KR20150110799A - 플럭스를 사용한 초합금의 레이저 재용융 복구 방법 - Google Patents

플럭스를 사용한 초합금의 레이저 재용융 복구 방법 Download PDF

Info

Publication number
KR20150110799A
KR20150110799A KR1020157023418A KR20157023418A KR20150110799A KR 20150110799 A KR20150110799 A KR 20150110799A KR 1020157023418 A KR1020157023418 A KR 1020157023418A KR 20157023418 A KR20157023418 A KR 20157023418A KR 20150110799 A KR20150110799 A KR 20150110799A
Authority
KR
South Korea
Prior art keywords
superalloy
powder
substrate
flux
zone
Prior art date
Application number
KR1020157023418A
Other languages
English (en)
Inventor
제랄드 제이. 브룩
아메드 카멜
Original Assignee
지멘스 에너지, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/755,625 external-priority patent/US9352419B2/en
Application filed by 지멘스 에너지, 인크. filed Critical 지멘스 에너지, 인크.
Publication of KR20150110799A publication Critical patent/KR20150110799A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K25/00Slag welding, i.e. using a heated layer or mass of powder, slag, or the like in contact with the material to be joined
    • B23K25/005Welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • B23K26/345
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/002Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of light metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/005Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a refractory metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/361Alumina or aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/042Built-up welding on planar surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/28Cleaning or pickling metallic material with solutions or molten salts with molten salts
    • C23G1/32Heavy metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • B23K2201/001
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/13Manufacture by removing material using lasers

Abstract

본 발명은 초합금 부품(90) 내의 가동(service)-유발 표면 균열(92)을 복구하는 방법에 관한 것이다. 분말 플럭스 재료 층(100)을 균열 위에 적용하고, 레이저 빔(98)으로 용융시켜서 슬래그 층(106) 아래에 초합금 재료의 재용융 구역(104)을 형성시킨다. 슬래그는 균열 내에 포획될 수 있는 오염물의 용융 풀을 세정하고, 그로 인해 예비-용융 플루오라이드 이온 세정의 필요성이 제거된다. 임의로, 합금 공급 재료를 분말 플럭스 재료와 함께 적용하여 용융물의 부피를 증가시키거나 또는 재용융 구역의 조성을 개질할 수 있다.

Description

플럭스를 사용한 초합금의 레이저 재용융 복구 방법 {METHOD OF LASER RE-MELT REPAIR OF SUPERALLOYS USING FLUX}
본 출원은 본원에 참조로 포함되는, 2011년 1월 13일자로 출원된 계류 중인 미국 특허 출원 13/005,656 (공개 번호 2012/0181255 A1)의 일부 계속 출원이다.
본 발명은 일반적으로 금속 접합의 분야, 보다 특별하게는 초합금 재료의 복구에 관한 것이다.
가스 터빈 엔진에서의 가동(service) 후, 고온 가스 경로 부품, 예컨대 블레이드 및 베인에서는 종종 크레이즈 균열로서 공지된 얕은 거미상 균열이 발생한다. 이러한 부품의 구조의 초합금 재료의 제한된 용접성으로 인해 이러한 균열은 복구가 어렵다. 초합금 재료는 용접하여 용접 응고 동안에 열 영향을 받는 구역 균열을 용접하는 경향이 있고, 재료 특성을 재설정하는데 필요한 후속적인 용접-후 열 처리시에 균열을 재가열하는 경향이 있다.
미국 특허 7,169,242에는 재료의 500 μm 깊이의 표면 층을 불활성 분위기 또는 진공 하에서 레이저 빔 또는 다른 에너지원으로 재융용시킴으로써 초합금 재료 내의 작은 표면 캐스팅 결함을 복구하는 방법이 기재되어 있다. 물품의 예열은 더 깊은 결함의 복구 및 고온 인열 결함의 위험 감소를 허용하는 것으로서 기재되어 있다.
가동-후 균열은 전형적으로 용접 복구를 더 어렵게 만드는 다양한 연소 공정 생성물로 오염된다. 플루오라이드 이온 세정 (FIC)을 사용하여 용접 전에 오염물을 제거할 수 있지만, 이는 매우 좁은 균열에 대해서는 제한된 유효성을 갖고, 너무 공격적으로 적용되는 경우에는 주변 기재 재료로부터 중요한 원소를 침출시킬 가능성으로 인해 유해할 수 있다.
용접 방법은 용접될 재료의 유형에 따라 상당히 달라진다. 일부 재료는 다양한 조건 하에서 보다 용이하게 용접되지만, 다른 재료는 주변 기재 재료의 열화 없이 구조적으로 견고한 접합을 달성하기 위해 특별한 방법을 필요로 한다.
일반적인 아크 용접은 일반적으로 공급 재료로서 소모성 전극을 사용한다. 대기로부터의 용접 풀 중 용융된 재료의 보호를 제공하기 위해, 예를 들어 강철, 스테인레스강 및 니켈 기재 합금을 비롯한 다양한 합금의 용접시에 불활성 커버 가스 또는 플럭스 재료가 사용될 수 있다. 불활성 가스 공정, 조합된 불활성 가스 및 활성 기체 공정에는 가스 텅스텐 아크 용접 (GTAW) (또한 텅스텐 불활성 가스 (TIG)로 공지됨) 및 가스 금속 아크 용접 (GMAW) (또한 금속 불활성 가스 (MIG) 및 금속 활성 가스 (MAG)로서 공지됨)이 포함된다. 플럭스 보호 공정에는 플럭스가 일반적으로 공급되는 서브머지드 아크 용접 (SAW), 플럭스가 전극의 코어에 포함되는 플럭스 코어드 아크 용접 (FCAW), 및 플럭스가 필러 전극의 외부 상에 코팅되는 쉴디드 금속 아크 용접 (SMAW)이 포함된다.
용접을 위한 열원으로서 에너지 빔을 사용하는 것이 또한 공지되어 있다. 예를 들어, 레이저 에너지를 사용하여 미리 배치한 스테인레스강 분말을 분말 플럭스 재료를 갖는 탄소강 기재 상에 용융시켜 용융 풀의 차폐를 제공하였다. 플럭스 분말을 스테인레스강 분말과 혼합하거나 또는 별도의 피복 층으로서 적용할 수 있다. 그 발명자들의 지식으로는, 플럭스 재료는 초합금 재료의 용접시에 사용되지 않았다.
초합금 재료는 응고 균열 및 변형 노화 균열의 용접의 민감성으로 인해 용접하기에 가장 어려운 재료인 것으로 인지된다. 용어 "초합금"은 관련 기술분야에서 일반적으로 사용되는 바와 같이 본원에서 사용되며, 즉 고온에서 우수한 기계적 강도 및 크리프 내성을 나타내는, 고도로 내부식성이고 내산화성인 합금이다. 초합금은 전형적으로, 높은 니켈 또는 코발트 함량을 포함한다. 초합금의 예에는 상표명 및 브랜드명 하스텔로이(Hastelloy), 인코넬(Inconel) 합금 (예를 들어, IN 738, IN 792, IN 939), 레네(Rene) 합금 (예를 들어, 레네 N5, 레네 80, 레네 142), 하인스(Haynes) 합금, 마르(Mar) M, CM 247, CM 247 LC, C263, 718, X-750, ECY 768, 282, X45, PWA 1483 및 CMSX (예를 들어, CMSX-4) 단결정 합금 하에 판매되는 합금이 포함된다.
일부 초합금 재료의 용접 복구는 복구 동안의 재료의 연성(ductility)을 상당히 증가시키기 위해 재료를 매우 높은 온도 (예를 들어, 1600℉ 또는 870℃ 초과)로 예열함으로써 성공적으로 달성되었다. 이러한 기술은 핫 박스 용접 또는 승온에서의 초합금 용접 (SWET) 용접 복구로서 지칭되며, 이는 일반적으로 수동 GTAW 공정을 사용하여 달성된다. 그러나, 핫 박스 용접은 균일 부품 공정 표면 온도 유지의 곤란성 및 완전한 불활성 가스 차폐 유지의 곤란성, 뿐만 아니라 이러한 극한 온도에서 부품의 근처에서 작업하는 작업자에 대해 부여되는 물리적 곤란성으로 인해 제한적이다.
일부 초합금 재료 용접 응용은, 냉각 플레이트를 사용하여 기재 재료의 가열을 제한하여; 균열 문제를 유발하는 기재 열 영향 및 응력의 발생을 제한하도록 수행될 수 있다. 그러나, 이러한 기술은 부품의 기하구조가 냉각 플레이트의 사용을 용이하게 하지 않는 다수의 복구 응용에 대해서는 실시가능하지 않다.
도 6은 다양한 합금의 상대적 용접성을 그의 알루미늄 함량 및 티타늄 함량의 함수로서 도시한 통상의 차트이다. 이들 원소의 농도가 비교적 더 낮고, 그 결과 감마 프라임 함량이 비교적 더 낮은 합금, 예컨대 이코넬® 718은 비교적 용접성인 것으로 간주되지만, 이러한 용접은 일반적으로 부품의 저응력 영역으로 제한된다. 이러한 원소의 농도가 비교적 더 높은 합금, 예컨대 이코넬® 939는 일반적으로 용접성인 것으로 간주되지 않거나, 또는 재료의 온도/연성을 증가시키고 공정의 열 투입을 최소화하는 상기 논의된 특별한 절차를 사용한 경우에만 용접될 수 있다. 본원의 명세서에서 논의의 목적을 위해, 점선(80)은 선(80) 아래의 용접성 구역과 선(80) 위의 비-용접성 구역 사이의 경계를 나타낸다. 선(80)은 수직 축 상에서 3 중량%의 알루미늄과 교차하고 수평 축 상에서 6 중량%의 티타늄과 교차한다. 비-용접성 구역 내에서, 최대 알루미늄 함량을 갖는 합금은 일반적으로 용접하기가 가장 어려운 것으로 발견되었다.
또한, 선택적 레이저 용융 (SLM) 또는 선택적 레이저 소결 (SLS)을 사용하여 초합금 분말 입자의 얇은 층을 초함금 기재 상에 용융시키는 것이 공지되어 있다. 용융 풀은 레이저 가열 동안에 불활성 가스, 예컨대 아르곤을 적용함으로써 대기로부터 차폐된다. 이러한 방법은 침착된 재료의 층 내의 입자의 표면 상에서 부착성인 산화물 (예를 들어, 산화알루미늄 및 산화크롬)을 포획하여, 포획된 산화물과 연관된 공극성, 내포물 및 다른 결함을 유발하는 경향이 있다. 침착된 코팅의 특성을 개선하기 위해, 공정-후 열간 등방 가압 (HIP)을 종종 사용하여 이들 공극, 내포물 및 균열을 붕괴시킨다.
비-용접성 구역 내의 일부 초합금 재료에 대해서는, 허용가능한 용접 또는 복구 방법이 공지되지 않았다. 또한, 합금 함량이 더 높은 신규 초합금이 계속 개발되고 있기 때문에, 초합금 재료에 대한 상업적으로 실현가능한 접합 및 복구 방법을 개발하려는 도전이 계속 진행되고 있다.
본 발명은 하기 설명에서 다음을 나타내는 도면을 참조하여 설명된다.
도 1은 다층 분말을 사용한 클래딩 방법을 도시한다.
도 2는 혼합 층 분말을 사용한 클래딩 방법을 도시한다.
도 3은 코어드 필러 와이어 및 저온 금속 아크 용접 토치를 사용한 클래딩 방법을 도시한다.
도 4는 코어드 필러 와이어 및 에너지 빔을 사용한 클래딩 방법을 도시한다.
도 5는 에너지 빔 중첩 패턴을 도시한다.
도 6은 다양한 초합금의 상대적 용접성을 도시한 선행 기술 차트이다.
도 7은 플럭스 분말을 사용한 레이저 재용융 복구 방법을 도시한다.
독자의 편의를 위해 본원의 도 1 내지 5는 본원에 기재된 본 발명의 기술의 다양한 측면 및 응용을 도시하고, 하기 도 7의 설명은 특히 본원에 청구된 본 발명의 초합금 재료의 레이저 재용융 복구 기술의 사용에 관한 것임에 주목해야 한다.
본 발명자들은 용접하기가 가장 어려운 초합금 재료를 접합 및/또는 복구하는데 성공적으로 사용될 수 있는 재료 접합 방법을 개발하였다. 플럭스 재료는 이전에는 초합금 재료의 용접시에 사용되지 않았지만, 본 발명의 방법의 실시양태는 용융 및 재응고 공정 동안에 분말 플러스 재료를 초합금 기재 상으로 유리하게 적용한다. 일부 실시양태는 또한 에너지 빔 가열 공정, 예컨대 레이저 빔 가열의 정밀한 에너지 투입 제어 능력을 사용한다. 분말 플럭스 재료는, 빔 에너지 포획, 불순물 세정, 대기 차폐, 비드 형상화 및 냉각 온도 제어를 제공하여, 고온 핫 박스 용접에 대한 필요성 또는 냉각 플레이트의 사용 또는 불활성 차폐 가스의 사용 없이 초합금 재료의 무균열 접합을 달성하는데 효과적이다. 본 발명의 다양한 원소는 수십년 동안 용접 산업에서 공지되었지만, 본 발명자들은 이들 재료의 균열의 오래된 문제점을 해결하는 초합금 접합 방법을 위한 단계의 조합을 혁신적으로 개발하였다.
도 1은 초합금 재료의 클래딩 층(10)을 초합금 기재 재료(12) 상에 주위 온도에서 기재 재료(12)의 임의의 예열 또는 냉각 플레이트의 사용 없이 침착시키는 방법을 도시한다. 기재 재료(12)는 예를 들어, 가스 터빈 엔진 블레이드의 부분을 형성할 수 있고, 클래딩 방법은 일부 실시양태에서 복구 절차의 부분일 수 있다. 과립화 분말 층(14)을 기재(12) 상에 미리 배치하고, 레이저 빔(16)을 분말 층(14)을 가로질러 통과시켜서 분말을 용융시키고 슬래그 층(18)에 의해 피복된 클래딩 층(10)을 형성시킨다. 클래딩(10) 및 슬래그(18)는, 분말 플럭스 재료 층(22)에 의해 피복된 분말 초합금 재료 층(20)을 포함하는 분말 층(14)으로부터 형성된다.
플럭스 재료(22) 및 생성된 슬래그 층(18)은 클래딩(10) 및 아래에 놓인 기재 재료(12)의 균열을 방지하는데 유익한 다수의 기능을 제공한다. 첫번째로, 이들은 용융된 재료의 영역 및 응고된 (그러나, 여전히 고온인) 클래딩 재료(10) 둘 다를 레이저 빔(16)의 하류 영역에서 대기로부터 차폐하는 기능을 한다. 슬래그는 표면에 부유하여 용융 또는 고온 금속을 대기로부터 분리하며, 플럭스는 일부 실시양태에서 차폐 가스를 생성시켜 값비싼 불활성 가스의 사용을 회피 또는 최소화도록 제제화될 수 있다. 두번째로, 슬래그(18)는 응고된 재료가 천천히 균일하게 냉각되도록 하는 블랭킷으로서 작용하여, 용접-후 재가열 또는 변형 노화 균열의 원인이 될 수 있는 잔류 응력을 감소시킨다. 세번째로, 슬래그(18)는 용융된 금속의 풀이 목적하는 1/3 높이/폭 비에 가깝게 유지되도록 용융된 금속의 풀을 형상화하는 것을 돕는다. 네번째로, 플럭스 재료(22)는 용접 응고 균열의 원인이 되는 미량의 불순물, 예컨대 황 및 인을 제거하기 위한 세정 효과를 제공한다. 이러한 세정은 금속 분말의 탈산화를 포함한다. 플럭스 분말은 금속 분말과 친밀히 접촉하기 때문에, 이러한 기능을 달성하기에 특히 효과적이다. 마지막으로, 플럭스 재료(22)는 에너지 흡수 및 포획 기능을 제공하여 레이저 빔(16)을 열 에너지로 보다 효과적으로 전환시켜서, 공정 동안에 열 투입의 예컨대 1 내지 2% 내의 정밀한 제어 및 재료 온도의 엄격한 제어를 용이하게 할 수 있다. 추가로, 플럭스는 가공 동안 휘발된 원소의 손실을 보상하도록 제제화되거나, 또는 금속 분말 자체에 의해 달리 제공되지 않는 침착에 대해 원소가 능동적으로 기여하도록 제제화될 수 있다. 이와 함께, 이러한 방법 단계는 이제까지는 단지 핫 박스 방법으로 또는 냉각 플레이트의 사용을 통해 접합가능한 것으로 여겨졌던 재료에 대해 실온에서의 초합금 기재 상의 초합금 클래딩의 무균열 침착을 생성시킨다.
도 2는 초합금 재료의 클래딩 층(30)을, 해당 실시양태에서 복수의 원주형 과립(34)을 갖는 일정방향으로 응고된 재료로서 도시된 초합금 기재 재료(32) 상에 침착시키는 또 다른 실시양태를 도시한다. 이러한 실시양태에서, 분말 층(36)을 분말 합금 재료(38) 및 분말 플럭스 재료(40) 둘 다의 혼합물을 포함하는 균질한 층으로서 기재 재료(32)의 표면 상에 미리 배치하거나 또는 공급한다. 분말 층(36)은 일부 실시양태에서 두께가 공지된 선택적 레이저 용융 및 소결 방법에서 전형적인 밀리미터의 분수값이 아니라 1 내지 수 밀리미터일 수 있다. 전형적인 분말 선행 기술 플럭스 재료는 예를 들어 0.5 내지 2 mm 범위의 입자 크기를 갖는다. 그러나, 분말 합금 재료(38)는 0.02 내지 0.04 mm 또는 0.02 내지 0.08 mm 또는 그 내의 다른 하위범위의 입자 크기 범위 (메쉬 크기 범위)를 가질 수 있다. 메쉬 크기 범위의 이러한 차이는 재료가 개별 층을 구성하는 도 1의 실시양태에서 양호하게 작용할 수 있지만; 도 2의 실시양태에서, 분말 합금 재료(38) 및 분말 플럭스 재료(40)는 용융 공정 동안의 분말의 혼합 및 공급을 가능하게 하고, 개선된 플럭스 피복을 제공하기 위해 중첩 메쉬 크기 범위를 갖거나 또는 동일한 메쉬 크기 범위를 갖는 것이 유리할 수 있다.
도 2의 실시양태에서 에너지 빔(42)은 일반적으로 직사각형인 단면 형상을 갖는 다이오드 레이저 빔이지만, 다른 공지된 유형의 에너지 빔, 예컨대 전자 빔, 플라즈마 빔, 하나 이상의 원형 레이저 빔, 스캐닝 레이저 빔 (1차원, 2차원 또는 3차원 스캐닝), 통합 레이저 빔 등이 사용될 수 있다. 클래딩될 면적이 비교적 큰 실시양태에 대해서는 직사각형 형상이, 예컨대 가스 터빈 엔진 블레이드의 팁을 복구하기 위해 특히 유리할 수 있다. 다이오드 레이저에 의해 생성된 넓은 면적 빔은 용접 열 투입, 열 영향을 받는 구역, 기재로부터의 희석 및 잔류 응력을 감소시키는 것을 도우며, 이들 모두는 초합금 복구와 일반적으로 연관된 균열 효과에 대한 경향을 감소시킨다. 넓은 면적 레이저 노출을 발생시키는데 사용되는 광학 조건 및 하드웨어 옵틱스에는 레이저 빔의 디포커싱(defocusing); 포커스에서 직사각형 에너지원을 발생시키는 다이오드 레이저의 사용; 포커스에서 직사각형 에너지원을 발생시키는 분절화 거울과 같은 통합 옵틱스의 사용; 하나 이상의 치수로의 레이저 빔의 스캐닝 (래스터링(rastering)); 가변성 빔 직경의 포커싱 옵틱스 (예를 들어, 정밀한 상세한 작업에 대해서는 포커스에서 0.5 mm 변화 내지 덜 상세한 작업에 대해서는 포커스에서 2.0 mm 변화)의 사용이 포함될 수 있지만, 이에 제한되는 것은 아니다. 옵틱스 및/또는 기재의 움직임은 선택적 레이저 용융 또는 소결 방법에서와 같이 관습적인 형상 층 침착을 구축하도록 프로그래밍될 수 있다. 공지된 레이저 용융 또는 소결 방법에 비해 이러한 방법의 이점에는 각각의 가공 층에서의 높은 침착 속도 및 두꺼운 침착; 플럭스가, 다르게는 응고 균열로 이어지는 활성 가스에 대한 필요성 없이 고온 침착된 금속 상으로 연장되는 개선된 차폐; 플럭스가 구성성분의 침착의 세정을 향상시킬 것이고; 플럭스가 레이저 빔 흡수를 향상시켜 가공 장비로 되돌아오는 반사를 최소화할 것이고; 슬래그 형성이 침착을 형상화 및 지지하고, 열을 보존하고, 냉각 속도를 느리게 하여, 다르게는 용접-후 열 처리 동안 변형 노화 (재가열) 균열의 원인이 되는 잔류 응력을 감소시키고; 플럭스가 원소 손실을 보상하거나 또는 합금 원소를 부가할 수 있고; 침착의 두께가 전체 부분 구조물에 관여된 시간을 크게 감소시키기 때문에 선택적으로 분말 및 플럭스 미리 배치하거나 또는 공급하는 것이 효율적으로 수행될 수 있다는 점이 포함된다.
도 2의 실시양태는 또한 합금 공급 재료(44) (대안적으로 충전 재료로 지칭됨)의 사용을 도시한다. 공급 재료(44)는 기재(32)를 향해 공급되거나 또는 왕복(oscillating)하는 와이어 또는 스트립 형태로 존재할 수 있고, 에너지 빔(42)에 의해 용융되어 용융 풀에 기여한다. 원하는 경우에, 공급 재료는 (예를 들어, 전기적으로) 예열되어 레이저 빔으로부터의 필요한 전체 에너지를 감소시킬 수 있다. 일부 초합금 재료를 와이어 또는 스트립 형태로 형성하는 것은 어렵거나 또는 불가능하지만, 순수한 니켈 또는 니켈-크롬 또는 니켈-크롬-코발트와 같은 재료는 이러한 형태로 용이하게 입수가능하다. 도 2의 실시양태에서, 베이스 합금 공급 재료(44), 분말 합금 재료(38) 및 분말 플럭스 재료(40)는 유리하게는 클래딩 재료 층(30)이 목적하는 초합금 재료의 조성을 갖도록 선택된다. 충전 재료는 목적하는 초합금 재료를 규정하는 원소 조성물의 원소의 단지 압출가능한 하위세트일 수 있고, 분말 금속 재료는 충전 재료 내의 원소를 보충하여 목적하는 초합금 재료를 규정하는 원소 조성물을 완성하는 원소를 포함한다. 충전 재료 및 분말 금속 재료는 용융 풀에서 조합되어 목적하는 초합금 재료(30)의 복구된 표면을 형성시킨다. 도 1에서와 같이, 방법은 클래딩 재료 층(30)을 보호하고, 형상화하고, 단열하는 슬래그 층(46)을 생성시킨다.
도 3은 저온 금속 아크 용접 토치(54)를 사용하여 초합금 재료 층(50)을 초합금 기재(52) 상에 침착시키는 실시양태를 도시한다. 토치(54)를 사용하여 분말 코어 재료(59)로 충전된 중공 금속 외피(57)를 포함하는 코어드 와이어 또는 스트립 재료의 형태를 갖는 충전 재료(56)를 공급하고, 용융시킨다. 분말 코어 재료(59)는 분말 금속 합금 및/또는 플럭스 재료를 포함할 수 있다. 유리하게는, 금속 외피(57)는 중공 형상으로 편리하게 형성될 수 있는 재료, 예컨대 니켈 또는 니켈-크롬 또는 니켈-크롬-코발트로 형성되고, 분말 재료(59)는 충전 재료(56)의 용융시에 목적하는 초합금 조성이 형성되도록 선택된다. 외피는 목적하는 초합금 조성을 달성하기에 충분한 니켈 (또는 코발트)을 함유하고, 따라서 외피 대 분말 코어 재료의 고체 대 고체 비는 예를 들어, 3:2의 비로 유지될 수 있다. 아크의 열이 충전 재료(56)를 용융시키고, 슬래그 층(58)에 의해 피복된 목적하는 초합금 재료 층(50)을 형성시킨다. 분말 플럭스 재료는 충전 재료(56) 내에 (예를 들어, 코어 부피의 25%) 제공될 수 있거나, 또는 이는 기재(52)의 표면 (도시되지 않음 - 도 2 참조) 상에 미리 배치되거나 또는 침착될 수 있거나, 또는 전극이 플럭스 재료 또는 이러한 대체품의 임의의 조합으로 코팅될 수 있다. 추가의 분말 금속 재료가 또한, 기재(52)의 표면 상에 미리 배치하거나 또는 용융 단계 동안 용융 풀에 직접 공급함으로써 용융 풀 (도시되지 않음 - 도 1 및 2 참조)에 첨가될 수 있다. 다양한 실시양태에서, 플럭스는 전기 전도성이거나 (전기슬래그) 또는 전기 전도성이 아닐 수 있고 (서브머지드 아크), 이는 화학적으로 중성이거나 또는 부가적일 수 있다. 상기에서와 같이, 충전 재료는 예열되어 - 이러한 경우에 저온 금속 아크 토치로부터의 - 필요한 공정 에너지를 감소시킬 수 있다. 플럭스의 사용은 차폐를 제공하여, 저온 금속 아크 공정에서 일반적으로 필요한 불활성 가스 또는 부분 불활성 가스에 대한 필요성을 감소 또는 제거시킬 것이다.
도 4는 충전 재료(66)를 용융시키기 위한 에너지 빔, 예컨대 레이저 빔(64)을 사용하여 초합금 재료 층(60)을 초합금 기재(62) 상에 침착시키는 실시양태를 도시한다. 도 3에 대해 기재된 바와 같이, 충전 재료(66)는 중공 형상으로 편리하게 형성될 수 있는 재료, 예컨대 니켈 또는 니켈-크롬 또는 니켈-크롬-코발트로 구조화된 금속 외피(68)를 포함하고, 분말 재료(70)는 레이저 빔(64)에 의한 충전 재료(66)의 용융시에 목적하는 초합금 조성이 형성되도록 선택된다. 분말 재료(70)는 분말 플럭스 뿐만 아니라 합금 원소를 포함할 수 있다. 레이저 빔(64)의 열이 충전 재료(66)를 용융시키고, 슬래그 층(72)에 의해 피복된 목적하는 초합금 재료 층(60)을 형성시킨다. 상기에서와 같이, 충전 재료는 예컨대 전기 전류를 사용하여 예열되어 - 이러한 경우에 레이저 빔으로부터의 - 필요한 공정 에너지를 감소시킬 수 있다.
충전 재료(56), (66)의 한 실시양태는 하기와 같은 합금 247 재료를 침착시키도록 제제화된다:
- 외피 고체 부피는 총 금속 고체 부피의 약 60%이며 순수한 Ni이고;
- 코어 금속 분말 부피는 충분한 Cr, Co, Mo, W, Al, Ti, Ta, C, B, Zr 및 Hf를 포함하여 총 금속 고체 부피의 약 40%이며; 함께 용융되어 외피으로부터의 순수한 니켈과 혼합시에, 공칭 중량 백분율 8.3 Cr, 10 Co, 0.7 Mo, 10 W, 5.5 Al, 1 Ti, 3 Ta, 0.14 C, 0.015 B, 0.05 Zr 및 1.5 Hf의 합금 247 조성을 생성시키고;
- 코어 플럭스 분말 부피는 가능하게는 크기가 금속 분말 부피와 대략 동등한 추가의 주로 비금속성인 와이어 부피를 나타내며, 알루미나, 플루오라이드 및 실리케이트를 35/30/35 비로 포함한다. 플럭스의 메쉬 크기 범위는 코어 금속 분말 내에서 균일하게 분포하도록 하는 정도이다.
용융열이 아크에 의해 제공되는 실시양태에서, 아크 안정성을 유지시키기 위해 플럭스 또는 차폐 가스에 산소 또는 이산화탄소를 제공하는 것이 일반적이다. 그러나, 산소 또는 이산화탄소는 티타늄과 반응할 것이며, 티타늄 중 일부가 용융 공정 동안 증기 또는 산화물로서 손실될 것이다. 본 발명은 충전 재료에 포함된 티타늄의 양이 침착된 초합금 조성에서 요구되는 티타늄의 양을 초과하도록 하여 이러한 손실을 보상한다. 상기 기재된 합금 247의 예에 대해, 코어 금속 분말에 포함된 티타늄의 양은 1% 내지 3% 증가될 수 있다.
예를 들어 다른 합금, 예컨대 스테인레스강은, 코어드 공급 재료가 분말 플럭스 및 분말 금속을 포함하는 분말 코어 재료로 충전되는 유사한 방법을 사용하여 침착될 수 있는 것으로 인지될 것이다. 분말 금속을 사용하여 외피 재료의 조성을 증가시켜서 목적하는 화학의 클래딩 재료를 수득할 수 있다. 용융 단계 동안 증발로 인한 재료의 손실이 존재하는 실시양태에 대해, 분말 금속은 손실되는 재료를 과량으로 포함하여 손실을 보상할 수 있다. 예를 들어, 합금 321 스테인레스강 외피 재료를 산소 또는 이산화탄소를 함유하는 차폐 가스 하에서 침착시키는 경우에, 외피 재료로부터의 티타늄 중 일부는 산소 또는 이산화탄소와의 반응으로 인해 손실된다. 분말 코어 재료는 이러한 실시양태에서 이러한 손실을 보상하도록 분말 플럭스 및 분말 티타늄을 포함하여 목적하는 합금 321 클래딩 조성을 제공할 수 있다.
초합금 재료의 복구 방법은, 결함을 제거하는데 요구되는 만큼 그라인딩함으로써 복구할 초합금 재료 표면을 준비하고, 표면을 세정하고, 이어서 플럭스 재료를 함유하는 분말 재료 층을 표면 상에 미리 배치하거나 또는 공급하고, 이어서 표면을 가로질러 에너지 빔을 통과시켜서 분말 및 표면의 상부 층을 부유 슬래그 층을 갖는 용융 풀로 용융시키고, 이어서 용융 풀 및 슬래그를 응고시키는 것을 포함할 수 있다. 용융은 기재의 표면에서 임의의 표면 결함을 치유하도록 기능하여, 전형적으로 공지된 기계적 및/또는 화학적 방법에 의한 슬래그의 제거시에 재생된 표면이 남게 한다. 분말 재료는 단지 플럭스 재료일 수 있거나, 또는 초합금 클래딩 재료 층이 요구되는 실시양태에 대해서는 분말 재료가 분말 플럭스 재료 층 아래에 배치되거나 또는 분말 플럭스 재료와 혼합되거나 또는 플럭스 재료와 함께 복합 입자로 조합된 개별 층으로서 금속 분말을 함유할 수 있으며, 이러한 용융은 표면 상에 클래딩 재료 층이 형성되게 한다. 임의로, 공급 재료는 스트립 또는 와이어의 형태로 용융 풀에 도입될 수 있다. 분말 금속 및 (존재한다면) 공급 재료, 뿐만 아니라 중성이거나 또는 부가적일 수 있는 플럭스 재료로부터의 금속 기여물질은 용융 풀에 조합되어 목적하는 초합금 재료의 조성을 갖는 클래딩 층을 생성시킨다. 일부 실시양태에서는, 니켈, 니켈-크롬, 니켈-크롬-코발트 또는 다른 편리하게 압출되는 금속의 공급 재료는 적절한 합금 금속 분말과 조합되어 클래딩에서 목적하는 초합금 조성을 생성시키며, 이에 따라 목적하는 초합금 재료를 와이어 또는 스트립 형태로 형성하는 것에 관한 문제가 회피된다.
기재의 예열이 허용가능한 결과를 수득하는데 필수적으로 필요하지는 않지만, 일부 실시양태에서는, 예컨대 기재 재료의 연성을 증가시키고/거나 다르게는 충전제를 용융시키는데 필요한 빔 에너지를 감소시키기 위해, 용융 단계 전에 초합금 기재 및/또는 공급 재료 및/또는 분말에 열을 인가하는 것이 요구될 수 있다. 일부 초합금 기재의 연성 개선은 합금의 용융점을 약 80% 초과하는 온도에서 달성된다. 유사하게는, 냉각 픽스쳐가 특정 응용에 대해 임의로 사용될 수 있으며, 이는 에너지 빔의 정밀한 열 투입과 조합되어 용융 공정의 결과로서 재료에 생성되는 응력을 최소화할 수 있다. 추가로, 본원에 기재된 방법은 불활성 차폐 가스에 대한 필요성을 무효화할 수 있지만, 바람직한 경우에 일부 응용에서는 추가의 차페 가스가 사용될 수 있다. 충전 재료(44)가 사용되는 경우에, 이는 일부 실시양태에서는 예열될 수 있다.
사용될 수 있는 플럭스 재료에는 상업적으로 입수가능한 플럭스, 예컨대 제품명 린콜른웰드(Lincolnweld) P2007, 볼러 사우도카이(Bohler Soudokay) NiCrW-412, ESAB OK 10.16 또는 10.90, 스페셜 메탈(Special Metal) NT100, 오엘리콘(Oerlikon) OP76, 산드빅(Sandvik) 50SW 또는 SAS1 하에 판매되는 것이 포함된다. 플럭스 입자를 사용 전에 목적하는 더 작은 메쉬 크기로 그라인딩할 수 있다. 관련 기술분야에 공지된 플럭스 재료에는 전형적으로 알루미나, 플루오라이드 및 실리케이트가 포함된다. 본 명세서에 개시된 방법의 실시양태는 유리하게는 목적하는 클래딩 재료의 금속 구성성분, 예를 들어 산화크롬, 산화니켈 또는 산화티타늄을 포함한다. 상기 언급된 이러한 합금을 비롯한, 고온 응용, 예컨대 가스 터빈 엔진을 위해 상용적으로 사용되는 현재 입수가능한 철, 니켈 또는 코발트 기재 초합금 중 임의의 것이 본 발명의 방법으로 접합, 복구 또는 코팅될 수 있다.
다른 변형예에서는 공급 재료를 통하여 에너지 빔보다는 용융을 위한 열을 제공하거나, 또는 에너지 빔과 조합하여 용융을 위한 열을 제공할 수 있다. 예를 들어, 도 2의 와이어 또는 스트립 공급 재료(44)는 에너지를 받아서 분말 층 및 플럭스 아래에서 아크를 생성할 수 있으며, 와이어는 압출된 형태로 용이하게 입수가능한 재료 (즉, 초합금 재료가 아님)이고, 분말은 조합된 용융 풀 중에서 목적하는 초합금 조성을 형성하는데 필수적인 다른 합금 원소를 포함한다. 대안적으로, 분말 및 플럭스는 예컨대 초합금 클래딩 재료 층을 형성하는데 효과적인 전기슬래그 용접 공정을 용이하게 하기 위해 전도성이도록 선택될 수 있다. 또 다른 실시양태에서, 초합금 분말 재료와 혼합된 플럭스 분말은 임의로 냉각 픽스쳐가 장치된 통상의 플라즈마 아크 클래딩 장비를 사용하여 초합금 기재에 공급될 수 있다. 기재, 공급 재료 및/또는 분말은 다양한 실시양태에서 예열될 수 있다. 열 투입의 정밀도는 전극을 사용한 경우 (±10 내지 15%)보다 에너지 빔을 사용한 경우 (±1 내지 2%)에 더 높기 때문에, 총 열 투입량의 절반을 초과하는 동안에 에너지 빔을 사용하는 것이 바람직할 수 있다. 빔 에너지는, 기재로부터의 최소 희석으로 예비 용융 풀을 개시하고, 이어서 서브머지드 아크 또는 전기슬래그 기여물질을 유의한 추가의 기재 충격 없이 침착 부피에 추가하여 희석 효과를 최소화하도록 서브머지드 아크 또는 전기슬래그 공정을 유도할 수 있다.
다른 실시양태에 따르면, 혼합된 서브머지드 아크 용접 플럭스 및 합금 247 분말을 2.5 내지 5.5 mm 깊이로 미리 배치하며, 최종 용접-후 열 처리 이후에 균열이 없는 레이저 클래드 침착을 달성되는 것으로 증명되었다. 검류계 스캐닝 옵틱스로 0.6으로부터 2 킬로와트까지의 이테르븀 섬유 레이저 전력 수준을 사용하여 대략 125 mm/min의 이동 속도에서 폭이 3 내지 10 mm인 침착을 생성시켰다. 균열의 부재는 염료 침투 시험 및 침착 단면의 금속조직 시험에 의해 확인하였다. 합금 247은 도 6에 도시된 바와 같이 비-용접성 구역의 가장 어려운 영역에 포함되어, 알루미늄 함량이 3 중량%를 초과하는 것을 비롯한 초합금 조성의 전체 범위에 대해 본 발명의 작동성을 예증하는 것으로 인지될 것이다.
초합금 기재의 복구시에 분말 플럭스 재료를 사용하는 것의 이점은 부가적 클래딩 재료가 침착되든지 아니든지 간에 실현되는 것으로 인지된다. 초합금 기재 내의 표면 균열은, 표면을 분말 플럭스 재료로 피복하고, 이어서 표면 및 플럭스 재료를 가열하여 부유 슬래그 층을 갖는 용융 풀을 형성함으로써 복구될 수 있다. 슬래그 층의 보호 하에서의 용융 풀의 응고시에는, 균열이 없는 깨끗한 표면이 형성될 것이다.
일반적으로 직사각형인 에너지 밀도를 갖는 다이오드 레이저를 사용함으로써 레이저 에너지를 표면 영역을 가로질러 인가할 수 있다. 대안적으로, 원형 레이저 빔을 기재를 따라서 전진 이동시킴에 따라 전후로 래스터링하여 일정 면적 에너지 분포에 도달하는 것이 가능하다. 도 5는 직경 D를 갖는 일반적으로 원형인 빔을 제1 위치(74)로부터 제2 위치(74'), 이어서 제3 위치(74") 등으로 이동시키는 한 실시양태에 대한 래스터링 패턴을 도시한다. 재료의 최적의 가열 및 용융을 제공하기 위해, 방향의 변화 위치에서의 빔 직경 패턴의 중첩 O의 양은 바람직하게는 D의 25 내지 90%이다. 대안적으로, 2개의 에너지 빔을 동시에 래스터링하여 표면 영역을 가로지르는 목적하는 에너지 분포를 달성할 수 있으며, 빔 패턴들 사이의 중첩은 각각의 빔의 직경의 25 내지 90% 범위이다.
분말 재료의 사용은 기능적으로 등급화된 재료의 침착을 용이하게 하고, 침착된 재료의 조성은 시간 및 공간에 걸쳐 달라지는 것으로 인지될 것이다. 예를 들어, 합금 조성은 생성물의 내벽으로부터 외벽에 걸쳐 달라지거나 또는 생성물 내로부터 그의 표면 근처에 걸쳐 달라질 수 있다. 합금 조성은 상이한 기계적 또는 내부식성 특성을 필요로 하는 예상 작동 조건에 따라 재료의 비용을 고려하여 달라질 수 있다.
도 7은 표면 근처의 결함, 예컨대 가스 터빈 고온 가스 경로 부품의 표면-후 초합금의 크레이즈 균열을 복구하는 방법을 도시한다. 하나 이상의 표면 근처의 균열(92)을 갖는 기재 재료(90)를 복구 장치(96)에 대해 화살표(94) 방향으로 이동시킨다. 에너지 빔, 예컨대 레이저 빔(98)은 복구 장치(96)에 의해, 노즐(102)을 통해 표면 상에 공급되거나 또는 임의로 기재(90) 상에 미리 배치된 분말 플럭스를 포함하는 분말 층(100)을 향해 유도된다. 레이저 빔(98)은 분말(100) 및 기재(90)의 얇은 표면 구역을 용융시켜서 슬래그 층(106)에 의해 피복된 기재(90) 내에 재용융 구역(104)을 형성시킨다. 재용융 구역(104)은, 레이저 빔(98)으로부터 멀리 이동시킴에 따라, 슬래그(106) 아래에서 재응고하여 복구된 무균열 표면(108)을 형성시킨다. 분말(100) 중 플럭스는 불활성 커버 가스를 사용할 필요성 없이 공기와의 반응으로부터 용융물 및 고온 트레일링 재료를 차폐한다. 플럭스는 또한 레이저 및 열 에너지와 커플링하고 그들을 포획하기에 효과적이어서, 기재(90) 내로 충분히 깊게 용융되어 표면 균열(92)이 소모되는 것을 보장한다.
도 7의 방법은 용융 풀의 세정 및 탈산화에 대한 메카니즘을 유리하게 제공하여, 용접-전 플루오라이드 이온 세정에 대한 필요성 없이 균열(92) 내에 존재하는 오염물과 반응하고 이들을 표면으로 부유시켜서 슬래그(106) 부분을 형성하게 함으로써 이들을 제거한다. 기재(90)를 예컨대 와이어 브러쉬 또는 그릿 블라스팅 방법을 사용하여 표면 세정하여, 재융융 공정 전에 임의의 위에 놓인 세라믹 열 장벽 코팅 또는 표면 부착 오염물을 제거할 수 있지만, 표면 하부 균열 세정, 예컨대 플루오라이드 이온 세정은 임의적이며 일부 실시양태에서는 회피될 수 있다. 이러한 방법은 도 6의 선(80) 위의 비-용접성 구역의 조성을 갖는 재료를 비롯한 초합금 재료 내의 가동-유발 균열을 예열에 대한 필요성 없이 또한 용접-후 재가열 균열 없이 복구하는 것을 용이하게 한다. 기재의 예열은 허용가능한 결과를 수득하는데 필수적으로 필요하지는 않지만, 일부 실시양태에서는, 예컨대 기재 재료의 연성을 증가시키고/거나 다르게는 필요한 빔 에너지를 감소시키기 위해, 용융 단계 전에 초합금 기재 및/또는 분말에 열을 인가하는 것이 요구될 수 있다.
도 7의 방법의 분말(100)은 플럭스와 미리 혼합되어 공급되거나 또는 별도로 미리 배치되어 재용융 구역에 첨가되는 충전 재료로서 일부 분말 합금 재료를 임의로 포함할 수 있다. 대안적으로, 충전 재료는 도 2에 도시된 바와 같이 와이어 또는 스트립 재료로서 공급될 수 있다. 이러한 충전제는 기재(90)와 동일한 조성을 가질 수 있거나, 또는 예컨대 재용융 구역(104)에 어느 정도 상이한 기계적 특성을 제공하기 위해 상이한 조성을 가질 수 있다. 상기 논의된 바와 같이, 플럭스 및 충전제 분말은 중첩되거나 동일한 메쉬 크기 범위를 가질 수 있다. 다양한 유형의 레이저 (C02, NdYAG, 섬유, 다이오드)를 다양한 유형의 옵틱스 (포커싱, 디포커싱, 통합 빔, 스캐닝 빔 등)와 함께 사용할 수 있다.
본 발명의 다양한 실시양태를 본 명세서에 나타내고 기재하였지만, 이러한 실시양태는 단지 예의 방식으로 제공됨이 명백할 것이다. 본 명세서에서 본 발명을 벗어나지 않고 다수의 변화, 변경 및 치환이 행해질 수 있다. 따라서, 본 발명은 첨부된 청구범위의 사상 및 범주에 의해서만 제한되도록 의도된다.

Claims (19)

  1. 분말 플럭스 재료를 결함을 함유하는 초합금 기재의 표면에 적용하는 단계;
    에너지 빔을 표면을 가로질러 통과시켜서 위에 놓인 슬래그 층에 의해 피복된 기재 내에 재용융 구역을 형성시키는 단계; 및
    재용융 구역을 슬래그 층 아래에서 응고시켜서 결함이 없는 복구된 표면을 형성시키는 단계를 포함하는 방법.
  2. 제1항에 있어서, 에너지 빔이 레이저 빔인 방법.
  3. 제1항에 있어서, 에너지 빔을 통과시키는 단계 동안 충전 재료를 표면에 적용하여, 용융된 충전 재료가 재용융 구역에 부가되도록 하는 것을 추가로 포함하는 방법.
  4. 제3항에 있어서, 충전 재료를 분말 합금 재료로서 표면에 적용하는 것을 추가로 포함하는 방법.
  5. 제4항에 있어서, 분말 합금 재료의 메쉬 크기 범위가 분말 플럭스 재료의 메쉬 크기 범위와 중첩된 것인 방법.
  6. 제3항에 있어서, 충전 재료를 와이어 또는 스트립 재료로서 적용하는 것을 추가로 포함하는 방법.
  7. 제1항에 있어서, 초합금 기재가 티타늄 함량 대 알루미늄 함량을 플로팅한 초합금의 그래프 상에 규정된 용접성 구역을 넘어서는 조성을 포함하며, 여기서 용접성 구역은 6 중량%에서 티타늄 함량 축과 교차하고 3 중량%에서 알루미늄 함량 축과 교차하는 선에 의한 경계의 상부인 방법.
  8. 제1항에 있어서, 에너지 빔을 통과시키는 단계 전에, 열을 기재에 적용하는 것을 추가로 포함하는 방법.
  9. 티타늄 함량 대 알루미늄 함량을 플로팅한 초합금의 그래프 상에 규정된 용접성 구역을 넘어서는 조성을 포함하는 기재를 분말 플럭스 재료로 피복하는 단계이며, 여기서 용접성 구역은 6 중량%에서 티타늄 함량 축과 교차하고 3 중량%에서 알루미늄 함량 축과 교차하는 선에 의한 경계의 상부인 단계;
    분말 플럭스 재료 및 기재의 표면 영역을 에너지 빔으로 용융시켜서 슬래그 층 아래에 놓인 기재 내에 재용융 구역을 형성시키는 단계;
    재용융 구역을 슬래그 층 아래에서 냉각 및 응고시키는 단계;
    슬래그를 제거하는 단계; 및
    재가열 균열을 형성시키지 않으면서 기재 상에서 열 처리를 수행하는 단계를 포함하는 방법.
  10. 제9항에 있어서, 에너지 빔이 레이저 빔인 방법.
  11. 제9항에 있어서, 충전 재료를 에너지 빔으로 용융시켜서, 용융된 충전 재료가 재용융 구역에 부가되도록 하는 것을 추가로 포함하는 방법.
  12. 제11항에 있어서, 충전 재료를 분말 합금 재료로서 적용하는 것을 추가로 포함하는 방법.
  13. 제12항에 있어서, 분말 합금 재료의 메쉬 크기 범위가 분말 플러스 재료의 메쉬 크기 범위와 중첩된 것인 방법.
  14. 제11항에 있어서, 충전 재료를 와이어 또는 스트립 재료로서 적용하는 것을 추가로 포함하는 방법.
  15. 제9항에 있어서, 용융 단계 전에, 열을 기재에 적용하는 것을 추가로 포함하는 방법.
  16. 초합금 고온 가스 경로 부품을 가스 터빈 엔진에서의 가동(service)으로부터 제거하는 단계;
    플럭스 재료를 결함을 함유하는 부품의 표면에 적용하는 단계;
    부품의 표면 및 플럭스 재료를 에너지 빔으로 용융시켜서 슬래그 층 아래에 재용융 층을 형성시키는 단계;
    재용융 층을 슬래그 아래에서 냉각시키는 단계; 및
    슬래그를 제거하여 결함이 없는 부품의 복구된 표면을 드러내는 단계를 포함하는 방법.
  17. 제16항에 있어서, 어떠한 표면 하부 균열 세정 단계도 사전에 수행하지 않으면서 용융 단계를 수행하는 것을 추가로 포함하는 방법.
  18. 제16항에 있어서, 기재가 티타늄 함량 대 알루미늄 함량을 플로팅한 초합금의 그래프 상에 규정된 용접성 구역을 넘어서는 조성을 포함하며, 여기서 용접성 구역은 6 중량%에서 티타늄 함량 축과 교차하고 3 중량%에서 알루미늄 함량 축과 교차하는 선에 의한 경계의 상부이고;
    슬래그를 제거하는 단계 후에, 재가열 균열을 형성시키지 않으면서 부품 상에서 열 처리를 수행하는 것인 방법.
  19. 제16항에 있어서, 용융 단계 전에, 열을 부품의 표면에 적용하는 것을 추가로 포함하는 방법.
KR1020157023418A 2013-01-31 2014-01-29 플럭스를 사용한 초합금의 레이저 재용융 복구 방법 KR20150110799A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/755,625 US9352419B2 (en) 2011-01-13 2013-01-31 Laser re-melt repair of superalloys using flux
US13/755,625 2013-01-31
PCT/US2014/013548 WO2014120736A1 (en) 2013-01-31 2014-01-29 Method of laser re-melt repair of superalloys using flux

Publications (1)

Publication Number Publication Date
KR20150110799A true KR20150110799A (ko) 2015-10-02

Family

ID=50073527

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157023418A KR20150110799A (ko) 2013-01-31 2014-01-29 플럭스를 사용한 초합금의 레이저 재용융 복구 방법

Country Status (6)

Country Link
EP (1) EP2950973A1 (ko)
JP (1) JP2016516580A (ko)
KR (1) KR20150110799A (ko)
CN (1) CN104955612A (ko)
RU (1) RU2015136564A (ko)
WO (1) WO2014120736A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016120044A1 (de) 2016-10-20 2018-04-26 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur additiven Herstellung dreidimensionaler Objekte
JP2018173023A (ja) * 2017-03-31 2018-11-08 株式会社東芝 タービン部品の補修方法
US20180361496A1 (en) * 2017-06-15 2018-12-20 Esab Ab Feed speed regulation for electroslag welding with multiple strips
CN107299341A (zh) * 2017-06-23 2017-10-27 泰尔重工股份有限公司 一种十字轴的熔覆方法及十字轴
US20190091802A1 (en) * 2017-09-25 2019-03-28 General Electric Company Method for forming article, method for forming turbine bucket, and turbine bucket
CN107805806B (zh) * 2017-09-28 2020-07-07 中国航发动力股份有限公司 一种涡轮盘篦齿激光熔覆修复工艺方法
JP7013823B2 (ja) * 2017-12-04 2022-02-01 株式会社野村鍍金 連続鋳造用金型の製造方法
US20210129259A1 (en) * 2018-05-24 2021-05-06 Siemens Aktiengesellschaft Additive manufacturing using forge welding
JP6609017B2 (ja) * 2018-10-09 2019-11-20 株式会社東芝 タービン動翼の補修方法
JP7134064B2 (ja) * 2018-10-29 2022-09-09 山陽特殊製鋼株式会社 金属部材
US11541470B2 (en) 2021-04-02 2023-01-03 General Electric Company Methods of furnace-less brazing
CN116732510A (zh) * 2023-06-08 2023-09-12 帕诺瓦智能科技(苏州)有限公司 一种在铝合金表面制备铜基熔覆层的方法及其复合材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250081B2 (en) * 2003-12-04 2007-07-31 Honeywell International, Inc. Methods for repair of single crystal superalloys by laser welding and products thereof
US8324526B2 (en) * 2007-02-13 2012-12-04 Siemens Aktiengesellschaft Welded repair of defects lying on the inside of components
EP2322313A1 (de) * 2009-11-13 2011-05-18 Siemens Aktiengesellschaft Verfahren zum Schweissen von Werkstücken aus hochwarmfesten Superlegierungen mit besonderer Massenzufuhrrate des Schweisszusatzwerkstoffes
CN102312105A (zh) * 2010-06-04 2012-01-11 辽宁天和科技股份有限公司 一种用于电渣重熔含钛板坯的重熔渣及其制造方法
CN102277552A (zh) * 2010-06-09 2011-12-14 上海工程技术大学 采用电弧-等离子喷涂-激光重熔的金属表面处理方法
US20120223057A1 (en) * 2011-03-02 2012-09-06 Lucian Iordache Gas tungsten arc welding using flux coated electrodes
CN202012408U (zh) * 2011-03-21 2011-10-19 山东滨州渤海活塞股份有限公司 内燃机活塞燃烧室

Also Published As

Publication number Publication date
EP2950973A1 (en) 2015-12-09
RU2015136564A (ru) 2017-03-06
JP2016516580A (ja) 2016-06-09
WO2014120736A1 (en) 2014-08-07
CN104955612A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
US9352419B2 (en) Laser re-melt repair of superalloys using flux
US9352413B2 (en) Deposition of superalloys using powdered flux and metal
KR101791113B1 (ko) 분말형 용제 및 금속을 사용하는 초합금의 적층
US9283593B2 (en) Selective laser melting / sintering using powdered flux
EP2950959B1 (en) Cladding of alloys using cored feed material comprising powdered flux and metal
KR101791976B1 (ko) 초합금 구성요소의 국부 보수
CN105408056B (zh) 利用部件支撑的填料对基底的修复
KR20150110799A (ko) 플럭스를 사용한 초합금의 레이저 재용융 복구 방법
US20130316183A1 (en) Localized repair of superalloy component
KR20150113149A (ko) 분말형 용제를 사용하는 선택적 레이저 용융 및 소결
US9272363B2 (en) Hybrid laser plus submerged arc or electroslag cladding of superalloys
EP2950974A1 (en) Localized repair of superalloy component
KR20150111352A (ko) 분말상 플럭스 및 금속을 사용하는 레이저 마이크로클래딩
JP6092429B6 (ja) 粉末状フラックス及び粉末状金属を用いた超合金の溶着法

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination