KR20150094552A - Sr 음전류를 관리하기 위한 공진 컨버터 제어 기술 - Google Patents

Sr 음전류를 관리하기 위한 공진 컨버터 제어 기술 Download PDF

Info

Publication number
KR20150094552A
KR20150094552A KR1020150021072A KR20150021072A KR20150094552A KR 20150094552 A KR20150094552 A KR 20150094552A KR 1020150021072 A KR1020150021072 A KR 1020150021072A KR 20150021072 A KR20150021072 A KR 20150021072A KR 20150094552 A KR20150094552 A KR 20150094552A
Authority
KR
South Korea
Prior art keywords
circuit
resonant converter
switch
signal
gate drive
Prior art date
Application number
KR1020150021072A
Other languages
English (en)
Inventor
항석 최
Original Assignee
페어차일드 세미컨덕터 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 페어차일드 세미컨덕터 코포레이션 filed Critical 페어차일드 세미컨덕터 코포레이션
Publication of KR20150094552A publication Critical patent/KR20150094552A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명은 공진 컨버터를 위한 제어 기술들을 제공한다. 일 실시예에서, 공진 컨버터 제어기는 공진 컨버터 시스템의 제1 인버터 스위치의 전도 상태를 제어하는 제1 구동 신호의 상승 에지로부터 공진 컨버터 시스템의 제1 동기 정류기(SR) 스위치의 SR 전류 영 교차 순간까지의 지속 시간을 나타내는 예측 게이트 구동 신호를 생성하도록 구성되는 예측 게이트 구동 회로를 포함하며, 제1 추적 신호는 적어도 제1 구동 신호 및 제1 SR 스위치 양단의 전압 강하에 기초한다. 공진 컨버터 제어기는 또한 공진 컨버터 시스템의 부하 전류 요구의 감소의 검출에 응답하여 SR 온 시간들의 지연을 증가시키는 SR 게이트 구동 턴온 지연 신호를 생성하도록 구성되는 SR 게이트 구동 축소 회로를 포함할 수 있다.

Description

SR 음전류를 관리하기 위한 공진 컨버터 제어 기술{RESONANT CONVERTER CONTROL TECHNIQUES TO MANAGE NEGATIVE SR CURRENT}
본 미국 정규 출원은 2014년 2월 11일자로 출원된, 발명의 명칭이 "공진 컨버터(Resonant Converter)"인 미국 가특허 출원 제61/938,443호에 대해 우선권을 주장한다. 전술된 미국 가특허 출원의 전체 내용은 본 명세서에 참고로 포함된다.
본 발명은 DC/DC 컨버터 시스템에 관한 것으로, 보다 구체적으로는 동기 정류기(synchronous rectifier, SR)의 SR 음전류(negative SR current)를 관리하기 위한 제어 기술에 관한 것이다.
공진 컨버터 시스템들은 입력 전압을 요구되는 특성들을 갖는 출력 전압으로 변환하는 데 사용될 수 있다. 이 시스템들은 일반적으로 입력 인버터 스테이지; 부하에 출력 전압을 제공하기 위하여, 입력 스테이지에 결합되는 1차측 및 출력 동기 정류기 스테이지에 결합되는 2차측을 갖는 변압기를 포함한다. 그러나, 소정의 조건들 하에서, 예를 들어 부하 전류 요구가 감소될 때, 정류기 회로의 스위치들을 통해 음전류 흐름이 유도될 수 있고, 이는 스위칭 잡음을 야기하고 효율을 감소시킬 수 있다.
실시 예에 따른 제어기술들을 통해 심한 SR 스위치들에서의 음전류들을 감소시키거나 제거하고자 한다.
전체적으로, 본 발명은 공진 컨버터를 위한 제어 기술을 제공한다. 하나의 제어 기술에서, 공진 컨버터의 동기 정류기(SR) 부분의 스위치들의 턴온(turn ON) 지연은 부하 전류 요구가 감소함에 따라 증가한다. 일부 실시예들에서, 부하 전류 요구는 동기 정류기의 영 교차 전류(zero crossing current)를 사용하기보다는 공진 컨버터의 1차측의 전류의 측정에 기초하여 측정될 수 있다. 스위칭 주파수가 컨버터의 1차 스테이지의 공진 주파수 미만인 경우, 공진 컨버터의 동기 정류기(SR) 부분의 스위치들(SR 스위치들)은 대응하는 1차측 스위치의 상승 에지(rising edge) 및 대응하는 SR 스위치의 턴오프(turn off) 시간에 기초하여 제어된다.
실시 예에 따른 제어 기술들은 심한 스위칭 잡음을 유발하여 제어 회로의 장애로 이어질 수 있고 전체 출력 안정성에 상당한 영향을 줄 수 있는, SR 스위치들에서의 음전류들을 감소시키거나 제거한다.
청구된 요지의 특징 및 이점이 청구된 요지에 따른 실시예의 하기 상세한 설명으로부터 명백할 것이며, 이러한 설명은 첨부 도면을 참조하여 고찰되어야 한다.
도 1은 본 발명의 다양한 실시예들에 따른 공진 컨버터 시스템을 도시하는 도면.
도 2는 본 발명의 일 실시예에 따른 예시적인 공진 기반 제어 회로를 도시하는 도면.
도 3a, 도 3b 및 도 3c는 본 발명의 일 실시예에 따른 공진 컨버터 동작을 위한 다양한 신호들의 예시적인 시뮬레이션 파형들을 도시하는 도면.
하기의 상세한 설명은 예시적인 실시예를 참조하여 진행되지만, 실시예의 많은 대안, 수정, 및 변경이 당업자에게 명백할 것이다.
전체적으로, 본 발명은 공진 컨버터를 위한 제어 기술을 제공한다. 하나의 제어 기술에서, 공진 컨버터의 동기 정류기(SR) 부분의 스위치들의 턴온 지연은 부하 전류 요구가 감소함에 따라 증가한다. 일부 실시예들에서, 부하 전류 요구는 동기 정류기의 영 교차 전류를 사용하기보다는 공진 컨버터의 1차측의 전류의 측정에 기초하여 측정될 수 있다. 스위칭 주파수들이 컨버터의 1차 스테이지의 공진 주파수 미만인 경우, 공진 컨버터의 동기 정류기(SR) 부분의 스위치들(SR 스위치들)은 대응하는 1차측 스위치의 상승 에지 및 대응하는 SR 스위치의 턴오프 시간에 기초하여 제어된다. 일반적으로, 공진 미만 동작(below resonance operation)의 경우, SR 스위치들 각각은 대응하는 1차측 스위치의 하강 에지(falling edge) 이전에 턴 오프 되지만, 대응하는 1차측 스위치의 상승 에지에서 턴 온된다. SR 스위치들 각각의 전도 시간(conduction time)은 공진 미만 동작에 대해 대체로 일정하다.
다른 제어 기술에서, 스위칭 주파수들이 컨버터의 1차 스테이지의 공진 주파수 초과인 경우, SR 스위치들은 SR 스위치들 각각의 양단 전압의 하강 및 상승 에지들에 기초하여 제어된다. 일반적으로, 공진 초과 동작(above resonance operation)의 경우, SR 스위치들 각각은 대응하는 1차측 스위치의 하강 에지 이후에 턴 오프 되지만, 대응하는 1차측 스위치의 상승 에지 이후에 턴 온된다. 공진 초과 동작에서, SR 스위치들 각각의 전도 시간은 가변적일 수 있다.
이러한 방식으로, SR 스위치들에 대한 예측 구동 제어 신호들이 생성되어, 1차측의 스위칭 주파수가 빠르게 변할 때 SR 스위치들의 이른 또는 늦은 턴오프 시간들을 방지할 수 있다. 따라서, 이러한 제어 기술들은, 심한 스위칭 잡음을 유발하여 제어 회로의 장애로 이어질 수 있고 전체 출력 안정성에 상당한 영향을 줄 수 있는, SR 스위치들에서의 음전류들을 감소시키거나 제거한다.
도 1은 본 발명의 다양한 실시예들에 따른 공진 컨버터 시스템(100)을 도시한다.
도 1의 컨버터 시스템(100)은 인버터 회로를 포함하는 1차측 스테이지(104), 및 동기 정류기(SR) 회로를 포함하는 2차측 스테이지(106)를 포함하는 컨버터 회로(102)를 포함한다. 컨버터 시스템(100)은 또한 1차측(104)의 인버터 스위치(Q1, Q2)들의 동작을 제어하기 위한 펄스 주파수 변조(pulse frequency modulation, PFM) 제어기 회로(108), 및 2차측(106)의 SR 스위치(SR1, SR2)들의 동작을 제어하기 위한 공진 기반 SR 제어기 회로(110)를 포함한다.컨버터 시스템(100)은 일반적으로, 입력 DC 전압(VIN)을 수신하고 출력 DC 전압(Vo)을 생성하는 DC/DC 공진 컨버터 회로로서 동작한다.
1차측(104)의 인버터 회로는 일 실시예에서 하프 브리지(half bridge) 구성으로 배열된 2개의 스위치(Q1, Q2)들을 포함한다. 스위치(Q1, Q2)들의 전도 상태는 PFM 제어기 회로(108)에 의해 생성되는 구동 신호(PROUT1, PROUT2)들에 의해 각각 제어된다.하프 브리지 회로의 PFM 동작에 대해 잘 알려진 방식인, 예를 들어 전압 제어식 발진기(voltage controlled oscillator, VCO)(124)를 사용하여 구동 신호(PROUT1, PROUT2)들이 생성될 수 있다. 구동 신호들은 적어도 출력(Vo)으로부터의 피드백 정보에 부분적으로 기초할 수 있다. 시간 지연 회로(120, 122)들은 구동 신호(PROUT1, PROUT2)들 사이에 지연을 제공하여 스위치(Q1, Q2)들의 교차 전도를 피하도록(즉, Q1 및 Q2가 동시에 온 상태로 되는 것을 방지하도록) 구성될 수 있다.
1차측(104)은 변압기(112), 공진 커패시터(Cr) 및 공진 인덕터(Lr)를 포함하는 공진 탱크 회로를 포함한다. 공진 탱크 회로는 스위치(Q1, Q2)들에 의해 생성되는 구형파(square wave)로부터 사인 파형을 생성하도록 동작한다. 시스템(100)의 공진 주파수(f0)는 일반적으로 공진 커패시터(Cr) 및 공진 인덕터(Lr)에 의해 제어된다. 일반적으로, DC/DC 컨버터 시스템(100)의 이득은 공진 주파수(f0)와 관련된 스위치(Q1, Q2)들의 스위칭 주파수(fs)에 의해 제어될 수 있다. 일부 실시예들에서, 시스템(100)의 이득은 fs<f0일 때 더 크고, fs>f0일 때 더 작다. 물론, 다른 실시예들에서, 인버터 회로는 예를 들어 풀 브리지(full bridge) 인버터 토폴로지(topology), 푸시-풀(push-pull) 인버터 토폴로지, 클래스 C 인버터 토폴로지 등 및/또는 다른 공지된 또는 추후 개발될 전원 토폴로지들을 포함할 수 있다. 또 다른 실시예들에서, 스위치(Q1, Q2)들의 제어는 예를 들어 펄스 폭 변조(PWM) 기술들 및/또는 다른 공지된 또는 추후 개발될 전원 제어 기술들 등을 포함할 수 있다.
2차측 스테이지(106)의 동기 정류기 회로는 변압기(112)의 2차측에 전기적으로 결합되고 변압기(112)의 2차측에서 사인 신호(sinusoidal signal)의 전파(full wave) 정류기로서 동작하도록 구성되는 정류기 스위치(SR1, SR2)들을 포함한다. SR 스위치들은 (도시된 바와 같이) 소스로부터 드레인 방향으로 바이어스되는 바디 다이오드(body diode)들을 포함하는 MOSFET 디바이스들을 포함할 수 있다. 스위치(SR1)의 전도 상태는 게이트 제어 신호(SRDRV1)에 의해 제어되며, 스위치(SR2)의 전도 상태는 게이트 제어 신호(SRDRV2)에 의해 제어된다. SR 제어기 회로(110)는 적어도 부분적으로 1차측 스위치 제어 신호(PROUT1, PROUT2)들 및 SR1DS와 SR2DS로서 라벨링되는 SR 스위치들의 드레인-소스 전압에 기초하여 SR1 및 SR2의 전도를 각각 제어하기 위한 게이트 제어 신호(SRDRV1, SRDRV2)들을 생성하도록 구성된다. 제어기(110)는 후술되는 바와 같이 제어 신호(SRDRV1, SRDRV2)들을 생성하여 바디 다이오드 전도 시간이 최소화되고, SR 스위치들을 가로지르는 음전류들이 감소되거나 제거되도록 구성된다. 적분기 회로(114)는 전압-전류 컨버터 회로로서 구성될 수 있는데, 이는 관련 구성들, 즉 스위치(118), 커패시터(116) 및 피크 검출 회로(126)와 함께, 또한 후술되는 바와 같이 SR 제어기 회로(110)에 의한 사용을 위해 피크 1차측 전류의 추정을 제공하도록 구성될 수 있다.
도 2는 본 발명의 일 실시예에 따른 예시적인 SR 제어기(110')를 도시한다.
이 예에서, 제어기(110')는 1차측 게이트 제어 신호(PROUT1) 및 SR1 스위치의 드레인-소스 전압(SR1DS)에 기초하여 SR1 스위치의 전도 상태를 제어하는 SRDRV1 제어 신호를 생성하기 위한 것이다. 도 2에 도시된 제어기(110')와 동일한 회로가 1차측 게이트 제어 신호(PROUT2) 및 SR2 스위치의 드레인-소스 전압(SR2DS)에 기초하여 SR2 스위치의 전도 상태를 제어하는 SRDRV2 제어 신호를 생성하도록 실질적으로 복제될 수 있고, SR 제어기 회로(110)가 이를 포함할 수 있다.
제어기(110')는 일반적으로 예측 구동 신호(PRD_DRV)를 생성하도록 구성되는 예측 게이트 구동 회로(240)를 포함한다. PRD_DRV 신호는 PROUT1 신호의 상승 에지로부터 대응하는 SR1 스위치의 턴오프 시간까지의 지속 시간을 나타낸다. 이 정보는 후속 스위칭 사이클에서 SR1 스위치의 턴오프 시간을 결정하는 데 사용된다. 제어기(110')는 또한 (SR 게이트 축소(shrink) 신호 또는 SHRNK로서 또한 지칭되는) SR 게이트 구동 턴온 지연 신호를 생성하도록 구성되는 SR 게이트 축소 회로(250)를 포함한다. SHRNK 신호는 부하 전류 요구가 감소함에 따라 SR1 스위치의 턴온 지연을 증가시키도록 구성된다. PRD_DRV 및 SHRNK 신호들은 SR1 스위치의 전도 상태를 제어하기 위한 게이트 제어 신호(SRDRV1)를 생성하도록 논리 회로(218)에서 논리곱된다.
예측 게이트 구동 회로(240)는 SR1DS를 임계 전압(VTH1)과 비교하도록 구성되는 제1 비교기 회로(202)를 포함한다. 비교기 회로(202)가 SR1DS 전압의 작은 변동, 잡음 영향의 감소 등으로부터 상태들을 변경하는 것을 방지하기 위해, 비교기 회로(202)는 히스테리시스를 포함할 수 있다. 임계 전압(VTH1)은 SR1DS 전압이 상태들을 변경할 때 비교기(202)가 출력 변화를 정확히 생성하도록 선택될 수 있다. 예측 게이트 구동 회로(240)는 또한 게이트 제어 신호(PROUT1) 및 비교기 회로(202)의 출력에 기초하여 제1 및 제2 플립-플롭 출력 신호(Q, Q')(상보 출력(complimentary output))들을 생성하도록 구성되는 제1 에지-트리거 플립-플롭 회로(204)를 포함한다. Q 신호는 비교기(202)의 출력이 로우(LOW)일 때(예를 들어, SR1DS가 VTH1 미만일 때) 그리고 PROUT1 신호가 하이(HIGH)일 때 하이이며, 여기서 Q는 PROUT1의 상승 에지에서 하이로 트리거된다. Q'는 비교기(202)의 출력이 하이일 때(SR1DS가 VTH1 초과일 때) 하이이다. 업-카운터 회로(206)는 Q 신호가 하이일 때 Q 신호의 실행 시간 카운트를 생성하도록 구성된다. 도 2에서 Dn으로 나타낸 실행 카운트는 1차측 스위치들의 현재 사이클에서 Q가 얼마 동안 하이인지에 대한 지속 시간 카운트를 제공한다. 업-카운터 회로(206)는 Q 신호의 상승 에지에서 카운트를 시작하고, (업-카운터 회로(206)를 리셋하도록 동작하는) Q' 신호의 상승 에지에서 카운트를 종료하도록 구성된다. 실행 카운트 신호(Dn)는 PROUT1 신호의 현재 사이클 동안의 플립-플롭(204)으로부터의 Q 신호의 지속 시간을 모든 타이밍의 기초가 되는 클록 단위로 나타낸다. 클록 신호는 HFCLK 또는 고주파 클록으로 지칭된다.
예측 게이트 구동 회로(240)는 또한 실행 카운트 신호(Dn)를 Qn으로서 저장하도록 구성되는 레지스터 회로(208)를 포함한다. 레지스터(208)는 비교기(202)의 출력의 상승 에지에서 Qn의 값을 저장한다. 감산기 회로(212)가 포함되고, Qn으로부터, 미리 결정된 기간(DT)을 빼도록 구성된다. 감산기(212)의 출력은 도 2에서 Bn으로 라벨링된다. DT의 값은 예를 들어 SR 스위치들의 온 시간들이 중첩되지 않도록 선택될 수 있다. 제2 비교기(디지털 비교기) 회로(214)는 (비교기(214)에서 An으로 라벨링된) Dn과 Bn을 비교하도록 구성된다. An은 PROUT1 신호의 현재 사이클(n+1)을 나타내고, Bn은 PROUT1 신호의 이전 사이클(n)을 나타낸다. An=Bn인 경우, 214의 출력은 하이가 되며, 그렇지 않은 경우에는 214의 출력은 로우로 유지된다.
예측 게이트 구동 회로(240)는 제2 에지-트리거 플립-플롭 회로(216)를 포함한다. 제2 에지-트리거 플립-플롭 회로(216)는 논리 회로(220)의 출력과 제2 비교기 회로(214)의 출력에 기초하여, 제1 및 제2 플립-플롭 출력 신호(Q, Q')(상보 출력)들을 생성한다. 논리 회로(220)는 인버터 회로(210)를 통해 반전된 제1 비교기 회로(202)의 출력(이하, LD 신호) 및 PROUT1 신호를 논리곱 연산한 결과를 출력한다. 제2 에지-트리거 플립-플롭 회로(216)의 Q 출력은 LD 신호의 상승 에지에서 하이가 되며, An과 Bn이 동일하지 않은 동안 하이로 유지된다. An=Bn일 때, 플립-플롭(216)은 리셋되고, Q 출력은 로우이다. 플립-플롭 회로의 Q 출력은 도 2에서 PRD_DRV로 라벨링되어 있다.
일반적으로 제어기(110')는 부하 전류 요구가 감소함에 따라 SR1 스위치의 턴온 지연을 증가시키도록 구성되는 SR 게이트 축소 회로(250)를 포함한다. SR 게이트 축소 회로(250)는 1차측의 스위치(Q2)를 통한 전류의 측정에 기초하여 부하 전류 요구를 나타내는 V_ICS.PK 신호를 수신하도록 구성될 수 있다. 도 1을 다시 참조하면, V-I 컨버터 회로(114)는 Q2에서 전압을 감지하고, 예를 들어 적분을 이용하여 그 전압을 비례 전류로 변환하며, 이 전류는 커패시터 C_ICS(116)를 충전시킨다. 피크 검출 회로(126)에 의해 측정되는 그 커패시터 전압의 피크(V_ICS.PK)는 VIN과 관련된 입력 전력에 비례한다. MOSFET(118)은 VCO(124)가 하이일 때 턴온되어 VCO의 다음 사이클의 준비로서 커패시터(116)가 접지로 방전되게 한다. 유사하게, MOSFET(118)은 VCO가 로우가 될 때 턴오프되어, 커패시터(116)가 충전될 수 있게 할 수 있다. SR 스위치들의 턴온 지연은 이러한 입력 전력 추정(V_ICS.PK)에 기초하여 제어될 수 있으며, 턴온 지연은 부하가 감소함에 따라 증가될 수 있다. 따라서, SR 스위치는 SR 스위치들을 가로지르는 양전류(positive current)가 존재할 때까지 턴온되지 않아, SR 스위치들을 통한 음전류와 관련된 효율 감소 효과들을 방지한다. SR 스위치들을 통한 전류의 직접 측정이 특히 영 교차 부근에서 어려울 수 있다는 것이 인식될 것이다. 따라서, 본 발명의 일 실시예는 전술된 바와 같이 Q2에서 1차측 전류를 측정하여 SR 전류를 추정한다.
SR 게이트 축소 회로(250)는 부하의 백분율(예를 들어, 최대 전력의 20%, 최대 전력의 40% 등)을 나타내는, 제공된 제2 임계 전압(VTH2)과 V_ICS.PK 신호 사이의 차이를 계산하는 감산 회로(252)를 포함한다. 컨버터가 VTH2 임계치 미만에서 동작하고 있을 때 SR 스위치에 대한 추가 턴온 지연이 적용된다. 업-카운터 회로(258)는 PROUT1이 하이일 때에 대응하는 실행 시간 카운트를 생성하도록 구성된다. PROUT1이 하이일 때, 카운터는 인에이블된다. PROUT1이 로우가 될 때, 카운터는 정지되고 리셋된다. 출력(Dn)은 PROUT1이 온 상태인 시간의 길이를 나타내는 비트 스트림(bit stream)이며, 이는 비교기(260)의 Bn 입력에 제공된다. SR 게이트 축소 회로(250)는 또한 비교기(260)의 An 입력에 제공될 VTH2와 V_ICS.PK 사이의 차이를 디지털화하는 아날로그-디지털(A-D) 컨버터(256)를 포함한다.
비교기(260)는 다음과 같이 SHRNK 신호를 생성하도록 구성된다. V_ICS.PK가 VTH2보다 큰 경우, A/D 컨버터(256)의 출력(Qn)은 0이고, 비교기(260)의 출력(SHRNK)은 PROUT1이 하이인 한 하이로 유지되는데, 이는 턴온 지연을 제공하지 않는다. 이는 부하 조건들에 기초하여 SR 스위치들의 턴온을 조정하려는 요구와 일치한다. V_ICS.PK가 VTH2보다 작은 경우, A/D 출력(Qn)은 전달되는 전력이 임계치와 비교하여 얼마나 더 낮은지를 나타낸다. V_ICS.PK가 감소함에 따라 Qn이 증가하여, 부하에 전달되는 전력이 감소한다는 것을 나타낸다. Qn이 증가함에 따라, 비교기 출력(SHRNK)은 로우로 머무르며, 이는 이어서 SRDRV1을 로우로 구동하여 SR 턴온을 지연시킨다. SR 턴온 지연은 SHRNK가 다시 하이가 될 때까지 계속되는데, 예를 들어 그 이유는 V_ICS.PK가 VTH2 위로 다시 증가하기 때문이다.
도 3a, 도 3b 및 도 3c는 본 발명의 일 실시예에 따른 다수의 부하 조건들(각각 100%, 40%, 20%)에서의 다양한 신호들의 예시적인 시뮬레이션 파형들을 도시한다. 도 1 및 도 2를 계속 참조하면, 시뮬레이션 파형(302 내지 312)들은 복수의 사이클들을 통한 다양한 신호 파형들을 예시한다. 파형(302)은 변압기(112)의 1차측 양단의 전압을 예시한다. 파형(304)은 인덕터(Lr) 및 변압기(112)의 1차측 두 양단의 전압을 예시한다. 이 예에서는 더 높은 부하들(도 3a 및 도 3b)에서 전압(302)이 200 볼트로 클램프되지만, 더 낮은 부하들(도 3c)에서는 전압(302)이 304 파형을 반영하기 시작한다. 파형(306)은 도 1의 2차 스테이지 회로(106)에서 도시된 ISR 전류를 예시한다. 파형(308)은 SR 게이트 구동 신호들을 예시한다. 파형(310)은 변압기(112)의 1차측을 통한 전류를 예시한다. 파형(312)은 도 1의 회로(114)와 관련하여 도시된 ICS 신호를 예시한다.
용어 "스위치"는 MOSFET 스위치(예를 들어, 개별 NMOS 및/또는 PMOS 요소), BJT 스위치 및/또는 당업계에 공지된 다른 스위칭 회로로서 실시될 수 있다. 게다가, 본 발명의 임의의 실시예에서 사용되는 바와 같은 "회로(circuitry 또는 circuit)"는 예를 들어 하드와이어드(hardwired) 회로, 프로그래밍 가능 회로, 상태 기계(state machine) 회로, 및/또는 더 큰 시스템에 포함되는 회로, 예를 들어 집적 회로에 포함될 수 있는 요소들을 단독으로 또는 임의의 조합으로 포함할 수 있다. 게다가, 본 명세서에서 설명되는 예시적인 실시예들은 관례상 소정 유형의 디바이스들, 예를 들어 게이트 제어 신호가 하이일 때 턴온되고 게이트 제어 신호가 로우일 때 턴오프되는 NMOS 스위치들을 사용하였다. 다른 실시예들에서, 액티브 로우 디바이스들(예를 들어, PMOS 디바이스들)이 사용될 수 있다. 그러한 실시예들에서, 본 명세서에서 기술되는 타이밍 및 신호 다이어그램들은, 당업계에서 잘 이해되는 바와 같이, 액티브 로우 디바이스의 동작을 반영하도록 변경될 것이다.
일 태양에 따르면, 공진 컨버터 시스템이 제공된다. 공진 컨버터 시스템은 1차측 및 2차측을 포함하는 변압기 회로; 제1 인버터 스위치, 제2 인버터 스위치 및 공진 탱크 회로를 갖는 인버터 회로를 포함하고, 1차측에 결합되는 제1 스테이지 회로; 제1 및 제2 인버터 스위치들의 온 및 오프 시간들을 각각 제어하는 제1 구동 신호 및 제2 구동 신호를 생성하도록 구성되는 펄스 주파수 변조(PFM) 제어기 회로; 제1 및 제2 인버터 스위치들에 각각 대응하는 제1 동기 정류기(SR) 스위치 및 제2 SR 스위치를 갖는 SR 회로를 포함하고, 제2 측에 결합되는 제2 스테이지 회로; 및 적어도 제1 및 제2 구동 신호들에 기초하여 제1 및 제2 SR 스위치들의 온 및 오프 시간들을 각각 제어하는 제어 신호들을 생성하도록 구성되고, 공진 컨버터 시스템의 부하 전류 요구의 감소의 검출에 응답하여 온 시간들의 지연을 증가시키도록 추가로 구성되는 SR 제어기 회로를 포함할 수 있다.
다른 태양에 따르면, 공진 컨버터 제어기가 제공된다. 공진 컨버터 제어기는 공진 컨버터 시스템의 제1 인버터 스위치의 전도 상태를 제어하는 제1 구동 신호의 상승 에지로부터 공진 컨버터 시스템의 제1 동기 정류기(SR) 스위치의 SR 전류 영 교차 순간까지의 지속 시간을 나타내는 예측 게이트 구동 신호를 생성하도록 구성되는 예측 게이트 구동 회로를 포함할 수 있으며, 제1 추적 신호는 적어도 제1 구동 신호 및 제1 SR 스위치 양단의 전압 강하에 기초한다. 공진 컨버터 제어기는 또한 공진 컨버터 시스템의 부하 전류 요구의 감소의 검출에 응답하여 SR 온 시간들의 지연을 증가시키는 SR 게이트 구동 턴온 지연 신호를 생성하도록 구성되는 SR 게이트 구동 축소 회로를 포함할 수 있다.
다른 태양에 따르면, 공진 컨버터 시스템의 동작을 제어하기 위한 방법이 제공된다. 이 방법은 공진 컨버터 시스템의 제1 스테이지에서 제1 및 제2 인버터 스위치들의 온 및 오프 시간들을 각각 제어하는 제1 및 제2 구동 신호들을 생성하는 단계; 공진 컨버터 시스템의 제2 스테이지에서, 제1 및 제2 인버터 스위치들에 각각 대응하는 제1 및 제2 동기 정류기(SR) 스위치들 양단의 전압 강하들을 각각 결정하는 단계; 적어도 제1 및 제2 구동 신호들 및 제1 및 제2 SR 스위치들 양단의 전압 강하들에 기초하여, 제1 및 제2 SR 스위치들의 온 및 오프 시간들을 각각 제어하는 제어 신호들을 생성하는 단계; 공진 컨버터 시스템의 부하 전류 요구의 감소를 검출하는 단계; 및 검출에 응답하여 온 시간들의 지연을 증가시키는 단계를 포함할 수 있다.
본 명세서에 사용된 용어 및 표현은 제한이 아닌 설명의 용어로서 사용되며, 그러한 용어 및 표현의 사용에 있어서, 도시 및 설명된 특징들(또는 그의 부분들)의 임의의 등가물을 배제하려는 의도는 없으며, 특허청구범위의 범주 내에서 다양한 변경이 가능하다는 것이 인식된다. 따라서, 특허청구범위는 모든 그러한 등가물을 포함하도록 의도된다. 다양한 특징, 태양, 및 실시예가 본 명세서에 기술되었다. 당업자가 이해하는 바와 같이, 특징들, 태양들, 및 실시예들은 서로 조합되는 것은 물론 수정 및 변경이 가능하다. 따라서, 본 발명은 그러한 조합, 수정, 및 변경을 포함하는 것으로 간주되어야 한다.
100: 컨버터 시스템
104: 1차측 스테이지
106: 2차측 스테이지
108: 제어기 회로
110: SR 제어기 회로
110': SR 제어기
112: 변압기
202: 제1 비교기 회로
204: 제1 에지-트리거 플립-플롭 회로
206: 업-카운터 회로
208: 레지스터 회로
210: 인버터 회로
212: 감산기 회로
214: 제2 비교기
216: 제2 에지-트리거 플립-플롭 회로
218, 220: 논리 회로
240: 예측 게이트 구동 회로
250: SR 게이트 축소 회로
Cr: 공진 커패시터
Lr: 공진 인덕터
Q1, Q2: 스위치
SR1, SR2: SR 스위치

Claims (22)

  1. 공진 컨버터 시스템으로서,
    1차측 및 2차측을 포함하는 변압기 회로;
    제1 인버터 스위치, 제2 인버터 스위치 및 공진 탱크 회로를 갖는 인버터 회로를 포함하고, 상기 1차측에 결합되는 제1 스테이지 회로;
    상기 제1 및 제2 인버터 스위치들의 온 및 오프 시간들을 각각 제어하는 제1 구동 신호 및 제2 구동 신호를 생성하도록 구성되는 펄스 주파수 변조(pulse frequency modulation, PFM) 제어기 회로;
    상기 제1 및 제2 인버터 스위치들에 각각 대응하는 제1 동기 정류기(synchronous rectifier, SR) 스위치 및 제2 SR 스위치를 갖는 SR 회로를 포함하고, 상기 제2 측에 결합되는 제2 스테이지 회로; 및
    적어도 상기 제1 및 제2 구동 신호들에 기초하여 상기 제1 및 제2 SR 스위치들의 상기 온 및 오프 시간들을 각각 제어하는 제어 신호들을 생성하도록 구성되고, 상기 공진 컨버터 시스템의 부하 전류 요구의 감소의 검출에 응답하여 상기 온 시간들의 지연을 증가시키도록 추가로 구성되는 SR 제어기 회로
    를 포함하는, 공진 컨버터 시스템.
  2. 제1항에 있어서, 상기 제2 인버터 스위치를 통한 측정 전류를 전압으로 변환하도록 구성되는 집적 회로를 추가로 포함하는 공진 컨버터 시스템.
  3. 제2항에 있어서, 상기 부하 전류 요구의 추정을 위해 상기 변환된 측정 전류의 피크를 검출하도록 구성되는 피크 검출 회로를 추가로 포함하는 공진 컨버터 시스템.
  4. 제3항에 있어서, 상기 SR 제어기 회로는 상기 검출된 피크 전압과 임계 전압 사이의 차이에 기초하여 게이트 구동 턴온(turn on) 지연 신호를 생성하도록 추가로 구성되고, 상기 임계 전압은 상기 공진 컨버터의 최대 전력 부하의 백분율을 나타내는, 공진 컨버터 시스템.
  5. 제4항에 있어서, 상기 SR 제어기 회로는 각각의 SR 스위치에 대한 예측 게이트 구동 신호를 생성하도록 추가로 구성되고, 상기 예측 게이트 구동 신호는 대응하는 상기 인버터 스위치의 상기 구동 신호의 대략 상승 에지(rising edge)로부터 상기 SR 스위치의 SR 전류 영 교차 순간(zero crossing instant)까지의 지속 시간을 갖는, 공진 컨버터 시스템.
  6. 제5항에 있어서, 상기 SR 제어기 회로는 적어도 상기 예측 게이트 구동 신호와 상기 게이트 구동 턴온 지연 신호의 논리곱의 결과에 기초하여 각각의 SR 스위치를 턴오프(turn off)하도록 추가로 구성되는, 공진 컨버터 시스템.
  7. 제1항에 있어서, 부하 전류 요구의 감소의 검출에 응답한 상기 온 시간들의 상기 증가된 지연은 상기 SR 스위치들을 통한 음전류(negative current) 흐름을 방지하는, 공진 컨버터 시스템.
  8. 제1항에 있어서, 상기 PFM 제어기 회로는 적어도 상기 공진 컨버터 회로의 출력 전압에 기초하는 피드백을 사용하여 상기 제1 및 제2 구동 신호들을 생성하도록 추가로 구성되는, 공진 컨버터 시스템.
  9. 공진 컨버터 제어기로서,
    공진 컨버터 시스템의 제1 인버터 스위치의 전도 상태(conduction state)를 제어하는 제1 구동 신호의 상승 에지로부터 상기 공진 컨버터 시스템의 제1 동기 정류기(SR) 스위치의 SR 전류 영 교차 순간까지의 지속 시간을 나타내는 예측 게이트 구동 신호를 생성하도록 구성되는 예측 게이트 구동 회로로서, 상기 제1 추적 신호는 적어도 상기 제1 구동 신호 및 상기 제1 SR 스위치 양단의 전압 강하에 기초하는, 상기 예측 게이트 구동 회로; 및
    상기 공진 컨버터 시스템의 부하 전류 요구의 감소의 검출에 응답하여 SR 온 시간들의 지연을 증가시키는 SR 게이트 구동 턴온 지연 신호를 생성하도록 구성되는 SR 게이트 구동 축소(shrink) 회로
    를 포함하는, 공진 컨버터 제어기.
  10. 제9항에 있어서, 상기 예측 게이트 구동 회로는 적어도 아날로그 비교기, 제1 에지-트리거 플립-플롭, 카운터, 레지스터, 인버터, 디지털 비교기 및 제2 에지-트리거 플립-플롭을 포함하는, 공진 컨버터 제어기.
  11. 제9항에 있어서, 상기 SR 게이트 구동 축소 회로는 적어도 아날로그 감산 회로, 카운터, 아날로그-디지털 컨버터 및 디지털 비교기를 포함하는, 공진 컨버터 제어기.
  12. 제9항에 있어서, 제2 인버터 스위치를 통한 측정 전류를 전압으로 변환하도록 구성되는 집적 회로를 추가로 포함하는 공진 컨버터 제어기.
  13. 제12항에 있어서, 상기 부하 전류 요구의 추정을 위해 상기 변환된 측정 전류의 피크를 검출하도록 구성되는 피크 검출 회로를 추가로 포함하는 공진 컨버터 제어기.
  14. 제13항에 있어서, 상기 SR 게이트 구동 축소 회로는 상기 검출된 피크 전압과 임계 전압 사이의 차이에 기초하여 상기 게이트 구동 턴온 지연 신호를 생성하도록 추가로 구성되고, 상기 임계 전압은 상기 공진 컨버터의 최대 전력 부하의 백분율을 나타내는, 공진 컨버터 제어기.
  15. 제9항에 있어서, 상기 예측 게이트 구동 신호 및 상기 게이트 구동 턴온 지연 신호를 수신하고 상기 제1 SR 스위치에 대한 제어 신호를 생성하도록 구성되는 논리곱을 적어도 포함하는 논리 회로를 추가로 포함하는 공진 컨버터 제어기.
  16. 공진 컨버터 시스템의 제1 스테이지에서 제1 및 제2 인버터 스위치들의 온 및 오프 시간들을 각각 제어하는 제1 및 제2 구동 신호들을 생성하는 단계;
    상기 공진 컨버터 시스템의 제2 스테이지에서, 상기 제1 및 제2 인버터 스위치들에 각각 대응하는 제1 및 제2 동기 정류기(SR) 스위치들 양단의 전압 강하들을 각각 결정하는 단계;
    적어도 상기 제1 및 제2 구동 신호들 및 상기 제1 및 제2 SR 스위치들 양단의 전압 강하들에 기초하여, 상기 제1 및 제2 SR 스위치들의 온 및 오프 시간들을 각각 제어하는 제어 신호들을 생성하는 단계;
    상기 공진 컨버터 시스템의 부하 전류 요구의 감소를 검출하는 단계; 및
    상기 검출에 응답하여 상기 온 시간들의 지연을 증가시키는 단계
    를 포함하는, 방법.
  17. 제16항에 있어서, 상기 제2 인버터 스위치를 통하는 전류를 측정하고, 상기 측정된 전류의 적분에 기초하여 상기 측정된 전류를 전압으로 변환하고, 상기 전압의 검출된 피크에 기초하여 상기 부하 전류 요구를 추정하는 단계를 추가로 포함하는 방법.
  18. 제17항에 있어서, 상기 검출된 피크 전압과 임계 전압 사이의 차이에 기초하여 게이트 구동 턴온 지연 신호를 생성하는 단계를 추가로 포함하고, 상기 임계 전압은 상기 공진 컨버터의 최대 전력 부하의 백분율을 나타내는, 방법.
  19. 제18항에 있어서, 각각의 SR 스위치에 대한 예측 게이트 구동 신호를 생성하는 단계를 추가로 포함하고, 상기 예측 게이트 구동 신호는 대응하는 상기 인버터 스위치의 대략 상승 에지로부터 상기 SR 스위치의 SR 전류 영 교차 순간까지의 지속 시간을 갖는, 방법.
  20. 제19항에 있어서, 상기 예측 게이트 구동 신호와 상기 게이트 구동 턴온 지연 신호의 논리곱의 결과에 적어도 기초하여 각각의 SR 스위치를 턴오프하는 단계를 추가로 포함하는 방법.
  21. 제16항에 있어서, 부하 전류 요구의 감소의 검출에 응답한 상기 온 시간들의 상기 증가된 지연은 상기 SR 스위치들을 통한 음전류 흐름을 방지하는, 방법.
  22. 제16항에 있어서, 상기 공진 컨버터 회로의 출력 전압에 적어도 기초하는 피드백을 사용하여 상기 제1 및 제2 구동 신호들을 생성하는 단계를 추가로 포함하는 방법.
KR1020150021072A 2014-02-11 2015-02-11 Sr 음전류를 관리하기 위한 공진 컨버터 제어 기술 KR20150094552A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461938443P 2014-02-11 2014-02-11
US61/938,443 2014-02-11

Publications (1)

Publication Number Publication Date
KR20150094552A true KR20150094552A (ko) 2015-08-19

Family

ID=53775820

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020150004389A KR20150095180A (ko) 2014-02-11 2015-01-12 스위치 제어 회로 및 이를 포함하는 공진형 컨버터
KR1020150004390A KR20150095181A (ko) 2014-02-11 2015-01-12 공진형 컨버터 및 그 구동 방법
KR1020150007476A KR20150095183A (ko) 2014-02-11 2015-01-15 스위치 제어 회로 및 이를 포함하는 공진형 컨버터
KR1020150021072A KR20150094552A (ko) 2014-02-11 2015-02-11 Sr 음전류를 관리하기 위한 공진 컨버터 제어 기술

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020150004389A KR20150095180A (ko) 2014-02-11 2015-01-12 스위치 제어 회로 및 이를 포함하는 공진형 컨버터
KR1020150004390A KR20150095181A (ko) 2014-02-11 2015-01-12 공진형 컨버터 및 그 구동 방법
KR1020150007476A KR20150095183A (ko) 2014-02-11 2015-01-15 스위치 제어 회로 및 이를 포함하는 공진형 컨버터

Country Status (3)

Country Link
US (3) US9887633B2 (ko)
KR (4) KR20150095180A (ko)
CN (1) CN104836443B (ko)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150095180A (ko) * 2014-02-11 2015-08-20 페어차일드코리아반도체 주식회사 스위치 제어 회로 및 이를 포함하는 공진형 컨버터
WO2017121720A1 (en) * 2016-01-12 2017-07-20 Danmarks Tekniske Universitet Resonant power converter with dead-time control of synchronous rectification circuit
BR112019002477A2 (pt) * 2016-08-26 2019-05-14 Esab Ab fonte de alimentação melhorada que possui conversor de dois quadrantes e técnicas para operação
CN106793219B (zh) * 2016-12-20 2023-04-07 赫高餐饮设备(苏州)有限公司 基于延迟时间以实现电路zvs的方法及系统
US10141852B2 (en) * 2016-12-30 2018-11-27 Texas Instruments Incorporated LLC secondary side control with adaptive on-time
CN108282092B (zh) * 2017-01-05 2020-08-14 罗姆股份有限公司 整流ic以及使用该整流ic的绝缘型开关电源
US10686382B2 (en) 2017-01-05 2020-06-16 Stmicroelectronics S.R.L. Symmetric time shift control for resonant converters
US10164543B2 (en) * 2017-04-13 2018-12-25 Semiconductor Components Industries, Llc System and method for controlling power converter with adaptive turn-on delay
US10886855B2 (en) 2017-12-12 2021-01-05 Astec International Limited Resonant converters power supplies and control methods for reducing unbalanced currents in resonant converter power supplies
US10992234B2 (en) * 2018-01-23 2021-04-27 Semiconductor Components Industries, Llc Adaptive control of synchronous rectifier switching device
TWI649971B (zh) * 2018-01-26 2019-02-01 茂達電子股份有限公司 相位調整裝置及系統
CN110535343A (zh) * 2018-05-24 2019-12-03 雅达电子国际有限公司 用于谐振电路的控制器和控制方法以及直流-直流转换器
CN108631574B (zh) * 2018-05-28 2019-06-28 武汉中科开物技术有限公司 一种用于交流电源的远程数控软启动器及其控制方法
TWI670919B (zh) * 2018-05-30 2019-09-01 賴炎生 具有諧振轉換器的電源暨其控制方法
CN109067181B (zh) * 2018-07-18 2019-11-22 东南大学 有源钳位反激变换器的自适应同步整流控制系统及控制方法
WO2020055669A1 (en) * 2018-09-12 2020-03-19 Murata Manufacturing Co., Ltd. Dynamic transient control in resonant converters
US11075585B2 (en) 2019-01-24 2021-07-27 Hisense Visual Technology Co., Ltd. Synchronous rectification circuit and display device
CN111478566B (zh) * 2019-01-24 2022-12-13 海信视像科技股份有限公司 同步整流电路及显示装置
CN111654190B (zh) * 2019-03-04 2021-09-21 台达电子工业股份有限公司 具有延长维持时间的谐振转换装置及其操作方法
US11303217B2 (en) * 2019-06-24 2022-04-12 Semiconductor Components Industries, Llc Adaptive SR turn-on control in an LLC resonant converter
CN111193403A (zh) * 2019-12-31 2020-05-22 苏州浪潮智能科技有限公司 一种基于crps的同步整流方法、系统、终端及存储介质
CN111541377A (zh) * 2020-04-13 2020-08-14 吉利汽车研究院(宁波)有限公司 一种功率转换电路及直流谐振转换器
CN115549499A (zh) * 2020-04-28 2022-12-30 艾科微电子(深圳)有限公司 同步整流控制器与相关的控制方法
CN111464039B (zh) * 2020-05-20 2022-03-25 矽力杰半导体技术(杭州)有限公司 谐振变换器、控制电路和控制方法
CN112003478B (zh) * 2020-08-24 2021-12-03 山东大学 一种串联谐振直流变换器及运行方法
CN113740597A (zh) 2020-09-08 2021-12-03 台达电子企业管理(上海)有限公司 开关管尖峰电压检测电路及方法
CN113162390B (zh) * 2020-12-17 2022-05-10 上海晶丰明源半导体股份有限公司 隔离型电源的控制电路、隔离型电源及其控制方法
US11575327B2 (en) 2021-02-09 2023-02-07 Aes Global Holdings Pte Ltd. Apparatus and method for synchronous rectifier control delay
CN113014104B (zh) * 2021-02-10 2022-06-14 华为数字能源技术有限公司 Dc/dc变换器的控制器及其控制系统
CN112688574B (zh) * 2021-03-18 2021-07-20 深圳市正浩创新科技股份有限公司 谐振变换器及其变极限频率控制方法
US20220399821A1 (en) * 2021-06-15 2022-12-15 Texas Instruments Incorporated Llc converter and control
KR20220168359A (ko) 2021-06-16 2022-12-23 이상윤 3d 위치정보를 이용한 고객 안전관리 시스템
CN113708644B (zh) * 2021-08-30 2023-12-08 易事特集团股份有限公司 一种简化的cllc谐振变换器同步整流方法及装置
CN116111854B (zh) * 2023-04-10 2023-08-01 深圳市联明电源有限公司 一种恒流驱动电路、恒流驱动器及恒流驱动控制方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366070B1 (en) 2001-07-12 2002-04-02 Analog Devices, Inc. Switching voltage regulator with dual modulation control scheme
US6618274B2 (en) 2001-10-09 2003-09-09 Innoveta Technologies Synchronous rectifier controller to eliminate reverse current flow in a DC/DC converter output
JP4217950B2 (ja) 2002-07-26 2009-02-04 富士電機デバイステクノロジー株式会社 Dc/dcコンバータの制御方法
KR100791717B1 (ko) * 2004-12-08 2008-01-03 산켄덴키 가부시키가이샤 다출력 전류 공진형 dc-dc 컨버터
KR100547289B1 (ko) 2005-05-18 2006-01-26 주식회사 피에스텍 간헐 모드로 동작하는 동기 정류형 직렬 공진 컨버터
TWI314808B (en) * 2006-09-06 2009-09-11 Delta Electronics Inc Resonance converter and driving method for synchronous rectifier thereof
US8923017B2 (en) 2007-09-12 2014-12-30 Texas Instruments (Cork) Limited Power converter implementing frequency smearing
KR101378568B1 (ko) * 2008-01-04 2014-03-27 페어차일드코리아반도체 주식회사 동기 정류 회로
KR101471133B1 (ko) * 2008-01-31 2014-12-09 페어차일드코리아반도체 주식회사 공진형 컨버터
JP5397024B2 (ja) 2008-09-16 2014-01-22 富士電機株式会社 スイッチング電源装置、スイッチング電源制御回路およびスイッチング電源装置の制御方法
JP5463759B2 (ja) 2008-10-24 2014-04-09 富士電機株式会社 スイッチング電源装置およびスイッチング電源制御回路
US8472833B2 (en) * 2009-12-21 2013-06-25 Canon Kabushiki Kaisha Power supply and image forming apparatus
JP5170117B2 (ja) 2010-01-18 2013-03-27 株式会社村田製作所 スイッチング制御回路及びスイッチング電源装置
US20110211370A1 (en) * 2010-03-01 2011-09-01 Texas Instruments Incorporated Systems and Methods of Resonant DC/DC Conversion
JP5867141B2 (ja) 2012-02-17 2016-02-24 ミツミ電機株式会社 スイッチング電源装置
JP5704124B2 (ja) 2012-06-14 2015-04-22 株式会社村田製作所 スイッチング電源装置
CN103138588A (zh) 2013-03-25 2013-06-05 苏州朗旭电子科技有限公司 使用数字控制的dc/dc转换器及其效率优化方法
KR20150095180A (ko) * 2014-02-11 2015-08-20 페어차일드코리아반도체 주식회사 스위치 제어 회로 및 이를 포함하는 공진형 컨버터
US9729072B2 (en) * 2014-02-11 2017-08-08 Fairchild Korea Semiconductor Ltd. Resonant converter and driving method thereof

Also Published As

Publication number Publication date
US9887633B2 (en) 2018-02-06
US20150229219A1 (en) 2015-08-13
KR20150095180A (ko) 2015-08-20
CN104836443B (zh) 2017-08-29
US20180294736A1 (en) 2018-10-11
KR20150095183A (ko) 2015-08-20
US20170310231A1 (en) 2017-10-26
US10608543B2 (en) 2020-03-31
CN104836443A (zh) 2015-08-12
US10014789B2 (en) 2018-07-03
KR20150095181A (ko) 2015-08-20

Similar Documents

Publication Publication Date Title
KR20150094552A (ko) Sr 음전류를 관리하기 위한 공진 컨버터 제어 기술
US10263518B2 (en) System and method for switched power supply with delay measurement
US11626871B2 (en) Control of secondary switches based on secondary winding voltage in a power converter
CN108282088B (zh) 谐波变换器的对称时移控制
KR101530358B1 (ko) 스위치 제어 장치 및 스위치 제어 방법
US9825453B2 (en) Protection mode control circuit, switch control circuit including the protection mode control circuit and power supply device including the switch control circuit
US9584035B2 (en) Dual-edge tracking synchronous rectifier control techniques for a resonant converter
US9287793B2 (en) Isolated power supply, control signal transmission circuit and method thereof
US20230246538A1 (en) Zero-voltage-switching control circuit, control method and switching power supply
KR20170002326A (ko) 영전압 스위칭을 위한 제어 회로 및 이를 포함하는 벅 컨버터
EP3696958B1 (en) Flyback converter and method of operating such a converter
US9647528B2 (en) Switch control circuit and resonant converter including the same
KR20160108228A (ko) 니어 밸리 스위칭을 갖는 전원 공급장치
EP2190109B1 (en) Control device for rectifiers of switching converters.
US9083247B2 (en) Synchronous rectifier control techniques for a resonant converter
US11664735B2 (en) Isolated power supply and control circuit thereof
US10389108B2 (en) Overcurrent protection in a power converter
CN108880259B (zh) 用于转换器的次级侧电流模式控制
JP5994740B2 (ja) スイッチング電源装置
US9729072B2 (en) Resonant converter and driving method thereof
US9444350B2 (en) DC-DC converter with LC resonance circuit and transformer
JP2011015477A (ja) 電流共振型コンバータ
KR101832986B1 (ko) 스위치 제어 장치 및 이를 포함하는 컨버터
KR20140072857A (ko) 컨버터 및 그 구동 방법

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right