KR20150124897A - 투명한 종점 검출 윈도우를 갖는 화학 기계적 연마 패드 - Google Patents

투명한 종점 검출 윈도우를 갖는 화학 기계적 연마 패드 Download PDF

Info

Publication number
KR20150124897A
KR20150124897A KR1020150057837A KR20150057837A KR20150124897A KR 20150124897 A KR20150124897 A KR 20150124897A KR 1020150057837 A KR1020150057837 A KR 1020150057837A KR 20150057837 A KR20150057837 A KR 20150057837A KR 20150124897 A KR20150124897 A KR 20150124897A
Authority
KR
South Korea
Prior art keywords
detection window
chemical mechanical
mechanical polishing
substrate
polishing pad
Prior art date
Application number
KR1020150057837A
Other languages
English (en)
Inventor
빠이녠 첸
마티 디그룻
Original Assignee
롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드
다우 글로벌 테크놀로지스 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드, 다우 글로벌 테크놀로지스 엘엘씨 filed Critical 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드
Publication of KR20150124897A publication Critical patent/KR20150124897A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/205Lapping pads for working plane surfaces provided with a window for inspecting the surface of the work being lapped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Health & Medical Sciences (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

연마 표면을 갖는 연마 층; 및 종점 검출 윈도우를 함유하는 화학 기계적 연마 패드가 제공되고; 여기서 종점 검출 윈도우는 5.5 내지 9.5 중량%의 미반응 NCO 기를 가지며, 지방족 다관능성 이소시아네이트 및 예비중합체 폴리올을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체; 및, 0 내지 99 중량%의 이관능성 경화제; 및 1 내지 100 중량%의, 분자당 적어도 1개의 질소 원자 및 분자당 평균 적어도 3개의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 포함하는 경화제 시스템을 포함하는 성분의 반응 생성물을 포함한다. 또한, 화학 기계적 연마 패드를 제조 및 사용하는 방법이 제공된다.

Description

투명한 종점 검출 윈도우를 갖는 화학 기계적 연마 패드 {CHEMICAL MECHANICAL POLISHING PAD WITH CLEAR ENDPOINT DETECTION WINDOW}
본 발명은 종점 검출 윈도우를 갖는 화학 기계적 연마 패드에 관한 것이다. 본 발명은 또한 종점 검출 윈도우를 갖는 화학 기계적 연마 패드를 사용하는, 기판의 화학 기계적 연마 방법에 관한 것이다.
집적 회로 및 다른 전자 장치의 제작 시, 도체, 반도체 및 유전 물질의 여러 층들을 반도체 웨이퍼의 표면 상에 피착시키거나 또는 그로부터 제거한다. 도체, 반도체 및 유전 물질의 박층은 다수의 피착 기술에 의해 피착될 수 있다. 현대 가공에서의 통상의 피착 기술은 스퍼터링으로서도 또한 공지되어 있는 물리 증착 (PVD), 화학 증착 (CVD), 플라즈마-강화 화학 증착 (PECVD) 및 전기화학 도금 (ECP)을 포함한다.
물질의 층이 순차적으로 피착되고 제거될 때, 웨이퍼의 최상위 표면은 비평면이 된다. 후속 반도체 가공 (예를 들어, 금속화)이 웨이퍼의 편평한 표면을 요구하기 때문에, 웨이퍼는 평탄화될 필요가 있다. 평탄화는 원치 않는 표면 지형 및 표면 결함, 예컨대 거친 표면, 응집된 물질, 결정 격자 손상, 스크래치, 및 오염된 층 또는 물질을 제거하는데 유용하다.
화학 기계적 평탄화 또는 화학 기계적 연마 (CMP)는 기판, 예컨대 반도체 웨이퍼를 평탄화하는데 사용되는 통상의 기술이다. 통상적인 CMP에서는, 웨이퍼를 캐리어 조립체 상에 장착하고, CMP 장치 내 연마 패드와 접촉하도록 위치시킨다. 캐리어 조립체는 제어가능한 압력을 웨이퍼에 제공하여, 이를 연마 패드에 대해 가압한다. 패드는 외부 구동력에 의해 웨이퍼에 대해 이동 (예를 들어, 회전)한다. 이와 동시에, 연마 매질 (예를 들어, 슬러리)이 웨이퍼와 연마 패드 사이에 제공된다. 따라서, 웨이퍼 표면은 패드 표면 및 연마 매질의 화학적 및 기계적 작용에 의해 연마되고, 평탄화된다.
화학 기계적 연마에 대해 제시되는 하나의 도전 과제는 기판이 원하는 정도로 연마되었을 때를 결정하는 것이다. 연마 종점을 결정하는 현장 방법이 개발되었다. 현장 광학 종점 검사 기술은 2개의 기본 카테고리: (1) 단일 파장에서의 반사된 광학 신호를 모니터링하는 것, 또는 (2) 다중 파장으로부터의 반사된 광학 신호를 모니터링하는 것으로 나뉠 수 있다. 광학 종점 검사에 사용되는 전형적인 파장은 가시 스펙트럼 (예를 들어, 400 내지 700 nm), 자외선 스펙트럼 (315 내지 400 nm) 및 적외선 스펙트럼 (예를 들어, 700 내지 1000 nm)의 파장을 포함한다. 미국 특허 번호 5,433,651에서, 루스티크(Lustig) 등은 레이저 공급원으로부터의 광을 웨이퍼 표면 상에 투과시키고, 반사된 신호를 모니터링하는, 단일 파장을 사용하는 중합체성 종점 검출 방법을 개시하였다. 웨이퍼 표면에서의 조성이 하나의 금속에서 다른 금속으로 변할 때, 반사율이 변한다. 이러한 반사율 변화는 이어서 연마 종점을 검출하는데 사용된다. 미국 특허 번호 6,106,662에서, 비비(Bibby) 등은 가시 범위의 광학 스펙트럼에서 반사광의 강도 스펙트럼을 획득하는 분광계를 사용하는 것을 개시하였다. 금속 CMP 적용에서, 비비 등은 연마 종점을 검출하기 위해 전체 스펙트럼을 사용하는 것을 교시한다.
이러한 광학 종점 기술을 수용하기 위해, 윈도우를 구비한 화학 기계적 연마 패드가 개발되었다. 예를 들어, 미국 특허 번호 5,605,760에서, 로버츠(Roberts)는 패드의 적어도 일부가 다양한 파장에 걸친 레이저 광에 대해 투과성인 연마 패드를 개시한다. 개시된 실시양태의 일부에서, 로버츠는 불투명한 패드에 투명한 윈도우 부분이 포함되는 연마 패드를 교시한다. 윈도우 부분은 성형된 연마 패드 내의 투명한 중합체의 로드(rod) 또는 플러그일 수 있다. 로드 또는 플러그는 연마 패드 내에 삽입 성형될 수 있거나 (즉, "일체형 윈도우"), 또는 성형 작업 후에 연마 패드의 절삭부 내로 설치될 수 있다 (즉, "플러그 인 플레이스 윈도우(plug in place window)").
지방족 이소시아네이트 기재 폴리우레탄 물질, 예컨대 미국 특허 번호 6,984,163에 기재된 것은 넓은 광 스펙트럼에 걸쳐 개선된 광 투과율을 제공하였다. 불행하게도, 특히 이러한 지방족 폴리우레탄 윈도우는 까다로운 연마 적용에 요구되는 필수적인 내구성이 부족한 경향이 있다.
통상적인 중합체 기재 종점 검출 윈도우는 종종 330 내지 425 nm의 파장을 갖는 광에 대한 노출 시 바람직하지 않은 열화를 나타낸다. 그러나, 점점 더, 보다 얇은 물질 층 및 보다 소형의 장치 크기를 용이하게 하기 위해 반도체 연마 적용 시 종점 검출 목적으로 보다 짧은 파장을 갖는 광을 이용해야 한다는 압력이 있다.
또한, 반도체 장치는 피쳐(feature)가 보다 미세해지고 금속화 층이 보다 많아짐에 따라 점점 더 복잡해지고 있다. 이러한 경향은 평면성을 유지하고 연마 결함을 제한하기 위해 연마 소모품의 개선된 성능을 요구한다. 연마 결함은 전도성 배선의 전기 절연 또는 단락을 생성시킬 수 있고, 이는 반도체 장치를 기능하지 않게 할 것이다. 일반적으로, 연마 결함, 예컨대 미세-스크래치 또는 채터 마크(chatter mark)를 감소시키기 위한 하나의 접근법은 보다 연질의 연마 층 물질을 사용하는 것임이 공지되어 있다. 따라서, 개선된 결함성 성능을 용이하게 하기 위해 보다 연질의 연마 층 물질을 사용하는 것에 대한 경향이 있다. 그럼에도 불구하고, 통상적인 윈도우 제제는 이러한 보다 연질의 연마 층 물질과 충분히 상용적이지 않고, 이는 연마 결함성의 증가를 일으키는 경향이 있다.
따라서, 화학 기계적 연마 패드에 사용하기 위한 개선된 중합체성 종점 검출 윈도우 제제에 대한 지속적인 필요성이 있다. 특히, ≤ 65의 쇼어(Shore) D 경도, 및 또한 < 300%의 파단 신율 및 25 내지 100%의 400 nm에서의 이중 통과 투과율 DPT400을 나타내며, 바람직하지 않은 윈도우 변형을 나타내지 않고, 까다로운 연마 적용에 요구되는 내구성을 갖는 중합체성 종점 검출 윈도우 제제에 대한 지속적인 필요성이 있다.
본 발명은 연마 표면을 갖는 연마 층; 및 종점 검출 윈도우를 포함하는 화학 기계적 연마 패드를 제공하고; 여기서 종점 검출 윈도우는 (i) 5.5 내지 9.5 중량%의 미반응 NCO 기를 가지며, (a) 지방족 다관능성 이소시아네이트 및 (b) 예비중합체 폴리올을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체; 및, (ii) 0 내지 99 중량%의 이관능성 경화제; 및 1 내지 100 중량%의, 분자당 적어도 1개의 질소 원자 및 분자당 평균 적어도 3개의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 포함하는 경화제 시스템을 포함하는 성분의 반응 생성물을 포함한다.
본 발명은 연마 표면을 갖는 연마 층; 및 종점 검출 윈도우를 포함하는 화학 기계적 연마 패드를 제공하고; 여기서 종점 검출 윈도우는 (i) 5.5 내지 9.5 중량%의 미반응 NCO 기를 가지며, (a) 지방족 다관능성 이소시아네이트 및 (b) 예비중합체 폴리올을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체; 및, (ii) 0 내지 99 중량%의 이관능성 경화제; 및 1 내지 100 중량%의, 분자당 적어도 1개의 질소 원자 및 분자당 평균 적어도 3개의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 포함하는 경화제 시스템을 포함하는 성분의 반응 생성물을 포함하고; 연마 표면은 자기 기판, 광학 기판 및 반도체 기판 중 적어도 하나로 이루어진 군으로부터 선택된 기판을 연마하도록 구성된다.
본 발명은 연마 표면을 갖는 연마 층; 및 종점 검출 윈도우를 포함하는 화학 기계적 연마 패드를 제공하고; 여기서 종점 검출 윈도우는 (i) 5.5 내지 9.5 중량%의 미반응 NCO 기를 가지며, (a) 지방족 다관능성 이소시아네이트 및 (b) 예비중합체 폴리올을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체; 및, (ii) 0 내지 99 중량%의 이관능성 경화제; 및 1 내지 100 중량%의, 분자당 적어도 1개의 질소 원자 및 분자당 평균 적어도 3개의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 포함하는 경화제 시스템을 포함하는 성분의 반응 생성물을 포함하고; 여기서 경화제 시스템은 복수의 반응성 수소 기를 갖고, 이소시아네이트 말단 우레탄 예비중합체는 복수의 미반응 NCO 기를 갖고; 여기서 미반응 NCO 기에 대한 반응성 수소 기의 화학량론적 비는 0.7 내지 1.2이다.
본 발명은 연마 표면을 갖는 연마 층; 및 종점 검출 윈도우를 포함하는 화학 기계적 연마 패드를 제공하고; 여기서 종점 검출 윈도우는 (i) 5.5 내지 9.5 중량%의 미반응 NCO 기를 가지며, (a) 지방족 다관능성 이소시아네이트 및 (b) 예비중합체 폴리올을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체; 및, (ii) 0 내지 99 중량%의 이관능성 경화제; 및 1 내지 100 중량%의, 분자당 적어도 1개의 질소 원자 및 분자당 평균 적어도 3개의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 포함하는 경화제 시스템을 포함하는 성분의 반응 생성물을 포함하고; 종점 검출 윈도우는 ≥ 1 g/cm3의 밀도; 0.1 부피% 미만의 기공률; 35 내지 65의 쇼어 D 경도; < 300%의 파단 신율; 및 25 내지 100%의 400 nm에서의 이중 통과 투과율 DPT400을 나타낸다.
본 발명은 연마 표면을 갖는 연마 층; 및 종점 검출 윈도우를 포함하는 화학 기계적 연마 패드를 제공하고; 여기서 종점 검출 윈도우는 (i) 5.5 내지 9.5 중량%의 미반응 NCO 기를 가지며, (a) 지방족 다관능성 이소시아네이트 및 (b) 예비중합체 폴리올을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체; 및, (ii) 0 내지 99 중량%의 이관능성 경화제; 및 1 내지 100 중량%의, 분자당 적어도 1개의 질소 원자 및 분자당 평균 적어도 3개의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 포함하는 경화제 시스템을 포함하는 성분의 반응 생성물을 포함하고; 종점 검출 윈도우는 ≥ 1 g/cm3의 밀도; 0.1 부피% 미만의 기공률; 35 내지 65의 쇼어 D 경도; < 300%의 파단 신율; 25 내지 100%의 400 nm에서의 이중 통과 투과율 DPT400; 40 내지 100%의 800 nm에서의 이중 통과 투과율 DPT800을 나타내고; 종점 검출 윈도우는 또한 < 30%의, 800 nm와 400 nm 사이의 이중 통과 투과율 델타 ΔDPT800 -400을 나타낸다.
본 발명은 연마 표면을 갖는 연마 층; 및 종점 검출 윈도우를 포함하는 화학 기계적 연마 패드를 제공하고; 여기서 종점 검출 윈도우는 (i) 5.5 내지 9.5 중량%의 미반응 NCO 기를 가지며, (a) 지방족 다관능성 이소시아네이트 및 (b) 예비중합체 폴리올을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체; 및, (ii) 0 내지 99 중량%의 이관능성 경화제; 및 1 내지 100 중량%의, 분자당 적어도 1개의 질소 원자 및 분자당 평균 적어도 3개의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 포함하는 경화제 시스템을 포함하는 성분의 반응 생성물을 포함하고; 연마 표면은 그에 형성된 나선형 홈 패턴을 갖고; 연마 표면은 자기 기판, 광학 기판 및 반도체 기판 중 적어도 하나로 이루어진 군으로부터 선택된 기판을 연마하도록 구성된다.
본 발명은 연마 표면을 갖는 연마 층을 제공하고; 5.5 내지 9.5 중량%의 미반응 NCO 기를 가지며, (a) 지방족 다관능성 이소시아네이트 및 (b) 예비중합체 폴리올을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체를 제공하고; 0 내지 99 중량%의 이관능성 경화제; 및 1 내지 100 중량%의, 분자당 적어도 1개의 질소 원자 및 분자당 평균 적어도 3개의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 포함하는 경화제 시스템을 제공하고; 이소시아네이트 말단 우레탄 예비중합체와 경화제 시스템을 배합하여 배합물을 형성하고; 배합물을 반응하도록 하여 생성물을 형성하고; 생성물로부터 종점 검출 윈도우를 형성하고; 종점 검출 윈도우를 연마 층과 상호연결시켜 화학 기계적 연마 패드를 제공하는 것을 포함하는, 본 발명에 따른 화학 기계적 연마 패드를 제조하는 방법을 제공한다.
본 발명은 연마 표면을 갖는 연마 층을 제공하고; 5.5 내지 9.5 중량%의 미반응 NCO 기를 가지며, (a) 지방족 다관능성 이소시아네이트 및 (b) 예비중합체 폴리올을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체를 제공하고; 0 내지 99 중량%의 이관능성 경화제; 및 1 내지 100 중량%의, 분자당 적어도 1개의 질소 원자 및 분자당 평균 적어도 3개의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 포함하는 경화제 시스템을 제공하고; 이소시아네이트 말단 우레탄 예비중합체와 경화제 시스템을 배합하여 배합물을 형성하고; 배합물을 반응하도록 하여 생성물을 형성하고; 생성물로부터 종점 검출 윈도우를 형성하고; 종점 검출 윈도우를 연마 층과 상호연결시켜 화학 기계적 연마 패드를 제공하는 것을 포함하는, 본 발명에 따른 화학 기계적 연마 패드를 제조하는 방법을 제공하고; 여기서 종점 검출 윈도우는 일체형 윈도우이다.
본 발명은 압반, 광원 및 광센서를 갖는 화학 기계적 연마 장치를 제공하고; 적어도 하나의 기판을 제공하고; 청구범위의 제1항에 따른 화학 기계적 연마 패드를 제공하고; 압반 상에 화학 기계적 연마 패드를 설치하고; 임의로, 연마 매질을 연마 표면과 기판 사이의 계면에 제공하고; 연마 표면과 기판 사이의 동적 접촉을 생성시키고, 여기서 기판으로부터 적어도 일부 물질이 제거되고; 광원으로부터의 광을 종점 검출 윈도우를 통과해 투과시키고, 기판의 표면으로부터 반사되어 다시 종점 검출 윈도우를 통과해 광센서 상에 입사하는 광을 분석함으로써 연마 종점을 결정하는 것을 포함하는, 기판을 연마하는 방법을 제공한다.
본 발명은 압반, 광원 및 광센서를 갖는 화학 기계적 연마 장치를 제공하고; 적어도 하나의 기판을 제공하고; 청구범위의 제1항에 따른 화학 기계적 연마 패드를 제공하고; 압반 상에 화학 기계적 연마 패드를 설치하고; 임의로, 연마 매질을 연마 표면과 기판 사이의 계면에 제공하고; 연마 표면과 기판 사이의 동적 접촉을 생성시키고, 여기서 기판으로부터 적어도 일부 물질이 제거되고; 광원으로부터의 광을 종점 검출 윈도우를 통과해 투과시키고, 기판의 표면으로부터 반사되어 다시 종점 검출 윈도우를 통과해 광센서 상에 입사하는 광을 분석함으로써 연마 종점을 결정하는 것을 포함하는, 기판을 연마하는 방법을 제공하고; 여기서 적어도 하나의 기판은 자기 기판, 광학 기판 및 반도체 기판 중 적어도 하나로 이루어진 군으로부터 선택된다.
도 1은 비교 실시예 C2에 따라 제조된 종점 검출 윈도우에 대해 실시예에 제시된 조건 하에 측정된, 광 파장의 함수로서의 이중 통과 투과율 DPT의 플롯이다.
도 2는 비교 실시예 C4에 따라 제조된 종점 검출 윈도우에 대해 실시예에 제시된 조건 하에 측정된, 광 파장의 함수로서의 이중 통과 투과율 DPT의 플롯이다.
도 3은 실시예 1에 따라 제조된 종점 검출 윈도우에 대해 실시예에 제시된 조건 하에 측정된, 광 파장의 함수로서의 이중 통과 투과율 DPT의 개략적 플롯이다.
도 4는 실시예 3에 따라 제조된 종점 검출 윈도우에 대해 실시예에 제시된 조건 하에 측정된, 광 파장의 함수로서의 이중 통과 투과율 DPT의 개략적 플롯이다.
도 5는 실시예 5에 따라 제조된 종점 검출 윈도우에 대해 실시예에 제시된 조건 하에 측정된, 광 파장의 함수로서의 이중 통과 투과율 DPT의 개략적 플롯이다.
도 6은 실시예 7에 따라 제조된 종점 검출 윈도우에 대해 실시예에 제시된 조건 하에 측정된, 광 파장의 함수로서의 이중 통과 투과율 DPT의 개략적 플롯이다.
기판 연마 작업에서 중요한 단계는 공정에 대한 종점을 결정하는 것이다. 종점 검출을 위한 하나의 일반적인 현장 방법은 특정 광 파장에 대해 투과성인 윈도우를 연마 패드에 제공하는 것을 포함한다. 연마 동안, 광선이 윈도우를 관통해 웨이퍼 표면으로 인도되고, 여기서 광선이 반사되어 다시 윈도우를 통해 검출기 (예를 들어, 분광광도계)로 통과한다. 복귀 신호에 기초하여, 종점 검출을 위한 기판 표면의 특성 (예를 들어, 그 상의 필름 두께)이 결정될 수 있다. 이러한 연마 공정 종점 검출 기술을 용이하게 하기 위해, 본 발명의 화학 기계적 연마 패드는 특유의 세트의 성분의 반응 생성물을 포함하는 종점 검출 윈도우를 갖고, 상기 반응 생성물은 연마 종점 검출을 용이하게 하기 위해 경도 (즉, 35 내지 65의 쇼어 D 경도) 및 낮은 인장 신율 (즉, < 300%의 파단 신율) 및 또한 우수한 광학 특성 (즉, 25 내지 100%의 400 nm에서의 이중 통과 투과율 DPT400)의 특유의 조합을 나타내며; 여기서 종점 검출 윈도우는 바람직하지 않은 윈도우 변형 (즉, 과도한 팽출)을 나타내지 않고, 까다로운 연마 적용에 요구되는 내구성을 갖는다.
본원 및 첨부된 청구범위에 사용된 용어 "연마 매질"은 입자 함유 연마 용액 및 비-입자-함유 연마 용액, 예컨대 연마제 무함유 및 반응성 액체 연마 용액을 포괄한다.
종점 검출 윈도우에 관하여 본원 및 첨부된 청구범위에 사용된 용어 "이중 통과 투과율" 또는 "DPT"는 하기 식을 사용하여 결정된다:
Figure pat00001
상기 식에서, IWSi, IWD, IASi 및 IAD는, SD1024F 분광사진기, 크세논 플래쉬 램프 및 3 mm 광섬유 케이블을 포함하는 베리티(Verity) SP2006 스펙트럼 간섭계를 사용하여, 원래 지점에서 종점 검출 윈도우의 제1 면에 대해 (수직으로) 3mm 광섬유 케이블의 발광 표면을 배치하고, 광을 윈도우의 두께 TW에 관통시키고, 제1 면에 실질적으로 평행한 종점 검출 윈도우의 제2 면에 대해 위치된 표면으로부터 다시 윈도우의 두께 TW를 통과해 반사되는 광의 강도를 원래 지점에서 측정함으로써 측정되고; 여기서 IWSi는, 원래 지점으로부터 윈도우를 통과하고, 윈도우의 제2 면에 대해 배치된 규소 블랭킷 웨이퍼의 표면으로부터 다시 윈도우를 통과해 원래 지점으로 반사되는 광의 강도의 측정치이고; IWD는, 원래 지점으로부터 윈도우를 통과하고, 흑체의 표면으로부터 다시 윈도우를 통과해 원래 지점으로 반사되는 광의 강도의 측정치이고; IASi는, 원래 지점으로부터 종점 검출 윈도우의 두께 TW와 동일한 두께의 공기를 통과하고, 3 mm 광섬유 케이블의 발광 표면에 수직으로 배치된 규소 블랭킷 웨이퍼의 표면으로부터 반사되고, 다시 공기의 두께를 통과해 원래 지점으로 반사되는 광의 강도의 측정치이고; IAD는 3 mm 광섬유 케이블의 발광 표면에서의, 흑체로부터 반사된 광의 강도의 측정치이다.
본원 및 첨부된 청구범위에 사용된 용어 "DPT400"은 400 nm의 파장을 갖는 광에 대해 종점 검출 윈도우에 의해 나타난 DPT이다.
본원 및 첨부된 청구범위에 사용된 용어 "DPT800"은 800 nm의 파장을 갖는 광에 대해 종점 검출 윈도우에 의해 나타난 DPT이다.
본원 및 첨부된 청구범위에 사용된 용어 "800 nm와 400 nm 사이의 이중 통과 투과율 델타" 또는 "ΔDPT800 -400"은 하기 식을 사용하여 결정된, 800 nm의 파장을 갖는 광 및 400 nm의 파장을 갖는 광에 대해 종점 검출 윈도우에 의해 나타난 이중 통과 투과율에서의 차이이다:
Figure pat00002
본 발명의 화학 기계적 연마 패드는 연마 표면을 갖는 연마 층; 및 종점 검출 윈도우를 포함하고; 여기서 종점 검출 윈도우는 (i) 5.5 내지 9.5 중량% (바람직하게는, 5.75 내지 9.0 중량%)의 미반응 NCO 기를 가지며, (a) 지방족 다관능성 이소시아네이트 및 (b) 예비중합체 폴리올을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체; 및, (ii) 0 내지 99 중량% (바람직하게는, 0 내지 75 중량%; 보다 바람직하게는, 0 내지 70 중량%)의 이관능성 경화제; 및 1 내지 100 중량% (바람직하게는, 25 내지 100 중량%; 보다 바람직하게는, 30 내지 100 중량%)의, 분자당 적어도 1개의 질소 원자 (바람직하게는, 1 내지 4개의 질소 원자; 보다 바람직하게는, 2 내지 4개의 질소 원자; 가장 바람직하게는, 2개의 질소 원자) 및 분자당 평균 적어도 3개 (바람직하게는, 3 내지 6개; 보다 바람직하게는, 3 내지 5개; 가장 바람직하게는, 4개)의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 포함하는 경화제 시스템을 포함하는 성분의 반응 생성물을 포함한다.
본 발명의 화학 기계적 연마 패드의 연마 층은 기판을 연마하도록 구성된 연마 표면을 갖는다. 바람직하게는, 연마 표면은 자기 기판, 광학 기판 및 반도체 기판 중 적어도 하나로부터 선택된 기판을 연마하도록 구성된다. 보다 바람직하게는, 연마 표면은 반도체 기판을 연마하도록 구성된다.
본 발명의 화학 기계적 연마 패드의 연마 층은 바람직하게는 폴리카르보네이트, 폴리술폰, 나일론, 폴리에테르, 폴리에스테르, 폴리스티렌, 아크릴 중합체, 폴리메틸 메타크릴레이트, 폴리비닐클로라이드, 폴리비닐플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리부타디엔, 폴리에틸렌 이민, 폴리우레탄, 폴리에테르 술폰, 폴리아미드, 폴리에테르 이미드, 폴리케톤, 에폭시, 실리콘, EPDM 및 이들의 조합으로부터 선택된 중합체를 포함하는 중합체성 물질로 제조된다. 바람직하게는, 연마 층은 폴리우레탄을 포함한다. 통상의 기술자는 주어진 연마 작업을 위한 화학 기계적 연마 패드에 사용하기에 적합한 두께를 갖는 연마 층을 선택하는 것을 이해할 것이다. 바람직하게는, 연마 층은 20 내지 150 mil (보다 바람직하게는 30 내지 125 mil; 가장 바람직하게는 40 내지 120 mil)의 평균 두께를 나타낸다.
바람직하게는, 연마 표면은 천공 및 홈 중 적어도 하나로부터 선택된 마크로텍스쳐를 갖는다. 천공은 연마 표면으로부터 연마 층의 두께를 통해 일부분 또는 끝까지 연장될 수 있다. 바람직하게는, 홈은 연마 동안 화학 기계적 연마 패드의 회전 시 적어도 하나의 홈이 연마되는 표면 위를 스위핑하도록 연마 표면 상에 배열된다. 바람직하게는, 연마 표면은 곡선형 홈, 선형 홈 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나의 홈을 포함하는 마크로텍스쳐를 갖는다.
바람직하게는, 본 발명의 화학 기계적 연마 패드의 연마 층은 기판을 연마하도록 구성된 연마 표면을 갖고, 여기서 연마 표면은 그에 형성된 홈 패턴을 포함하는 마크로텍스쳐를 갖는다. 바람직하게는, 홈 패턴은 복수의 홈을 포함한다. 보다 바람직하게는, 홈 패턴은 홈 디자인으로부터 선택된다. 바람직하게는, 홈 디자인은 동심형 홈 (이는 원형 또는 나선형일 수 있음), 곡선형 홈, 크로스 해치(cross hatch) 홈 (예를 들어, 패드 표면을 가로질러 X-Y 격자로서 배열됨), 다른 규칙적 디자인 (예를 들어, 육각형, 삼각형), 타이어 트레드(tire tread) 유형 패턴, 불규칙적 디자인 (예를 들어, 프랙탈 패턴) 및 이들의 조합으로 이루어진 군으로부터 선택된다. 보다 바람직하게는, 홈 디자인은 무작위 홈, 동심형 홈, 나선형 홈, 크로스-해치 홈, X-Y 격자 홈, 육각형 홈, 삼각형 홈, 프랙탈 홈 및 이들의 조합으로 이루어진 군으로부터 선택된다. 가장 바람직하게는, 연마 표면은 그에 형성된 나선형 홈 패턴을 갖는다. 홈 프로파일은 바람직하게는 직립형 측벽을 갖는 직사각형으로부터 선택되거나, 또는 홈 단면이 "V"자 형, "U"자 형, 톱니 모양 및 이들의 조합일 수 있다.
본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 이소시아네이트 말단 우레탄 예비중합체는 5.5 내지 9.5 중량% (바람직하게는, 5.75 내지 9.0 중량%)의 미반응 NCO 기를 갖는 이소시아네이트 말단 우레탄 예비중합체이고, 여기서 이소시아네이트 말단 우레탄 예비중합체는 지방족 다관능성 이소시아네이트 및 예비중합체 폴리올을 포함하는 성분의 반응 생성물이다.
본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 이소시아네이트 말단 우레탄 예비중합체는 바람직하게는 분자당 평균 2개의 반응성 이소시아네이트 기 (즉, NCO)를 함유한다.
본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 이소시아네이트 말단 우레탄 예비중합체는 바람직하게는 0.1 중량% 미만의 유리 디이소시아네이트 단량체 함량을 갖는 저 유리 이소시아네이트 말단 우레탄 예비중합체이다.
바람직하게는, 본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 이소시아네이트 말단 우레탄 예비중합체의 제조에 사용되는 지방족 다관능성 이소시아네이트는 지방족 디이소시아네이트이다. 보다 바람직하게는, 지방족 다관능성 이소시아네이트는 이소포론 디이소시아네이트 (IPDI); 헥사메틸렌-1,6-디이소시아네이트 (HDI); 4,4-메틸렌비스(시클로헥실 이소시아네이트) (H12MDI); 1,4-시클로헥산 디이소시아네이트; 1,3-시클로헥산 디이소시아네이트; 1,2-시클로헥산 디이소시아네이트; 2,2,4-트리메틸헥사메틸렌 디이소시아네이트; 2,4,4-트리메틸헥사메틸렌 디이소시아네이트; 1,4-비스(이소시아네이토메틸) 시클로헥산; 1,3-비스(이소시아네이토메틸) 시클로헥산; 및 이들의 혼합물로 이루어진 군으로부터 선택된다. 가장 바람직하게는, 사용되는 지방족 다관능성 이소시아네이트는 4,4-메틸렌비스(시클로헥실 이소시아네이트) (H12MDI)이다.
이소시아네이트 말단 우레탄 예비중합체의 제조에 사용되는 예비중합체 폴리올은 바람직하게는 디올, 폴리올, 폴리올 디올, 이들의 공중합체 및 이들의 혼합물로 이루어진 군으로부터 선택된다. 보다 바람직하게는, 예비중합체 폴리올은 폴리에테르 폴리올 (예를 들어, 폴리(옥시테트라메틸렌)글리콜, 폴리(옥시프로필렌)글리콜, 폴리(옥시에틸렌)글리콜); 폴리카르보네이트 폴리올; 폴리에스테르 폴리올; 폴리카프로락톤 폴리올; 이들의 혼합물; 및, 이들과 에틸렌 글리콜; 1,2-프로필렌 글리콜; 1,3-프로필렌 글리콜; 1,2-부탄디올; 1,3-부탄디올; 2-메틸-1,3-프로판디올; 1,4-부탄디올; 네오펜틸 글리콜; 1,5-펜탄디올; 3-메틸-1,5-펜탄디올; 1,6-헥산디올; 디에틸렌 글리콜; 디프로필렌 글리콜; 및 트리프로필렌 글리콜로 이루어진 군으로부터 선택된 하나 이상의 저분자량 폴리올과의 혼합물로 이루어진 군으로부터 선택된다. 보다 더 바람직하게는, 예비중합체 폴리올은, 에틸렌 글리콜; 1,2-프로필렌 글리콜; 1,3-프로필렌 글리콜; 1,2-부탄디올; 1,3-부탄디올; 2-메틸-1,3-프로판디올; 1,4-부탄디올; 네오펜틸 글리콜; 1,5-펜탄디올; 3-메틸-1,5-펜탄디올; 1,6-헥산디올; 디에틸렌 글리콜; 디프로필렌 글리콜; 및 트리프로필렌 글리콜로 이루어진 군으로부터 선택된 적어도 하나의 저분자량 폴리올과 임의로 혼합된, 폴리테트라메틸렌 에테르 글리콜 (PTMEG); 폴리프로필렌 에테르 글리콜 (PPG); 및 폴리에틸렌 에테르 글리콜 (PEG) 중 적어도 하나로 이루어진 군으로부터 선택된다. 가장 바람직하게는, 예비중합체 폴리올은, 에틸렌 글리콜; 1,2-프로필렌 글리콜; 1,3-프로필렌 글리콜; 1,2-부탄디올; 1,3-부탄디올; 2-메틸-1,3-프로판디올; 1,4-부탄디올; 네오펜틸 글리콜; 1,5-펜탄디올; 3-메틸-1,5-펜탄디올; 1,6-헥산디올; 디에틸렌 글리콜; 디프로필렌 글리콜; 및 트리프로필렌 글리콜 중 적어도 하나와 혼합된 PPG를 포함한다.
본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 경화제 시스템은 바람직하게는 0 내지 99 중량% (바람직하게는, 0 내지 75 중량%; 보다 바람직하게는, 0 내지 70 중량%)의 이관능성 경화제; 및 1 내지 100 중량% (바람직하게는, 25 내지 100 중량%; 보다 바람직하게는, 30 내지 100 중량%)의, 분자당 적어도 1개의 질소 원자 (바람직하게는, 1 내지 4개의 질소 원자; 보다 바람직하게는, 2 내지 4개의 질소 원자; 가장 바람직하게는, 2개의 질소 원자) 및 분자당 평균 적어도 3개 (바람직하게는, 3 내지 6개; 보다 바람직하게는, 3 내지 5개; 가장 바람직하게는, 4개)의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 함유한다. 바람직하게는, 본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 경화제 시스템은 < 1 중량% (바람직하게는, < 0.1 중량%; 보다 바람직하게는, < 0.01 중량%)의, 2,000 내지 100,000의 수 평균 분자량 MN 및 분자당 평균 3 내지 10개의 히드록실 기를 갖는 고분자량 폴리올 경화제를 함유한다. 보다 바람직하게는, 본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 경화제 시스템은 0 내지 99 중량% (바람직하게는, 0 내지 75 중량%; 보다 바람직하게는, 0 내지 70 중량%)의 이관능성 경화제; 1 내지 100 중량% (바람직하게는, 25 내지 100 중량%; 보다 바람직하게는, 30 내지 100 중량%)의, 분자당 적어도 1개의 질소 원자 (바람직하게는, 1 내지 4개의 질소 원자; 보다 바람직하게는, 2 내지 4개의 질소 원자; 가장 바람직하게는, 2개의 질소 원자) 및 분자당 평균 적어도 3개 (바람직하게는, 3 내지 6개; 보다 바람직하게는, 3 내지 5개; 가장 바람직하게는, 4개)의 히드록실 기를 갖는 아민 개시 폴리올 경화제; 및 < 0.001 중량%의, 2,000 내지 100,000의 수 평균 분자량 MN 및 분자당 평균 3 내지 10개의 히드록실 기를 갖는 고분자량 폴리올 경화제를 포함한다. 가장 바람직하게는, 본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 경화제 시스템은 0 내지 99 중량% (바람직하게는, 0 내지 75 중량%; 보다 바람직하게는, 0 내지 70 중량%)의 이관능성 경화제; 1 내지 100 중량% (바람직하게는, 25 내지 100 중량%; 보다 바람직하게는, 30 내지 100 중량%)의, 분자당 적어도 1개의 질소 원자 (바람직하게는, 1 내지 4개의 질소 원자; 보다 바람직하게는, 2 내지 4개의 질소 원자; 가장 바람직하게는, 2개의 질소 원자) 및 분자당 평균 적어도 3개 (바람직하게는, 3 내지 6개; 보다 바람직하게는, 3 내지 5개; 가장 바람직하게는, 4개)의 히드록실 기를 갖는 아민 개시 폴리올 경화제; 및 < 검출가능한 양의, 2,000 내지 100,000의 수 평균 분자량 MN 및 분자당 평균 3 내지 10개의 히드록실 기를 갖는 고분자량 폴리올 경화제를 포함한다.
본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 아민 개시 폴리올 경화제는 분자당 적어도 1개의 질소 원자 (바람직하게는, 1 내지 4개의 질소 원자; 보다 바람직하게는, 2 내지 4개의 질소 원자; 가장 바람직하게는, 2개의 질소 원자) 및 분자당 평균 적어도 3개 (바람직하게는, 3 내지 6개; 보다 바람직하게는, 3 내지 5개; 가장 바람직하게는, 4개)의 히드록실 기를 함유한다. 바람직하게는, 본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 아민 개시 폴리올 경화제는 ≤ 700 (보다 바람직하게는, 150 내지 650; 보다 더 바람직하게는, 200 내지 500; 가장 바람직하게는, 250 내지 300)의 수 평균 분자량 MN을 갖는다.
본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 아민 개시 폴리올 경화제는 바람직하게는 350 내지 1,200 mg KOH/g (보다 바람직하게는, 400 내지 1,000 mg KOH/g; 가장 바람직하게는, 600 내지 850 mg KOH/g)의 히드록실가 (ASTM 시험 방법 D4274-11에 의해 결정된 바와 같음)를 갖는다.
상업적으로 입수가능한 아민 개시 폴리올 경화제의 예는 보라놀(Voranol)® 패밀리의 아민 개시 폴리올 (더 다우 케미칼 캄파니(The Dow Chemical Company)로부터 입수가능함); 쿼드롤(Quadrol)® 특수 폴리올 (N,N,N',N'-테트라키스 (2-히드록시프로필 에틸렌 디아민))(바스프(BASF)로부터 입수가능함); 플러라콜(Pluracol)® 아민 기재 폴리올 (바스프로부터 입수가능함); 멀트라놀(Multranol)® 아민 기재 폴리올 (바이엘 머티리얼사이언스 엘엘씨(Bayer MaterialScience LLC)로부터 입수가능함); 트리이소프로판올아민 (TIPA) (더 다우 케미칼 캄파니로부터 입수가능함); 및 트리에탄올아민 (TEA) (말린크로트 베이커 인크.(Mallinckrodt Baker Inc.)로부터 입수가능함)을 포함한다. 다수의 바람직한 아민 개시 폴리올 경화제는 표 1에 열거되어 있다.
<표 1>
Figure pat00003
이론에 구속되지 않으면서, 상기와 함께 제조된 종점 검출 윈도우에서 물리적 특성의 바람직한 균형을 촉진하는 것 이외에도, 경화제 시스템에 사용되는 상기 아민 개시 폴리올 경화제의 농도는 또한 그의 반응, 및 경화제 시스템 내 임의의 이관능성 경화제와 이소시아네이트 말단 우레탄 예비중합체에 존재하는 미반응 이소시아네이트 (NCO) 기의 반응을 자가 촉매 작용하는 것으로 여겨진다.
본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는 이관능성 경화제는 바람직하게는 디올 및 디아민으로부터 선택된다. 보다 바람직하게는, 이관능성 경화제는 디에틸톨루엔디아민 (DETDA); 3,5-디메틸티오-2,4-톨루엔디아민 및 그의 이성질체; 3,5-디에틸톨루엔-2,4-디아민 및 그의 이성질체 (예를 들어, 3,5-디에틸톨루엔-2,6-디아민); 4,4'-비스-(sec-부틸아미노)-디페닐메탄; 1,4-비스-(sec-부틸아미노)-벤젠; 4,4'-메틸렌-비스-(2-클로로아닐린); 4,4'-메틸렌-비스-(3-클로로-2,6-디에틸아닐린) (MCDEA); 폴리테트라메틸렌옥시드-디-p-아미노벤조에이트; N,N'-디알킬디아미노 디페닐메탄; p,p'-메틸렌 디아닐린 (MDA); m-페닐렌디아민 (MPDA); 4,4'-메틸렌-비스-(2-클로로아닐린) (MBOCA); 4,4'-메틸렌-비스-(2,6-디에틸아닐린) (MDEA); 4,4'-메틸렌-비스-(2,3-디클로로아닐린) (MDCA); 4,4'-디아미노-3,3'-디에틸-5,5'-디메틸 디페닐메탄, 2,2',3,3'-테트라클로로 디아미노 디페닐메탄; 트리메틸렌 글리콜 디-p-아미노벤조에이트; 및 이들의 혼합물로 이루어진 군으로부터 선택된 이관능성 방향족 경화제이다. 보다 더 바람직하게는, 사용되는 이관능성 방향족 경화제는 4,4'-메틸렌-비스-(2-클로로아닐린) (MBOCA); 4,4'-메틸렌-비스-(3-클로로-2,6-디에틸아닐린) (MCDEA); 및 이들의 이성질체로 이루어진 군으로부터 선택된다. 가장 바람직하게는, 사용되는 이관능성 방향족 경화제는 4,4'-메틸렌-비스-(2-클로로아닐린) (MBOCA)이다.
본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우의 형성에 사용되는, 경화제 시스템의 성분에 함유된 반응성 수소 기의 총합 (즉, 아민 (NH2) 기 및 히드록실 (OH) 기의 총합)을 이소시아네이트 말단 우레탄 예비중합체 내 미반응 이소시아네이트 (NCO) 기로 나눈 값 (즉, 화학량론적 비)은 바람직하게는 0.7 내지 1.2 (바람직하게는, 0.8 내지 1.10; 보다 바람직하게는, 0.85 내지 1.05)이다.
본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우는 바람직하게는 본원 실시예에 제시된 조건 하에 측정 시 ≥ 1 g/cm3 (바람직하게는, 1.05 내지 1.2 g/cm3; 보다 바람직하게는 1.1 내지 1.2 g/cm3)의 밀도; 0.1 부피% 미만의 기공률; 35 내지 65의 쇼어 D 경도; < 300% (바람직하게는, 100 내지 < 300%; 보다 바람직하게는, 150 내지 250%; 가장 바람직하게는, 150 내지 200%)의 파단 신율; 및 25 내지 100% (바람직하게는, 40 내지 85%; 보다 바람직하게는, 50 내지 85%; 가장 바람직하게는, 55 내지 75%)의 400 nm에서의 이중 통과 투과율 DPT400을 나타낸다.
본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우는 바람직하게는 본원 실시예에 제시된 조건 하에 측정 시 40 내지 100% (바람직하게는, 40 내지 95%; 보다 바람직하게는, 50 내지 90%; 가장 바람직하게는, 60 내지 85%)의 800 nm에서의 이중 통과 투과율 DPT800을 나타낸다. 바람직하게는, 본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우는 본원 실시예에 제시된 조건 하에 측정 시 40 내지 100% (바람직하게는, 40 내지 95%; 보다 바람직하게는, 50 내지 90%; 가장 바람직하게는, 60 내지 85%)의 DPT800; 및 본원 실시예에 제시된 조건 하에 측정 시 25 내지 100% (바람직하게는, 40 내지 85%; 보다 바람직하게는, 50 내지 85%; 가장 바람직하게는, 55 내지 75%)의 400 nm에서의 이중 통과 투과율 DPT400을 나타내고; 여기서 종점 검출 윈도우는 본원 실시예에 제시된 조건 하에 측정 시 < 30% (바람직하게는, ≤ 25%; 보다 바람직하게는, ≤ 15%; 가장 바람직하게는, ≤10%)의, 800 nm와 400 nm 사이의 이중 통과 투과율 델타 ΔDPT800 -400을 나타낸다.
본 발명의 화학 기계적 연마 패드의 종점 검출 윈도우는 바람직하게는 플러그 인 플레이스 윈도우 및 일체형 윈도우로부터 선택된다. 보다 바람직하게는, 종점 검출 윈도우는 연마 층 내에 혼입된 일체형 윈도우이다.
본 발명의 화학 기계적 연마 패드는 임의로, 연마 층과 상호연결되는 적어도 1개의 추가의 층을 포함한다. 바람직하게는, 연마 층은 접착제를 사용하여 적어도 1개의 추가의 층과 상호연결된다. 접착제는 감압성 접착제, 핫 멜트 접착제, 접촉 접착제 및 이들의 조합으로부터 선택될 수 있다. 바람직하게는, 접착제는 핫 멜트 접착제 또는 감압성 접착제이다. 보다 바람직하게는, 접착제는 핫 멜트 접착제이다.
본 발명의 화학 기계적 연마 패드는 바람직하게는 연마 기계의 압반과 상호연결되도록 구성된다. 바람직하게는, 화학 기계적 연마 패드는 연마 기계의 압반에 부착되도록 구성된다. 바람직하게는, 화학 기계적 연마 패드는 감압성 접착제 및 진공 중 적어도 하나를 사용하여 압반에 부착될 수 있다. 바람직하게는, 본 발명의 화학 기계적 연마 패드는 압반에 대한 부착을 용이하게 하기 위해 감압성 압반 접착제를 추가로 포함한다. 통상의 기술자는 감압성 압반 접착제로서 사용하기 위한 적절한 감압성 접착제를 선택하는 방법을 알 것이다. 바람직하게는, 본 발명의 화학 기계적 연마 패드는 감압성 압반 접착제 상에 적용되는 이형 라이너를 또한 포함할 것이다.
본 발명의 화학 기계적 연마 패드를 제조하는 방법은 연마 표면을 갖는 연마 층을 제공하고; 5.5 내지 9.5 중량% (바람직하게는, 5.75 내지 9.0 중량%)의 미반응 NCO 기를 가지며, (a) 지방족 다관능성 이소시아네이트 및 (b) 예비중합체 폴리올을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체를 제공하고; 0 내지 99 중량% (바람직하게는, 0 내지 75 중량%; 보다 바람직하게는, 0 내지 70 중량%)의 이관능성 경화제; 및 1 내지 100 중량% (바람직하게는, 25 내지 100 중량%; 보다 바람직하게는, 30 내지 100 중량%)의, 분자당 적어도 1개의 질소 원자 (바람직하게는, 1 내지 4개의 질소 원자; 보다 바람직하게는, 2 내지 4개의 질소 원자; 가장 바람직하게는, 2개의 질소 원자) 및 분자당 평균 적어도 3개 (바람직하게는, 3 내지 6개; 보다 바람직하게는, 3 내지 5개; 가장 바람직하게는, 4개)의 히드록실 기를 갖는 아민 개시 폴리올 경화제를 포함하는 경화제 시스템을 제공하고; 이소시아네이트 말단 우레탄 예비중합체와 경화제 시스템을 배합하여 배합물을 형성하고; 배합물을 반응하도록 하여 생성물을 형성하고; 생성물로부터 종점 검출 윈도우를 형성하고; 종점 검출 윈도우를 연마 층과 상호연결시켜 화학 기계적 연마 패드를 제공하는 것을 포함한다. 바람직하게는, 종점 검출 윈도우는 공지된 기술을 사용하여 연마 층 내에 혼입된 일체형 윈도우로서 또는 공지된 기술을 사용하여 화학 기계적 연마 패드 내에 혼입된 플러그 인 플레이스 윈도우로서 연마 층과 상호연결된다. 가장 바람직하게는, 종점 검출 윈도우는 일체형 윈도우로서 연마 층 내에 혼입된다.
기판의 화학 기계적 연마를 위한 본 발명의 방법은, 압반, 광원 및 광센서 (바람직하게는 다중센서 분광사진기)를 갖는 화학 기계적 연마 장치를 제공하고; 적어도 하나의 연마할 기판 (바람직하게는, 여기서 기판은 자기 기판, 광학 기판 및 반도체 기판 중 적어도 하나로 이루어진 군으로부터 선택되고; 보다 바람직하게는, 기판은 반도체 기판이고; 가장 바람직하게는, 기판은 반도체 웨이퍼임)을 제공하고; 본 발명의 화학 기계적 연마 패드를 제공하고; 압반 상에 화학 기계적 연마 패드를 설치하고; 임의로, 연마 매질 (바람직하게는, 여기서 연마 매질은 연마 슬러리 및 비-연마제 함유 반응성 액체 제제로 이루어진 군으로부터 선택됨)을 화학 기계적 연마 패드의 연마 표면과 기판 사이의 계면에 제공하고; 연마 표면과 기판 사이의 동적 접촉을 생성시키고, 여기서 기판으로부터 적어도 일부 물질이 제거되고; 광원으로부터의 광을 종점 검출 윈도우를 통과해 투과시키고, 기판의 표면으로부터 반사되어 다시 종점 검출 윈도우를 통과해 광센서 상에 입사하는 광을 분석함으로써 연마 종점을 결정하는 것을 포함한다. 바람직하게는, 연마 종점은 기판의 표면으로부터 반사되어 종점 검출 윈도우를 통과해 투과되는 광의 파장의 분석에 기초하여 결정되고, 여기서 광의 파장은 > 370 nm 내지 800 nm의 파장을 갖는다. 보다 바람직하게는, 연마 종점은 기판의 표면으로부터 반사되어 종점 검출 윈도우를 통과해 투과되는 광의 다중 파장의 분석에 기초하여 결정되고, 여기서 분석된 파장 중 하나는 > 370 nm 내지 800 nm의 파장을 갖는다.
이제, 본 발명의 일부 실시양태는 하기 실시예에 상세히 설명될 것이다.
비교 실시예 C1-C4 및 실시예 1-7
종점 검출 윈도우를 표 2에 제공된 제제 상세사항에 따라 제조하였다. 1,000 rpm에서 30초 동안 볼텍스 믹서를 사용하여 윈도우 예비중합체를 경화제 시스템의 성분과 혼합하였다. MCDEA 및 MbOCA를 제외한 원료 모두를 60℃의 예비혼합 온도에서 유지하였다. MCDEA 및 MbOCA는 사용되는 경우에, 120℃의 예비혼합 온도에서 유지하였다.
종점 검출 윈도우에 사용되는 윈도우 예비중합체 및 경화제 시스템 사이의 화학량론적 비는 이소시아네이트 말단 우레탄 예비중합체 내 미반응 이소시아네이트 (NCO) 기에 대한 경화제 시스템 내 반응성 수소 기 (즉, -OH 기 및 -NH2 기의 총합)의 비로서 표 2에 제공된다.
실시예 각각에서, 볼텍스 믹서를 사용하여 이소시아네이트 말단 우레탄 예비중합체 및 경화제 시스템을 함께 혼합하였다. 혼합 후에, 배합물을 2 mm x 125 mm x 185 mm의 치수를 갖는 포켓 몰드 내에 분배하였다. 이어서, 분배된 배합물을 포함하는 포켓 몰드를 18시간 동안 오븐에서 경화시켰다. 오븐에 대한 설정점 온도를 초기에는 처음 20분 동안 93℃; 다음 15시간 40분 동안 104℃에서; 이어서 최종 2시간 동안 21℃로 하강하도록 설정하였다. 이어서, 포켓 몰드 및 그의 내용물을 오븐으로부터 제거한 다음, 생성물 종점 검출 윈도우를 포켓 몰드로부터 제거하였다.
<표 2>
Figure pat00004
비교 실시예 C1-C4 및 실시예 1-7 각각에 따라 제조한 종점 검출 윈도우를 분석하여 표 3에 보고된 바와 같은 물리적 특성을 결정하였다.
종점 검출 윈도우에 대해 보고된 DPT400 및 DPT800 투과율 데이터는 하기 식을 사용하여 결정하였다:
Figure pat00005
상기 식에서, IWSi, IWD, IASi 및 IAD는, SD1024F 분광사진기, 크세논 플래쉬 램프 및 3 mm 광섬유 케이블을 포함하는 베리티 SP2006 스펙트럼 간섭계를 사용하여, 원래 지점에서 종점 검출 윈도우의 제1 면에 대해 (수직으로) 3mm 광섬유 케이블의 발광 표면을 배치하고, 주어진 파장에서의 (즉, 각각 400 nm 및 800 nm에서의) 광을 윈도우의 두께 TW에 관통시키고, 제1 면에 실질적으로 평행한 종점 검출 윈도우의 제2 면에 대해 위치된 표면으로부터 다시 윈도우의 두께 TW를 통과해 반사되는 주어진 파장의 광의 강도를 원래 지점에서 측정함으로써 측정되고; 여기서 IWSi는, 원래 지점으로부터 윈도우를 통과하고, 윈도우의 제2 면에 대해 배치된 규소 블랭킷 웨이퍼의 표면으로부터 다시 윈도우를 통과해 원래 지점으로 반사되는, 주어진 파장에서의 광의 강도의 측정치이고; IWD는, 원래 지점으로부터 윈도우를 통과하고, 흑체의 표면으로부터 다시 윈도우를 통과해 원래 지점으로 반사되는, 주어진 파장에서의 광의 강도의 측정치이고; IASi는, 원래 지점으로부터 종점 검출 윈도우의 두께 TW와 동일한 두께의 공기를 통과하고, 3 mm 광섬유 케이블의 발광 표면에 수직으로 배치된 규소 블랭킷 웨이퍼의 표면으로부터 반사되고, 다시 공기의 두께를 통과해 원래 지점으로 반사되는, 주어진 파장에서의 광의 강도의 측정치이고; IAD는 3 mm 광섬유 케이블의 발광 표면에서의, 흑체로부터 반사된 주어진 파장의 광의 강도의 측정치이다. 비교 실시예 C2 및 C4, 및 실시예 1, 3, 5 및 7에 따라 제조된 종점 검출 윈도우에 대한, 관찰된 이중 통과 투과율 대 300 내지 800 nm의 광 파장의 그래프는 각각 도 1-6에 도시되어 있다.
종점 검출 윈도우에 대해 보고된 밀도 데이터는 ASTM D1622에 따라 결정하였다.
종점 검출 윈도우에 대해 보고된 쇼어 D 경도 데이터는 ASTM D2240에 따라 결정하였다.
종점 검출 윈도우의 인장 특성 (즉, 인장 강도 및 파단 신율)은 엠티에스 시스템즈 코포레이션(MTS Systems Corporation)으로부터 입수가능한 얼라이언스(Alliance) RT/5 기계적 시험기를 사용하여 50.8 cm/분의 크로스헤드 속도로 ASTM D1708-10에 따라 측정하였다. 모든 인장 특성 시험을 23℃ 및 50%의 상대 습도로 설정된 온도 및 습도 제어된 실험실에서 수행하였다. 시험 샘플 모두를 5일 동안 상기 언급된 실험실 조건 하에 조건화시킨 후에, 시험을 수행하였다. 각각의 종점 검출 윈도우 물질에 대해 보고된 인장 강도 (MPa) 및 파단 신율 (%)은 4개의 복제 샘플의 응력-변형 곡선으로부터 결정하였다.
<표 3>
Figure pat00006

Claims (10)

  1. 연마 표면을 갖는 연마 층; 및
    종점 검출 윈도우
    를 포함하며;
    여기서 종점 검출 윈도우는
    (i) 5.5 내지 9.5 중량%의 미반응 NCO 기를 가지며,
    (a) 지방족 다관능성 이소시아네이트; 및
    (b) 예비중합체 폴리올
    을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체, 및
    (ii) 0 내지 99 중량%의 이관능성 경화제; 및
    1 내지 100 중량%의, 분자당 적어도 1개의 질소 원자 및 분자당 평균 적어도 3개의 히드록실 기를 갖는 아민 개시 폴리올 경화제
    를 포함하는 경화제 시스템
    을 포함하는 성분의 반응 생성물을 포함하는 것인 화학 기계적 연마 패드.
  2. 제1항에 있어서, 연마 표면이 자기 기판, 광학 기판 및 반도체 기판 중 적어도 하나로 이루어진 군으로부터 선택된 기판을 연마하도록 구성된 것인 화학 기계적 연마 패드.
  3. 제1항에 있어서, 경화제 시스템이 복수의 반응성 수소 기를 갖고, 이소시아네이트 말단 우레탄 예비중합체가 복수의 미반응 NCO 기를 갖고; 여기서 미반응 NCO 기에 대한 반응성 수소 기의 화학량론적 비는 0.7 내지 1.2인 화학 기계적 연마 패드.
  4. 제1항에 있어서, 종점 검출 윈도우가 ≥ 1 g/cm3의 밀도; 0.1 부피% 미만의 기공률; 35 내지 65의 쇼어 D 경도; < 300%의 파단 신율; 및 25 내지 100%의 400 nm에서의 이중 통과 투과율 DPT400을 나타내는 것인 화학 기계적 연마 패드.
  5. 제4항에 있어서, 종점 검출 윈도우가 또한 40 내지 100%의 800 nm에서의 이중 통과 투과율 DPT800을 나타내고; 종점 검출 윈도우가 또한 < 30%의, 800 nm와 400 nm 사이의 이중 통과 투과율 델타 ΔDPT800-400을 나타내는 것인 화학 기계적 연마 패드.
  6. 제2항에 있어서, 연마 표면이 그에 형성된 나선형 홈 패턴을 갖는 것인 화학 기계적 연마 패드.
  7. 연마 표면을 갖는 연마 층을 제공하고;
    5.5 내지 9.5 중량%의 미반응 NCO 기를 가지며,
    (a) 지방족 다관능성 이소시아네이트; 및
    (b) 예비중합체 폴리올
    을 포함하는 성분의 반응 생성물인 이소시아네이트 말단 우레탄 예비중합체를 제공하고;
    0 내지 99 중량%의 이관능성 경화제; 및
    1 내지 100 중량%의, 분자당 적어도 1개의 질소 원자 및 분자당 평균 적어도 3개의 히드록실 기를 갖는 아민 개시 폴리올 경화제
    를 포함하는 경화제 시스템을 제공하고;
    이소시아네이트 말단 우레탄 예비중합체와 경화제 시스템을 배합하여 배합물을 형성하고;
    배합물을 반응하도록 하여 생성물을 형성하고;
    생성물로부터 종점 검출 윈도우를 형성하고;
    종점 검출 윈도우를 연마 층과 상호연결시켜 화학 기계적 연마 패드를 제공하는 것을 포함하는, 제1항에 따른 화학 기계적 연마 패드를 제조하는 방법.
  8. 제7항에 있어서, 종점 검출 윈도우가 일체형 윈도우인 방법.
  9. 압반, 광원 및 광센서를 갖는 화학 기계적 연마 장치를 제공하고;
    적어도 하나의 기판을 제공하고;
    제1항에 따른 화학 기계적 연마 패드를 제공하고;
    압반 상에 화학 기계적 연마 패드를 설치하고;
    임의로, 연마 매질을 연마 표면과 기판 사이의 계면에 제공하고;
    연마 표면과 기판 사이의 동적 접촉을 생성시키고, 여기서 기판으로부터 적어도 일부 물질이 제거되고;
    광원으로부터의 광을 종점 검출 윈도우를 통과해 투과시키고, 기판의 표면으로부터 반사되어 다시 종점 검출 윈도우를 통과해 광센서 상에 입사하는 광을 분석함으로써 연마 종점을 결정하는 것
    을 포함하는, 기판을 연마하는 방법.
  10. 제9항에 있어서, 적어도 하나의 기판이 자기 기판, 광학 기판 및 반도체 기판 중 적어도 하나로 이루어진 군으로부터 선택된 것인 방법.
KR1020150057837A 2014-04-29 2015-04-24 투명한 종점 검출 윈도우를 갖는 화학 기계적 연마 패드 KR20150124897A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/264,576 US9333620B2 (en) 2014-04-29 2014-04-29 Chemical mechanical polishing pad with clear endpoint detection window
US14/264,576 2014-04-29

Publications (1)

Publication Number Publication Date
KR20150124897A true KR20150124897A (ko) 2015-11-06

Family

ID=54261833

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150057837A KR20150124897A (ko) 2014-04-29 2015-04-24 투명한 종점 검출 윈도우를 갖는 화학 기계적 연마 패드

Country Status (7)

Country Link
US (1) US9333620B2 (ko)
JP (1) JP2015208856A (ko)
KR (1) KR20150124897A (ko)
CN (1) CN105033841A (ko)
DE (1) DE102015004927A1 (ko)
FR (1) FR3020298A1 (ko)
TW (1) TWI574983B (ko)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
CN113579992A (zh) 2014-10-17 2021-11-02 应用材料公司 使用加成制造工艺的具复合材料特性的cmp衬垫建构
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
JP6940495B2 (ja) 2015-10-30 2021-09-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 所望のゼータ電位を有する研磨用物品を形成するための装置及び方法
US9484212B1 (en) * 2015-10-30 2016-11-01 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing method
US10593574B2 (en) 2015-11-06 2020-03-17 Applied Materials, Inc. Techniques for combining CMP process tracking data with 3D printed CMP consumables
WO2017127221A1 (en) 2016-01-19 2017-07-27 Applied Materials, Inc. Porous chemical mechanical polishing pads
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US10086494B2 (en) * 2016-09-13 2018-10-02 Rohm And Haas Electronic Materials Cmp Holdings, Inc. High planarization efficiency chemical mechanical polishing pads and methods of making
US10207388B2 (en) 2017-04-19 2019-02-19 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Aliphatic polyurethane optical endpoint detection windows and CMP polishing pads containing them
US20180304539A1 (en) 2017-04-21 2018-10-25 Applied Materials, Inc. Energy delivery system with array of energy sources for an additive manufacturing apparatus
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
WO2019032286A1 (en) 2017-08-07 2019-02-14 Applied Materials, Inc. ABRASIVE DISTRIBUTION POLISHING PADS AND METHODS OF MAKING SAME
US10465097B2 (en) * 2017-11-16 2019-11-05 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Aliphatic UV cured polyurethane optical endpoint detection windows with high UV transparency for CMP polishing pads
US10464187B2 (en) * 2017-12-01 2019-11-05 Rohm And Haas Electronic Materials Cmp Holdings, Inc. High removal rate chemical mechanical polishing pads from amine initiated polyol containing curatives
KR20210042171A (ko) 2018-09-04 2021-04-16 어플라이드 머티어리얼스, 인코포레이티드 진보한 폴리싱 패드들을 위한 제형들
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
KR102421208B1 (ko) * 2020-09-10 2022-07-14 에스케이씨솔믹스 주식회사 연마 패드 및 이를 이용한 반도체 소자의 제조 방법
US11772230B2 (en) * 2021-01-21 2023-10-03 Rohm And Haas Electronic Materials Cmp Holdings Inc. Formulations for high porosity chemical mechanical polishing pads with high hardness and CMP pads made therewith
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ
CN114029856B (zh) * 2021-11-30 2022-11-08 万华化学集团电子材料有限公司 一种终点检测精度高的化学机械抛光垫、制备方法及其应用

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433651A (en) 1993-12-22 1995-07-18 International Business Machines Corporation In-situ endpoint detection and process monitoring method and apparatus for chemical-mechanical polishing
US5605760A (en) 1995-08-21 1997-02-25 Rodel, Inc. Polishing pads
US6106662A (en) 1998-06-08 2000-08-22 Speedfam-Ipec Corporation Method and apparatus for endpoint detection for chemical mechanical polishing
US6171181B1 (en) 1999-08-17 2001-01-09 Rodel Holdings, Inc. Molded polishing pad having integral window
JP2002001647A (ja) 2000-06-19 2002-01-08 Rodel Nitta Co 研磨パッド
KR100434189B1 (ko) * 2002-03-21 2004-06-04 삼성전자주식회사 화학 기계적 연마장치 및 그 제어방법
US20040014413A1 (en) * 2002-06-03 2004-01-22 Jsr Corporation Polishing pad and multi-layer polishing pad
US20040209066A1 (en) * 2003-04-17 2004-10-21 Swisher Robert G. Polishing pad with window for planarization
US20050017013A1 (en) * 2003-07-24 2005-01-27 Alberto Peisach Container for hot fill food packaging applications
US7195539B2 (en) 2003-09-19 2007-03-27 Cabot Microelectronics Coporation Polishing pad with recessed window
US7258602B2 (en) 2003-10-22 2007-08-21 Iv Technologies Co., Ltd. Polishing pad having grooved window therein and method of forming the same
US6984163B2 (en) 2003-11-25 2006-01-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pad with high optical transmission window
US7018581B2 (en) 2004-06-10 2006-03-28 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of forming a polishing pad with reduced stress window
JP5110677B2 (ja) 2006-05-17 2012-12-26 東洋ゴム工業株式会社 研磨パッド
JP2007307639A (ja) 2006-05-17 2007-11-29 Toyo Tire & Rubber Co Ltd 研磨パッド
US20090062414A1 (en) * 2007-08-28 2009-03-05 David Picheng Huang System and method for producing damping polyurethane CMP pads
US8257544B2 (en) 2009-06-10 2012-09-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad having a low defect integral window
CN102310366B (zh) * 2010-07-08 2014-03-05 罗门哈斯电子材料Cmp控股股份有限公司 具有低缺陷整体窗的化学机械抛光垫
US8257545B2 (en) * 2010-09-29 2012-09-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad with light stable polymeric endpoint detection window and method of polishing therewith
US8512427B2 (en) 2011-09-29 2013-08-20 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Acrylate polyurethane chemical mechanical polishing layer
US9156125B2 (en) * 2012-04-11 2015-10-13 Cabot Microelectronics Corporation Polishing pad with light-stable light-transmitting region
US9144880B2 (en) * 2012-11-01 2015-09-29 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Soft and conditionable chemical mechanical polishing pad

Also Published As

Publication number Publication date
US20150306730A1 (en) 2015-10-29
CN105033841A (zh) 2015-11-11
US9333620B2 (en) 2016-05-10
TWI574983B (zh) 2017-03-21
DE102015004927A1 (de) 2015-10-29
JP2015208856A (ja) 2015-11-24
FR3020298A1 (fr) 2015-10-30
TW201605920A (zh) 2016-02-16

Similar Documents

Publication Publication Date Title
KR102409773B1 (ko) 종점 검출 윈도우를 갖는 화학 기계적 연마 패드
KR20150124897A (ko) 투명한 종점 검출 윈도우를 갖는 화학 기계적 연마 패드
JP6487249B2 (ja) 研磨層及びウィンドウを有するケミカルメカニカル研磨パッド
KR102449539B1 (ko) 컨디셔닝 내성을 갖는 화학적 기계적 연마 층 배합물
KR102411323B1 (ko) 윈도우를 갖는 연질의 컨디셔닝가능한 화학 기계적 연마 패드
TWI590919B (zh) 見窗之軟且可調質化學機械硏磨墊及研磨基板之方法
US20190308294A1 (en) Chemical mechanical polishing pad
KR102390145B1 (ko) 종점 검출 윈도우를 갖는 화학 기계적 연마 패드
CN111203798B (zh) 化学机械抛光垫和抛光方法
JP5715770B2 (ja) 低欠陥の一体型窓を有する化学機械研磨パッド及び当該化学機械研磨パッドを用いて基体を化学機械研磨する方法
KR102528904B1 (ko) 지방족 폴리우레탄 광학 종점 검출창 및 이들을 함유하는 cmp 연마 패드