KR20150063507A - 다중 스테이지 화염판 연소기의 작동 방법 - Google Patents

다중 스테이지 화염판 연소기의 작동 방법 Download PDF

Info

Publication number
KR20150063507A
KR20150063507A KR1020157011151A KR20157011151A KR20150063507A KR 20150063507 A KR20150063507 A KR 20150063507A KR 1020157011151 A KR1020157011151 A KR 1020157011151A KR 20157011151 A KR20157011151 A KR 20157011151A KR 20150063507 A KR20150063507 A KR 20150063507A
Authority
KR
South Korea
Prior art keywords
fuel
injectors
pilot
main
gas turbine
Prior art date
Application number
KR1020157011151A
Other languages
English (en)
Inventor
피터 존 스튜타포드
스티븐 조르겐센
얀 첸
하니 리즈칼라
칼리드 오메조우드
니콜라스 데모우게오트
Original Assignee
알스톰 테크놀러지 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알스톰 테크놀러지 리미티드 filed Critical 알스톰 테크놀러지 리미티드
Publication of KR20150063507A publication Critical patent/KR20150063507A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/082Purpose of the control system to produce clean exhaust gases with as little NOx as possible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies
    • F05D2270/091Purpose of the control system to cope with emergencies in particular sudden load loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/331Mechanical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/335Output power or torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03343Pilot burners operating in premixed mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

본 발명은 가스 터빈 엔진으로부터으로부터의 동력 수요가 감소할 때 방출 수준을 감소시키기 위해 가스 터빈 엔진을 조절하는 신규 방식을 개시하고 있다. 상기 작동 시스템은 가스 터빈 연소기에 대한 일련의 작동 모드들을 제공하고 상기 작동 모드를 통해서 연료는 엔진 동력을 점진적으로 증가시키도록 스테이징되고, 일산화탄소와 같은 유해 방출물은 허용가능한 수준 내에서 유지된다.

Description

다중 스테이지 화염판 연소기의 작동 방법{METHOD OF OPERATING A MULTI-STAGE FLAMESHEET COMBUSTOR}
본 발명은 일반적으로 가스 터빈 연소기에서 방출물들을 감소시키기 위하여 연소 시스템을 작동시키기 위한 방법에 관한 것이다. 특히, 연소기에 대한 연료 스테이징(fuel staging)에서의 개선이 제공된다.
가스 동력 터빈으로부터 오염 방출물의 양을 감소시키는 노력에서, 정부 관계자들은 질소 산화물(NOx)과 일산화탄소(CO)의 양을 감축하는 다수의 법령을 제정하였다. 낮은 연소 방출물은 종종 더욱 효율적인 연소 공정에 기인할 수 있으며, 특정 연료 분사기 위치와 혼합 유효성과 연관된다.
초기 연소 시스템은 확산형 노즐을 사용하였고, 여기서 연료는 화염 영역에 근접한 확산에 의해서 연료 노즐 외부에서 공기와 혼합된다. 확산형 노즐은 연료와 공기가 적당한 연소기 안정성과 낮은 연소 동력을 유지하기 위하여 고온에서 화학량론으로 연소된다는 사실에 기인하여 큰 방출물을 생산한다.
연소 기술에서의 개선은 예혼합을 활용하여, 연료 및 공기가 연소 전에 혼합되어서 확산형 화염보다 낮은 온도에서 연소되고 낮은 NOx 방출물을 생산하는 균질 혼합물을 형성하는 것이다. 예혼합은 연소 구역의 상류에 있는 동안 연료 노즐 내부에 또는 외부에 발생할 수 있다. 종래 기술의 예혼합 연소기의 예는 도 1에 도시된다. 연소기(8)는 연료를 예혼합 캐비티(19) 안으로 각각 분사하는 복수의 연료 노즐(18)을 구비하고, 상기 예혼합 캐비티에서 연료는 연소 챔버(20)로 진입하기 전에 플리넘(10)으로부터 압축 공기(6)와 혼합된다. 연료와 공기를 연소 전에 함께 예혼합하는 것은 연료와 공기가 더욱 균질한 혼합물을 형성할 수 있게 하고, 이는 더욱 완벽하게 연소하게 해서 결과적으로 낮은 방출물을 얻게 한다. 그러나, 이러한 구성에서, 연료는 연소기의 비교적 동일 평면에서 분사되고, 혼합 길이를 변경하는 것을 통한 임의의 개선 가능성을 차단한다.
예혼합 및 낮은 방출물의 대안 수단은 부하가 증가할 때 개선된 예혼합을 가능하게 하는 다수의 연소 스테이지들을 통해서 달성될 수 있다. 지금 도 2에 있어서, 종래 기술의 다중 스테이지 연소기의 예가 도시된다. 연소기(30)는 벤추리(venturi;33)에 의해서 분리된 제 1 연소 챔버(31)와 제 2 연소 챔버(32)를 가지며, 상기 벤추리는 좁은 목부 영역(34)을 가진다. 연소는 부하 상태에 따라서 제 1 연소 챔버 또는 제 2 연소 챔버 또는 양자의 챔버들 모두에서 발생할 수 있지만, 노즐 영역(35)을 통해서 분사되는 연료가 제 2 연소 챔버(32)에서 연소되기 전에 제 1 연소 챔버(31)에서 압축 공기와 완전하게 혼합될 때 최저의 방출물 수준이 발생된다. 따라서, 벤추리를 갖는 이러한 다중 스테이지 연소기는 고부하 상태에서 더욱 효과적이다.
가스 터빈 엔진은 다양한 동력 세팅에서 작동하는데 필요하다. 가스 터빈 엔진이 발전기를 구동시키도록 결합되는 경우에, 필요한 엔진 출력은 종종 발전기의 부하량과 상기 발전기에 의해서 생성되어야 하는 동력에 따라서 측정된다. 완전 부하 상태는 발전기로부터 최대 용량 발생이 얻어지는 지점이고 따라서 발전기를 구동하기 위하여 엔진으로부터 최대 동력을 필요로 한다. 이는 전기를 발생시키는데 사용되는 랜드 기반 가스 터빈(land-based gas turbine)을 위한 가장 일반적인 작동 지점이다. 그러나, 종종 전기 요구량은 발전기의 완전 용량을 필요로 하지 않고, 작동자는 낮은 부하 세팅에서 엔진을 작동시키기를 원하므로, 단지 요구된 부하만이 생성됨으로써, 연료를 절감하고 작동 비용을 낮출 수 있다. 종래 기술의 연소 시스템은 특히 50% 부하 미만에 있는 낮은 부하 세팅에서 사용할 수 없는 것으로 알려져 있으며, 또한 허용할 수 없는 수준의 NOx와 CO 방출물을 생산한다. 이는 주로 대부분의 연소 시스템들이 높은 부하 상태에서 가장 효율적인 작동을 위해서 단계적으로 형성된다는 사실에 기인한다. 잠재적으로 불안정한 연소 및 높은 방출량의 조합은 종종 엔진 작동자가 종종 낮은 부하 세팅에서 엔진을 작동시키는 것을 방지하여, 엔진이 높은 부하 세팅에서 운영되게 하고, 그에 의해서 추가 연료를 연소시키거나 또는 가동중지하고, 그리고 그에 의해서 부분 부하 요구량으로부터 발생될 수 있는 귀중한 수익을 상실한다.
엔진의 가동중지와 관련된 추가 문제점은 엔진 하드웨어에 의해서 발생되는 추가 사이클이다. 사이클은 일반적으로 엔진이 정상 작동 인벨로프를 통과할 때 규정된다. 즉, 엔진을 가동중지(shutting down)함으로써, 엔진 하드웨어는 추가 사이클들을 축적한다. 엔진 제조업자들은 통상적으로 작동 시간 또는 동등한 작동 사이클의 관점에서 하드웨어 수명을 평가한다. 따라서, 추가 사이클의 부여는 하드웨어 수명을 감소시켜서 엔진 작동자의 경비에서 조기 수리 또는 교체를 필요로 한다. 부분 부하 상태에서 뿐 아니라 완전 부하 상태에서 유익하여, 엔진이 낮은 부하 상태에서 효율적으로 작동할 수 있게 함으로써, 높은 부하 작동이 요구되지 않을 때 폐기 연료를 제거하거나 또는 가동중지일 때 엔진 하드웨어에서 추가 사이클을 부여하지 않은, 화염 안정성과 낮은 방출물을 제공하는 시스템이 필요하다.
본 발명은 가스 터빈 엔진의 작동 방법, 특히 엔진의 턴다운 효율(turndown efficiency)을 개선시키는 방식으로 가스 터빈 연소기를 작동시키는 방법을 개시한다. 본 발명의 일 실시예에서, 연소기의 작동 방법은 파일럿 연료 노즐에 연료를 공급하는 단계; 상기 파일럿 노즐로부터 상기 연료를 점화시키는 단계; 파일럿 튜인 분사기들의 스테이지에 추가 연료를 공급하는 단계를 포함한다. 상기 방법은 또한 연소기 주요 연료 분사기들의 제 1 부분에 연료를 공급하는 단계, 주요 연소 화염을 형성하기 위하여 상기 연료를 점화시키는 단계, 상기 연소기 주요 연료 분사기들의 제 2 부분에 연료를 공급하는 단계 그리고 상기 주요 연료 화염을 지지하기 위하여 상기 연료를 점화시키는 단계를 포함한다.
본 발명의 대안 실시예에서, 가스 터빈 연소기에서 연료를 스테이징하기 위한 전산 방법이 제공된다. 상기 방법은 4개의 다른 작동 모드를 통해서 파일럿 노즐, 한 세트의 파일럿 튜인 분사기들, 및 주요 세트의 연료 분사기들을 구비한 연소기를 작동시키는 방식을 제공한다. 작동의 각각의 연속 모드는 연소기에 대한 추가적인 연료 유동을 부가한다.
본 발명의 또다른 실시예에서, 일산화탄소 생성물을 제어하면서 가스 터빈 연소기의 턴다운 능력을 개선하는 방법이 개시된다. 상기 방법은 연료 분사기들의 환형 어레이의 제 1 부분과 제 2 부분에 대한 연료 유동을 조절하는 단계; 그리고 상기 가스 터빈 연소기의 코어 섹션(core section)에 있는 하나 이상의 분사기들에 대한 연료 유동을 조절하는 단계를 포함하고, 상기 코어 섹션은 파일럿 노즐과 상기 파일럿 노즐을 조율하기 위한 한 세트의 분사기들을 포함한다. 상기 연료 회로들의 조절은 허용가능한 방출물 수준 내에서 작동을 유지하면서 턴다운 능력을 지지하기 위하여 연료 유동에서 전체 감소를 허용한다.
본 발명의 다른 실시예에서, 연소기의 작동 방법은 파일럿 연료 노즐과 파일럿 튜인 분사기들의 스테이지에 모두 연료를 공급하는 단계를 포함한다. 상기 회로를 통해서 분사된 연료는 점화되고 그후 주요 연료 분사기들의 제 1 부분을 경유하여 추가 연료가 부가되고, 상기 추가 연료는 점화되어서 주요 연소 화염을 발생시킨다. 그 다음, 연료가 주요 연료 분사기들의 제 2 부분에 공급되고 상기 추가 연료는 주요 연소 화염을 추가로 지지하기 위하여 점화된다.
본 발명의 추가 실시예에 있어서, 연소기의 작동 방법은 파일럿 노즐에 연료를 공급하는 단계와 상기 연료를 점화시켜서 파일럿 화염을 형성하는 단계를 포함한다. 추가 연료가 주요 연료 분사기들의 제 1 부분에 연료를 공급함으로써 상기 연소기에 부가된다. 주요 분사기들의 제 1 부분을 경유하여 부가된 연료는 점화되어서 주요 연소기 화염을 형성한다. 그 다음, 연료는 주요 연료 분사기들의 제 2 부분에 공급되고 주요 연소 화염을 추가로 지지하기 위하여 점화된다.
본 발명의 추가 장점 및 형태들은 하기 설명에서 부분적으로 기술될 것이고, 당업자가 하기 기술을 검토할 때 부분적으로 명확해지거나 또는 본 발명의 실습으로부터 학습될 것이다. 본 발명은 이제 첨부된 도면을 참조하여 기술될 것이다.
본 발명은 첨부된 도면을 참조하여 하기에 기술된다.
도 1은 종래 기술의 가스 터빈 연소기의 단면도이다.
도 2는 종래 기술의 대안 연소기의 단면도이다.
도 3은 본 발명의 일 실시예에 따른 가스 터빈 연소기의 단면도이다.
도 4는 본 발명의 일 실시예에 따른 도 1의 가스 터빈 연소기의 단부도이다.
도 5는 본 발명의 일 실시예에 따른 가스 터빈 연소기를 제어하는 공정을 도시하는 흐름도이다.
도 6a는 제 1 모드에서 작동하는 본 발명의 일 실시예에 따른 가스 터빈 연소기의 단면도이다.
도 6b는 제 2 모드에서 작동하는 본 발명의 일 실시예에 따른 가스 터빈 연소기의 단면도이다.
도 6c는 제 3 모드에서 작동하는 본 발명의 일 실시예에 따른 가스 터빈 연소기의 단면도이다.
도 6d는 제 4 모드에서 작동하는 본 발명의 일 실시예에 따른 가스 터빈 연소기의 단면도이다.
도 6e는 도 6d의 제 4 모드의 변조된 변형예에서 작동하는 본 발명의 일 실시예에 따른 가스 터빈 연소기의 단면도이다.
도 7a는 제 1 모드에서 작동하는 본 발명의 일 실시예에 따른 가스 터빈 연소기의 단부도이다.
도 7b는 제 2 모드에서 작동하는 본 발명의 일 실시예에 따른 가스 터빈 연소기의 단부도이다.
도 7c는 제 3 모드에서 작동하는 본 발명의 일 실시예에 따른 가스 터빈 연소기의 단부도이다.
도 7d는 제 4 모드에서 작동하는 본 발명의 일 실시예에 따른 가스 터빈 연소기의 단부도이다.
도 8은 본 발명의 대안 실시예에 따른 가스 터빈 연소기를 제어하는 공정을 도시하는 흐름도이다.
도 9는 본 발명의 또다른 실시예에 따른 가스 터빈 연소기를 제어하는 공정을 도시하는 흐름도이다.
참고로, 본원은 미국 특허 제 6,935,116 호, 제 6,986,254 호, 제 7,137,256 호, 제 7,237,384 호, 제 7,308,793 호, 제 7,513,115 호, 및 제 7,677,025 호의 요지를 합체한다.
본 발명은 가스 터빈 연소기의 턴다운 능력을 개선시키기 위하여 연소 시스템을 작동시키는 방식을 공개한다. 즉, 개시된 본 발명의 실시예는 발전기로부터의 동력 수요가 낮아지고 따라서 엔진으로부터의 출력이 적게 요구될 때 가스 터빈 연소기 내의 개선된 연소 안정성을 위한 수단을 제공한다.
본 발명은 도 3 내지 도 9에 대해서 기술될 것이다. 본 발명의 개선된 작동 방법이 적용될 수 있는 가스 터빈 연소기의 실시예가 도 3에 도시된다. 연소 시스템(300)은 길이방향 축(A-A) 주위로 연장되고 연소 라이너(304)의 외면을 따라 소정량의 압축 공기를 지향시키기 위한 유동 슬리브(302)를 포함한다. 주요 연료 분사기들(306)은 연소 라이너(304)의 방사상 외향에 배치되고 연소 라이너(304)로 진입하기 전에 연소 라이너(304)의 외면의 일부를 따라 압축 공기와 혼합하기 위해 연료 공급부를 제공하도록 설계된다. 주요 연료 분사기들(306)에 의해서 분사된 연료는 압축 공기와 혼합되고 연소 라이너(304)의 입구 영역을 향하는 전방 방향으로 이동하고, 연료/공기 혼합물은 그 다음 방향이 반전되고 연소 라이너(304)로 진입한다. 연소 시스템을 위한 파일럿 화염을 제공하고 유지하기 위한 파일럿 연료 노즐(308)이 일반적으로 길이방향 축(A-A)을 따라서 연장된다. 파일럿 화염은 연소 시스템(300)의 연료 분사기들의 다중 스테이지들을 점화, 지지 및 유지하는데 사용된다.
연소 시스템(300)은 또한 방사상 스테이지형 예혼합기(310)를 포함한다. 예혼합기(310)는 연소 시스템(300)의 길이방향 축(A-A) 주위로 연장되는 제 1 연료 플리넘(314)과 제 1 연료 플리넘(314)의 방사상 외향에 배치되고 제 1 연료 플리넘(314)과 동심인 제 2 연료 플리넘(316)을 구비한 단부 커버(312)를 포함한다. 방사상 스테이지형 예혼합기(310)는 또한 연소 시스템(300)의 길이방향 축(A-A)에 적어도 부분적으로 직각인 방향으로 배향되는 복수의 베인들(320)을 구비한 방사상 유입 스월러(318)를 포함한다.
파일럿 연료 노즐(308)은 연료 공급부(미도시)에 연결되고 파일럿 화염(350)을 공급하기 위해 연소 시스템(300)에 연료를 제공하고, 파일럿 화염(350)은 일반적으로 길이방향 축(A-A)을 따라 배치된다. 연료 플리넘들(314,316), 방사상 유입 스월러(318) 및 복수의 베인들(320)을 포함하는 방사상 스테이지형 예혼합기(310)는 파일럿 튜인 스테이진 또는 P-튜인(352)을 통해서 파일럿 화염(350)에 추가 연료를 공급하기 위해 베인들(320)을 통해서 연료 공기 혼합물을 제공한다.
상술한 바와 같이, 연소 시스템(300)은 또한 주요 연료 분사기들(306)을 포함한다. 도 3에 도시된 본 발명의 실시예에 대해서, 주요 연료 분사기들(306)은 연소 라이너(304)의 방사상 외향에 위치하고 연소 라이너(304) 주위에서 환형 어레이로 확산된다. 주요 연료 분사기들(306)은 주요 연료 스테이지들의 원주 주위로 동일하게 또는 동일하지 않게 연장되는 스테이지들과 하나 이상의 부분들을 포함한다. 상술한 발명의 적용의 예로서, 주요 연료 분사기들은 2개의 스테이지들, 제 1 부분 및 제 2 부분으로 분할된다. 제 1 부분은 대략 120도로 연장되고, 제 2 부분은 대략 나머지 240 도의 스팬에 걸쳐 연장된다. 주요 연료 분사기들(306)의 제 1 부분은 도 4에 도시된 바와 같이, 주요 1 화염(354)을 발생시키고, 주요 연료 분사기들(306)의 제 2 부분은 주요 2 화염(356)을 발생시킨다.
도 4에 있어서, 도 3의 가스 터빈 연소기를 전방에서 바라본 도면이 도시된다. 도 4는 연소 시스템(300) 내의 각각의 화염 위치들의 방사상 및 원주방향 위치를 명확하게 도시하고, 파일럿 화염(350)은 중심에 있고, 파일럿 튜인 스테이지(352)는 파일럿 화염(350)의 방사상 외향에 위치하고 주요 1 화염(354)과 주요 2 화염(356)은 파일럿 튜인 스테이지(352)의 방사상 외향에 위치한다.
상술한 바와 같이, 가스 터빈 엔진은 복수의 연소기들을 통합한다. 일반적으로, 설명의 목적을 위하여, 가스 터빈 엔진은 본원에 개시된 것과 같은 저방출 연소기를 포함하고 가스 터빈 엔진 주위의 캔-환형 구성으로 배열될 수 있다. 한 유형의 가스 터빈 엔진(예를 들어, 고하중 가스 터빈 엔진)은 통상적으로 6 내지 18개의 개별 연소기들을 구비하지만, 이들에 국한되지 않고, 각각의 연소기들에는 상술한 구성요소들이 설치된다. 따라서, 가스 터빈 엔진의 유형에 기초하여, 가스 터빈 엔진을 작동시키기 위해 사용된 여러개의 다른 연료 회로들이 있을 수 있다. 본 발명의 실시예에 대해서, 4개의 연료 회로들이 사용된다. 그러나, 특정 연료 회로와 관련 제어 메카니즘은 더욱 작은 수로 또는 추가의 연료 회로들을 포함하도록 변형될 수 있다는 것을 예상할 수 있다.
본 발명이 작동하는 연소 시스템(300)의 물리적 구성을 언급할 때, 상기 연소 시스템의 작동 방법의 상세한 설명을 위하여 이제 도 5 내지 도 9를 참조할 것이다. 본 발명은 작동 융통성을 조율하기 위하여 4개의 연료 스테이지들을 사용한다. 구체적으로, 도 5에 있어서, 도 3의 연소 시스템(300)의 작동 방법(500)이 대략 설명되고, 여기서 4개의 다른 연료 스테이지들이 낮은 부하 세팅에서의 작동을 허용하기 위하여 연소 안정성을 강화하도록 사용된다. 초기에 단계(502)에서, 연료는 가스 터빈 연소기의 파일럿 연료 노즐에 공급된다. 그 다음, 단계(504)에서, 파일럿 연료 노즐로부터의 연료는 점화되어서 파일럿 화염을 형성한다. 이러한 점화는 불꽃 점화기 또는 토치 점화기와 같은 다양한 점화 소스들을 통해서 이루어질 수 있다. 파일럿 연료 노즐은 일반적으로 연소기의 길이방향 축을 따라서 위치하기 때문에, 결과적 파일럿 화염은 또한 일반적으로 길이방향 축을 따라서 위치한다. 파일럿 연료 노즐에 연료를 공급하고 연료를 점화하여 파일럿 화염을 형성하는 상기 단계들은 연소 시스템의 작동의 모드 1에서 고려되고 파일럿 연료 노즐의 점화 또는 "라이트오프(light-off)"로 개시되는 작동 범위 내에서 작동하고 "전속 무부하" 즉 "FSNL" 조건을 통해서 지속된다. 상술한 바와 같이, FSNL은 60Hz 엔진에 대해서 대략 분당 3600 회전수의 최대 설계 회전 속도이면서 발전기에 의해서 부하가 인가되지 않는 상태에서 터빈과 압축기가 작동하는 엔진 작동 상태이다. 연소 시스템의 모드 1 작동의 설명은 도 6a와 도 7a에 모두 도시된다.
당업자가 이해하는 바와 같이, 화염은 본질적으로 전단층을 수용한다. 일반적으로 말하자면, 전단층 또는 경계층은 상당한 속도 구배가 있을 수 있는 유동 영역이다. 화염의 전단층은 화염의 최외측 에지와 비가연성 주위부 또는 인접 화염 사이에 있는 공유 영역이다.
주요 세트의 연료 분사기들로부터의 연료 점화는 파일럿 화염의 전단층의 연료/공기비를 제어하는 능력으로 인하여 더욱 용이하고 신뢰성있게 발생할 수 있다. 더욱 구체적으로, 예혼합 통로에서 최외측 방사상 위치에서 연료의 공급을 국부적으로 증가시킴으로써, 결과적 파일럿 화염의 전단층에 있는 연료 농도를 증가한다. 결과적으로, 농후 전단층은 주요 분사기들이 많은 에너지에 대한 필요성없이 더욱 용이하고 신뢰성있게 점화할 수 있게 하고, 이는 그 다음 결과적으로 주요 연료 분사기들의 점화 중에 낮은 변동 수준을 나타낸다.
전단층에 대한 연료 유동을 국부적으로 농후하게 할 수 있는 추가 장점은 주요 분사기들에 의해서 분사되는 연료를 점화시키는 안정한 공정을 유지하는 능력이다. 즉, 예혼합 연소 시스템에서, 연료 유동 수준은 방출물을 감소시키기 위하여 전통적으로 가능한 희박으로 유지할 수 있다. 선택적인 시간 주기 중에 전단층에 대한 연료를 국부적으로 추가함으로써, 더욱 농후한 연료 혼합물이 형성되고, 그에 의해서 전단층 영역에서 연료/공기비를 증가시킨다. 더욱 농후한 연료 혼합물은 화염의 안정성을 나타내고 증가시키기 위하여 점화에 대해서 더욱 양호한 조건을 제공한다. 일단 화염이 점화되면, 그 다음 연료 농후성의 수준은 화염의 안정성을 손상시키지 않고 희박 혼합물로 감소될 수 있다.
단계(502)에서와 같이, 한 세트의 파일럿 튜인 스테이지 분사기들로 연료가 공급되는 동안, 단계(506)에서, 연료는 계속해서 파일럿 연료 노즐로 공급된다. 파일럿 튜인 스테이지 분사기들은 방사상 유입 스월러(318)의 복수의 베인들(320)에 위치하고, 상기 복수의 베인들은 파일럿 연료 노즐(308)의 방사상 외향에 위치하고 주위 기류와 혼합하기 위하여 단부 커버의 연료 플리넘들로부터 연료를 분사한다. 상기 연료 공기 혼합물은 그 다음 파일럿 화염을 통과하고 파일럿 화염의 전단층을 농후하게 하기 위하여 파일럿 화염을 강화하고 지지하는데 사용된다. 함께 파일럿 튜인 스테이지 분사기들의 세트와 파일러 연료 노즐의 작동은 연소 시스템을 위한 모드 2의 작동으로 고려된다. 모드 2는 라이트오프로부터 대략 10% 부하까지 작동할 수 있다. 연소 시스템의 모드 2 작동의 설명은 도 6b와 도 7b 모두에 제시되고, 파일럿 튜인 스테이지로부터의 연료/공기 혼합물은 둘러싸는 파일럿 화염의 방사상 외향에 나타난다.
다음, 단계(508)에서, 연소 시스템은 모드 3의 작동으로 진입하고 여기서 연료는 상기 세트의 파일럿 튜인 스테이지 분사기들과 파일럿 연료 노즐로 연료가 공급되는 동안, 주요 연료 분사기들의 제 1 부분에 연료가 공급된다. 상술한 바와 같이, 연소 시스템의 주요 연료 분사기들(306)은 연료 라이너 주위에 환형 어레이로 배열되고 2개의 부분들로 분할되고 - 제 1 부분은 연소 라이너(304) 주위에 대략 120도로 연장되고 제 2 부분은 연소 라이너(304) 주위에 대략 240도로 연장된다. 단계(510)에서, 주요 연료 분사기들의 제 1 부분에 의해서 단계(508)에서 분사된 연료는 점화되어서 주요 연소 화염을 형성한다. 주요 연소 화염의 점화는 모드 1과 2를 통해서 형성된 파일럿 화염의 결과로서 발생한다. 그러나, 상기 주요 연소 화염을 점화하기 위하여, 연소 시스템은 통상적으로 [모드 2의 끝에서] 파일럿 튜인 스테이지에 연료를 추가함으로써 상기 지점으로 상승하고, 모드 3으로 이동할 때, 파일럿 튜인 스테이지를 통해서 부가된 연료는 그 다음 주요 연료 분사기들의 제 1 부분으로 전달된다. 이는 모드 3으로의 효율적이고 조용한 전달을 보장한다. 연료는 라이트오프에서 그리고 대략 10% 부하 조건을 통해서 개시되는 주요 분사기들의 제 1 부분에 공급될 수 있다. 연소 시스템의 모드 3 작동의 설명은 도 6c와 도 7c 모두에 제시되고, 여기서 모드 3에 형성된 주요 연소 화염은 분사기들의 파일럿 튜인 스테이지로부터 연료 공기 혼합물의 방사상 외향에 위치한다.
단계(512)에서, 연소 시스템은 모드 4에서 작동하고, 여기서 연료는 주요 연료 분사기들의 제 1 부분에 대해서 뿐 아니라 주요 연료 분사기들의 제 2 부분, 파일럿 연료 노즐과 분사기들의 파일럿 튜인 스테이지에 공급된다. 따라서, 모드 4의 작동에서, 연료는 연소 시스템의 모두 4개의 회로들을 통해서 유동하고 모든 주요 연료 분사기들로 유동한다. 결과적으로, 360도의 연료링이 연소 라이너의 방사상 외향으로 그리고 주요 연료 분사기들로부터 통과하는 공기 유동 안으로 분사된다. 단계(514)에서, 주요 연료 분사기들의 제 2 부분에 의해서 분사된 연료는 주요 연료 분사기들의 제 1 부분으로부터 분사된 연료에 의해서 형성되는 주요 연소 화염으로 인하여 점화된다. 이는 모드 4 작동이다. 연료는 라이트오프에서 대략 25% 부하 조건을 통해서 개시되는 주요 연료 분사기들의 제 2 부분을 통해서 분사될 수 있다. 연료는 상기 회로를 통해서 대략 100% 부하 조건 또는 또한 기본부하 조건으로 기술되는 것까지 계속해서 유동한다. 모드 4의 작동은 연소 시스템을 위한 넓고 안정된 작동 범위를 제공한다. 연소 시스템의 모드 4의 작동 설명은 도 6d와 도 7d 모두에 나타나고, 여기서 주요 연소 화염은 모드 4의 연료 분사에 의해서 강화되고 파일럿 화염 주위로 원주방향으로 연장된다.
연료가 모두 4개의 회로들을 통해서 유동하는 상태에서, 일단 연소 시스템이 기본부하 또는 100% 부하 조건에 도달하면, 연소기의 코어로 연료를 공급하는 하나 이상의 회로들에 대한 연료 유동을 조절할 수 있고, 상기 연료 유동은 도 6e에 도시된 바와 같이, 조절된 파일럿 연료 노즐 유동(360) 및/또는 파일럿 튜인 스테이지(362)에 대한 조절된 유동이다. 낮은 부하가 요구될 때에는 연료량을 감소시키는 것이 바람직하다. 그러나, 기존에, 연료 유동 수준이 감소되는 경우에, 화염 온도는 감소하는 경향이 있고, 이는 결과적으로 CO 방출물에서 대응하게 상승하게 된다. 예를 들어, 다시 도 5에 있어서, 단계(516)에서, 코어 분사 영역 즉, 파일럿 연료 노즐 및/또는 파일럿 튜인 스테이지 분사기들로의 연료 유동은 조정될 수 있다. 그러나, 도 6e에 도시된 바와 같이 파일럿 연료 노즐 및/또는 분사기들의 파일럿 튜인 스테이지에 대한 연료 유동을 조절하면서 주요 연료 분사기들의 제 1 부분 및 제 2 부분 모두에 대한 연료 유동을 유지함으로써, 주요 연소 화염은 완전한 링으로 그리고 파일럿 화염보다 높은 온도에서 잔류한다. 따라서, 고온 주요 연소 화염은 차가운 파일럿 화염에 의해서 발생된 CO를 소모할 것이다. 모드 4의 이러한 조절은 도 6e에 도시되고 연소 시스템의 정상 예혼합 작동 중에 발생한다.
당업자가 이해하는 바와 같이, 엔진으로부터 필요한 동력이 감소하거나 또는 낮추어질 때, 엔진의 작동을 유지하면서 엔진 출력을 효과적으로 감소시키는 것이 바람직하다. 엔진으로부터 작은 동력이 요구될 때, 연소 공정에서 작은 연료가 필요하다. 따라서, 엔진을 낮추기 위하여, 연료 유동은 또한 감소되어야 한다. 그러나, 상술한 바와 같이, 연료 유동 수준이 감소될 때, 화염 온도는 감소되는 경향이 있고, 이는 결과적으로 CO 방출물의 상승을 유발한다. 따라서, 방출 법령 내에서 엔진을 유지하기 위하여 이러한 추가 CO를 적절하게 연소시키는 것이 필요하다. CO 방출물을 연소시키는 하나의 방식은 주요 연료 분사기들의 제 1 부분과 제 2 부분에 의해서 발생된 주요 연소 화염을 가능하게 높게 유지하는 것이다. 이는 연료 분사기들에 대한 연료 유동의 주의 깊은 조절을 통해서 이루어질 수 있다. 더욱 구체적으로, 코어 섹션(파일럿 연료 노즐 및/또는 파일럿 튜인 스테이지 분사기)에 대한 연료 유동은 감소되고, 주요 스테이지 분사기들의 제 1 부분과 제 2 부분에 대한 연료 유동은 약간 증가한다. 순수 전체 효과는 파일럿 영역에 대한 연료 유동이 감소하거나 또는 소멸될 때, 연소기에 대한 낮은 전체 연료 유동비이고, 높은 비의 연료는 파일럿 및/또는 파일럿 튜인 스테이지보다 높은 주요 화염을 지지하도록 지향된다.
연료 유동의 공급 및 분사된 연료의 점화의 단계들은 연속적으로 기술되었지만, 당업자는 바로 분사된 연료의 점화로부터 발생되는 화염을 유지하기 위하여 연료 유동이 지속되거나 또는 결과적 화염이 소멸되어야 한다는 것을 이해할 것이다. 따라서, 연료 공급/분사의 단계들이 연료의 점화 이전에 그리고 동시에 모두 발생하는 것이 필요하다.
본 발명의 대안 실시예에서, 연소 시스템(300)은 상술한 바와 같이, 파일럿 연료 노즐, 한 세트의 파일럿 튜인 분사기들 및 주요 연소 화염을 형성하는 주요 1 및 주요 2 화염에 대한 2개의 회로에 연료를 제공하기 위한 4개의 주요 연료 회로들을 포함한다. 그러나, 초기 라이트오프를 달성하기 위하여 파일럿 연료 노즐과 상기 세트의 파일럿 튜인 스테이지 분사기들 모두에 대한 연료공급 대신에, 초기에 연료를 단지 파일럿 연료 노즐에만 지향시키지 않고 본 발명의 하드웨어를 사용하여 연소 소음 및 방출물 개선을 달성할 수 있다는 것이 결정되었다.
도 8에 있어서, 가스 터빈 연소기를 작동시키기 위한 대안 공정은 공정(800)에 개시된다. 단계(802)에서, 연료는 초기에 가스 터빈 연소기의 한 세트의 파일럿 튜인 스테이지 분사기들과 파일럿 연료 노즐에 공급된다. 그 다음, 단계(804)에서, 파일럿 연료 노즐과 파일럿 튜인 스테이지 분사기들에 의해서 분사된 연료가 점화된다. 일단 화염이 파일럿 영역에 형성되면, 파일럿 튜인 분사기들의 스테이지와 파일럿 연료 노즐의 연료공급은 대략 10% 부하 조건을 통해서 지속된다. 그 다음 단계(806)에서, 연료는 한 세트의 주요 연료 분사기들의 제 1 부분에 공급된다. 상술한 바와 같이, 상기 세트의 주요 연료 분사기들의 제 1 부분은 연료 분사기들의 대략 120도 원호형 섹션으로 구성된다. 연료가 상기 세트의 주요 연료 분사기들의 제 1 부분으로 공급되는 동안, 파일럿 연료 노즐과 파일럿 튜인 스테이지에 대한 유동을 지속한다. 단계(808)에서, 상기 세트의 주요 연료 분사기들의 제 1 부분에 의해서 분사된 연료는 점화되어서 주요 연소기 화염을 형성한다. 주요 연료 분사기들의 제 1 부분에 의해서 분사된 연료는 대략 10% 부하 조건을 통해서 초기에 라이트오프로서 개시될 수 있다. 일단 주요 연소 화염이 형성되면, 그 다음 단계(810)에서, 상기 세트의 주요 연료 분사기들의 제 1 부분, 파일럿 연료 노즐, 및 파일럿 튜인 스테이지 분사기들에 대한 연료 공급을 지속하면서, 연료가 상기 세트의 주요 연료 분사기들의 제 2 부분으로 공급된다. 연료는 라이트오프에서 그리고 대략 25% 부하 조건에서 개시되는 주요 연료 분사기들의 제 2 부분으로 연료가 공급된다. 그 다음, 단계(812)에서, 상기 세트의 주요 연료 분사기들의 제 2 부분에 의해서 분사된 연료는 주요 연소 화염을 강화하기 위하여 점화된다. 상술한 다른 실시예와 같이, 단계(814)에서, 파일럿 튜인 스테이지 분사기들과 파일럿 연료 노즐에 대한 연료 유동은 그 다음 화염 안정성을 강화하기 위하여 조절될 수 있다.
본 발명의 또다른 실시예에서, 가스 터빈 연소기의 방법이 개발되었고 여기서 연료는 상술한 바와 같이, 3개의 회로들에 공급되지만 파일럿 튜인 스테이지 분사기에는 공급되지 않는다. 이제 도 9에 있어서, 가스 터빈 연소기의 작동 방법(900)은 가스 터빈 연소기의 파일럿 연료 노즐로 연료를 공급하는 단계(902)를 포함한다. 그 다음, 단계(904)에서, 파일럿 연료 노즐에 의해서 분사된 연료는 점화되어서 파일럿 화염을 형성한다. 단계(906)에서, 파일럿 연료 노즐로 연료공급을 지속하면서, 연료는 한 세트의 주요 연료 분사기들의 제 1 부분으로 공급된다. 연료는 라이트오프에서 그리고 대략 10% 부하 조건에서 개시되는 주요 연료 분사기들의 제 1 부분으로 공급된다. 그 다음, 단계(908)에서, 주요 분사기들의 제 1 부분으로부터의 연료는 점화되어서 주요 연소 화염을 형성한다.
단계(910)에서, 연료는 상기 주요 연료 분사기들의 제 1 부분, 파일럿 연료 노즐로 공급되면서, 또한 상기 세트의 주요 연료 분사기들의 제 2 부분으로 공급된다. 연료는 라이트오프에서 그리고 대략 25% 부하 조건에서 개시되는 주요 연료 분사기들의 제 2 부분으로 공급된다. 본 발명의 이러한 하나의 실시예에서, 주요 분사기들의 제 1 부분은 원호형 경로에서 대략 120 도로 연장되고, 주요 분사기들의 제 2 부분은 대략 원호형 경로의 대략 240 도로 연장된다. 단계(912)에서, 주요 분사기들의 제 2 부분에 의해서 연소기로 공급된 연료는 점화되어서 주요 연소 화염을 강화하도록 작용한다. 상술한 바와 같이, 연료는 대략 100% 부하까지 상기 여러 회로들을 통해서 유동을 지속한다. 엔진의 작동 조건에 따라서, 공정은 파일럿 노즐에 대한 연료 유동이 조절될 수 있는 단계(914)에서 지속될 수 있다. 상술한 바와 같이, 조절은 CO 방출물을 제어하면서 엔진 턴다운을 지지하기 위하여 파일럿 연료 노즐에 대한 연료 유동량을 감소시키는 것을 포함할 수 있다.
당업자가 이해하는 바와 같이, 본 발명은 다른 것들 중에서 방법, 시스템 또는 프로그램 제품으로서 구현될 수 있다. 따라서, 본 실시예들은 하드웨어 실시예, 소프트웨어 실시예 또는 소프트웨어와 하드웨어를 조합하는 일 실시예의 형태를 취할 수 있다. 일 실시예에서, 본 발명은 하나 이상의 컴퓨터 판독용 매체에서 구현되는 컴퓨터 사용가능한 지령들을 포함하는 컴퓨터 프로그램 제품과 같은 컴퓨터 방법의 형태를 취한다.
컴퓨터 판독용 매체는 휘발성 및 비휘발성 매체와, 제거형 및 비제거형 매체 모두를 포함하고, 데이터베이스, 스위치 및 다양한 다른 네트워크 디바이스에 의해서 판독가능한 매체로 고려된다. 네트워크 스위치, 라우터(router) 및 관련 구성요소는 동일한 것과 교통하는 수단으로서 성질에서 종래의 것이다. 예를 통해서, 그리고 비제한적인 컴퓨터 판독용 매체는 컴퓨터 저장 매체와 통신 매체를 포함한다.
컴퓨터 저장 매체 또는 기계 판독용 매체는 정보를 저장하기 위한 임의의 방법 또는 기술로 실행되는 매체를 포함한다. 저장된 정보의 예들은 컴퓨터 사용가능한 지시, 데이터 구조, 프로그램 모듈 및 다른 데이터 리프리젠테이션을 포함한다. 컴퓨터 저장 매체는 RAM, ROM, EEPROM, 플래쉬 메모리 또는 기타 메모리 기술, CD-ROM, 디지털 다목적 디스크(DVD), 홀로그래픽 매체 또는 다른 광 디스크 저장장치, 자기 카세트, 자기 테입, 자기 디스크 저장장치, 및 다른 자기 저장 디바이스를 포함하지만, 이들에 국한되지 않는다. 상기 메모리 구성요소들은 데이터 순간, 임시 또는 영국적으로 저장할 수 있다.
통신 매체는 통상적으로 변조 데이터 신호에서 데이터 구조 및 프로그램 모듈을 포함하는 컴퓨터 사용가능한 지시를 저장한다. 용어 "변조된 데이터 신호"는 신호로 정보를 부호화하도록 변화되거나 또는 하나 이상의 특징 세트를 갖는 전파 신호를 지칭한다. 예시적인 변조 데이터 신호는 반송파 또는 수송 메카니즘을 포함한다. 통신 매체는 정보 전달 매체를 포함한다. 예를 통해서, 그러나 제한없이, 통신 매체는 배선망 또는 직접 배선 접속부와 같은 배선 매체, 음향, 적외선, 라디오, 마이크로파, 확산 스펙트럼 및 다른 무선 매체 기술과 같은 무선 매체를 포함한다. 상기 조합은 컴퓨터 판독용 매체의 범주 내에 포함된다.
전산 방법은 가스 터빈 엔진의 작동 시스템 내에 통합될 수 있는 자체 부재의 하드웨어에 저장된 단독 소프트웨어이거나 또는 가스 터빈 엔진의 작동 시스템을 지배하는 기존의 소프트웨어로 통합될 수 있다는 것도 본 발명의 범주 내에 있다.
본 발명은 현재 양호한 실시예로서 공지된 것에 기술되었지만, 본 발명은 개시된 실시예에 국한되지 않고 오히려 하기 청구범위의 범주 내에서 다양한 변형 및 동등 배열을 포괄하도록 의도된다는 것을 이해할 수 있다. 본 발명은 특정 실시예에 관하여 기술되었지만, 이는 제한적이기보다 예시적인 것으로 의도된 것이다. 경질 금속면보다 슈라우드 면의 가공 및 경질 금속면의 마모를 유도하는 동작과 같은, 필요한 동작과 대안 실시예는 그 범주에서 이탈하지 않고 본 발명이 속하는 당업자에게는 자명한 사실이다.
상술한 설명으로부터, 본 발명은 시스템 및 방법에 명확하고 내재되는 다른 장점과 함께 상술한 모든 목표 및 목적을 달성하기에 적합한 것임을 알 수 있다. 임의의 형태와 하위 조합들도 활용되고 다른 형태와 하위 조합들을 참조하지 않고 사용될 수 있다는 것을 이해할 것이다. 이는 청구범위의 범주에 의해서 그리고 그 안에서 고려된다.

Claims (31)

  1. 가스 터빈 연소기의 작동 방법에 있어서,
    상기 가스 터빈 연소기의 파일럿 연료 노즐에 연료를 공급하는 단계; 상기 파일럿 연료 노즐에 의해서 분사된 상기 연료를 점화시키는 단계; 한 세트의 파일럿 튜인 스테이지 분사기들과 상기 파일럿 연료 노즐에 연료를 공급하는 단계로서, 상기 파일럿 튜인 스테이지 분사기들이 상기 파일럿 연료 노즐의 방사상 외향에 배치되는 상기 연료 공급 단계; 한 세트의 주요 연료 분사기들의 제 1 부분, 상기 파일럿 연료 노즐 및 상기 파일럿 튜인 스테이지 분사기들에 연료를 공급하는 단계; 주요 연소 화염을 형성하도록 상기 세트의 주요 연료 분사기들의 제 1 부분에 의해서 분사된 상기 연료를 점화시키는 단계; 상기 세트의 주요 연료 분사기들의 제 2 부분, 상기 세트의 주요 분사기들의 제 1 부분, 상기 파일럿 연료 노즐 및 상기 파일럿 튜인 스테이지 분사기들에 연료를 공급하는 단계; 그리고 상기 주요 연소 화염을 강화하기 위하여 상기 세트의 주요 연료 분사기들의 제 2 부분에 의해서 분사된 상기 연료를 점화시키는 단계를 포함하는, 가스 터빈 연소기의 작동 방법.
  2. 제 1 항에 있어서,
    상기 파일럿 연료 노즐 및/또는 상기 파일럿 튜인 스테이지 분사기들에 대한 상기 연료를 조절하는 단계를 추가로 포함하는, 가스 터빈 연소기의 작동 방법.
  3. 제 1 항에 있어서,
    상기 가스 터빈 연소기의 라이트오프 중에 그리고 전속 무부하(full speed no load;FSNL) 조건까지 상기 파일럿 연료 노즐에만 연료가 공급되는, 가스 터빈 연소기의 작동 방법.
  4. 제 3 항에 있어서,
    라이트오프로부터 대략 10% 부하 조건까지 상기 파일럿 튜인 스테이지 분사기들에 연료가 공급되는, 가스 터빈 연소기의 작동 방법.
  5. 제 4 항에 있어서,
    대략 10% 부하 조건까지 라이트오프에서 개시되는 상기 주요 연료 분사기들의 제 1 부분으로 연료가 공급되는, 가스 터빈 연소기의 작동 방법.
  6. 제 5 항에 있어서,
    대략 25% 부하 조건까지 라이트오프에서 개시되는 상기 주요 분사기들의 제 2 부분으로 연료가 공급되는, 가스 터빈 연소기의 작동 방법.
  7. 제 1 항에 있어서,
    상기 세트의 주요 연료 분사기들의 제 1 부분은 대략 120 도에 걸쳐지는 연료 분사기들의 원호형 세그먼트를 포함하고 상기 세트의 주요 연료 분사기들의 제 2 부분은 대략 240 도에 걸쳐지는 연료 분사기들의 원호형 세그먼트를 포함하는, 가스 터빈 연소기의 작동 방법.
  8. 가스 터빈 연소기에서 연료를 스테이징하기 위해 프로세싱 유닛에 의해서 실행되는 전산 방법으로서, 상기 가스 터빈 연소기는 파일럿 연료 노즐, 상기 파일럿 연료 노즐을 조율하기 위한 한 세트의 파일럿 튜인 스테이지 분사기들 및 주요 세트의 연료 분사기들을 구비하는 상기 전산 방법에 있어서,
    상기 파일럿 연료 노즐에 의해서 연료가 분사되는 제 1 모드에서 상기 연소기를 작동시키는 단계; 상기 파일럿 연료 노즐과 상기 파일럿 튜인 스테이지를 위한 상기 분사기들에 의해서 연료가 분사되는 제 2 모드에서 상기 연소기를 작동시키는 단계; 상기 파일럿 연료 노즐, 상기 파일럿 튜인 스테이지를 위한 상기 분사기들 및 상기 주요 세트의 연료 분사기들의 제 1 부분에 의해서 연료가 분사되는 제 3 모드에서 상기 연소기를 작동시키는 단계; 그리고 상기 파일럿 연료 노즐, 상기 파일럿 튜인 스테이지를 위한 상기 분사기들, 상기 주요 세트의 연료 분사기들의 제 1 부분 및 상기 주요 세트의 연료 분사기들의 제 2 부분에 의해서 연료가 분사되는 제 4 모드에서 상기 연소기를 작동시키는 단계를 포함하는, 전산 방법.
  9. 제 8 항에 있어서,
    상기 주요 세트의 주요 연료 분사기들의 제 1 부분은 대략 120 도의 원호형 스팬(arc-like span)을 가로질러 연장되고 상기 주요 세트의 주요 연료 분사기들의 제 2 부분은 대략 240 도의 원호형 스팬을 가로질러 연장되는, 전산 방법.
  10. 제 8 항에 있어서,
    상기 제 1 모드는 상기 가스 터빈 연소기로 파일럿 화염을 제공하는, 전산 방법.
  11. 제 10 항에 있어서,
    상기 파일럿 튜인 스테이지에 의해서 분사된 연료는 상기 파일럿 화염을 조절하고 지지하기 위한 추가 연료 소스를 제공하는, 전산 방법.
  12. 제 8 항에 있어서,
    상기 제 3 모드와 상기 제 4 모드에 의해서 분사된 연료는 축방향의 상류 방향으로 분사되고 점화 이전에 역전 방향을 겪는, 전산 방법.
  13. 제 8 항에 있어서,
    상기 파일럿 연료 노즐과 상기 파일럿 튜인 스테이지의 분사기들에 대한 상기 연료 유동은 상기 연소기를 상기 제 4 모드에서 작동시킨 후에 조정가능한, 전산 방법.
  14. 가스 터빈 연소기로부터의 일산화탄소 생성물을 제어하면서 상기 가스 터빈 연소기의 턴다운 능력을 개선하는 방법에 있어서,
    주요 연소 화염을 지지하는 주요 연료 분사기들의 환형 어레이의 제 1 부분과 제 2 부분 모두에 대한 연료 유동을 조절하는 단계; 그리고
    상기 가스 터빈 연소기의 코어 섹션(core section)에 있는 하나 이상의 연료 분사기들에 대한 연료 유동을 조절하는 단계를 포함하는, 턴다운 능력의 개선 방법.
  15. 제 14 항에 있어서,
    주요 분사기들의 환형 어레이의 제 1 부분과 제 2 부분 모두에 대한 연료 유동을 조절하는 단계는 상기 제 1 부분과 상기 제 2 부분 모두에 대한 상기 연료 유동을 증가시키는 단계를 포함하는, 턴다운 능력의 개선 방법.
  16. 제 15 항에 있어서,
    코어 섹션에 있는 하나 이상의 연료 분사기들에 대한 연료 유동을 조절하는 단계는 적어도 상기 파일럿 연료 노즐에 대한 상기 연료 유동을 감소시키는 단계를 포함하는, 턴다운 능력의 개선 방법.
  17. 제 16 항에 있어서,
    적어도 상기 파일럿 노즐에 대한 상기 연료 유동과 비교되는 주요 연료 분사기들에 대한 연료 유동의 비율은 엔진에 대한 전체 연료 유동이 감소하는 동안 증가하는, 턴다운 능력의 개선 방법.
  18. 제 14 항에 있어서,
    상기 제 1 부분은 대략 120 도로 연장하는 주요 연료 분사기들의 환형 어레이를 포함하고 상기 제 2 부분은 대략 240 도로 연장되는 주요 연료 분사기들의 환형 어레이를 포함하는, 턴다운 능력의 개선 방법.
  19. 제 14 항에 있어서,
    상기 가스 터빈 연소기의 코어 섹션은 파일럿 연료 노즐과 상기 파일럿 튜인 스테이지의 분사기들을 포함하고, 상기 연료 분사기들의 파일럿 튜인 스테이지는 상기 파일럿 화염을 지지하기 위하여 연료 유동을 제공하는, 턴다운 능력의 개선 방법.
  20. 가스 터빈 연소기의 작동 방법에 있어서,
    상기 가스 터빈 연소기의 한 세트의 파일럿 튜인 스테이지 분사기들과 파일럿 연료 노즐에 연료를 공급하는 단계; 상기 파일럿 연료 노즐과 상기 파일럿 튜인 스테이지 분사기들에 의해서 분사된 상기 연료를 점화시키는 단계; 한 세트의 주요 연료 분사기들의 제 1 부분, 상기 파일럿 연료 노즐, 및 상기 파일럿 튜인 스테이지 분사기들에 연료를 공급하는 단계; 주요 연소 화염을 형성하기 위하여 상기 세트의 주요 연료 분사기들의 제 1 부분에 의해서 분사된 상기 연료를 점화시키는 단계; 상기 세트의 주요 연료 분사기들의 제 2 부분, 상기 세트의 주요 분사기들의 제 1 부분, 상기 파일럿 연료 노즐, 및 상기 파일럿 튜인 스테이지 분사기들에 연료를 공급하는 단계; 그리고 상기 주요 연소 화염을 강화하기 위하여 상기 세트의 주요 연료 분사기들의 제 2 부분에 의해서 분사되는 상기 연료를 점화시키는 단계를 포함하는, 가스 터빈 연소기의 작동 방법.
  21. 제 20 항에 있어서,
    상기 주요 연소 화염에 대한 안정성을 개선하기 위하여 상기 파일럿 연료 노즐 및/또는 상기 파일럿 튜인 스테이지 분사기들에 대한 상기 연료를 조절하는 단계를 추가로 포함하는, 가스 터빈 연소기의 작동 방법.
  22. 제 20 항에 있어서,
    상기 가스 터빈 연소기의 라이트오프 중에 그리고 대략 10% 부하 조건까지 상기 파일럿 연료 노즐과 상기 파일럿 튜인 스테이지 분사기들에만 연료가 공급되는, 가스 터빈 연소기의 작동 방법.
  23. 제 22 항에 있어서,
    대략 10% 부하 조건까지 라이트오프에서 개시되는 상기 주요 분사기들의 제 1 부분으로 연료가 공급되는, 가스 터빈 연소기의 작동 방법.
  24. 제 23 항에 있어서,
    대략 25% 부하 조건까지 라이트오프에서 개시되는 상기 주요 연료 분사기들의 제 2 부분으로 연료가 공급되는, 가스 터빈 연소기의 작동 방법.
  25. 제 20 항에 있어서,
    상기 세트의 주요 연료 분사기들의 제 1 부분은 대략 120 도에 걸쳐지는 연료 분사기들의 원호형 세그먼트를 포함하고 상기 세트의 주요 연료 분사기들의 제 2 부분은 또한 대략 240 도에 걸쳐지는 연료 분사기들의 원호형 세그먼트를 포함하는, 가스 터빈 연소기의 작동 방법.
  26. 가스 터빈 연소기의 작동 방법에 있어서,
    상기 가스 터빈 연소기의 파일럿 연료 노즐에 연료를 공급하는 단계; 상기 파일럿 연료 노즐에 의해서 분사된 상기 연료를 점화시키는 단계; 한 세트의 주요 연료 분사기들의 제 1 부분과 상기 파일럿 연료 노즐에 연료를 공급하는 단계; 주요 연소 화염을 형성하도록 상기 세트의 주요 연료 분사기들의 제 1 부분에 의해서 분사된 상기 연료를 점화시키는 단계; 상기 세트의 주요 연료 분사기들의 제 2 부분, 상기 세트의 주요 분사기들의 제 1 부분, 상기 파일럿 연료 노즐에 연료를 공급하는 단계; 그리고 상기 주요 연소 화염을 강화하기 위하여 상기 세트의 주요 연료 분사기들의 제 2 부분에 의해서 분사된 상기 연료를 점화시키는 단계를 포함하는, 가스 터빈 연소기의 작동 방법.
  27. 제 26 항에 있어서,
    상기 파일럿 연료 노즐에 대한 상기 연료를 조절하는 단계를 추가로 포함하는, 가스 터빈 연소기의 작동 방법.
  28. 제 26 항에 있어서,
    상기 가스 터빈 연소기의 라이트오프 중에 그리고 대략 10% 부하 조건까지 상기 파일럿 연료 노즐과 상기 파일럿 튜인 스테이지 분사기들에만 연료가 공급되는, 가스 터빈 연소기의 작동 방법.
  29. 제 28 항에 있어서,
    대략 10% 부하 조건까지 라이트오프에서 개시되는 상기 주요 분사기들의 제 1 부분으로 연료가 공급되는, 가스 터빈 연소기의 작동 방법.
  30. 제 29 항에 있어서,
    대략 25% 부하 조건까지 라이트오프에서 개시되는 상기 주요 연료 분사기들의 제 2 부분으로 연료가 공급되는, 가스 터빈 연소기의 작동 방법.
  31. 제 26 항에 있어서,
    상기 세트의 주요 연료 분사기들의 제 1 부분은 대략 120 도에 걸쳐지는 연료 분사기들의 원호형 세그먼트를 포함하고 상기 세트의 주요 연료 분사기들의 제 2 부분은 또한 대략 240 도에 걸쳐지는 연료 분사기들의 원호형 세그먼트를 포함하는, 가스 터빈 연소기의 작동 방법.
KR1020157011151A 2012-10-01 2013-09-30 다중 스테이지 화염판 연소기의 작동 방법 KR20150063507A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261708323P 2012-10-01 2012-10-01
US61/708,323 2012-10-01
US14/038,070 US20150184858A1 (en) 2012-10-01 2013-09-26 Method of operating a multi-stage flamesheet combustor
US14/038,070 2013-09-26
PCT/US2013/062693 WO2014055437A1 (en) 2012-10-01 2013-09-30 Method of operating a multi-stage flamesheet combustor

Publications (1)

Publication Number Publication Date
KR20150063507A true KR20150063507A (ko) 2015-06-09

Family

ID=49305226

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157011151A KR20150063507A (ko) 2012-10-01 2013-09-30 다중 스테이지 화염판 연소기의 작동 방법

Country Status (9)

Country Link
US (1) US20150184858A1 (ko)
EP (1) EP2904327A1 (ko)
JP (1) JP2015531450A (ko)
KR (1) KR20150063507A (ko)
CN (1) CN104685298B (ko)
CA (1) CA2886765A1 (ko)
MX (1) MX2015003098A (ko)
SA (1) SA515360208B1 (ko)
WO (1) WO2014055437A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378456B2 (en) 2012-10-01 2019-08-13 Ansaldo Energia Switzerland AG Method of operating a multi-stage flamesheet combustor
US9897317B2 (en) 2012-10-01 2018-02-20 Ansaldo Energia Ip Uk Limited Thermally free liner retention mechanism
US10060630B2 (en) 2012-10-01 2018-08-28 Ansaldo Energia Ip Uk Limited Flamesheet combustor contoured liner
US9347669B2 (en) 2012-10-01 2016-05-24 Alstom Technology Ltd. Variable length combustor dome extension for improved operability
US11384939B2 (en) * 2014-04-21 2022-07-12 Southwest Research Institute Air-fuel micromix injector having multibank ports for adaptive cooling of high temperature combustor
CN104315541B (zh) * 2014-09-26 2019-01-18 北京华清燃气轮机与煤气化联合循环工程技术有限公司 燃烧室值班级喷嘴及使用该喷嘴的方法
US10571128B2 (en) * 2015-06-30 2020-02-25 Ansaldo Energia Ip Uk Limited Gas turbine fuel components
WO2017002076A1 (en) * 2015-06-30 2017-01-05 Ansaldo Energia Ip Uk Limited Gas turbine control system
US20170058784A1 (en) * 2015-08-27 2017-03-02 General Electric Company System and method for maintaining emissions compliance while operating a gas turbine at turndown condition
WO2017196356A1 (en) 2016-05-12 2017-11-16 Siemens Aktiengesellschaft A method of selective combustor control for reduced emissions
US10739003B2 (en) * 2016-10-03 2020-08-11 United Technologies Corporation Radial fuel shifting and biasing in an axial staged combustor for a gas turbine engine
US10436124B2 (en) * 2017-02-06 2019-10-08 Nicolas Demougeot Signal processing for auto-tuning a gas turbine engine
US10739007B2 (en) * 2018-05-09 2020-08-11 Power Systems Mfg., Llc Flamesheet diffusion cartridge
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11795879B2 (en) * 2021-12-20 2023-10-24 General Electric Company Combustor with an igniter provided within at least one of a fuel injector or a compressed air passage

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2457157A (en) * 1946-07-30 1948-12-28 Westinghouse Electric Corp Turbine apparatus
US3869862A (en) * 1972-12-01 1975-03-11 Avco Corp Fuel conservation system for multi-engine powered vehicle
US4735052A (en) * 1985-09-30 1988-04-05 Kabushiki Kaisha Toshiba Gas turbine apparatus
US4928481A (en) * 1988-07-13 1990-05-29 Prutech Ii Staged low NOx premix gas turbine combustor
US4910957A (en) * 1988-07-13 1990-03-27 Prutech Ii Staged lean premix low nox hot wall gas turbine combustor with improved turndown capability
JP2544470B2 (ja) * 1989-02-03 1996-10-16 株式会社日立製作所 ガスタ―ビン燃焼器及びその運転方法
GB9023004D0 (en) * 1990-10-23 1990-12-05 Rolls Royce Plc A gas turbine engine combustion chamber and a method of operating a gas turbine engine combustion chamber
JP2950720B2 (ja) * 1994-02-24 1999-09-20 株式会社東芝 ガスタービン燃焼装置およびその燃焼制御方法
DE4416650A1 (de) * 1994-05-11 1995-11-16 Abb Management Ag Verbrennungsverfahren für atmosphärische Feuerungsanlagen
JP3578852B2 (ja) * 1995-12-05 2004-10-20 東京瓦斯株式会社 マルチバーナ式燃焼器の燃料供給システム及び該燃料供給システムを持つガスタービン
GB0019533D0 (en) * 2000-08-10 2000-09-27 Rolls Royce Plc A combustion chamber
DE10056124A1 (de) * 2000-11-13 2002-05-23 Alstom Switzerland Ltd Brennersystem mit gestufter Brennstoff-Eindüsung und Verfahren zum Betrieb
US6935116B2 (en) * 2003-04-28 2005-08-30 Power Systems Mfg., Llc Flamesheet combustor
US6986254B2 (en) * 2003-05-14 2006-01-17 Power Systems Mfg, Llc Method of operating a flamesheet combustor
CN1938549B (zh) * 2004-03-31 2010-09-29 阿尔斯通技术有限公司 用于燃烧室的运行的多级燃烧器装置以及用于运行该多级燃烧器装置的方法
EP1754003B1 (de) * 2004-06-08 2007-09-19 Alstom Technology Ltd Vormischbrenner mit gestufter flüssigbrennstoffversorgung
US7308793B2 (en) 2005-01-07 2007-12-18 Power Systems Mfg., Llc Apparatus and method for reducing carbon monoxide emissions
US7237384B2 (en) 2005-01-26 2007-07-03 Peter Stuttaford Counter swirl shear mixer
US7677025B2 (en) 2005-02-01 2010-03-16 Power Systems Mfg., Llc Self-purging pilot fuel injection system
US7137256B1 (en) * 2005-02-28 2006-11-21 Peter Stuttaford Method of operating a combustion system for increased turndown capability
US7513115B2 (en) 2005-05-23 2009-04-07 Power Systems Mfg., Llc Flashback suppression system for a gas turbine combustor
JP2007113888A (ja) * 2005-10-24 2007-05-10 Kawasaki Heavy Ind Ltd ガスタービンエンジンの燃焼器構造
US20080083224A1 (en) * 2006-10-05 2008-04-10 Balachandar Varatharajan Method and apparatus for reducing gas turbine engine emissions
US7886545B2 (en) * 2007-04-27 2011-02-15 General Electric Company Methods and systems to facilitate reducing NOx emissions in combustion systems
JP4979615B2 (ja) * 2008-03-05 2012-07-18 株式会社日立製作所 燃焼器及び燃焼器の燃料供給方法
JP4797079B2 (ja) * 2009-03-13 2011-10-19 川崎重工業株式会社 ガスタービン燃焼器
US8991192B2 (en) * 2009-09-24 2015-03-31 Siemens Energy, Inc. Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine
JP5075900B2 (ja) * 2009-09-30 2012-11-21 株式会社日立製作所 水素含有燃料対応燃焼器および、その低NOx運転方法
JP5084847B2 (ja) * 2010-01-13 2012-11-28 株式会社日立製作所 ガスタービン燃焼器
US8769955B2 (en) * 2010-06-02 2014-07-08 Siemens Energy, Inc. Self-regulating fuel staging port for turbine combustor
US8613197B2 (en) * 2010-08-05 2013-12-24 General Electric Company Turbine combustor with fuel nozzles having inner and outer fuel circuits
US9261022B2 (en) * 2012-12-07 2016-02-16 General Electric Company System for controlling a cooling flow from a compressor section of a gas turbine

Also Published As

Publication number Publication date
SA515360208B1 (ar) 2018-06-28
EP2904327A1 (en) 2015-08-12
CA2886765A1 (en) 2014-04-10
US20150184858A1 (en) 2015-07-02
CN104685298B (zh) 2017-05-10
CN104685298A (zh) 2015-06-03
JP2015531450A (ja) 2015-11-02
WO2014055437A1 (en) 2014-04-10
MX2015003098A (es) 2015-11-06

Similar Documents

Publication Publication Date Title
US10378456B2 (en) Method of operating a multi-stage flamesheet combustor
KR20150063507A (ko) 다중 스테이지 화염판 연소기의 작동 방법
US7137256B1 (en) Method of operating a combustion system for increased turndown capability
US6986254B2 (en) Method of operating a flamesheet combustor
US6983605B1 (en) Methods and apparatus for reducing gas turbine engine emissions
JP6324389B2 (ja) 多段燃焼器用のフローディバイダ機構
US6923001B2 (en) Pilotless catalytic combustor
KR101324142B1 (ko) 다중 스테이지 축방향 연소 시스템
EP1426689B1 (en) Gas turbine combustor having staged burners with dissimilar mixing passage geometries
US5974781A (en) Hybrid can-annular combustor for axial staging in low NOx combustors
US7677025B2 (en) Self-purging pilot fuel injection system
JP2006145194A (ja) ガスタービンエンジン用の閉込め渦式燃焼器空洞マニホールド
JPH03175211A (ja) ガスタービン燃焼器、これを備えているガスタービン設備、及びこの燃焼方法
JP2007139411A (ja) 低エミッション燃焼器及びそれを作動させる方法
US10739007B2 (en) Flamesheet diffusion cartridge
KR20140082659A (ko) 가스 터빈 엔진에서 사용되는 예비혼합형 접선방향 연료-공기 노즐을 가진 캔-애뉼러형 연소실
JP3192055B2 (ja) ガスタービン燃焼器
US7905093B2 (en) Apparatus to facilitate decreasing combustor acoustics
JP2011196680A (ja) 低排出燃焼システム用マルチゾーンパイロット
JP3990678B2 (ja) ガスタービン燃焼器
JP6740375B2 (ja) 排気を減らすための選択的燃焼器制御の方法
JPH07260149A (ja) ガスタービン燃焼器
JP2000161670A (ja) ガスタービン燃焼器およびその運用方法
JP2001324137A (ja) バーナ装置
JPH05340273A (ja) 燃焼器の燃焼方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application