KR20150088778A - 해상 구조물의 증발가스 처리 시스템 - Google Patents

해상 구조물의 증발가스 처리 시스템 Download PDF

Info

Publication number
KR20150088778A
KR20150088778A KR1020150104232A KR20150104232A KR20150088778A KR 20150088778 A KR20150088778 A KR 20150088778A KR 1020150104232 A KR1020150104232 A KR 1020150104232A KR 20150104232 A KR20150104232 A KR 20150104232A KR 20150088778 A KR20150088778 A KR 20150088778A
Authority
KR
South Korea
Prior art keywords
gas
evaporation gas
evaporation
storage tank
engine
Prior art date
Application number
KR1020150104232A
Other languages
English (en)
Other versions
KR101665505B1 (ko
Inventor
이준채
정제헌
문영식
김남수
최동규
장재호
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120143522A external-priority patent/KR20130139150A/ko
Priority claimed from KR1020130096787A external-priority patent/KR20140075574A/ko
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Publication of KR20150088778A publication Critical patent/KR20150088778A/ko
Application granted granted Critical
Publication of KR101665505B1 publication Critical patent/KR101665505B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0082Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/60Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/901Liquified gas content, cryogenic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

본 발명은 저장탱크에서 배출된 증발가스를 가압한 후 대부분은 선박의 고압 천연가스 분사 엔진의 연료로 사용하고 나머지 일부는 저장탱크로부터 새롭게 배출되는 증발가스의 냉열로 액화시켜 저장탱크로 복귀시킴으로써, 증발가스를 효율적으로 사용할 수 있도록 하는 해양 구조물의 증발가스 처리 시스템에 관한 것이다.
본 발명에 따르면, 액화천연가스를 저장하고 있는 저장탱크와, 상기 저장탱크에서 배출되는 증발가스를 연료로서 사용하는 고압 천연가스 분사 엔진을 갖춘 해양 구조물의 증발가스 처리 시스템으로서, 상기 저장탱크 내에서 발생한 증발가스를 공급받아 압축하는 압축기와; 상기 압축기에서 압축된 증발가스를 연료로서 공급받아 사용하는 상기 고압 천연가스 분사 엔진과; 상기 증발가스 중 상기 고압 천연가스 분사 엔진에 공급되지 않은 일부의 증발가스를 냉각시키기 위한 열교환기와; 상기 열교환기에서 냉각된 증발가스를 팽창시키면서 에너지를 생성하는 팽창기; 를 포함하는 것을 특징으로 하는 해양 구조물의 증발가스 처리 시스템이 제공된다.

Description

해상 구조물의 증발가스 처리 시스템 {SYSTEM FOR TREATING BOIL-OFF GAS OF A MARINE STRUCTURE}
본 발명은 고압 천연가스 분사 엔진을 탑재한 해상 구조물의 증발가스 처리 시스템에 관한 것으로서, 더욱 상세하게는 에너지 소모량이 많고 초기 설치비가 과도하게 소요되는 재액화 장치를 설치할 필요 없이, 저장탱크에서 배출된 증발가스를 가압한 후 대부분은 고압 천연가스 분사 엔진의 연료로 사용하고 나머지 일부는 저장탱크로부터 새롭게 배출되는 증발가스의 냉열로 액화시켜 저장탱크로 복귀시킴으로써, 증발가스를 효율적으로 사용할 수 있도록 하는 해양 구조물의 증발가스 처리 시스템에 관한 것이다.
근래, LNG(Liquefied Natural Gas)나 LPG(Liquefied Petroleum Gas) 등의 액화가스의 소비량이 전 세계적으로 급증하고 있는 추세이다. 액화가스는, 육상 또는 해상의 가스배관을 통해 가스 상태로 운반되거나, 또는, 액화된 상태로 액화가스 운반선에 저장된 채 원거리의 소비처로 운반된다. LNG나 LPG 등의 액화가스는 천연가스 혹은 석유가스를 극저온(LNG의 경우 대략 -163℃)으로 냉각하여 얻어지는 것으로 가스 상태일 때보다 그 부피가 대폭적으로 감소되므로 해상을 통한 원거리 운반에 매우 적합하다.
LNG 운반선 등의 액화가스 운반선은, 액화가스를 싣고 바다를 운항하여 육상 소요처에 이 액화가스를 하역하기 위한 것이며, 이를 위해, 액화가스의 극저온에 견딜 수 있는 저장탱크(흔히, '화물창'이라 함)를 포함한다.
이와 같이 극저온 상태의 액화가스를 저장할 수 있는 저장탱크가 마련된 해상 구조물의 예로서는 액화가스 운반선 이외에도 LNG RV (Regasification Vessel)와 같은 선박이나, LNG FSRU (Floating Storage and Regasification Unit), LNG FPSO (Floating, Production, Storage and Off-loading), BMPP (Barge Mounted Power Plant)와 같은 구조물 등을 들 수 있다.
LNG RV는 자력 항해 및 부유가 가능한 액화천연가스 운반선에 LNG 재기화 설비를 설치한 것이다. LNG FSRU는 육상으로부터 멀리 떨어진 해상에서 LNG 수송선으로부터 하역되는 액화천연가스를 저장탱크에 저장한 후 필요에 따라 액화천연가스를 기화시켜 육상 수요처에 공급하는 구조물이고, LNG FPSO는 채굴된 천연가스를 해상에서 정제한 후 직접 액화시켜 저장탱크 내에 저장하고, 필요시 이 저장탱크 내에 저장된 LNG를 LNG 수송선으로 옮겨싣기 위해 사용되는 구조물이다. 그리고 BMPP는 바지선에 발전설비를 탑재하여 해상에서 전기를 생산하기 위해 사용되는 구조물이다.
본 명세서에서 해상 구조물이란, LNG 운반선과 같은 액화가스 운반선, LNG RV 등을 비롯하여, LNG FPSO, LNG FSRU, BMPP 등의 구조물까지도 모두 포함하는 개념이다.
천연가스의 액화온도는 상압에서 약 -163℃의 극저온이므로, LNG는 그 온도가 상압에서 -163℃ 보다 약간만 높아도 증발된다. 종래의 LNG 운반선의 경우를 예를 들어 설명하면, LNG 운반선의 LNG 저장탱크는 단열처리가 되어 있기는 하지만, 외부의 열이 LNG에 지속적으로 전달되므로, LNG 운반선에 의해 LNG를 수송하는 도중에 LNG가 LNG 저장탱크 내에서 지속적으로 기화되어 LNG 저장 탱크 내에 증발가스(BOG; Boil-Off Gas)가 발생한다.
발생된 증발가스는 저장탱크 내의 압력을 증가시키며 선박의 요동에 따라 액화가스의 유동을 가속시켜 구조적인 문제를 야기시킬 수 있기 때문에, 증발가스의 발생을 억제할 필요가 있다.
종래, 액화가스 운반선의 저장탱크 내에서의 증발가스를 억제 및 처리하기 위해, 증발가스를 저장탱크의 외부로 배출시켜 소각해 버리는 방법, 증발가스를 저장탱크의 외부로 배출시켜 재액화 장치를 통해 재액화시킨 후 다시 저장탱크로 복귀시키는 방법, 선박의 추진기관에서 사용되는 연료로서 증발가스를 사용하는 방법, 저장탱크의 내부압력을 높게 유지함으로써 증발가스의 발생을 억제하는 방법 등이 단독으로 혹은 복합적으로 사용되고 있었다.
증발가스 재액화 장치가 탑재된 종래의 선박의 경우, 저장탱크의 적정 압력 유지를 위해 저장탱크 내부의 증발가스를 저장탱크 외부로 배출시켜 재액화 장치를 통해 재액화시키게 된다. 이때, 배출된 증발가스는 냉동 사이클을 포함하는 재액화 장치에서 초저온으로 냉각된 냉매, 예를 들어 질소, 혼합냉매 등과의 열교환을 통해 재액화된 후 저장탱크로 복귀된다.
종래 DFDE 추진시스템을 탑재한 LNG 운반선의 경우, 재액화 설비를 설치하지 않고 증발가스 압축기와 가열만을 통해 증발가스를 처리한 후 DFDE에 연료로서 공급하여 증발가스를 소비하였기 때문에 엔진의 연료 필요량이 증발가스의 발생량보다 적을 때는 증발가스를 가스연소기(GCU; Gas Combustion Unit)에서 연소시켜 버리거나 대기중으로 버릴(venting) 수밖에 없는 문제가 있었다.
그리고 종래 재액화 설비와 저속 디젤 엔진을 탑재한 LNG 운반선은 재액화 설비를 통해 BOG를 처리할 수 있음에도 불구하고 질소가스를 이용한 재액화 장치 운전의 복잡성으로 인해 전체 시스템의 제어가 복잡하고 상당한 양의 동력이 소모되는 문제가 있었다.
결국, 저장탱크로부터 자연적으로 발생하는 증발가스를 효율적으로 처리하기 위한 시스템 및 방법에 대한 연구 개발이 지속적으로 이루어질 필요가 있다.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로서, 저장탱크에서 배출된 증발가스를 가압한 후 일부는 고압 천연가스 분사 엔진의 연료로 사용하고 나머지는 저장탱크로부터 새롭게 배출되는 증발가스의 냉열로 액화시킴으로써, 증발가스를 효율적으로 사용할 수 있도록 하는 해상 구조물의 증발가스 처리 시스템을 제공하고자 하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 액화천연가스를 저장하고 있는 저장탱크와, 상기 저장탱크에서 배출되는 증발가스를 연료로서 사용하는 고압 천연가스 분사 엔진을 갖춘 해양 구조물의 증발가스 처리 시스템으로서, 상기 저장탱크 내에서 발생한 증발가스를 공급받아 압축하는 압축기와; 상기 압축기에서 압축된 증발가스를 연료로서 공급받아 사용하는 상기 고압 천연가스 분사 엔진과; 상기 증발가스 중 상기 고압 천연가스 분사 엔진에 공급되지 않은 일부의 증발가스를 냉각시키기 위한 열교환기와; 상기 열교환기에서 냉각된 증발가스를 팽창시키면서 에너지를 생성하는 팽창기; 를 포함하는 것을 특징으로 하는 해양 구조물의 증발가스 처리 시스템이 제공된다.
상기 열교환기에서는, 상기 압축된 증발가스 중 상기 고압 천연가스 분사 엔진에 공급되지 않은 일부의 증발가스를, 상기 저장탱크로부터 배출되어 상기 압축기로 이송되고 있는 증발가스와 열교환시켜 냉각시킬 수 있다.
본 발명에 따른 해양 구조물의 증발가스 처리 시스템은, 상기 팽창기를 통과하면서 감압되어 기액 혼합상태로 된 증발가스 중, 액체 성분만을 상기 저장탱크에 복귀시키기 위해 설치되는 기액분리기를 더 포함할 수 있다.
본 발명에 따른 해양 구조물의 증발가스 처리 시스템은, 상기 팽창기에 공급되는 증발가스를, 상기 팽창기를 통과하면서 감압되어 기액 혼합상태로 된 증발가스 중 기체 성분과 열교환시켜 냉각시키기 위해 설치되는 냉각기를 더 포함할 수 있다.
상기 기체 성분은 상기 저장탱크로부터 배출되어 상기 압축기로 공급되는 증발가스에 합류될 수 있다.
상기 압축기는, 복수개의 압축 실린더를 포함할 수 있다.
상기 열교환기로 보내지는 증발가스는, 상기 압축기에 포함된 복수개의 상기 압축 실린더 중에서 일부 또는 전부를 통과하여 압축된 증발가스일 수 있다.
본 발명에 따른 해양 구조물의 증발가스 처리 시스템은, 상기 압축기에 포함된 복수개의 상기 압축 실린더 중에서 일부의 압축 실린더를 통과하여 압축된 증발가스를 공급받아 사용하는 증발가스 소비수단을 더 포함할 수 있다.
본 발명에 따른 해양 구조물의 증발가스 처리 시스템은, 상기 열교환기에서 냉각된 증발가스를 팽창시킬 수 있도록 상기 팽창기와 병렬로 배치되는 팽창밸브를 더 포함할 수 있다.
본 발명에 따른 해양 구조물의 증발가스 처리 시스템은, 상기 저장탱크에 저장된 액화천연가스를 강제로 기화시켜 상기 압축기에 공급하기 위한 강제기화기를 더 포함할 수 있다.
본 발명에 따르면, 저장탱크에서 배출된 증발가스를 가압한 후 압축된 증발가스 중 일부는 고압 천연가스 분사 엔진에 연료로서 공급하고, 압축된 증발가스 중 나머지는 저장탱크로부터 새롭게 배출되어 압축되기 전의 증발가스가 갖는 냉열로 액화시킬 수 있는 증발가스 처리 시스템이 제공될 수 있다.
그에 따라 본 발명의 증발가스 처리 시스템에 의하면, 에너지 소모량이 많고 초기 설치비가 과도하게 소요되는 재액화 장치를 설치하지 않고도 저장탱크에서 발생되는 증발가스를 재액화시킬 수 있어, 재액화 장치에서 소모되는 에너지를 절감할 수 있게 된다.
또한 본 발명의 증발가스 처리 시스템에 의하면, LNG 운반선의 화물(즉, LNG) 운반시 발생되는 모든 증발가스를, 엔진의 연료로서 사용하거나 재액화시켜 다시 저장탱크로 복귀시켜 저장할 수 있기 때문에, GCU 등에서 소모하여 버려지는 증발가스의 양을 감소시켜 운송량을 증가시킬 수 있게 되고, 질소 등 별도의 냉매를 사용할 필요 없이 증발가스를 재액화하여 처리할 수 있어 에너지를 절약할 수 있게 된다.
또한 본 발명의 증발가스 처리 시스템에 의하면, 별도의 냉매를 사용하는 재액화 장치(즉, 질소냉매 냉동 사이클이나 혼합냉매 냉동 사이클 등)가 설치될 필요가 없으므로, 냉매를 공급 및 저장하기 위한 설비를 추가로 설치할 필요가 없어, 전체 시스템을 구성하기 위한 초기 설치비와 운용비용을 절감할 수 있다.
또한 본 발명의 증발가스 처리 시스템에 의하면, 압축된 후 열교환기에서 냉각 및 액화된 증발가스를 팽창기(Expander)에 의해 감압시키므로, 팽창시 에너지를 생성할 수 있어 버려지는 에너지를 재활용할 수 있다.
도 1은 본 발명의 바람직한 제1 실시예에 따른, 해양 구조물의 증발가스 처리 시스템을 도시한 개략 구성도,
도 2는 본 발명의 바람직한 제2 실시예에 따른, 해양 구조물의 증발가스 처리 시스템을 도시한 개략 구성도,
도 3 및 도 4는 본 발명의 바람직한 제1 실시예의 변형예에 따른, 해양 구조물의 증발가스 처리 시스템을 도시한 개략 구성도,
도 5는 본 발명의 바람직한 제3 실시예에 따른, 해양 구조물의 증발가스 처리 시스템을 도시한 개략 구성도,
도 6 및 도 7은 본 발명의 바람직한 제3 실시예의 변형예에 따른, 해양 구조물의 증발가스 처리 시스템을 도시한 개략 구성도이다.
일반적으로, 선박에서 배출되는 폐기가스 중 국제 해사 기구(International Maritime Organization)의 규제를 받고 있는 것은 질소산화물(NOx)과 황산화물(SOx)이며, 최근에는 이산화탄소(CO2)의 배출도 규제하려 하고 있다. 특히, 질소산화물(NOx)과 황산화물(SOx)의 경우, 1997년 해상오염 방지협약(MARPOL; The Prevention of Marine Pollution from Ships) 의정서를 통하여 제기되고, 8년이라는 긴 시간이 소요된 후 2005년 5월에 발효요건을 만족하여 현재 강제규정으로 이행되고 있다.
따라서, 이러한 규정을 충족시키기 위하여 질소산화물(NOx) 배출량을 저감하기 위한 다양한 방법들이 소개되고 있는데, 이러한 방법 중에서 LNG 운반선과 같은 선박을 위한 고압 천연가스 분사 엔진, 예를 들어 MEGI 엔진이 개발되어 사용되고 있다. ME-GI 엔진은, 동급출력의 디젤엔진에 비해 오염물질 배출량을 이산화탄소는 23%, 질소화합물은 80%, 황화합물은 95% 이상 줄일 수 있는 친환경적인 차세대 엔진으로서 각광받고 있다.
이와 같은 MEGI 엔진은 LNG를 극저온에 견디는 저장탱크에 저장하여 운반하도록 하는 LNG 운반선 등과 같은 선박이나 각종 플랜트에 설치(본 발명에 따른 증발가스 처리 시스템은, LNG 운반선, LNG RV 등의 선박을 비롯하여, LNG FPSO, LNG FSRU, BMPP 등의 플랜트에도 설치될 수 있다.)될 수 있으며, 이 경우 천연가스를 엔진의 연료로 사용하게 되며, 그 부하에 따라 엔진에 대하여 대략 150 ∼ 400 bara(절대압력) 정도의 고압의 가스 공급 압력이 요구된다.
MEGI 엔진은 추진을 위해 프로펠러에 직결되어 사용될 수 있으며, 이를 위해 MEGI 엔진은 저속으로 회전하는 2행정 엔진으로 이루어진다. 즉, MEGI 엔진은 저속 2행정 고압 천연가스 분사 엔진이다.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 또한 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
도 1에는 본 발명의 바람직한 제1 실시예에 따른, 해양 구조물의 증발가스 처리 시스템의 개략 구성도가 도시되어 있다.
도 1에는, 천연가스를 연료로 사용할 수 있는 고압 천연가스 분사 엔진, 즉 MEGI 엔진을 설치한 LNG 운반선에 본 발명의 증발가스 처리 시스템이 적용된 예가 도시되어 있지만, 본 발명의 증발가스 처리 시스템은 액화가스 저장탱크가 설치된 모든 종류의 선박, 즉 LNG 운반선, LNG RV 등을 비롯하여, LNG FPSO, LNG FSRU, BMPP와 같은 플랜트에 적용될 수 있다.
본 발명의 제1 실시예에 따른, 해양 구조물의 증발가스 처리 시스템에 따르면, 액화가스를 저장하는 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 공급라인(L1)을 따라 이송되어 압축기(13)에서 압축된 후 고압 천연가스 분사 엔진, 예컨대 MEGI 엔진에 공급된다. 증발가스는 압축기(13)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 천연가스 분사 엔진, 예컨대 MEGI 엔진에 연료로서 공급된다.
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(11) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 증발가스 배출라인(L1)을 통하여 저장탱크(11) 내부의 증발가스를 배출시킨다.
저장탱크(11)의 내부에는 필요시 LNG를 저장탱크의 외부로 배출시키기 위해 배출 펌프(12)가 설치된다.
압축기(13)는, 하나 이상의 압축 실린더(14)와, 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(15)를 포함할 수 있다. 압축기(13)는 예를 들어 증발가스를 약 400 bara까지 압축하도록 구성될 수 있다. 도 1에서는 5개의 압축 실린더(14)와 5개의 중간 냉각기(15)를 포함하는 다단 압축의 압축기(13)가 예시되어 있지만, 압축 실린더와 중간 냉각기의 개수는 필요에 따라 변경될 수 있다. 또한, 하나의 압축기 내에 복수개의 압축 실린더가 배열된 구조 이외에, 복수개의 압축기를 직렬로 연결한 구조를 가지도록 변경될 수도 있다.
압축기(13)에서 압축된 증발가스는 증발가스 공급라인(L1)을 통하여 고압 천연가스 분사 엔진에 공급되는데, 고압 천연가스 분사 엔진에서 필요로 하는 연료의 필요량에 따라 압축된 증발가스 전부를 고압 천연가스 분사 엔진에 공급할 수도 있고, 압축된 증발가스 중 일부만을 고압 천연가스 분사 엔진에 공급할 수도 있다.
또한, 본 발명의 제1 실시예에 따르면, 저장탱크(11)로부터 배출되어 압축기(13)에서 압축되는 증발가스(즉, 저장탱크에서 배출된 증발가스 전체)를 제1 스트림이라 할 때, 증발가스의 제1 스트림을 압축 후에 제2 스트림과 제3 스트림으로 나누어, 제2 스트림은 고압 천연가스 분사 엔진에 연료로서 공급하고 제3 스트림은 액화시켜 저장탱크로 복귀시키도록 구성할 수 있다.
이때, 제2 스트림은 증발가스 공급라인(L1)을 통해 고압 천연가스 분사 엔진에 공급되고, 제3 스트림은 증발가스 복귀라인(L3)을 통해 저장탱크(11)로 복귀된다. 압축된 증발가스의 제3 스트림을 냉각 및 액화시킬 수 있도록 증발가스 복귀라인(L3)에는 열교환기(21)가 설치된다. 열교환기(21)에서는 압축된 증발가스의 제3 스트림을 저장탱크(11)로부터 배출된 후 압축기(13)로 공급되는 증발가스의 제1 스트림과 열교환시킨다.
압축되기 전의 증발가스의 제1 스트림의 유량이 제3 스트림의 유량보다 많기 때문에, 압축된 증발가스의 제3 스트림은 압축되기 전의 증발가스의 제1 스트림으로부터 냉열을 공급받아 액화될 수 있다. 이와 같이 열교환기(21)에서는 저장탱크(11)로부터 배출된 직후의 극저온의 증발가스와 압축기(13)에서 압축된 고압 상태의 증발가스를 열교환시켜 이 고압 상태의 증발가스를 냉각 및 액화시킨다.
열교환기(21)에서 냉각되어 적어도 부분적으로 액화된 증발가스(LBOG)는 팽창밸브(22)를 통과하면서 감압되어 기액 혼합상태로 기액분리기(23)에 공급된다. 팽창밸브(22)를 통과하면서 LBOG는 대략 상압으로 감압될 수 있다. 액화된 증발가스는 기액분리기(23)에서 기체와 액체 성분이 분리되어, 액체성분, 즉 LNG는 증발가스 복귀라인(L3)을 통해 저장탱크(11)로 이송되고, 기체성분, 즉 증발가스는 증발가스 재순환라인(L5)을 통해 저장탱크(11)로부터 배출되어 압축기(13)로 공급되는 증발가스에 합류된다. 더욱 상세하게는, 증발가스 재순환라인(L5)은 기액분리기(23)의 상단으로부터 연장되어 증발가스 공급라인(L1)에서 열교환기(21)보다 상류측에 연결된다.
위에서는 설명의 편의상 열교환기(21)가 증발가스 복귀라인(L3)에 설치된 것으로 설명하였으나, 실제로 열교환기(21)에서는 증발가스 공급라인(L1)을 통해 이송되고 있는 증발가스의 제1 스트림과 증발가스 복귀라인(L3)을 통해 이송되고 있는 증발가스의 제3 스트림 사이에 열교환이 이루어지고 있으므로, 열교환기(21)는 증발가스 공급라인(L1)에 설치된 것이기도 하다.
증발가스 재순환라인(L5)에는 또 다른 팽창밸브(24)가 더 설치될 수 있으며, 그에 따라 기액분리기(23)로부터 배출된 기체 성분은 팽창밸브(24)를 통과하면서 감압될 수 있다. 또한 열교환기(21)에서 액화된 후 기액분리기(23)로 공급되는 증발가스의 제3 스트림과 기액분리기(23)에서 분리되어 증발가스 재순환라인(L5)을 통해 이송되는 기체 성분을 열교환시켜 제3 스트림을 더욱 냉각시킬 수 있도록 증발가스 재순환라인(L5)에는 냉각기(25)가 설치된다. 즉, 냉각기(25)에서는 고압 액체 상태의 증발가스를 저압 극저온 기체 상태의 천연가스로 추가 냉각시킨다.
여기에서, 설명의 편의상 냉각기(25)가 증발가스 재순환라인(L5)에 설치된 것으로 설명하였으나, 실제로 냉각기(25)에서는 증발가스 복귀라인(L3)을 통해 이송되고 있는 증발가스의 제3 스트림과 증발가스 재순환라인(L5)을 통해 이송되고 있는 기체 성분 사이에 열교환이 이루어지고 있으므로, 냉각기(25)는 증발가스 복귀라인(L3)에 설치된 것이기도 하다.
한편, 저장탱크(11)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 많아 잉여의 증발가스가 발생할 것으로 예상되는 경우에는, 압축기(13)에서 압축된 혹은 단계적으로 압축되고 있는 도중의 증발가스를, 증발가스 분기라인(L7, L8)을 통하여 분기시켜 증발가스 소비수단에서 사용한다. 증발가스 소비수단으로서는 MEGI 엔진에 비해 상대적으로 낮은 압력의 천연가스를 연료로서 사용할 수 있는 GCU, DF Generator(DFDG), 가스 터빈 등이 사용될 수 있다.
이상 설명한 바와 같은 본 발명의 제1 실시예에 따른 증발가스 처리 시스템 및 처리 방법에 의하면, LNG 운반선의 화물(즉, LNG) 운반시 발생되는 증발가스를, 엔진의 연료로서 사용하거나 재액화시켜 다시 저장탱크로 복귀시켜 저장할 수 있기 때문에, GCU 등에서 소모하여 버려지는 증발가스의 양을 감소시키거나 없게 할 수 있게 되고, 질소 등 별도의 냉매를 사용하는 재액화 장치를 설치할 필요 없이 증발가스를 재액화하여 처리할 수 있게 된다.
또한 본 발명의 제1 실시예에 따른 증발가스 처리 시스템 및 처리 방법에 의하면, 별도의 냉매를 사용하는 재액화 장치(즉, 질소냉매 냉동 사이클이나 혼합냉매 냉동 사이클 등)가 설치될 필요가 없으므로, 냉매를 공급 및 저장하기 위한 설비를 추가로 설치할 필요가 없어, 전체 시스템을 구성하기 위한 초기 설치비와 운용비용을 절감할 수 있다.
도 2에는 본 발명의 바람직한 제2 실시예에 따른 해양 구조물의 증발가스 처리 시스템의 개략 구성도가 도시되어 있다.
제2 실시예에 따른 증발가스 처리 시스템은, MEGI 엔진이나 DF Generator 등에서 요구하는 증발가스의 양이 자연적으로 발생하는 증발가스의 양보다 많을 경우, LNG를 강제로 기화시켜 사용할 수 있도록 구성된다는 점에서 제1 실시예의 증발가스 처리 시스템과 상이하다. 이하에서는 제1 실시예의 증발가스 처리 시스템과의 차이점을 더욱 상세하게 설명한다.
본 발명의 제2 실시예에 따른, 해양 구조물의 증발가스 처리 시스템에 따르면, 액화가스를 저장하는 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 공급라인(L1)을 따라 이송되어 압축기(13)에서 압축된 후 고압 천연가스 분사 엔진, 예컨대 MEGI 엔진에 공급되거나, 압축기(13)에서 다단-압축되는 도중에 DF 엔진(DF Generator)에 공급되어 연료로서 사용된다는 점에 있어서는 제1 실시예와 마찬가지이다.
다만, 제2 실시예의 증발가스 처리 시스템은, 고압 천연가스 분사 엔진과 DF 엔진에서 요구하는 연료로서의 증발가스의 양이 저장탱크(11)에서 자연적으로 발생하는 증발가스의 양보다 많을 경우, 저장탱크(11)에 저장된 LNG를 강제기화기(31)에서 기화시켜 압축기(13)에 공급할 수 있도록 강제기화 라인(L11)을 구비한다.
제2 실시예에서와 같이 강제기화 라인(L11)을 구비하면, 저장탱크에 저장되어 있는 LNG의 양이 적어 증발가스의 발생량이 적거나, 각종 엔진에서 요구하는 연료로서의 증발가스의 양이 자연적으로 발생하는 증발가스의 양보다 많은 경우에도 안정적으로 연료를 공급할 수 있게 된다.
도 1 및 도 2에는 2단 압축된 BOG를 분기시켜 그 일부를 증발가스 분기라인(L8)을 통해 DF 엔진으로 공급하는 것으로 도시하고 있지만, 이는 예시일 뿐이며, 1단 혹은 3 내지 5단 압축된 BOG를 분기시켜 증발가스 분기라인을 통해 DF 엔진 등으로 공급할 수 있도록 시스템을 구성할 수도 있다. 이때 압축기로서는 예를 들어 부카르트(Burckhardt) 사의 압축기를 사용할 수 있다. 부카르트 사의 압축기는 총 5개의 실린더를 포함하며, 전단 3개의 실린더는 무급유 윤활(oil-free) 방식으로 동작하고 후단 2개의 실린더는 급유 윤활(oil-lubricated) 방식으로 동작하는 것으로 알려져 있다. 따라서, 부카르트 사의 압축기를 BOG를 압축시키는 압축기(13)로 사용할 경우, 4단 이상에서 BOG를 분기시킬 때는 오일 필터를 거쳐 BOG가 이송되도록 구성할 필요가 있으나 3단 이하에서 분기시킬 때는 오일 필터를 사용할 필요가 없다는 점에서 유리할 수 있다.
도 3 및 도 4에는 본 발명의 바람직한 제1 실시예의 변형예에 따른, 해양 구조물의 증발가스 처리 시스템을 도시한 개략 구성도가 도시되어 있다.
도 1 및 도 2에 도시된 제1 및 제2 실시예에는 압축된 BOG를 열교환기(21)에 공급하기 위한 증발가스 복귀라인(L3)이 압축기(13)의 후단에서 분기되는 것으로 예시하고 있지만, 증발가스 복귀라인(L3)은 전술한 증발가스 분기라인(L7, L8)과 마찬가지로 압축기(13)에서 단계적으로 압축되고 있는 도중의 증발가스를 분기시킬 수 있도록 설치될 수 있다.
도 3에는 2개의 실린더에 의해 2단 압축된 증발가스를 분기시키는 변형예가 도시되어 있고, 도 4에는 3개의 실린더에 의해 3단 압축된 증발가스를 분기시키는 변형예가 도시되어 있다. 특히, 5개의 실린더를 포함하되 전단 3개의 실린더는 무급유 윤활(oil-free) 방식으로 동작하고 후단 2개의 실린더는 급유 윤활(oil-lubricated) 방식으로 동작하는 부카르트 사의 압축기를 사용할 경우, 압축기 후단이나 4단 이상에서 BOG를 분기시킬 때는 오일 필터를 거쳐 BOG가 이송되도록 구성할 필요가 있으나 3단 이하에서 분기시킬 때는 오일 필터를 사용할 필요가 없다는 점에서 유리할 수 있다.
전술한 바와 같이, MEGI 엔진에서 요구하는 연료가스의 압력은 150 ∼ 400 bara(절대압력) 정도의 고압이다. 본 명세서에서 "고압"이란, MEGI 엔진에서 요구하는 150 ∼ 400 bara(절대압력) 정도의 압력을 의미하는 것으로 간주되어야 할 것이다.
본 발명에 따른 증발가스 처리 시스템에 있어서, 필요에 따라서는, BOG 발생량이 ME-GI 엔진에서의 연료 필요량보다 적은 경우에도 압축기를 통해 BOG를 ME-GI 엔진에 연료로서 공급하면서 부족한 양만큼 LNG를 강제기화시켜 공급할 수도 있다. 한편, 저장탱크에 수용된 LNG가 매우 적은 밸러스트 상태에서는 BOG의 발생량이 적으므로, BOG를 발생할 때마다 배출시켜 소비하는 대신, 저장탱크가 일정한 압력에 도달할 때까지 BOG를 배출시키지 않고 모아두었다가 간헐적으로 배출시켜 DF 엔진 혹은 ME-GI 엔진에 연료로서 공급할 수도 있다.
도 5에는 본 발명의 바람직한 제3 실시예에 따른, 해양 구조물의 증발가스 처리 시스템의 개략 구성도가 도시되어 있다.
본 발명의 제3 실시예에 따른, 해양 구조물의 증발가스 처리 시스템에 따르면, 액화가스를 저장하는 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 공급라인(L1)을 따라 이송되어 압축기(13)에서 압축된 후 고압 천연가스 분사 엔진, 예컨대 MEGI 엔진에 공급된다. 증발가스는 압축기(13)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 천연가스 분사 엔진, 예컨대 MEGI 엔진에 연료로서 공급된다.
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(11) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 증발가스 배출라인(L1)을 통하여 저장탱크(11) 내부의 증발가스를 배출시킨다.
저장탱크(11)의 내부에는 필요시 LNG를 저장탱크의 외부로 배출시키기 위해 배출 펌프(12)가 설치된다.
압축기(13)는, 하나 이상의 압축 실린더(14)와, 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(15)를 포함할 수 있다. 압축기(13)는 예를 들어 증발가스를 약 400 bara까지 압축하도록 구성될 수 있다. 도 1에서는 5개의 압축 실린더(14)와 5개의 중간 냉각기(15)를 포함하는 다단 압축의 압축기(13)가 예시되어 있지만, 압축 실린더와 중간 냉각기의 개수는 필요에 따라 변경될 수 있다. 또한, 하나의 압축기 내에 복수개의 압축 실린더가 배열된 구조 이외에, 복수개의 압축기를 직렬로 연결한 구조를 가지도록 변경될 수도 있다.
압축기(13)에서 압축된 증발가스는 증발가스 공급라인(L1)을 통하여 고압 천연가스 분사 엔진에 공급되는데, 고압 천연가스 분사 엔진에서 필요로 하는 연료의 필요량에 따라 압축된 증발가스 전부를 고압 천연가스 분사 엔진에 공급할 수도 있고, 압축된 증발가스 중 일부만을 고압 천연가스 분사 엔진에 공급할 수도 있다.
또한, 본 발명의 제3 실시예에 따르면, 저장탱크(11)로부터 배출되어 압축기(13)에서 압축되는 증발가스(즉, 저장탱크에서 배출된 증발가스 전체)를 제1 스트림이라 할 때, 증발가스의 제1 스트림을 압축 후에 제2 스트림과 제3 스트림으로 나누어, 제2 스트림은 고압 천연가스 분사 엔진에 연료로서 공급하고 제3 스트림은 액화시켜 저장탱크로 복귀시키도록 구성할 수 있다.
이때, 제2 스트림은 증발가스 공급라인(L1)을 통해 고압 천연가스 분사 엔진에 공급되고, 제3 스트림은 증발가스 복귀라인(L3)을 통해 저장탱크(11)로 복귀된다. 압축된 증발가스의 제3 스트림을 냉각 및 액화시킬 수 있도록 증발가스 복귀라인(L3)에는 열교환기(21)가 설치된다. 열교환기(21)에서는 압축된 증발가스의 제3 스트림을 저장탱크(11)로부터 배출된 후 압축기(13)로 공급되는 증발가스의 제1 스트림과 열교환시킨다.
압축되기 전의 증발가스의 제1 스트림의 유량이 제3 스트림의 유량보다 많기 때문에, 압축된 증발가스의 제3 스트림은 압축되기 전의 증발가스의 제1 스트림으로부터 냉열을 공급받아 액화될 수 있다. 이와 같이 열교환기(21)에서는 저장탱크(11)로부터 배출된 직후의 극저온의 증발가스와 압축기(13)에서 압축된 고압 상태의 증발가스를 열교환시켜 이 고압 상태의 증발가스를 냉각 및 액화시킨다.
본 제3 실시예에 따르면, 열교환기(21)에서 냉각되어 적어도 부분적으로 액화된 증발가스(LBOG)는, 제1 및 제2 실시예에서와 같은 팽창밸브 대신에, 팽창기(Expander)(52)를 통과하면서 감압되어 기액 혼합상태로 기액분리기(23)에 공급된다.
팽창기(52)는 고압의 액화된 증발가스를 저압으로 팽창시키면서 에너지를 생산한다. 팽창기(52)를 통과하면서 LBOG는 대략 상압으로 감압될 수 있다. 액화된 증발가스는 기액분리기(23)에서 기체와 액체 성분이 분리되어, 액체성분, 즉 LNG는 증발가스 복귀라인(L3)을 통해 저장탱크(11)로 이송되고, 기체성분, 즉 증발가스는 증발가스 재순환라인(L5)을 통해 저장탱크(11)로부터 배출되어 압축기(13)로 공급되는 증발가스에 합류된다. 더욱 상세하게는, 증발가스 재순환라인(L5)은 기액분리기(23)의 상단으로부터 연장되어 증발가스 공급라인(L1)에서 열교환기(21)보다 상류측에 연결된다.
위에서는 설명의 편의상 열교환기(21)가 증발가스 복귀라인(L3)에 설치된 것으로 설명하였으나, 실제로 열교환기(21)에서는 증발가스 공급라인(L1)을 통해 이송되고 있는 증발가스의 제1 스트림과 증발가스 복귀라인(L3)을 통해 이송되고 있는 증발가스의 제3 스트림 사이에 열교환이 이루어지고 있으므로, 열교환기(21)는 증발가스 공급라인(L1)에 설치된 것이기도 하다.
증발가스 재순환라인(L5)에는 팽창밸브(24)가 더 설치될 수 있으며, 그에 따라 기액분리기(23)로부터 배출된 기체 성분은 팽창밸브(24)를 통과하면서 감압될 수 있다.
또한 열교환기(21)에서 액화된 후 기액분리기(23)로 공급되는 증발가스의 제3 스트림과 기액분리기(23)에서 분리되어 증발가스 재순환라인(L5)을 통해 이송되는 기체 성분을 열교환시켜 제3 스트림을 더욱 냉각시킬 수 있도록 증발가스 재순환라인(L5)에는 열교환기로서의 냉각기(25)가 설치될 수 있다. 즉, 냉각기(25)에서는 고압 액체 상태의 증발가스를 저압 극저온 기체 상태의 천연가스로 추가 냉각시킨다.
여기에서, 설명의 편의상 냉각기(25)가 증발가스 재순환라인(L5)에 설치된 것으로 설명하였으나, 실제로 냉각기(25)에서는 증발가스 복귀라인(L3)을 통해 이송되고 있는 증발가스의 제3 스트림과 증발가스 재순환라인(L5)을 통해 이송되고 있는 기체 성분 사이에 열교환이 이루어지고 있으므로, 냉각기(25)는 증발가스 복귀라인(L3)에 설치된 것이기도 하다.
한편, 저장탱크(11)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 많아 잉여의 증발가스가 발생할 것으로 예상되는 경우에는, 압축기(13)에서 압축된 혹은 단계적으로 압축되고 있는 도중의 증발가스를, 증발가스 분기라인(L7, L8)을 통하여 분기시켜 증발가스 소비수단에서 사용할 수 있다. 증발가스 소비수단으로서는 MEGI 엔진에 비해 상대적으로 낮은 압력의 천연가스를 연료로서 사용할 수 있는 GCU, DF Generator(DFDG), 가스 터빈 등이 사용될 수 있다.
이상 설명한 바와 같은 본 발명의 제3 실시예에 따른 증발가스 처리 시스템 및 처리 방법에 의하면, 제1 실시예에 따른 증발가스 처리 시스템 및 처리 방법과 마찬가지로, LNG 운반선의 화물(즉, LNG) 운반시 발생되는 증발가스를, 엔진의 연료로서 사용하거나 재액화시켜 다시 저장탱크로 복귀시켜 저장할 수 있기 때문에, GCU 등에서 소모하여 버려지는 증발가스의 양을 감소시키거나 없게 할 수 있게 되고, 질소 등 별도의 냉매를 사용하는 재액화 장치를 설치할 필요 없이 증발가스를 재액화하여 처리할 수 있게 된다.
본 발명의 제3 실시예에 따른 증발가스 처리 시스템 및 처리 방법이 LNG 운반선이나 LNG RV와 같은 선박 이외에 LNG FPSO, LNG FSRU, BMPP와 같은 플랜트에 적용된 경우에도, LNG를 저장하고 있는 저장탱크에서 발생되는 증발가스를 엔진(추진을 위한 엔진뿐만 아니라, 발전용으로 사용되는 엔진 등도 포함됨)에서 연료로서 사용하거나 재액화시킬 수 있기 때문에, 낭비되는 증발가스를 감소시키거나 없앨 수 있다.
또한 본 발명의 제3 실시예에 따른 증발가스 처리 시스템 및 처리 방법에 의하면, 별도의 냉매를 사용하는 재액화 장치(즉, 질소냉매 냉동 사이클이나 혼합냉매 냉동 사이클 등)가 설치될 필요가 없으므로, 냉매를 공급 및 저장하기 위한 설비를 추가로 설치할 필요가 없어, 전체 시스템을 구성하기 위한 초기 설치비와 운용비용을 절감할 수 있다.
도 6 및 도 7에는 본 발명의 바람직한 제3 실시예의 변형예에 따른, 해양 구조물의 증발가스 처리 시스템을 도시한 개략 구성도가 도시되어 있다.
도 5에 도시된 제3 실시예에는 압축된 BOG를 열교환기(21)에 공급하기 위한 증발가스 복귀라인(L3)이 압축기(13)의 후단에서 분기되는 것으로 예시하고 있다. 하지만 도 6 및 도 7에 도시된 바와 같이, 제3 실시예의 변형예에 따르면, 전술한 증발가스 분기라인(L7, L8) 혹은 도 3 및 도 4를 참조하여 설명한 제1 실시예의 변형예에서와 마찬가지로, 증발가스 복귀라인(L3)은 압축기(13)에서 단계적으로 압축되고 있는 도중의 증발가스를 분기시킬 수 있도록 설치될 수 있다.
도 6에는 2개의 실린더에 의해 2단 압축된 증발가스를 분기시키는 변형예가 도시되어 있고, 도 7에는 3개의 실린더에 의해 3단 압축된 증발가스를 분기시키는 변형예가 도시되어 있다. 특히, 5개의 실린더를 포함하되 전단 3개의 실린더는 무급유 윤활(oil-free) 방식으로 동작하고 후단 2개의 실린더는 급유 윤활(oil-lubricated) 방식으로 동작하는 부카르트 사의 압축기를 사용할 경우, 압축기 후단이나 4단 이상에서 BOG를 분기시킬 때는 오일 필터를 거쳐 BOG가 이송되도록 구성할 필요가 있으나 3단 이하에서 분기시킬 때는 오일 필터를 사용할 필요가 없다는 점에서 유리할 수 있다.
또한, 도 6에 도시된 제3 실시예의 제1 변형예를 참조하면, 제3 실시예에 따른 증발가스 처리 시스템은, 열교환기(21)를 통과하면서 냉각 및 액화된 증발가스를 추가적으로 냉각하기 위한 열교환기로서의 냉각기(25)(도 5 참조)가 생략되도록 변형될 수 있다.
또한, 도 7에 도시된 제3 실시예의 제2 변형예를 참조하면, 제3 실시예에 따른 증발가스 처리 시스템은, 팽창기(52)와 팽창밸브(55)가 병렬로 배치되도록 변형될 수 있다. 이때, 병렬로 배치된 팽창기(52) 및 팽창밸브(55)는, 열교환기(21)와 기액 분리기(23) 사이에 위치된다. 팽창밸브(55)를 병렬로 설치하기 위해서, 그리고 필요시 팽창기(52) 혹은 팽창밸브(55)만을 사용하기 위해서, 열교환기(21)와 기액 분리기(23) 사이의 증발가스 복귀라인(L3)으로부터 분기하여 팽창기(52)를 우회하는 바이패스 라인(L31)이 설치된다. 팽창기(52)만을 사용하여 액화된 증발가스를 팽창시킬 경우에는 팽창밸브(55)를 폐쇄하고, 팽창밸브(55)만을 사용하여 액화된 증발가스를 팽창시킬 경우에는 증발가스 복귀라인(L3)에서 팽창기(52)의 전단과 후단에 각각 설치된 개폐밸브(53, 54)를 폐쇄한다.
본 발명에 따르면, 저장탱크의 용량이 커져 증발가스의 발생량은 많아지고 엔진의 성능이 개선되어 필요한 연료량은 감소하는 최근의 추세에도 불구하고, 엔진의 연료로서 사용하고 남는 증발가스는 재액화시켜 다시 저장탱크로 복귀시킬 수 있기 때문에 증발가스의 낭비를 막을 수 있게 된다.
특히 본 발명에 따른 증발가스 처리 시스템 및 처리 방법에 의하면, 별도의 냉매를 사용하는 재액화 장치(즉, 질소냉매 냉동 사이클이나 혼합냉매 냉동 사이클 등)가 설치될 필요가 없으므로, 냉매를 공급 및 저장하기 위한 설비를 추가로 설치할 필요가 없어, 전체 시스템을 구성하기 위한 초기 설치비와 운용비용을 절감할 수 있다.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.
11 : 저장탱크 12 : 배출펌프
13 : 압축기 14 : 압축 실린더
15 : 중간 냉각기 21 : 열교환기
22, 24, 55 : 팽창밸브 23 : 기액분리기
25 : 냉각기 31 : 강제기화기
52 : 팽창기 53, 54 : 개폐밸브
L1 : 증발가스 공급라인 L3 : 증발가스 복귀라인
L5 : 증발가스 재순환라인 L7, L8 : 증발가스 분기라인
L11 : 강제기화 라인 L31 : 바이패스 라인

Claims (1)

  1. 증발가스 처리 시스템.
KR1020150104232A 2012-12-11 2015-07-23 해상 구조물의 증발가스 처리 시스템 KR101665505B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020120143522 2012-12-11
KR1020120143522A KR20130139150A (ko) 2012-12-11 2012-12-11 해상 구조물의 증발가스 처리 시스템 및 처리 방법
KR1020130096787A KR20140075574A (ko) 2012-12-11 2013-08-14 선박의 증발가스 부분재액화 시스템

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140178809A Division KR20150006815A (ko) 2012-12-11 2014-12-11 해상 구조물의 증발가스 처리 시스템

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160101398A Division KR20160099522A (ko) 2012-12-11 2016-08-09 해상 구조물의 증발가스 처리 시스템

Publications (2)

Publication Number Publication Date
KR20150088778A true KR20150088778A (ko) 2015-08-03
KR101665505B1 KR101665505B1 (ko) 2016-10-13

Family

ID=75473329

Family Applications (6)

Application Number Title Priority Date Filing Date
KR1020130116069A KR101534237B1 (ko) 2012-12-11 2013-09-30 해상 구조물의 증발가스 처리 시스템
KR1020140034689A KR101566267B1 (ko) 2012-12-11 2014-03-25 해상 구조물의 증발가스 처리 시스템
KR1020140178809A KR20150006815A (ko) 2012-12-11 2014-12-11 해상 구조물의 증발가스 처리 시스템
KR1020150104232A KR101665505B1 (ko) 2012-12-11 2015-07-23 해상 구조물의 증발가스 처리 시스템
KR1020160101398A KR20160099522A (ko) 2012-12-11 2016-08-09 해상 구조물의 증발가스 처리 시스템
KR1020190158200A KR20190135982A (ko) 2012-12-11 2019-12-02 해상 구조물의 증발가스 처리 시스템

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020130116069A KR101534237B1 (ko) 2012-12-11 2013-09-30 해상 구조물의 증발가스 처리 시스템
KR1020140034689A KR101566267B1 (ko) 2012-12-11 2014-03-25 해상 구조물의 증발가스 처리 시스템
KR1020140178809A KR20150006815A (ko) 2012-12-11 2014-12-11 해상 구조물의 증발가스 처리 시스템

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020160101398A KR20160099522A (ko) 2012-12-11 2016-08-09 해상 구조물의 증발가스 처리 시스템
KR1020190158200A KR20190135982A (ko) 2012-12-11 2019-12-02 해상 구조물의 증발가스 처리 시스템

Country Status (1)

Country Link
KR (6) KR101534237B1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170022657A (ko) * 2015-08-21 2017-03-02 대우조선해양 주식회사 증발가스 처리 장치 및 방법
WO2017039271A1 (ko) * 2015-09-01 2017-03-09 한국가스공사 증발가스의 재액화 방법
WO2017209492A1 (ko) * 2016-06-03 2017-12-07 현대중공업 주식회사 가스 처리 시스템 및 이를 포함하는 선박
KR20170137596A (ko) * 2016-06-03 2017-12-13 현대중공업 주식회사 가스 처리 시스템 및 이를 포함하는 선박
KR20180106153A (ko) * 2017-03-17 2018-10-01 대우조선해양 주식회사 선박

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675878B1 (ko) * 2015-07-08 2016-11-14 대우조선해양 주식회사 증발가스 재액화 장치 및 방법
KR102418126B1 (ko) * 2015-09-11 2022-07-08 대우조선해양 주식회사 가스 압축 시스템 및 방법
KR102099999B1 (ko) * 2015-12-28 2020-04-10 현대중공업 주식회사 액화가스 처리 시스템
KR102132517B1 (ko) * 2017-06-13 2020-07-09 현대중공업 주식회사 증발가스 재액화 시스템 및 선박
KR101973042B1 (ko) * 2017-07-31 2019-08-16 대우조선해양 주식회사 증발가스 재액화 시스템 및 증발가스 재액화 시스템 내의 윤활유 배출 방법, 그리고 엔진의 연료 공급 방법
KR102019271B1 (ko) * 2017-12-28 2019-11-04 대우조선해양 주식회사 선박 연료가스 공급 시스템의 부분 재액화 시스템용 열교환기 세정 장치 및 방법
KR102442558B1 (ko) * 2018-05-30 2022-09-13 대우조선해양 주식회사 액화천연가스 재기화 시스템 및 방법
KR102538934B1 (ko) * 2018-07-20 2023-06-01 대우조선해양 주식회사 선박용 증발가스 재액화 시스템 및 방법
KR102106621B1 (ko) * 2018-07-31 2020-05-28 삼성중공업 주식회사 증발가스 재액화 시스템 및 증발가스 재액화 방법
CN111535943A (zh) * 2020-05-08 2020-08-14 河南柴油机重工有限责任公司 一种燃气发电机组主管路稳压控制装置、系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020069390A (ko) * 2001-02-26 2002-09-04 가부시키가이샤 고베 세이코쇼 저온액화가스의 보일오프가스 처리방법 및 장치
KR101106088B1 (ko) * 2011-03-22 2012-01-18 대우조선해양 주식회사 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매
KR20120049731A (ko) * 2010-11-09 2012-05-17 삼성중공업 주식회사 연료가스 공급장치 및 방법
KR20120107831A (ko) * 2011-03-22 2012-10-04 대우조선해양 주식회사 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1472533A (en) * 1973-06-27 1977-05-04 Petrocarbon Dev Ltd Reliquefaction of boil-off gas from a ships cargo of liquefied natural gas
KR100684902B1 (ko) * 2005-05-30 2007-02-20 삼성전자주식회사 온도 조절 장치 및 이를 가지는 기판 처리 장치, 그리고상기 장치의 온도를 제어하는 방법
JP2006348752A (ja) * 2005-06-13 2006-12-28 Kawasaki Shipbuilding Corp 液化天然ガス運搬船の蒸発ガス供給システム
KR20090025514A (ko) * 2007-09-06 2009-03-11 신영중공업주식회사 Lng 운반선에 대한 bog 재액화 시스템
KR101049229B1 (ko) * 2008-10-22 2011-07-14 대우조선해양 주식회사 Lng 운반선의 연료가스 공급 장치 및 방법
KR101447511B1 (ko) * 2012-04-02 2014-10-08 대우조선해양 주식회사 연료가스 공급 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020069390A (ko) * 2001-02-26 2002-09-04 가부시키가이샤 고베 세이코쇼 저온액화가스의 보일오프가스 처리방법 및 장치
KR20120049731A (ko) * 2010-11-09 2012-05-17 삼성중공업 주식회사 연료가스 공급장치 및 방법
KR101106088B1 (ko) * 2011-03-22 2012-01-18 대우조선해양 주식회사 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매
KR20120107831A (ko) * 2011-03-22 2012-10-04 대우조선해양 주식회사 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170022657A (ko) * 2015-08-21 2017-03-02 대우조선해양 주식회사 증발가스 처리 장치 및 방법
WO2017039271A1 (ko) * 2015-09-01 2017-03-09 한국가스공사 증발가스의 재액화 방법
WO2017209492A1 (ko) * 2016-06-03 2017-12-07 현대중공업 주식회사 가스 처리 시스템 및 이를 포함하는 선박
KR20170137596A (ko) * 2016-06-03 2017-12-13 현대중공업 주식회사 가스 처리 시스템 및 이를 포함하는 선박
KR20180106153A (ko) * 2017-03-17 2018-10-01 대우조선해양 주식회사 선박

Also Published As

Publication number Publication date
KR101665505B1 (ko) 2016-10-13
KR101534237B1 (ko) 2015-07-06
KR20140075649A (ko) 2014-06-19
KR101566267B1 (ko) 2015-11-05
KR20190135982A (ko) 2019-12-09
KR20160099522A (ko) 2016-08-22
KR20140075578A (ko) 2014-06-19
KR20150006815A (ko) 2015-01-19

Similar Documents

Publication Publication Date Title
KR101665505B1 (ko) 해상 구조물의 증발가스 처리 시스템
KR101640768B1 (ko) 선박의 제조방법
KR101386543B1 (ko) 선박의 증발가스 처리 시스템
KR101356003B1 (ko) 선박의 증발가스 처리 시스템
KR101512691B1 (ko) 탄화수소가스의 액화 시스템 및 방법
KR102227891B1 (ko) 증발가스 처리 시스템
JP2016173184A5 (ko)
KR20140075574A (ko) 선박의 증발가스 부분재액화 시스템
KR101519537B1 (ko) 선박의 증발가스 처리 시스템
KR101356004B1 (ko) 선박의 증발가스 처리 방법
KR20140075570A (ko) 해상 구조물의 증발가스 처리 시스템

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191008

Year of fee payment: 4