (ja) 車両用灯具
JP5363884B2 (ja) 発光装置および光学素子
JP5493654B2 (ja) 導光板、及びその導光板を備える面光源装置
JP5401331B2 (ja) 光学素子および発光装置
JP4648358B2 (ja) 導光板および平面照明装置
CN207145988U (zh) 灯具
JP6902523B2 (ja) 側面発光型光ファイバ
KR101734692B1 (ko) 라이트 가이드 장치
WO2020038770A1 (en) Optical waveguide arrangement, light coupling system and method for manufacturing an optical waveguide arrangement
WO2019031296A1 (ja) 電磁波源装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
AMND Amendment
E601 Decision to refuse application
AMND Amendment