KR20150039541A - Electrocity generation system - Google Patents

Electrocity generation system Download PDF

Info

Publication number
KR20150039541A
KR20150039541A KR20130118223A KR20130118223A KR20150039541A KR 20150039541 A KR20150039541 A KR 20150039541A KR 20130118223 A KR20130118223 A KR 20130118223A KR 20130118223 A KR20130118223 A KR 20130118223A KR 20150039541 A KR20150039541 A KR 20150039541A
Authority
KR
South Korea
Prior art keywords
heat
heat exchanger
rankine cycle
organic rankine
cycle
Prior art date
Application number
KR20130118223A
Other languages
Korean (ko)
Inventor
김영선
Original Assignee
김영선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영선 filed Critical 김영선
Priority to KR20130118223A priority Critical patent/KR20150039541A/en
Priority to PCT/KR2014/009251 priority patent/WO2015050372A1/en
Publication of KR20150039541A publication Critical patent/KR20150039541A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/02Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The present invention relates to a power generation system to generate power by taking heat from heat sources such as air, ground, and waste water as unutilized energy sources using a heat pump technology and supplying the heat to the heat source of the organic Rankine cycle. The air, ground, and waste water as unutilized energy sources are very low heat sources. To generate power in the organic Rankine cycle, a heat source having a temperature at least between 70 and 90°C needs to be produced. The organic Rankine cycle can be economically efficient in power generation with the use of commercial power when efficiently utilizing the unutilized latent heat of condensation of a working heat medium in the organic Rankine cycle unless the turbine efficiency in the organic Rankine cycle is increased for more than 80%. The present invention provides a technology on a power generation system for economically efficiently producing power as the working heat medium of a heat pump heat gain cycle absorbs and vaporizes the latent heat of condensation, air heat, and geothermal heat of the working heat medium in the organic Rankine cycle using a heat exchanger to emit the condensation heat from the heat exchange connected to organic Rankine cycle through a compressor and supply high temperature heat to the organic Rankine cycle instead of condensing the working heat medium of the organic Rankine cycle, which is discharged after spinning a turbine and is in a low pressure gaseous state into air or a coolant in order to change it to a liquid state and discarding it, thereby improving the overall efficiency of the system.

Description

발전시스템 {Electrocity generation system}[0001] Electrocity generation system [0002]

미활용 에너지원인 지열원, 공기열원으로 부터 열원을 취득하여 전력을 생산하는 발전시스템에 관한 것이다.
The present invention relates to a power generation system for generating electric power by obtaining a heat source from a geothermal source and an air heat source, which are unused energy sources.

일반적으로 유기랭킨사이클을 이용하여 열병합 발전소나 공장 폐수열을 활용 전기를 생산하는 많은 사례들이 있다. 또한, 공기열, 지열, 폐수열, 해수열 등의 미활용 에너지를 열원으로 흡수하여 냉난방시스템에 적용한 히트펌프 냉난방시스템 In general, there are many cases where electricity is produced by using organic Rankine cycle and using cogeneration plant or factory waste heat. In addition, it absorbs unused energy such as air heat, geothermal heat, waste heat and seawater heat as a heat source and applies it to heating and cooling system.

등이 많이 보급되고 있다.
And so on.

그러나, 열병합 발전소나 공장으로 부터 배출되는 폐수열원의 경우 90~350도 정도의 열원이어서, 더구나 버려지는 열원이어서 랭킨사이클을 사용하여,발전을 해도 어느 정도 경제성을 확보할 수 있다.
However, in the case of a waste heat source discharged from a cogeneration power plant or a plant, since it is a heat source of about 90 to 350 degrees, and is also a waste heat source, economical efficiency can be secured to some extent by using a Rankine cycle.

유기랭킨사이클에서는 작동열매체의 증기압에 의해 터빈을 돌려 전기를 생산하고 작동열매체의 기체에서 액체로의 상변화를 위해 냉각팬을 돌려 공기로 식혀 응축 시키거나, 냉각탑을 설치하여 냉각수에 의해서 응축하는 방법을 사용한다.In the organic Rankine cycle, the turbine is rotated by the vapor pressure of the working heat medium to produce electricity, and the cooling fan is turned to cool the air to change the phase of the heat medium from gas to liquid or to condense it with cooling water Lt; / RTI >

(대한민국 특허등록번호 10-0960609 냉매터빈 발전장치)
(Korea Patent Registration No. 10-0960609 Refrigerant Turbine Generator)

그러나, 공기열원이나 지열원과 같은 미활용 에너지원의 경우, 아주 낮은 온도이기 때문에 바로 랭킨사이클을 사용하여 발전을 할 수가 없다. 그래서, 히트펌프냉난방시스템과 랭킨사이클의 결합을 통해 발전을 하는 방법도 고려할 수 있으나,However, in the case of an unused energy source such as an air heat source or a geothermal source, since the temperature is very low, it is impossible to generate electricity using the Rankine cycle. Therefore, a method of generating electricity through the combination of the heat pump cooling and heating system and the Rankine cycle can be considered,

문제는 히트펌프시스템은 가스엔진을 사용하는 경우가 아니면, 상용전기를 사용하여 미활용 에너지원으로 부터 열원을 끌어올려 높은 온도의 열량을 생산하여 이를 발전에 활용 해야 함으로 경제성을 심각하게 고려해야 한다.
The problem is that if the heat pump system does not use a gas engine, economical efficiency should be seriously considered because commercial energy should be used to raise the heat source from the unused energy source to produce high-calorific heat and use it for power generation.

그 이유는 랭킨사이클 터빈 효율이 30%~40%라 하면, 상용전기를 활용하여 미활용 에너지지원으로 부터 열원을 끌어와 고온의 열을 생산했을 때, 그중 30~40%만 전기로 생산되고, 나머지는 사용하는 작동열매체의 기체에서 액체로의 상변화를 The reason for this is that when the Rankine cycle turbine efficiency is 30% to 40%, 30% to 40% of electricity generated from high-temperature heat is generated by attracting a heat source from unutilized energy support using commercial electricity. The phase change from the gas to the liquid of the working heat medium to be used

위해 응축을 하게 되는데, 이때 공기나 냉각수에 의해 냉각, 응축과정을 통해 나머지 작동열매체의 응축잠열이 버려지게 됨으로 더욱 경제성을 확보하기가 어려워 진다.
In this case, since the latent heat of condensation of the remaining working heat medium is abolished through the cooling and condensation process by the air or the cooling water, it becomes difficult to secure economical efficiency.

미활용 에너지원이 공기열, 지열 등으로 부터 열원을 끌어와 고온을 만들어 내는 히트펌프 기술과 외부열원으로 작동열매체를 증발시켜 그 증기압으로 터빈을 돌려 전기를 생산하는 랭킨사이클을 결합하면서, 히트펌프 기술로 랭킨사이클의 작동  Unused energy source draws heat source from air heat, geothermal heat, etc., and it creates high temperature Heat pump technology and external heat source It evaporates heat medium and turns turbine by the vapor pressure and combines with Rankine cycle which produces electricity, Rankine cycle operation

열매제를 과포화증기로 만들 수 있는 고온의 열을 만들어 내면서, 터빈을 돌리고 난 작동열매체의 응축잠열을 다시 회수하여 전체적인 효율을 높혀야 경제성을 확보할 수 있다.
It is possible to obtain economical efficiency by raising the overall efficiency by collecting the latent heat of condensation of the working heat medium which rotates the turbine while generating heat of high temperature which can make the thermal agent into supersaturated steam.

미활용 에너지원인 공기열, 지열, 폐열 등으로 부터 열원을 흡수하여, 70~90도 정도의 고온의 열원을 생산하기 위해서는 일반적인 히트펌프 사이클을 두개로 연결한 이원사이클을 사용하는 방법이 있다. 보통 공기열, 지열, 폐열등으로 부터 열을   In order to absorb a heat source from air heat, geothermal heat, and waste heat, which are unused energy sources, and to produce a heat source of a high temperature of about 70 to 90 degrees, there is a method of using a two- Generally heat from air, geothermal, waste heat, etc.

직접 흡수하는 열취득사이클에서는 작동매체로 R410A냉매를 많이 사용하며, 열취득사이클로 부터 열원을 공급받아 더 ?은 온도의 열을 생산하는 고온전달사이클의 작동열매체로는 R134A를 많이 사용한다.
R134A is often used as the working medium in the high-temperature transfer cycle, which uses R410A refrigerant as the working medium in a direct absorption-absorbing heat-up cycle and receives heat from the heat-up cycle to produce heat at higher temperatures.

그러나, 본 발명에서는 상기와 같이 이원사이클을 사용하여 고온의 열원을 생산하는 방법이 아닌 일반적인 히트펌프 사이클에서 고온의 열원을 생산하는 방법을 고려한다. 히트펌프 사이클에서 70~90도의 고온을 생산하려면, 작동열매체를 고압으로 압축시켜야 한다. 그러기 위해서는 이중 압축방법을 사용하거나 고압용 압축기를 사용하여야 한다. 또한 작동열매체로는 난방계수가 높은 이산화탄소 냉매를 사용할 수 있다.
However, the present invention contemplates a method of producing a high-temperature heat source in a general heat pump cycle rather than a method of producing a high-temperature heat source by using the dual cycle as described above. To produce a high temperature of 70 to 90 degrees in a heat pump cycle, the working heat medium must be compressed to a high pressure. To do this, a double compression method or a high-pressure compressor should be used. Also, carbon dioxide refrigerant having a high heating coefficient can be used as the working heat medium.

또한, 상기와 같은 히트펌프 열취득사이클과 유기랭킨사이클을 결합하여 전력을 생산하는데 있어, 유기랭킨사이클의 터빈 자체의 효율을 80% 높일 수 없다면, 터빈을 돌리고 난 기체상태의 작동열매체를 액체상태로의 상변화를 위해서 공기나 If the efficiency of the turbine of the organic Rankine cycle can not be increased by 80% in the production of electric power by combining the heat pump heat acquisition cycle and the organic Rankine cycle as described above, the gaseous working heat medium, rotating the turbine, For the phase change of the air,

냉각수로 냉각, 응축시켜 응축잠열을 배출하는 것이 아니라, 히트펌프 열취득사이클에서 작동열매체가 공기열원이나 지열원으로 열을 흡수하여 증발할 때, 유기랭킨사이클 작동열매체의 응축잠열도 열원으로 흡수되게 하면서, 유기랭킨사이클의 작동열매체가 액체상태로 상변화 할 수 있게 할 수 있다.
When the heat medium is heated by the air heat source or the geothermal heat and evaporates, the latent heat of condensation of the organic Rankine cycle heat medium is also absorbed by the heat source, not by discharging the latent heat of condensation by cooling and condensing with the cooling water While allowing the working heating medium of the organic Rankine cycle to undergo a phase change to a liquid state.

또한, 공기열원의 경우 겨울철에는 아주 낮은 열원밖에 제공이 안되어 그것만 전력을 생산하면 경제성을 확보할 수 없기 때문에, 5m 이하로 지중열교환기를 설치하여 연중 10~15도의 안정된 열원을 공기열원과 함께 활용하면 겨울철에도 경제적 In the case of air heat source, only a very low heat source can be provided in winter, so it is not economical to produce electricity. Therefore, by installing an underground heat exchanger below 5m and using a stable heat source of 10 ~ Economic in winter

으로 전력을 생산할 수 있는 발전시스템 기술을 제공할 수 있다.
Can provide a power generation system technology capable of generating electric power.

미활용 에너지원인 공기열과 지열, 폐수열 등을 활용하여 주택이나 중소형 건물, 초대형건물, 공장등에 자체적으로 필요한 전력을 공급하고, 남거나 모자라는 전력을 전력네트워크로 연결하여 효율적으로 활용할 수 있는 에너지그리드를 구축할  Utilizing unused energy, air heat, geothermal heat, and waste heat, it will supply necessary power to homes, small and medium sized buildings, super large buildings and factories, and build an energy grid that can efficiently utilize power

수 있다.
.

도1 은 본 발명의 공기열원 발전시스템 실시예
도2 는 본 발명의 지열원 발전시스템 실시예
도3 은 본 발명의 지열원 발전시스템의 또 다른 실시예
도4는 본 발명의 복합열원 발전시스템의 실시예
1 is a view showing an embodiment of the air heat source generation system of the present invention
FIG. 2 is a schematic view showing an embodiment
3 is a view showing another embodiment of the geothermal source generation system of the present invention
4 is a view showing an embodiment of the complex heat source power generation system of the present invention

도1은 본 발명의 공기열원 발전시스템 실시예 이다., 1 is an embodiment of an air heat source power generation system according to the present invention.

히트펌프 열취득사이클(200)에서 공기로 부터 열을 흡수하여 고온의 열을 생산, 유기랭킨사이클(100)로 공급하기 위해서, 압축기(201), 제1열교환기(104), 팽창밸브(202), 외기증발기(203), 제3열교환기(204)로 폐회로를 구비하여, 열취득사이클(200)을 구성하게 되는데, 열취득사이클(200)의 작동열매체가 팽창밸브(202)에서 등온팽창하여 증발하기 쉬운 상태로 되는데, 1차적으로 외기증발기(203)에서 공기열을 흡수하면서 증발하고, 제3열교환기(204)에서 유기랭킨사이클(100) 작동열매체의 응축잠열을 흡수하면서 증발하여, 압축기(201)에서 고온고압의 기체상태로 되어 제1열교환기(104)에서 응축열을 방출하여 유기랭킨사이클(100)에 고온의 열량을 공급하게 된다.
The first heat exchanger 104, the expansion valve 202, the first heat exchanger 104, the second heat exchanger 104, the second heat exchanger 104, the second heat exchanger 104, The outdoor heat evaporator 203 and the third heat exchanger 204 constitute a heat acquisition cycle 200 in which the working heat medium in the heat acquisition cycle 200 is isothermal expanded in the expansion valve 202 And is evaporated while absorbing the air heat in the outside air evaporator 203. The third heat exchanger 204 evaporates while absorbing the latent heat of condensation of the organic heating medium in the Rankankle cycle 100, Temperature high-pressure gaseous state in the second heat exchanger 201 to discharge the condensation heat in the first heat exchanger 104 to supply the high-temperature heat to the organic Rankine cycle 100.

유기랭킨사이클(100)의 작동열매체는 제1열교환기(104)에서 히트펌프 열취득사이클(200)의 고온의 응축열을 흡수하여 과포화증기가 되어, 그 증기압에 의해 발전기(102)가 축으로 연결된 터빈(101)을 돌려 전력을 생산하게 된다. The working heat medium of the organic Rankine cycle 100 absorbs the heat of condensation at a high temperature of the heat pump heat acquisition cycle 200 in the first heat exchanger 104 and becomes supersaturated steam so that the generator 102 is axially connected The turbine 101 is rotated to produce electric power.

터빈을 돌리고 나온 저압 기체상태의 작동열매체는 액체 상태로 상변화를 해야 하는데, 히트펌프 열취득사이클(200)의 제3열교환기(204)에서 히트펌프 열취득사이클(200)의 작동열매체와 열교환 되면서 액체상태로 상변화된 유기랭킨사이클(100)The low-pressure gaseous working heat medium from which the turbine is blown must undergo a phase change in the liquid state. The heat medium in the third heat exchanger 204 of the heat pump heat acquisition cycle 200 and the heat medium in the heat- The organic Rankine cycle 100, which is phase-

의 작동열매체는 압축펌프(103)에 의해서 제1열교환기(104)로 보내져, 상기 전력생산을 위한 유기랭킨사이클(100)을 반복하게 된다.
The operating heat medium is sent to the first heat exchanger 104 by the compression pump 103 to repeat the organic Rankine cycle 100 for the power production.

상기와 같이, 공기열원 뿐 아니라, 유기랭킨사이클(100) 작동열매체의 응축잠열을 열원으로 회수하여 히트펌프 열취득사이클(200)의 효율을 높혀, 경제적으로 전력생산을 할 수 있게 된다.
As described above, the latent heat of condensation of the organic Rankine cycle (100) working heat medium as well as the air heat source can be recovered as a heat source, thereby increasing the efficiency of the heat pump heat acquisition cycle 200 and economically generating electric power.

도2는 본 발명의 지열원 발전시스템 실시예 이다.2 is an embodiment of the geothermal source generation system of the present invention.

도3은 도2에서 제2열교환기(203;)와 제3열교환기(204)가 하나로 결합된 제2’열교환기(203”)을 사용하여 지열원 발전시스템을 실시한 예로 동일한 원리이다.
3 shows the same principle in which the geothermal power generation system is implemented using the second heat exchanger 203 " in which the second heat exchanger 203 and the third heat exchanger 204 are combined in Fig.

지열원의 경우는 지표면에서 지하 5m까지는 계절별 외기온도 조건에 따라 변화가 있지만, 지하 5m 이하 부터는 연중 10~15도 안정된 열원을 공급할 수 있다.In the case of geothermal resources, the temperature varies from 5 m below the ground to 5 m below the ground.

따라서, 비교적 추운 지역에서는 지열원을 활용하여 전력을 생산할 수 있다.
Therefore, in relatively cold regions, power can be generated by utilizing geothermal resources.

히트펌프 열취득사이클(200) 을 위하여 압축기(201), 제1열교환기(104), 팽창밸브(202), 제2열교환기(203)’, 제3열교환기(204)로 폐회로를 구성하거나 압축기(201), 제1열교환기(104), 팽창밸브(202), 제2’열교환기(203”)로 폐회로를 The first heat exchanger 104, the expansion valve 202, the second heat exchanger 203 ', and the third heat exchanger 204 for the heat pump heat acquisition cycle 200, The compressor (201), the first heat exchanger (104), the expansion valve (202), the second 'heat exchanger (203'

구성할 수 있다.
Can be configured.

지중열원을 흡수하기 위하여, 제2열교환기(203’), 지중열 순환펌프(301), 지중열 순환도관1(302), 지중열교환기(303), 지중열 순환도관2(304)로 폐루프를 구성하거나, 제2’열교환기(203”), 지중열 순환퍼므(301), 지중열 순환도관1 (302),The second heat exchanger 203 ', the geothermal circulation pump 301, the geothermal circulation conduit 1 302, the geothermal heat exchanger 303 and the underground thermocycling conduit 2 304 are closed to absorb the underground heat source. A second heat exchanger 203 ", a geothermal circulation perm 301, a geothermal circulation conduit 1 (302)

지중열교환기(303), 지중열 순환도관2(304)로 폐루프를 구성할 수 있다.
The underground heat exchanger 303 and the underground thermocycling pipe 2 304 constitute a closed loop.

히트펌프 열취득사이클(200)에서 년중 일정온도의 안정적 열원인 지중열원과 유기랭킨사이클(100) 작동열매체의 응축잠열을 열원으로 흡수하여, 다시 유기랭킨사이클(100)의 열원으로 공급함으로, 년중 큰 변화없는 안정적인 전력을 공급할 수 있다.
In the heat pump heat acquisition cycle 200, a latent heat source, which is a stable heat source at a constant temperature during a year, and a latent heat of condensation of the organic thermal energy in the organic Rankine cycle 100 are absorbed as a heat source and then supplied to a heat source of the organic Rankine cycle 100, It is possible to supply stable power without a large change.

도4는 본 발명의 복합열원(지열원 + 공기열원) 발전시스템 실시예 이다.Fig. 4 shows an embodiment of the complex heat source (geothermal circulation source + air heat source) of the present invention.

겨울철에는 공기로 부터 충분한 열원을 공급받지 못해, 상업적으로 경제성있는 전력생산이 이루어지기 힘들다. 이를 해결하는 방법으로 본 발명에서는 지열원과 공기열원을 동시에 활용할 수 있는 복합열원 발전시스템을 제안한다.
In winter, there is not sufficient supply of heat from the air, making it difficult to produce economically viable commercial power. In order to solve this problem, the present invention proposes a complex heat source power generation system which can utilize a geothermal source and an air heat source at the same time.

히트펌프 열취득사이클(200)은 압축기(201), 제1열교환기(104), 팽창밸브(202), 외기증발기(203), 제3’열교환기(204’)로 폐회로를 구성한다.The heat pump heat acquisition cycle 200 constitutes a closed circuit by the compressor 201, the first heat exchanger 104, the expansion valve 202, the outside air evaporator 203 and the third heat exchanger 204 '.

유기랭킨사이클(100)은 발전기(102)가 축으로 연결된 냉매터빈(101), 제3’열교환기(204’), 압축펌프(103), 제1열교환기(104)로 폐회로를 구성한다.
The organic Rankine cycle 100 constitutes a closed circuit with the refrigerant turbine 101, the third heat exchanger 204 ', the compression pump 103 and the first heat exchanger 104, to which the generator 102 is connected in an axial direction.

상기 히트펌프 열취득사이클(200)에서는 작동열매체가 외기증발기(203)를 통해서 공기여를 흡수할 뿐만 아니라, 제3’열교환기(204’)를 통해서 지중열원과 유기랭킨사이클(100) 작동열매체의 응축잠열을 흡수하여, 압축기(201)에 의해 고온고압 상태로 되어 제1열교환기(104)를 통해 응축열을 방출하여 전력생산을 위한 고온의 열원을 공급하게 된다.
In the heat pump heat acquisition cycle 200, not only the operating heat medium absorbs the air through the outside air evaporator 203 but also the heat medium flowing through the third heat exchanger 204 ' And is discharged to the high temperature and high pressure state by the compressor 201 through the first heat exchanger 104 to supply a high temperature heat source for electric power production.

공기열원과 지열원으로 부터 동시에 열원을 흡수하여, 겨울철 부족한 공기열원 문제를 보완하여 겨울철에도 상업적으로 유효한 전력을 생산하여 공급할 수 있다.
By absorbing the heat source from the air heat source and the geothermal source at the same time, it is possible to supply and supply commercially effective power in the winter by supplementing the problem of air heat source which is insufficient in winter.

100 : 유기랭킨사이클
101 : 냉매터빈
102 : 발전기
103 : 압축펌프
104 : 제1열교환기
200 : 열취득사이클
201 : 압축기
202 : 팽창밸브
203 : 외기증발기
203’ : 제2열교환기
203” : 제2’열교환기
204 : 제3열교환기
204’ : 제3’열교환기
301 : 지중열 순환펌프
302 : 지중열 순환도관1
303 : 지중열 교환기
304 : 지중열 순환도관2
100: Organic Rankine cycle
101: Refrigerant turbine
102: generator
103: Compressor pump
104: first heat exchanger
200: Heat recovery cycle
201: Compressor
202: expansion valve
203: outside evaporator
203 ': a second heat exchanger
203 ": second " heat exchanger
204: third heat exchanger
204 ': Third heat exchanger
301: Underground heat circulation pump
302: Underground thermal circulation conduit 1
303: Underground heat exchanger
304: Underground thermal circulation conduit 2

Claims (4)

발전시스템에 있어서,

압축기(201), 제1열교환기(104), 팽창밸브(202), 외기증발기(203), 제3열교환기(204)로 폐회로를 구성하는 열취득사이클(200);

발전기(102)가 축으로 연결된 냉매터빈(101), 제3열교환기(204), 압축펌프(103), 제1열교환기(104)로 폐회로를 구성하는 유기랭킨사이클(100);

상기 열취득사이클(200)의 작동열매체가 외기증발기(203)에서 1차로 공기열을 흡수하여 증발되고, 제3열교환기(204)에서 유기랭킨사이클(100) 작동열매체의 응축열원을 2차적으로 흡수하여 증발되어, 압축기(201)에 의해 고온고압의 기체냉매로
상변화되어, 제1열교환기(104)에서 응축열을 방출하고, 상기 랭킨사이클(100)의 작동열매체가 상기 열취득사이클(200)의 응축열을 흡수하여 포화증기가 되어 증기압에 의해 냉매터빈(101)을 돌려 전력을 생산하고, 냉매터빈(101)을 돌리고 나온 저압의 기체상태의 작동열매체가 제3열교환기(204)에서 응축열을 방출하고 액화되어 압축펌프(103)에 의해 다시 제1열교환기(104)에 보내져 전력을 생산하는 사이클을
반복함을 특징으로 하는 발전시스템.
In a power generation system,

A heat acquisition cycle 200 constituting a closed circuit by the compressor 201, the first heat exchanger 104, the expansion valve 202, the outside air evaporator 203, and the third heat exchanger 204;

An organic Rankine cycle 100 constituting a closed circuit by a refrigerant turbine 101, a third heat exchanger 204, a compression pump 103, and a first heat exchanger 104 connected to the generator 102 in an axial direction;

The operating heat medium of the heat acquisition cycle 200 is firstly absorbed by the outside air evaporator 203 to evaporate the air heat and the second heat exchanger 204 absorbs the heat of condensation of the organic heat exchanger And the refrigerant is evaporated by the compressor 201 to a high temperature and high pressure gas refrigerant
And the operation heat medium of the Rankine cycle 100 absorbs the heat of condensation of the heat acquisition cycle 200 to become saturated steam and is supplied to the refrigerant turbine 101 And the low-pressure gaseous working heat medium from the refrigerant turbine 101, which has been discharged from the third heat exchanger 204, is liquefied and discharged by the compression pump 103 to the first heat exchanger (104) to produce a cycle
The power generation system characterized by repetition.
발전시스템에 있어서,

압축기(201), 제1열교환기(104), 팽창밸브(202), 제2열교환기(203’), 제3열교환기(204)로 폐회로를 구성하는 열취득사이클(200);

발전기(102)가 축으로 연결된 냉매터빈(101), 제3열교환기(204), 압축펌프(103), 제1열교환기(104)로 폐회로를 구성하는 유기랭킨사이클(100);

상기 열취득사이클(200)의 작동열매체가 제2열교환기(203’), 지중열 순환펌프(301), 지중열순환도관1(302), 지중열교환기(303), 지중열순환도관2(304)로 폐루프를 구성하는 지중열폐루프를 통해서 지중열원을 흡수하여 1차적으로 증발하고, 제3열교환기(204)에서 유기랭킨사이클(100) 작동열매체의 응축열원을 2차적으로 흡수하여 증발되어 압축기(201)에 의해서 고온고압의 기체냉매로 상변화되어 제1열교환기(104)에서 응축열을 방출, 상기 유기랭킨사이클(100)에 발전열원을 공급함을 특징으로 하는 발전시스템.
In a power generation system,

A heat acquisition cycle 200 constituting a closed circuit by the compressor 201, the first heat exchanger 104, the expansion valve 202, the second heat exchanger 203 'and the third heat exchanger 204;

An organic Rankine cycle 100 constituting a closed circuit by a refrigerant turbine 101, a third heat exchanger 204, a compression pump 103, and a first heat exchanger 104 connected to the generator 102 in an axial direction;

The working heat medium of the heat acquisition cycle 200 is supplied to the second heat exchanger 203 ', the underground heat circulation pump 301, the underground heat circulation conduit 1 302, the underground heat exchanger 303, 304 absorbs the underground heat source through the underground heat loop constituting the closed loop and is primarily evaporated and the third rank heat exchanger 204 absorbs the heat of condensation heat of the operation heat medium of the organic Rankine cycle 100, And is transformed into a high-temperature and high-pressure gas refrigerant by the compressor (201) to discharge condensation heat in the first heat exchanger (104), and to supply the power generation heat source to the organic Rankine cycle (100).
청구항 제2항에 있어서,

압축기(201), 제1열교환기(104), 팽창밸브(202), 제2’열교환기(203”)로 폐회로를 구성하는 열취득사이클(200);

발전기(102)가 축으로 연결된 냉매터빈(101), 제2’열교환기(203”), 압축펌프(103), 제1열교환기(104)로 폐회로를 구성하는 유기랭킨사이클(100);

상기 열취득사이클(200)의 작동열매체가 제2’열교환기(203”), 지중열 순환펌프(301), 지중열순환도관1(302), 지중열교환기(303), 지중열순환도관2(304)로 폐루프를 구성하는 지중열폐루프를 통해서 지중열원과, 유기랭킨사이클(100) 작동열매체의 응축열원을 흡수하여 증발되어, 압축기(201)에 의해서 고온고압의 기체냉매로 상변화되어 제1열교환기(104)에서 응축열을 방출하여 상기 유기랭킨사이클(100)에 발전열원을 공급함을 특징으로 하는 발전시스템.
The method according to claim 2,

A heat acquisition cycle 200 constituting a closed circuit by the compressor 201, the first heat exchanger 104, the expansion valve 202, and the second 'heat exchanger 203';

An organic Rankine cycle 100 constituting a closed circuit by a refrigerant turbine 101, a second 'heat exchanger 203', a compression pump 103 and a first heat exchanger 104 connected to the generator 102 in an axial direction;

The working heat medium of the heat acquisition cycle 200 is supplied to the second heat exchanger 203 ", the underground heat circulation pump 301, the underground heat circulation conduit 1 302, the underground heat exchanger 303, The underground heat source and the heat source for heat of condensation of the organic Rankine cycle (100) working heat medium are evaporated through the underground heating loop constituting the closed loop by the compressor (304), and are phase-changed to the high temperature and high pressure gas refrigerant by the compressor And the first heat exchanger (104) discharges condensation heat to supply the power generation heat source to the organic Rankine cycle (100).
발전시스템에 있어서,

압축기(201), 제1열교환기(104), 팽창밸브(202), 외기증발기(203), 제3’열교환기(204’)로 폐회로를 구성하는 열취득사이클(200);

발전기(102)가 축으로 연결된 냉매터빈(101), 제3’열교환기(204’), 압축펌프(103), 제1열교환기(104)로 폐회로를 구성하는 유기랭킨사이클(100);

상기 열취득사이클(200)의 작동열매체가 외기증발기(203)에서 1차적으로 공기열원으로 부터 열을 흡수하여 증발하고, 제3’열교환기(204’) 에서 제3’열교환기(204’), 지중열 순환펌프(301), 지중열순환도관1(302), 지중열교환기(303),
지중열순환도관2(304)로 폐루프를 구성하는 지중열폐루프를 통해서 지중열원과 유기랭킨사이클(100)의 작동열매체의 응축열원을 2차적으로 흡수하여 증발되어, 압축기(201)에 의해서 고온고압의 기체냉매로 상변화되어 제1열교환기(104)에서 응축열을 방출하여, 상기 유기랭킨사이클(100)에 발전열원을 공급함을 특징으로 하는 발전시스템.

In a power generation system,

A heat acquisition cycle 200 constituting a closed circuit by the compressor 201, the first heat exchanger 104, the expansion valve 202, the outside air evaporator 203, and the third 'heat exchanger 204';

An organic Rankine cycle 100 constituting a closed circuit by a refrigerant turbine 101, a third heat exchanger 204 ', a compression pump 103, and a first heat exchanger 104 connected to the generator 102 in an axial direction;

The working heat medium of the heat acquisition cycle 200 absorbs heat and primarily evaporates from the air heat source in the outside air evaporator 203 and flows from the third heat exchanger 204'to the third heat exchanger 204 ' A geothermal circulation pump 301, a geothermal circulation conduit 1 302, an underground heat exchanger 303,
The underground heat source and the thermal energy of the operation heat medium of the organic Rankine cycle 100 are secondarily absorbed and evaporated through the underground heat loop constituting the closed loop by the underground heat circulation conduit 2 304, Pressure gas refrigerant so as to discharge condensation heat in the first heat exchanger (104), and to supply the power generation heat source to the organic Rankine cycle (100).

KR20130118223A 2013-10-02 2013-10-02 Electrocity generation system KR20150039541A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20130118223A KR20150039541A (en) 2013-10-02 2013-10-02 Electrocity generation system
PCT/KR2014/009251 WO2015050372A1 (en) 2013-10-02 2014-10-01 System for generating electricity using compound heat sources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130118223A KR20150039541A (en) 2013-10-02 2013-10-02 Electrocity generation system

Publications (1)

Publication Number Publication Date
KR20150039541A true KR20150039541A (en) 2015-04-10

Family

ID=53029809

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130118223A KR20150039541A (en) 2013-10-02 2013-10-02 Electrocity generation system

Country Status (1)

Country Link
KR (1) KR20150039541A (en)

Similar Documents

Publication Publication Date Title
AU2017222606B2 (en) Use of perfluoroheptenes in power cycle systems
JP2005527730A (en) Cold power generation plant
WO2015196883A1 (en) Refrigeration-power combined supply method of absorption type heat pump
CN110068170B (en) Oil field waste heat utilization system based on absorption refrigeration
KR20130091806A (en) Cogeneration system using heat pump
KR20100105931A (en) Power, cold and hot water production system using heat pump
KR20150022311A (en) Heat pump electricity generation system
KR101315918B1 (en) Organic rankine cycle for using low temperature waste heat and absorbtion type refrigerator
KR101591628B1 (en) Hybrid heat pump system using low temperature sea water
KR20150109102A (en) Organic Rankine Cycle electricity generation system
KR101528935B1 (en) The generating system using the waste heat of condenser
KR20150140061A (en) Rankine Cycle electricity generation system
KR20150105162A (en) Organic Rankin Cycle electricity generation system
KR20150094190A (en) Combined cogeneration Organic Rankine cycle electricity generation system
JP2014190285A (en) Binary power generation device operation method
CN103615293B (en) Carbon dioxide heat pump and organic working medium combined power generation system
KR20150140904A (en) Steam Turbo-Generator
JP2014005776A (en) Air conditioning power generation system
KR102285675B1 (en) Power generation system by Organic Rankine Cycle using outdoor units waste heat of refrigerating and air-conditioning systems and solar energy
KR20150111079A (en) Organic Rankine Cycle electricity generation system
KR20150096266A (en) Combined cogeneration Organic Rankine cycle electricity generation system
RU91487U1 (en) DEVICE FOR CONVERTING LOW-POTENTIAL HEAT TO ELECTRIC ENERGY
KR101487829B1 (en) High efficiency power generation cycle
KR20150039541A (en) Electrocity generation system
KR20130119162A (en) Direct organic rankine cycle power generation system using solar power

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid