WO2015050372A1 - System for generating electricity using compound heat sources - Google Patents

System for generating electricity using compound heat sources Download PDF

Info

Publication number
WO2015050372A1
WO2015050372A1 PCT/KR2014/009251 KR2014009251W WO2015050372A1 WO 2015050372 A1 WO2015050372 A1 WO 2015050372A1 KR 2014009251 W KR2014009251 W KR 2014009251W WO 2015050372 A1 WO2015050372 A1 WO 2015050372A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
medium
heat medium
ground
Prior art date
Application number
PCT/KR2014/009251
Other languages
French (fr)
Korean (ko)
Inventor
김영선
Original Assignee
김영선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20130118223A external-priority patent/KR20150039541A/en
Priority claimed from KR20130118232A external-priority patent/KR20150039662A/en
Priority claimed from KR20130118868A external-priority patent/KR20150040404A/en
Application filed by 김영선 filed Critical 김영선
Publication of WO2015050372A1 publication Critical patent/WO2015050372A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V50/00Use of heat from natural sources, e.g. from the sea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a power generation system using a complex heat source, and more particularly, to generate electricity by using a heat pump module that absorbs heat energy from outside air to produce high temperature heat energy as a heat source, but as additional heat energy to the heat pump module.
  • the present invention relates to a power generation system using a complex heat source utilizing geothermal heat.
  • heat pump air-conditioning systems and the like that are applied to a cooling and heating system by absorbing unutilized energy such as air heat, geothermal heat, waste water heat, and sea water heat as a heat source are widely used.
  • the wastewater heat source discharged from the cogeneration plant or factory is a heat source of about 90 to 350 degrees, so that it is possible to secure a certain degree of economic feasibility even if power is generated using a Rankine cycle.
  • the Rankine cycle turbine efficiency is 30% to 40%.
  • the heat source is drawn from the unused energy support using commercial electricity, only 30 to 40% is produced by electricity.
  • the present invention for solving the conventional problems as described above to generate electricity by using an organic Rankine cycle to generate power by rotating the turbine through steam pressure, the heat pump module for producing high-temperature heat energy by absorbing the heat energy of the outside air as a heat source
  • the purpose is to provide a power generation system using a complex heat source that can be used to secure the power generation.
  • the ground heat exchanger installed in the ground recovers geothermal energy, transfers geothermal energy to the heat pump module, and additionally secures the heat source of the heat pump module, thereby increasing the production efficiency of the energy generation system using a combined heat source.
  • the ground heat exchanger installed in the ground recovers geothermal energy, transfers geothermal energy to the heat pump module, and additionally secures the heat source of the heat pump module, thereby increasing the production efficiency of the energy generation system using a combined heat source.
  • the power generation system using a complex heat source is a second heat exchanger for evaporating and outputting the liquid first heat medium in the gas state through heat exchange with at least one heat source supplied from the outside; And a heat pump module including a first compressor for compressing and outputting a first heat medium in a gaseous state introduced from the second heat exchanger, and recovering heat energy of the first heat medium output from the heat pump module.
  • a first heat exchanger for converting the gas into a high-pressure gas state and outputting the gas; a turbine for generating power by receiving a gaseous working fluid output from the first heat exchanger; and a generator for generating power by the power of the turbine.
  • the high temperature working fluid passing through the turbine is supplied to the second heat exchanger to be used as a heat source necessary for vaporizing the first heat medium.
  • the working fluid deprived of heat energy to the first heat medium is supplied to the first heat exchanger again.
  • the heat pump module may include an underground heat exchanger installed in the ground to exchange heat between the third heat medium and the ground heat, and the third heat medium circulates through the second heat exchanger and the ground heat exchanger to transfer ground heat.
  • the heat pump module may further include a second compressor for compressing a second heat medium introduced from the outside and outputting the second heat medium to the second heat exchanger, and a second heat medium exchanged with the first heat medium in the second heat exchanger and discharged.
  • a second expansion valve for lowering the pressure of the second expansion valve, a third heat exchanger for heat-exchanging the second thermal medium output from the second expansion valve with the third thermal medium, and outputting the second thermal medium to the second compressor;
  • an underground heat exchanger for heat-exchanging geothermal heat, and wherein the third heat medium circulates the third heat exchanger and the underground heat exchanger.
  • the heat pump module for generating high temperature heat energy by absorbing the heat energy of the outside air as a heat source Can be secured.
  • the geothermal energy is recovered by the underground heat exchanger installed in the ground, and the geothermal energy is transferred to the heat pump module, thereby additionally securing the heat source of the heat pump module, thereby increasing the production efficiency of energy, and a plurality of heat pump modules At the same time to implement the heat energy of the working fluid passed through the turbine as a heat source of the heat pump module can increase the energy efficiency and power generation.
  • FIG. 1 is a conceptual diagram of a power generation system using a complex heat source according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram showing an embodiment in which the first external evaporator is omitted and a fourth heat exchanger and an underground heat exchanger are added in FIG. 1;
  • FIG. 3 is a conceptual diagram showing an embodiment in which the first external evaporator is omitted and an underground heat exchanger is added in FIG. 1;
  • FIG. 4 is a conceptual diagram showing an embodiment in which the ground heat exchanger is added to FIG.
  • FIG. 5 is a conceptual diagram of a power generation system using a complex heat source according to another embodiment of the present invention.
  • FIG. 6 is a conceptual diagram illustrating an embodiment in which a second external evaporator is added to FIG. 5;
  • the power generation system using the complex heat source according to the present invention generates electricity by using a heat pump module that absorbs heat energy of outside air and produces high temperature heat energy as a heat source, but utilizes geothermal heat as an additional heat energy to the heat pump module.
  • a heat pump module that absorbs heat energy of outside air and produces high temperature heat energy as a heat source, but utilizes geothermal heat as an additional heat energy to the heat pump module.
  • FIGS. 1 One embodiment is shown in FIGS.
  • FIG. 1 is a conceptual diagram of a power generation system using a complex heat source according to an embodiment of the present invention.
  • a second heat exchanger which evaporates and outputs a first heat medium 20 in a liquid state through heat exchange with at least one heat source supplied from an outside ( 204, a heat pump module 200 and 300 including a first compressor 201 for compressing and outputting the first heat medium 20 in a gaseous state introduced from the second heat exchanger 204, and the heat pump module.
  • a first heat exchanger 104 for recovering the thermal energy of the first heat medium 20 output from the 200,300, and converting the working fluid 10 into a gaseous state of high temperature and high pressure and outputting the first heat exchanger 104; It includes a turbine 101 for generating power by receiving the gas working fluid 10 output from the generator, and a generator 102 for producing power by the power of the turbine 101.
  • the heat pump module (200,300) is a condensation means for liquefying the gaseous heat medium (20,30), the evaporation means for the liquid state heat medium (20,30) evaporated in the gas state and the gaseous heat medium (20, And compressors 201 and 301 that compress the output 30 to the outside.
  • the heat pump module (200, 300) is a second heat exchanger 204 for evaporating and outputting the liquid first heat medium 20 in a gas state through heat exchange with at least one heat source supplied from the outside And a first compressor 201 for compressing and outputting the first heat medium 20 in a gaseous state introduced from the second heat exchanger 204. That is, in the present invention, the second heat exchanger 204 and the first external evaporator 203 described below serve as condensation means and evaporation means.
  • the heat pump module (200,300) may be composed of a single module, or may be composed of a plurality of modules including the first heat pump module 200 and the second heat pump module (300). have. In the latter case, since the heat pump modules 200 and 300 are composed of a plurality of modules, connecting each module in series or in parallel can produce a greater amount of thermal energy, and as a result, the power output of the generator 102 can be increased. Can be.
  • the first heat exchanger 104, the turbine 101, the generator 102, and the compression pump 104 to be described later are a part of the organic Rankine cycle 100, and through the first heat exchanger 104.
  • the working fluid 10 undergoes an endothermic process is converted into a gaseous state of high temperature and high pressure and output, the turbine 101 is rotated by the high temperature and high pressure working fluid 10 to produce electricity in the generator 102.
  • the conventional method has a problem that the high temperature working fluid 10 discharged from the turbine 101 is rotated and the turbine 101 is lost to the outside.
  • the working fluid 10 from which heat energy is deprived of the first heat medium 20 of the second heat exchanger 204 is transferred to the first heat exchanger 104 by a compression pump 103. It is sent out.
  • the working fluid 10 and / or the heat medium (20, 30) may be provided with a refrigerant such as freon, ammonia, sulfur dioxide, methyl chloride and the like.
  • the heat pump module 200 lowers the pressure of the first heat medium 20 output from the first heat exchanger 104 to output to the second heat exchanger 204.
  • the first expansion valve 202 is included.
  • the first heat medium 20 is decompressed in a state capable of causing evaporation, and then the second heat exchanger 203 or the first external evaporator 203 described later.
  • the second heat exchanger 203 or the first external evaporator 203 heating and evaporation of the first heat medium 20 may be more effectively performed.
  • the heat pump module 200 absorbs external air heat and evaporates the first heat medium 20 output from the first heat exchanger 104 to the second heat exchanger ( 204, a first external evaporator 203 to be supplied.
  • the external evaporator 203 absorbs the heat energy of the external air to first evaporate the first heat medium 20 and then supplies it to the second heat exchanger 204. Accordingly, the temperature of the first heat medium 20 supplied to the second heat exchanger 204 may be increased, and as a result, the heat energy contained in the first heat medium 20 output from the second heat exchanger 204 may be increased. Can be increased.
  • the heat pump module 200 separates the liquid contained in the first heat medium 20 output from the second heat exchanger 204 and only gas is used in the first compressor 201. It further comprises a liquid separator for outputting. An additional configuration of the liquid separator may prevent the liquid from being compressed due to the inflow of the liquid into the first compressor 201 together with the gas.
  • the circulation path of the working fluid 10 and the first heat medium 20 will be described as follows.
  • the working fluid 10 circulates the turbine 101, the second heat exchanger 204, and the first heat exchanger 104
  • the first heat medium 20 includes the first heat exchanger 104
  • the first expansion valve 202, the first outdoor evaporator 203, the second heat exchanger 204, and the first compressor 201 are circulated.
  • FIG. 3 is a conceptual diagram illustrating an embodiment in which a first external evaporator is omitted and a geothermal heat exchanger is added in FIG. 1
  • FIG. 4 is a conceptual diagram illustrating an embodiment in which a geothermal heat exchanger is added in FIG. 1.
  • the heat pump module 200 includes a ground heat exchanger 403 installed in the ground to heat-exchange the third heat medium 40 with the ground heat, and the third heat medium 40 Circulates through the second heat exchanger 204 and the underground heat exchanger 403 and transfers geothermal heat.
  • the underground heat exchanger 403 is embedded in the ground in the form of a pipe, and the heat exchange with the geothermal heat is made while circulating the third heat medium (40). Thereafter, the third heat medium 40 whose temperature is increased through heat exchange with geothermal heat is output to the second heat exchanger 204 and used as a heat source for heating the first heat medium 20 together with the working fluid 10. Thereafter, the third heat medium 40 which has completed heat exchange in the second heat exchanger 204 is recycled to the underground heat exchanger 403.
  • the third heat medium 40 may circulate the underground heat exchanger 403 and the second heat exchanger 204 by a compression pump 401.
  • FIG. 2 is a conceptual diagram illustrating an embodiment in which the first external evaporator is omitted and a fourth heat exchanger and an underground heat exchanger are added.
  • the heat pump module 200 is installed in the ground, the underground heat exchanger 403 for heat exchange between the third heat medium 40 and the geothermal heat, and in the first heat exchanger 104 And a fourth heat exchanger 405 which heat-exchanges the output first heat medium 20 and the third heat medium 40 and outputs the second heat exchanger 204 and the underground heat exchanger 403, respectively.
  • the underground heat exchanger 403 is embedded in the ground in the form of a pipe, and the heat exchange with the geothermal heat is made while circulating the third heat medium (40). Thereafter, the third heat medium 40 whose temperature is increased through heat exchange with geothermal heat is output to the fourth heat exchanger 405 and used as a heat source for heating the first heat medium 20. Thereafter, the first heat medium 20 that has undergone heat exchange in the fourth heat exchanger 405 is outputted to the second heat exchanger 204 so as to exchange heat with the working fluid 10, and the fourth heat exchanger 405. After the heat exchange in the third heat medium 40 is recycled to the underground heat exchanger (403).
  • the third heat medium 40 may circulate the underground heat exchanger 403 and the fourth heat exchanger 405 by a compression pump 401.
  • FIG. 5 is a conceptual diagram of a power generation system using a complex heat source according to another embodiment of the present invention.
  • the heat pump module 300, the second compressor 301 for compressing the second heat medium 30 introduced from the outside to output to the second heat exchanger 204, A second expansion valve 302 for lowering and outputting a pressure of the second heat medium 30 which is heat-exchanged with the first heat medium 20 in the second heat exchanger 204, and the second expansion valve A third heat exchanger 304 for heat-exchanging the second heat medium 30 output from the 302 with the third heat medium 40 and outputting the second heat medium 40 to the second compressor 301;
  • an underground heat exchanger (403) for heat exchange between the geothermal heat, and the third heat medium (40) circulates through the third heat exchanger (304) and the underground heat exchanger (403).
  • the third heat medium 40 circulates through the third heat exchanger 304 and the underground heat exchanger 403 by the action of the compression pump 401.
  • the underground heat exchanger 403 is buried in the ground in the form of a pipe, and the heat exchange with the geothermal heat is made while circulating the third heat medium (40). Thereafter, the third heat medium 40 whose temperature is increased through heat exchange with geothermal heat is output to the third heat exchanger 304 and used as a heat source for heating the second heat medium 30. Thereafter, the second heat medium 30 which has undergone heat exchange in the third heat exchanger 304 is outputted to the second heat exchanger 204 such that heat exchange with the first heat medium 20 is performed, and the third heat exchanger 304 After the heat exchange in the third heat medium 40 is recycled to the underground heat exchanger (403).
  • the second heat exchanger 204 heat exchange between the working fluid 10, the first heat medium 20, and the second heat medium 30 is performed.
  • the second heat medium 30 circulates through the second heat exchanger 204, the third heat exchanger 304, and the second compressor 301.
  • the second heat medium 30 exits the second heat exchanger 204. ) Is the state of low temperature and low pressure.
  • the geothermal energy 403 is absorbed while passing through the third heat exchanger 304 and evaporation is performed while the temperature is increased.
  • the second heat exchange is supplied to the second compressor 301 and compressed at high temperature and high pressure. Fed to the group 204.
  • the second heat exchanger 204 heats the second heat medium 30 and the first heat medium 20 of high temperature and high pressure introduced through the above-described process, and rotates the turbine 101 to output the high temperature.
  • the working fluid 10 and the first heat medium 20 are heat-exchanged to output the first heat medium 20 in a high temperature, high pressure steam state.
  • the first heat medium 20 Since the first heat medium 20 is heat-exchanged through the first heat exchanger 104 and then output, the first heat medium 20 is at a low temperature and low pressure.
  • the high temperature working fluid 10 and the high temperature high pressure pass through the second heat exchanger 204.
  • the high temperature first heat medium 20 exiting the second heat exchanger 204 is compressed to high temperature and high pressure through the first compressor 301, and then the first heat exchanger 104 to heat the working fluid 10. Is supplied.
  • FIG. 6 is a conceptual view illustrating an embodiment in which a second external evaporator is added in FIG. 5.
  • the heat pump module 300 is introduced into the second heat medium 30 output from the second expansion valve 302, absorbs air heat and evaporates the third heat exchanger. And a second external evaporator 303 output to 304.
  • the second external evaporator 303 absorbs the heat energy of the external air and primarily evaporates the second heat medium 30, and then supplies it to the third heat exchanger 304. Therefore, the temperature of the second heat medium 30 supplied to the third heat exchanger 304 may be increased, and as a result, the heat energy contained in the second heat medium 30 output from the third heat exchanger 304 may be increased. Can be increased.
  • the second heat medium 30 may include a second heat exchanger 204, a second expansion valve 302, a second outdoor evaporator 303, a third heat exchanger 304, and The second compressor 301 is circulated.
  • the heat pump module 200 separates the liquid contained in the second heat medium 30 output from the third heat exchanger 304 and only the gas is the second compressor 301. It further comprises a liquid separator for outputting. An additional configuration of the liquid separator may prevent the liquid from coming into the second compressor 301 together with the gas to cause the liquid compression.
  • the heat pump module 300 may include a second compressor 301 for compressing the second heat medium 30 introduced from the outside and supplying the second heat medium 30 to the second heat exchanger 204.
  • a second expansion valve 302 for lowering and outputting a pressure of the second thermal medium 30 passing through the heat exchanger 204 and a second thermal medium 30 output from the second expansion valve 302 flow in;
  • a second external air evaporator 303 which absorbs and heats the air heat and outputs the same to the second compressor 301. Accordingly, the second heat medium 30 circulates through the second heat exchanger 204, the second expansion valve 302, the second external evaporator 303, and the second compressor 301.
  • the heat pump module 300 is installed between the second expansion valve 302 and the second external evaporator 303 to control the movement of the second thermal medium 30.
  • a second valve 502 installed between the first valve 501 and the second external air evaporator 303 and the second compressor 301 to control the movement of the second heat medium 30.
  • the third valve 503, the fourth valve 504, and the fifth valve 505 to be described later are shut off, and only the first valve 501 and the second valve 502 are opened.
  • the heat pump module 300 may include a second compressor 301 compressing the second heat medium 30 introduced from the outside and supplying the second heat medium 30 to the second heat exchanger 204.
  • an underground heat exchanger 403 which heat-exchanges geothermal heat and outputs it to the second compressor 301. Therefore, the second heat medium 30 circulates through the second heat exchanger 204, the second expansion valve 302, the underground heat exchanger 403, and the second compressor 301.
  • the heat pump module 300 is installed between the second expansion valve 302 and the underground heat exchanger 403 to control the movement of the second heat medium (30) And a third valve 503 and a fourth valve 504 installed between the underground heat exchanger 403 and the second compressor 301 to control the movement of the second heat medium 30.
  • the first valve 501, the second valve 502, and the fifth valve 505 to be described later are shut off, and only the third valve 503 and the fourth valve 504 are opened. do.
  • the heat pump module 300 may include a second compressor 301 for compressing the second heat medium 30 introduced from the outside and supplying the second heat medium 30 to the second heat exchanger 204.
  • a second expansion valve 302 for lowering and outputting a pressure of the second thermal medium 30 passing through the heat exchanger 204, and a second thermal medium 30 installed in the ground and output from the second expansion valve 302.
  • a ground heat exchanger (403) for heat-exchanging the ground heat and the ground heat exchanger (403), and the second heat medium (30) output from the ground heat exchanger (403), and absorbs and evaporates the air heat to the second compressor (301).
  • the second heat medium 30 may include a second heat exchanger 204, a second expansion valve 302, an underground heat exchanger 403, a second outdoor evaporator 303, and a second compressor 301.
  • the heat pump module 300 is installed between the second expansion valve 302 and the underground heat exchanger 403 to control the movement of the second heat medium (30)
  • a second valve 502 is installed between the evaporator 303 and the second compressor 301 to control the movement of the second heat medium 30.
  • the second valve 502, the third valve 503, and the fifth valve 505 are opened, and the first valve 501 and the fourth valve 504 are shut off.
  • the present invention by collecting the geothermal energy by the underground heat exchanger installed in the ground, and transfer the geothermal energy to the heat pump module, by additionally securing the heat source of the heat pump module, it is possible to increase the production efficiency of energy
  • by implementing a plurality of heat pump modules and at the same time using the heat energy of the working fluid passed through the turbine as a heat source of the heat pump module can increase the energy efficiency and power generation.

Abstract

Disclosed is a system for generating electricity by means of compound heat sources, the system generating electricity by utilizing a heat pump module generating thermal energy from absorption of thermal energy from the air as a heat source, wherein the heat pump module utilizes geothermal energy as an additional thermal energy. The present invention comprises: a heat pump module comprising a second heat exchanger for evaporating first thermal medium in a liquid state into a gas state via heat exchange with a thermal source supplied from the outside and outputting the gas, and a first compressor for compressing the first thermal medium, in a gas state, drawn in from the second heat exchanger; a first heat exchanger for converting the working fluid into a high-temperature and high-pressure gas by recovering the thermal energy of the first thermal medium outputted from the heat pump module; a turbine for receiving the gas-state working fluid outputted by the first heat exchanger to generate the driving power; and a power generator for generating electricity by means of the driving power of the turbine, wherein the high-temperature working fluid which has passed through the turbine is supplied to the second heat exchanger to be utilized as a heat source necessary for evaporating the first thermal medium, and the working fluid which has had thermal energy transferred to the first thermal medium is resupplied to the first heat exchanger.

Description

복합열원을 이용한 발전 시스템Power generation system using complex heat source
본 발명은 복합열원을 이용한 발전 시스템에 관한 것으로, 더욱 상세하게는 외기의 열에너지를 흡수하여 고온의 열에너지를 생산하는 히트펌프모듈을 열원으로 활용하여 전기를 생성하되, 상기 히트펌프모듈에 추가적인 열에너지로서 지열을 활용하는 복합열원을 이용한 발전 시스템에 관한 것이다.The present invention relates to a power generation system using a complex heat source, and more particularly, to generate electricity by using a heat pump module that absorbs heat energy from outside air to produce high temperature heat energy as a heat source, but as additional heat energy to the heat pump module. The present invention relates to a power generation system using a complex heat source utilizing geothermal heat.
일반적으로 유기랭킨사이클을 이용하여 열병합 발전소나 공장 폐수열을 활용 전기를 생산하는 많은 사례들이 있다.In general, there are many cases in which organic Rankine cycles are used to generate electricity using cogeneration power plants or plant wastewater heat.
또한, 공기열, 지열, 폐수열, 해수열 등의 미활용 에너지를 열원으로 흡수하여 냉난방시스템에 적용한 히트펌프 냉난방시스템등이 많이 보급되고 있다.In addition, heat pump air-conditioning systems and the like that are applied to a cooling and heating system by absorbing unutilized energy such as air heat, geothermal heat, waste water heat, and sea water heat as a heat source are widely used.
그러나, 열병합 발전소나 공장으로 부터 배출되는 폐수열원의 경우 90~350도 정도의 열원이어서, 랭킨사이클을 사용하여, 발전을 해도 어느 정도 경제성을 확보할 수 있다. However, the wastewater heat source discharged from the cogeneration plant or factory is a heat source of about 90 to 350 degrees, so that it is possible to secure a certain degree of economic feasibility even if power is generated using a Rankine cycle.
유기랭킨사이클에서는 작동열매체의 증기압에 의해 터빈을 돌려 전기를 생산하고 작동열매체의 기체에서 액체로의 상변화를 위해 냉각팬을 돌려 공기로 식혀 응축 시키거나, 냉각탑을 설치하여 냉각수에 의해서 응축하는 방법을 사용한다.In the organic Rankine cycle, electricity is generated by turning a turbine by the vapor pressure of the working heat medium, and cooling the cooling fan by condensing it with air to condense it by cooling water by installing a cooling tower to change the phase of the working heat medium from gas to liquid. Use
그러나, 공기열원이나 지열원과 같은 미활용 에너지원의 경우, 아주 낮은 온도이기 때문에 바로 랭킨사이클을 사용하여 발전을 할 수가 없다. 그래서, 히트펌프냉난방시스템과 랭킨사이클의 결합을 통해 발전을 하는 방법도 고려할 수 있으나, 문제는 히트펌프시스템은 가스엔진을 사용하는 경우가 아니면, 상용전기를 사용하여 미활용 에너지원으로 부터 열원을 끌어올려 높은 온도의 열량을 생산하여 이를 발전에 활용해야 함으로 경제성을 심각하게 고려해야 한다.However, in the case of an unused energy source such as an air heat source or a geothermal source, since it is very low temperature, it is impossible to generate electricity by using the Rankine cycle. Therefore, the method of generating power through the combination of the heat pump cooling and heating system and the Rankine cycle can be considered, but the problem is that the heat pump system draws the heat source from the unused energy source using commercial electricity, unless the gas engine is used. It is important to consider economics seriously because it needs to raise the heat of high temperature and use it for power generation.
그 이유는 랭킨사이클 터빈 효율이 30%~40%라 하면, 상용전기를 활용하여 미활용 에너지지원으로 부터 열원을 끌어와 고온의 열을 생산했을 때, 그중 30~40%만 전기로 생산되고, 나머지는 사용하는 작동열매체의 기체에서 액체로의 상변화를 위해 응축을 하게 되는데, 이때 공기나 냉각수에 의해 냉각, 응축과정을 통해 나머지 작동열매체의 응축잠열이 버려지게 됨으로 더욱 경제성을 확보하기가 어려워 지기 때문이다.The reason is that the Rankine cycle turbine efficiency is 30% to 40%. When the heat source is drawn from the unused energy support using commercial electricity, only 30 to 40% is produced by electricity. Is condensed for phase change from gas to liquid in the working heat medium, and it becomes difficult to secure economical efficiency because the latent heat of condensation of the remaining working heat medium is discarded through the cooling and condensation process by air or cooling water. Because.
상기와 같은 종래 문제점을 해결하기 위한 본 발명은 증기압을 통해 터빈을 회전시켜 발전하는 유기랭킨사이클을 이용하여 전기를 생성하되, 외기의 열에너지를 흡수하여 고온의 열에너지를 생산하는 히트펌프모듈을 열원으로 활용하여 발전량을 확보할 수 있는 복합열원을 이용한 발전 시스템을 제공하는데 그 목적이 있다. The present invention for solving the conventional problems as described above to generate electricity by using an organic Rankine cycle to generate power by rotating the turbine through steam pressure, the heat pump module for producing high-temperature heat energy by absorbing the heat energy of the outside air as a heat source The purpose is to provide a power generation system using a complex heat source that can be used to secure the power generation.
또한, 지중에 설치된 지중열교환기에 의해 지열에너지를 회수하고, 히트펌프모듈로 지열에너지를 전달하여, 히트펌프모듈의 열원을 추가적으로 확보함에 따라, 에너지의 생산효율을 높일 수 있는 복합열원을 이용한 발전 시스템을 제공하는데 다른 목적이 있다. In addition, the ground heat exchanger installed in the ground recovers geothermal energy, transfers geothermal energy to the heat pump module, and additionally secures the heat source of the heat pump module, thereby increasing the production efficiency of the energy generation system using a combined heat source. There is another purpose to provide.
또, 복수의 히트펌프모듈을 구현함과 동시에 상기 터빈을 통과한 작동유체의 열에너지를 히트펌프모듈의 열원으로 활용하여 에너지 효율 및 발전량을 높일 수 있는 복합열원을 이용한 발전 시스템을 제공하는데 또 다른 목적이 있다. In addition, to implement a plurality of heat pump module and at the same time using the heat energy of the working fluid passed through the turbine as a heat source of the heat pump module to provide a power generation system using a combined heat source that can increase energy efficiency and power generation. There is this.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 복합열원을 이용한 발전 시스템은 외부에서 공급된 적어도 하나이상의 열원과의 열교환을 통해 액체상태의 제1열매체를 기체상태로 증발시켜 출력하는 제2열교환기와, 상기 제2열교환기에서 유입된 기체상태의 제1열매체를 압축시켜 출력하는 제1압축기를 포함하는 히트펌프모듈과, 상기 히트펌프모듈에서 출력된 제1열매체의 열에너지를 회수하여 작동유체를 고온고압의 기체상태로 변화시켜 출력하는 제1열교환기와, 상기 제1열교환기에서 출력된 기체상태의 작동유체를 공급받아 동력을 생성하는 터빈과, 상기 터빈의 동력에 의해 전력을 생산하는 발전기를 포함하되, 상기 터빈을 통과한 고온의 작동유체는 상기 제2열교환기로 공급되어 상기 제1열매체가 기화되는데 필요한 열원으로 활용되고, 상기 제1열매체에 열에너지를 빼앗긴 작동유체는 상기 제1열교환기로 재공급된다.The power generation system using a complex heat source according to the present invention for achieving the above object is a second heat exchanger for evaporating and outputting the liquid first heat medium in the gas state through heat exchange with at least one heat source supplied from the outside; And a heat pump module including a first compressor for compressing and outputting a first heat medium in a gaseous state introduced from the second heat exchanger, and recovering heat energy of the first heat medium output from the heat pump module. A first heat exchanger for converting the gas into a high-pressure gas state and outputting the gas; a turbine for generating power by receiving a gaseous working fluid output from the first heat exchanger; and a generator for generating power by the power of the turbine. However, the high temperature working fluid passing through the turbine is supplied to the second heat exchanger to be used as a heat source necessary for vaporizing the first heat medium. The working fluid deprived of heat energy to the first heat medium is supplied to the first heat exchanger again.
또한, 상기 히트펌프모듈은, 지중에 설치되어 제3열매체와 지열을 열교환시키는 지중열교환기를 포함하고, 상기 제3열매체는 상기 제2열교환기와 상기 지중열교환기를 순환하며 지열을 전달한다.The heat pump module may include an underground heat exchanger installed in the ground to exchange heat between the third heat medium and the ground heat, and the third heat medium circulates through the second heat exchanger and the ground heat exchanger to transfer ground heat.
또한, 상기 히트펌프모듈은, 외부에서 유입된 제2열매체를 압축시켜 상기 제2열교환기로 출력하는 제2압축기와, 상기 제2열교환기에서 상기 제1열매체와 열교환이 이루어고 배출된 제2열매체의 압력을 낮춰 출력하는 제2팽창밸브와, 상기 제2팽창밸브에서 출력된 제2열매체를 제3열매체와 열교환시켜 상기 제2압축기로 출력하는 제3열교환기와, 지중에 설치되어 상기 제3열매체와 지열을 열교환시키는 지중열교환기를 포함하고, 상기 제3열매체는 상기 제3열교환기와 상기 지중열교환기를 순환한다.The heat pump module may further include a second compressor for compressing a second heat medium introduced from the outside and outputting the second heat medium to the second heat exchanger, and a second heat medium exchanged with the first heat medium in the second heat exchanger and discharged. A second expansion valve for lowering the pressure of the second expansion valve, a third heat exchanger for heat-exchanging the second thermal medium output from the second expansion valve with the third thermal medium, and outputting the second thermal medium to the second compressor; And an underground heat exchanger for heat-exchanging geothermal heat, and wherein the third heat medium circulates the third heat exchanger and the underground heat exchanger.
상기한 바와 같은 본 발명에 따르면, 증기압을 통해 터빈을 회전시켜 발전하는 유기랭킨사이클을 이용하여 전기를 생성하되, 외기의 열에너지를 흡수하여 고온의 열에너지를 생산하는 히트펌프모듈을 열원으로 활용하여 발전량을 확보할 수 있다.According to the present invention as described above, while generating electricity by using an organic Rankine cycle to generate electricity by rotating the turbine through steam pressure, the heat pump module for generating high temperature heat energy by absorbing the heat energy of the outside air as a heat source Can be secured.
또한, 지중에 설치된 지중열교환기에 의해 지열에너지를 회수하고, 히트펌프모듈로 지열에너지를 전달하여, 히트펌프모듈의 열원을 추가적으로 확보함에 따라, 에너지의 생산효율을 높일 수 있으며, 복수의 히트펌프모듈을 구현함과 동시에 상기 터빈을 통과한 작동유체의 열에너지를 히트펌프모듈의 열원으로 활용하여 에너지 효율 및 발전량을 높일 수 있다.In addition, the geothermal energy is recovered by the underground heat exchanger installed in the ground, and the geothermal energy is transferred to the heat pump module, thereby additionally securing the heat source of the heat pump module, thereby increasing the production efficiency of energy, and a plurality of heat pump modules At the same time to implement the heat energy of the working fluid passed through the turbine as a heat source of the heat pump module can increase the energy efficiency and power generation.
도 1은 본 발명의 일 실시 예에 따른 복합열원을 이용한 발전 시스템의 개념도,1 is a conceptual diagram of a power generation system using a complex heat source according to an embodiment of the present invention;
도 2는 도 1에 있어서, 제1외기증발기가 생략되고,제4열교환기와 지중열교환기가 추가된 실시예를 보인 개념도,2 is a conceptual diagram showing an embodiment in which the first external evaporator is omitted and a fourth heat exchanger and an underground heat exchanger are added in FIG. 1;
도 3은 도 1에 있어서, 제1외기증발기가 생략되고, 지중열교환기가 추가된 실시예를 보인 개념도,3 is a conceptual diagram showing an embodiment in which the first external evaporator is omitted and an underground heat exchanger is added in FIG. 1;
도 4는 도 1에 있어서, 지중열교환기가 추가된 실시예를 보인 개념도,4 is a conceptual diagram showing an embodiment in which the ground heat exchanger is added to FIG.
도 5는 본 발명의 다른 실시 예에 따른 복합열원을 이용한 발전 시스템의 개념도,5 is a conceptual diagram of a power generation system using a complex heat source according to another embodiment of the present invention;
도 6은 도 5에 있어서, 제2외기증발기가 추가된 실시예를 보인 개념도,6 is a conceptual diagram illustrating an embodiment in which a second external evaporator is added to FIG. 5;
도 7 내지 도 9는 본 발명의 또 다른 실시예를 보인 개념도이다.7 to 9 is a conceptual diagram showing another embodiment of the present invention.
본 발명에 따른 복합열원을 이용한 발전 시스템은 외기의 열에너지를 흡수하여 고온의 열에너지를 생산하는 히트펌프모듈을 열원으로 활용하여 전기를 생성하되, 상기 히트펌프모듈에 추가적인 열에너지로서 지열을 활용하는 것으로, 그 일 실시예를 도 1 내지 도 3에 나타내 보였다. The power generation system using the complex heat source according to the present invention generates electricity by using a heat pump module that absorbs heat energy of outside air and produces high temperature heat energy as a heat source, but utilizes geothermal heat as an additional heat energy to the heat pump module. One embodiment is shown in FIGS.
도 1은 본 발명의 일 실시 예에 따른 복합열원을 이용한 발전 시스템의 개념도이다.1 is a conceptual diagram of a power generation system using a complex heat source according to an embodiment of the present invention.
본 발명의 일 실시 예에 따른 복합열원을 이용한 발전 시스템은 외부에서 공급된 적어도 하나 이상의 열원과의 열교환을 통해 액체상태의 제1열매체(20)를 기체상태로 증발시켜 출력하는 제2열교환기(204)와, 상기 제2열교환기(204)에서 유입된 기체상태의 제1열매체(20)를 압축시켜 출력하는 제1압축기(201)를 포함하는 히트펌프모듈(200,300)과, 상기 히트펌프모듈(200,300)에서 출력된 제1열매체(20)의 열에너지를 회수하여 작동유체(10)를 고온고압의 기체상태로 변화시켜 출력하는 제1열교환기(104)와, 상기 제1열교환기(104)에서 출력된 기체상태의 작동유체(10)를 공급받아 동력을 생성하는 터빈(101)과, 상기 터빈(101)의 동력에 의해 전력을 생산하는 발전기(102)를 포함한다.In the power generation system using a complex heat source according to an embodiment of the present invention, a second heat exchanger which evaporates and outputs a first heat medium 20 in a liquid state through heat exchange with at least one heat source supplied from an outside ( 204, a heat pump module 200 and 300 including a first compressor 201 for compressing and outputting the first heat medium 20 in a gaseous state introduced from the second heat exchanger 204, and the heat pump module. A first heat exchanger 104 for recovering the thermal energy of the first heat medium 20 output from the 200,300, and converting the working fluid 10 into a gaseous state of high temperature and high pressure and outputting the first heat exchanger 104; It includes a turbine 101 for generating power by receiving the gas working fluid 10 output from the generator, and a generator 102 for producing power by the power of the turbine 101.
일반적으로, 히트펌프모듈(200,300)은 기체상태의 열매체(20,30)가 액화되는 응축수단과, 액체상태의 열매체(20,30)가 기체상태로 증발되는 증발수단 및 기체상태의 열매체(20,30)를 압축시켜 외부로 출력하는 압축기(201,301)를 포함한다. In general, the heat pump module (200,300) is a condensation means for liquefying the gaseous heat medium (20,30), the evaporation means for the liquid state heat medium (20,30) evaporated in the gas state and the gaseous heat medium (20, And compressors 201 and 301 that compress the output 30 to the outside.
본 발명의 경우, 상기 히트펌프모듈(200,300)은 외부에서 공급된 적어도 하나 이상의 열원과의 열교환을 통해 액체상태의 제1열매체(20)를 기체상태로 증발시켜 출력하는 제2열교환기(204)와, 상기 제2열교환기(204)에서 유입된 기체상태의 제1열매체(20)를 압축시켜 출력하는 제1압축기(201)를 포함한다. 즉, 본 발명에서 제2열교환기(204) 및 후술되는 제1외기증발기(203)는 응축수단과 증발수단으로 작용한다. In the present invention, the heat pump module (200, 300) is a second heat exchanger 204 for evaporating and outputting the liquid first heat medium 20 in a gas state through heat exchange with at least one heat source supplied from the outside And a first compressor 201 for compressing and outputting the first heat medium 20 in a gaseous state introduced from the second heat exchanger 204. That is, in the present invention, the second heat exchanger 204 and the first external evaporator 203 described below serve as condensation means and evaporation means.
본 발명의 일실시예에 따르면, 상기 히트펌프모듈(200,300)은 단일모듈로 구성되거나, 제1히트펌프모듈(200)과 제2히트펌프모듈(300)을 포함하여 복수의 모듈로 구성될 수 있다. 후자의 경우, 상기 히트펌프모듈(200,300)이 복수의 모듈로 구성되기 때문에 각각의 모듈을 직렬 또는 병렬로 연결하면 보다 많은 양의 열에너지를 생산할 수 있어 결과적으로 발전기(102)의 전력생산량이 증가될 수 있다.According to one embodiment of the invention, the heat pump module (200,300) may be composed of a single module, or may be composed of a plurality of modules including the first heat pump module 200 and the second heat pump module (300). have. In the latter case, since the heat pump modules 200 and 300 are composed of a plurality of modules, connecting each module in series or in parallel can produce a greater amount of thermal energy, and as a result, the power output of the generator 102 can be increased. Can be.
한편, 상기 제1열교환기(104)와 터빈(101)과, 발전기(102) 및 후술되는 압축펌프(104)는 유기랭킨사이클(100)의 일부로서, 상기 제1열교환기(104)를 통해 흡열과정을 거친 작동유체(10)가 고온고압의 기체상태로 변하여 출력되면, 이 고온고압의 작동유체(10)로 터빈(101)을 회전시켜 발전기(102)에서 전기를 생산한다.Meanwhile, the first heat exchanger 104, the turbine 101, the generator 102, and the compression pump 104 to be described later are a part of the organic Rankine cycle 100, and through the first heat exchanger 104. When the working fluid 10 undergoes an endothermic process is converted into a gaseous state of high temperature and high pressure and output, the turbine 101 is rotated by the high temperature and high pressure working fluid 10 to produce electricity in the generator 102.
하지만, 기존의 방식은 상기 터빈(101)을 회전시키고 터빈(101)에서 배출된 고온의 작동유체(10)가 외부로 손실되는 문제점이 있었다.However, the conventional method has a problem that the high temperature working fluid 10 discharged from the turbine 101 is rotated and the turbine 101 is lost to the outside.
본 발명의 경우 이러한 문제점을 해결하고자, 상기 터빈(101)을 통과한 고온의 작동유체(10)를 상기 제2열교환기(204)로 공급하여, 제1열매체(20)가 기화되는데 필요한 열원으로 활용한다. 이후, 상기 제1열매체(20)에 열에너지를 빼앗긴 작동유체(10)는 상기 제1열교환기(104)로 재공급되며, 제1열교환기(104)에서 가열된 후, 터빈(101)으로 출력되는 과정을 반복하게 된다. In the case of the present invention, in order to solve this problem, by supplying a high temperature working fluid 10 passing through the turbine 101 to the second heat exchanger 204, as a heat source required for the first heat medium 20 is vaporized Take advantage. Thereafter, the working fluid 10 from which the heat energy is deprived of the first heat medium 20 is resupplied to the first heat exchanger 104, heated in the first heat exchanger 104, and then output to the turbine 101. The process is repeated.
본 발명의 일실시예에 따르면, 상기 제2열교환기(204)의 제1열매체(20)에 열에너지를 빼앗긴 작동유체(10)는 압축펌프(103)에 의해 상기 제1열교환기(104)로 송출된다.According to one embodiment of the present invention, the working fluid 10 from which heat energy is deprived of the first heat medium 20 of the second heat exchanger 204 is transferred to the first heat exchanger 104 by a compression pump 103. It is sent out.
본 발명의 일실시예에 따르면, 상기 작동유체(10) 및/또는 열매체(20,30)은 프레온, 암모니아, 이산화황, 염화메틸 등과 같은 냉매로 구비될 수 있다. According to one embodiment of the invention, the working fluid 10 and / or the heat medium (20, 30) may be provided with a refrigerant such as freon, ammonia, sulfur dioxide, methyl chloride and the like.
상기와 같은 본 발명에 따르면, 작동유체(10)의 증기압을 통해 터빈(101)을 회전시켜 발전하는 유기랭킨사이클(100)을 이용하여 전기를 생성하되, 적어도 하나 이상의 외부 열원으로부터 고온의 열에너지를 생산하는 히트펌프모듈(200,300)을 열원으로 활용하여 발전량을 확보할 수 있고, 나아가 복수의 히트펌프모듈(200,300)을 구현함과 동시에 상기 터빈(101)을 통과한 작동유체(10)의 열에너지를 히트펌프모듈(200,300)의 열원으로 활용하여 에너지 효율 및 발전량을 높일 수 있는 장점이 있다.According to the present invention as described above, while generating electricity by using the organic Rankine cycle 100 to generate power by rotating the turbine 101 through the steam pressure of the working fluid 10, at least one external heat source of high temperature heat energy It is possible to secure the amount of power generation by utilizing the heat pump module (200,300) to produce as a heat source, and further implements a plurality of heat pump module (200,300) and at the same time the heat energy of the working fluid (10) passing through the turbine 101 By utilizing the heat source of the heat pump module (200,300) has the advantage that can increase the energy efficiency and power generation.
본 발명의 다른 실시 예에 따르면, 상기 히트펌프모듈(200)은, 상기 제1열교환기(104)에서 출력된 제1열매체(20)의 압력을 낮춰 상기 제2열교환기(204)로 출력하는 제1팽창밸브(202)를 포함한다. 상기와 같이 제1팽창밸브(202)를 포함할 경우, 제1열매체(20)는 증발을 일으킬 수 있는 상태로 감압이 이루어진 후, 제2열교환기(203) 또는 후술되는 제1외기증발기(203)로 공급되기 때문에 제2열교환기(203) 또는 제1외기증발기(203)에서 제1열매체(20)의 가열 및 증발이 보다 효과적으로 이루어질 수 있다.According to another embodiment of the present invention, the heat pump module 200 lowers the pressure of the first heat medium 20 output from the first heat exchanger 104 to output to the second heat exchanger 204. The first expansion valve 202 is included. When the first expansion valve 202 is included as described above, the first heat medium 20 is decompressed in a state capable of causing evaporation, and then the second heat exchanger 203 or the first external evaporator 203 described later. In the second heat exchanger 203 or the first external evaporator 203, heating and evaporation of the first heat medium 20 may be more effectively performed.
본 발명의 다른 실시 예에 따르면, 상기 히트펌프모듈(200)은, 외부의 공기열을 흡수하여 상기 제1열교환기(104)에서 출력된 제1열매체(20)를 증발시켜 상기 제2열교환기(204)로 공급하는 제1외기증발기(203)를 포함한다.According to another embodiment of the present invention, the heat pump module 200 absorbs external air heat and evaporates the first heat medium 20 output from the first heat exchanger 104 to the second heat exchanger ( 204, a first external evaporator 203 to be supplied.
상기 외기증발기(203)는 외기의 열에너지를 흡수하여 제1열매체(20)를 1차적으로 증발시킨 다음 제2열교환기(204)로 공급한다. 따라서, 제2열교환기(204)에 공급되는 제1열매체(20)의 온도는 증가될 수 있으며, 결과적으로, 제2열교환기(204)에서 출력된 제1열매체(20)에 포함된 열에너지는 증가될 수 있다. The external evaporator 203 absorbs the heat energy of the external air to first evaporate the first heat medium 20 and then supplies it to the second heat exchanger 204. Accordingly, the temperature of the first heat medium 20 supplied to the second heat exchanger 204 may be increased, and as a result, the heat energy contained in the first heat medium 20 output from the second heat exchanger 204 may be increased. Can be increased.
본 발명의 일실시예에 따르면, 상기 히트펌프모듈(200)은, 상기 제2열교환기(204)에서 출력된 제1열매체(20)에 포함된 액체를 분리하고 기체만 상기 제1압축기(201)로 출력하는 액분리기를 더 포함한다. 상기 액분리기의 추가 구성으로 상기 제1압축기(201)로 가스와 함께 액이 유입하여 액압축이 일어나는 것을 방지할 수 있다.According to an embodiment of the present invention, the heat pump module 200 separates the liquid contained in the first heat medium 20 output from the second heat exchanger 204 and only gas is used in the first compressor 201. It further comprises a liquid separator for outputting. An additional configuration of the liquid separator may prevent the liquid from being compressed due to the inflow of the liquid into the first compressor 201 together with the gas.
이해를 돕기위해, 상기 작동유체(10)와 제1열매체(20)의 순환 경로를 설명하면 다음과 같다. 먼저, 작동유체(10)는 터빈(101)과, 제2열교환기(204)와, 제1열교환기(104)를 순환하고, 제1열매체(20)는 제1열교환기(104)와, 제1팽창밸브(202)와, 제1외기증발기(203)와, 제2열교환기(204) 및 제1압축기(201)를 순환한다. To help understand, the circulation path of the working fluid 10 and the first heat medium 20 will be described as follows. First, the working fluid 10 circulates the turbine 101, the second heat exchanger 204, and the first heat exchanger 104, and the first heat medium 20 includes the first heat exchanger 104, The first expansion valve 202, the first outdoor evaporator 203, the second heat exchanger 204, and the first compressor 201 are circulated.
도 3은 도 1에 있어서, 제1외기증발기가 생략되고, 지중열교환기가 추가된 실시예를 보인 개념도이고, 도 4는 도 1에 있어서, 지중열교환기가 추가된 실시예를 보인 개념도이다.3 is a conceptual diagram illustrating an embodiment in which a first external evaporator is omitted and a geothermal heat exchanger is added in FIG. 1, and FIG. 4 is a conceptual diagram illustrating an embodiment in which a geothermal heat exchanger is added in FIG. 1.
본 발명의 다른 실시 예에 따르면, 상기 히트펌프모듈(200)은, 지중에 설치되어 제3열매체(40)와 지열을 열교환시키는 지중열교환기(403)를 포함하고, 상기 제3열매체(40)는 상기 제2열교환기(204)와 상기 지중열교환기(403)를 순환하며 지열을 전달한다.According to another embodiment of the present invention, the heat pump module 200 includes a ground heat exchanger 403 installed in the ground to heat-exchange the third heat medium 40 with the ground heat, and the third heat medium 40 Circulates through the second heat exchanger 204 and the underground heat exchanger 403 and transfers geothermal heat.
상기 지중열교환기(403)는 파이프 형태로 지중에 매설되며, 상기 제3열매체(40)를 순환시키면서 지열과의 열교환이 이루어지도록 한다. 이후, 지열과의 열교환을 통해 온도가 증가된 제3열매체(40)는 제2열교환기(204)로 출력되어 상기 작동유체(10)와 함께 제1열매체(20)를 가열시키는 열원으로 쓰인다. 이후, 상기 제2열교환기(204)에서 열교환을 마친 제3열매체(40)는 지중열교환기(403)로 재순환된다.The underground heat exchanger 403 is embedded in the ground in the form of a pipe, and the heat exchange with the geothermal heat is made while circulating the third heat medium (40). Thereafter, the third heat medium 40 whose temperature is increased through heat exchange with geothermal heat is output to the second heat exchanger 204 and used as a heat source for heating the first heat medium 20 together with the working fluid 10. Thereafter, the third heat medium 40 which has completed heat exchange in the second heat exchanger 204 is recycled to the underground heat exchanger 403.
본 발명의 다른 실시 예에 따르면, 상기 제3열매체(40)는 압축펌프(401)에 의해 상기 지중열교환기(403)와 제2열교환기(204)를 순환할 수 있다.According to another embodiment of the present invention, the third heat medium 40 may circulate the underground heat exchanger 403 and the second heat exchanger 204 by a compression pump 401.
도 2는 도 1에 있어서, 제1외기증발기가 생략되고,제4열교환기와 지중열교환기가 추가된 실시예를 보인 개념도이다.2 is a conceptual diagram illustrating an embodiment in which the first external evaporator is omitted and a fourth heat exchanger and an underground heat exchanger are added.
본 발명의 다른 실시 예에 따르면, 상기 히트펌프모듈(200)은, 지중에 설치되어 제3열매체(40)와 지열을 열교환시키는 지중열교환기(403)와, 상기 제1열교환기(104)에서 출력된 제1열매체(20)와 상기 제3열매체(40)를 열교환시키고 각각 제2열교환기(204)와 지중열교환기(403)로 출력하는 제4열교환기(405)를 포함한다.According to another embodiment of the present invention, the heat pump module 200 is installed in the ground, the underground heat exchanger 403 for heat exchange between the third heat medium 40 and the geothermal heat, and in the first heat exchanger 104 And a fourth heat exchanger 405 which heat-exchanges the output first heat medium 20 and the third heat medium 40 and outputs the second heat exchanger 204 and the underground heat exchanger 403, respectively.
상기 지중열교환기(403)는 파이프 형태로 지중에 매설되며, 상기 제3열매체(40)를 순환시키면서 지열과의 열교환이 이루어지도록 한다. 이후, 지열과의 열교환을 통해 온도가 증가된 제3열매체(40)는 제4열교환기(405)로 출력되어 상기 제1열매체(20)를 가열시키는 열원으로 쓰인다. 이후, 상기 제4열교환기(405)에서 열교환이 이루어진 제1열매체(20)는 작동유체(10)와의 열교환이 이루어지도록 제2열교환기(204)로 출력되고, 상기 제4열교환기(405)에서 열교환을 마친 제3열매체(40)는 지중열교환기(403)로 재순환된다.The underground heat exchanger 403 is embedded in the ground in the form of a pipe, and the heat exchange with the geothermal heat is made while circulating the third heat medium (40). Thereafter, the third heat medium 40 whose temperature is increased through heat exchange with geothermal heat is output to the fourth heat exchanger 405 and used as a heat source for heating the first heat medium 20. Thereafter, the first heat medium 20 that has undergone heat exchange in the fourth heat exchanger 405 is outputted to the second heat exchanger 204 so as to exchange heat with the working fluid 10, and the fourth heat exchanger 405. After the heat exchange in the third heat medium 40 is recycled to the underground heat exchanger (403).
본 발명의 다른 실시 예에 따르면, 상기 제3열매체(40)는 압축펌프(401)에 의해 상기 지중열교환기(403)와 제4열교환기(405)를 순환할 수 있다.According to another embodiment of the present invention, the third heat medium 40 may circulate the underground heat exchanger 403 and the fourth heat exchanger 405 by a compression pump 401.
도 5는 본 발명의 다른 실시 예에 따른 복합열원을 이용한 발전 시스템의 개념도이다.5 is a conceptual diagram of a power generation system using a complex heat source according to another embodiment of the present invention.
본 발명의 다른 실시 예에 따르면, 상기 히트펌프모듈(300)은, 외부에서 유입된 제2열매체(30)를 압축시켜 상기 제2열교환기(204)로 출력하는 제2압축기(301)와, 상기 제2열교환기(204)에서 상기 제1열매체(20)와 열교환이 이루어고 배출된 제2열매체(30)의 압력을 낮춰 출력하는 제2팽창밸브(302)와, 상기 제2팽창밸브(302)에서 출력된 제2열매체(30)를 제3열매체(40)와 열교환시켜 상기 제2압축기(301)로 출력하는 제3열교환기(304)와, 지중에 설치되어 상기 제3열매체(40)와 지열을 열교환시키는 지중열교환기(403)를 포함하고, 상기 제3열매체(40)는 상기 제3열교환기(304)와 상기 지중열교환기(403)를 순환한다.According to another embodiment of the present invention, the heat pump module 300, the second compressor 301 for compressing the second heat medium 30 introduced from the outside to output to the second heat exchanger 204, A second expansion valve 302 for lowering and outputting a pressure of the second heat medium 30 which is heat-exchanged with the first heat medium 20 in the second heat exchanger 204, and the second expansion valve ( A third heat exchanger 304 for heat-exchanging the second heat medium 30 output from the 302 with the third heat medium 40 and outputting the second heat medium 40 to the second compressor 301; ) And an underground heat exchanger (403) for heat exchange between the geothermal heat, and the third heat medium (40) circulates through the third heat exchanger (304) and the underground heat exchanger (403).
본 발명의 다른 실시 예에 따르면, 상기 제3열매체(40)는 압축펌프(401)의 작용으로 상기 제3열교환기(304)와 지중열교환기(403)를 순환한다.According to another embodiment of the present invention, the third heat medium 40 circulates through the third heat exchanger 304 and the underground heat exchanger 403 by the action of the compression pump 401.
지중열교환기(403)는 파이프 형태로 지중에 매설되며, 상기 제3열매체(40)를 순환시키면서 지열과의 열교환이 이루어지도록 한다. 이후, 지열과의 열교환을 통해 온도가 증가된 제3열매체(40)는 제3열교환기(304)로 출력되어 상기 제2열매체(30)를 가열시키는 열원으로 쓰인다. 이후, 상기 제3열교환기(304)에서 열교환이 이루어진 제2열매체(30)는 제1열매체(20)와의 열교환이 이루어지도록 제2열교환기(204)로 출력되고, 상기 제3열교환기(304)에서 열교환을 마친 제3열매체(40)는 지중열교환기(403)로 재순환된다.The underground heat exchanger 403 is buried in the ground in the form of a pipe, and the heat exchange with the geothermal heat is made while circulating the third heat medium (40). Thereafter, the third heat medium 40 whose temperature is increased through heat exchange with geothermal heat is output to the third heat exchanger 304 and used as a heat source for heating the second heat medium 30. Thereafter, the second heat medium 30 which has undergone heat exchange in the third heat exchanger 304 is outputted to the second heat exchanger 204 such that heat exchange with the first heat medium 20 is performed, and the third heat exchanger 304 After the heat exchange in the third heat medium 40 is recycled to the underground heat exchanger (403).
상기 제2열교환기(204)에서는 작동유체(10)와 제1열매체(20) 및 제2열매체(30)의 열교환이 이루어진다. 제2열매체(30)는 제2열교환기(204)와 제3열교환기(304)와 제2압축기(301)를 순환하게 되는데, 상기 제2열교환기(204)를 빠져나온 제2열매체(30)는 저온저압의 상태이다. 이후, 상기 제3열교환기(304)를 거치면서 지열에너지(403)를 흡수하여 온도가 증가하면서 증발이 이루어지고, 이후 제2압축기(301)로 공급되어 고온고압으로 압축이 이루어진 후 제2열교환기(204)로 공급된다. In the second heat exchanger 204, heat exchange between the working fluid 10, the first heat medium 20, and the second heat medium 30 is performed. The second heat medium 30 circulates through the second heat exchanger 204, the third heat exchanger 304, and the second compressor 301. The second heat medium 30 exits the second heat exchanger 204. ) Is the state of low temperature and low pressure. Subsequently, the geothermal energy 403 is absorbed while passing through the third heat exchanger 304 and evaporation is performed while the temperature is increased. Then, the second heat exchange is supplied to the second compressor 301 and compressed at high temperature and high pressure. Fed to the group 204.
제2열교환기(204)에서는 상기한 바와 같은 과정을 거쳐 유입된 고온고압의 제2열매체(30)와 제1열매체(20)를 열교환시킴과 동시에, 상기 터빈(101)을 회전시키고 출력된 고온의 작동유체(10)와 제1열매체(20)를 열교환시켜, 제1열매체(20)를 고온고압의 증기상태로 출력시킨다.The second heat exchanger 204 heats the second heat medium 30 and the first heat medium 20 of high temperature and high pressure introduced through the above-described process, and rotates the turbine 101 to output the high temperature. The working fluid 10 and the first heat medium 20 are heat-exchanged to output the first heat medium 20 in a high temperature, high pressure steam state.
제1열매체(20)는 제1열교환기(104)를 거쳐 열교환이 이루어진 후, 출력되었기 때문에 저온저압의 상태이며, 제2열교환기(204)를 통과하면서 고온의 작동유체(10)와 고온고압의 제2열매체(30)의 열에너지를 흡수하여 온도가 증가되면서 기화가 이루어진다. 이후, 제2열교환기(204)를 빠져나간 고온의 제1열매체(20)는 제1압축기(301)를 거쳐 고온고압으로 압축된 후 작동유체(10)를 가열하기 위해 제1열교환기(104)로 공급된다.Since the first heat medium 20 is heat-exchanged through the first heat exchanger 104 and then output, the first heat medium 20 is at a low temperature and low pressure. The high temperature working fluid 10 and the high temperature high pressure pass through the second heat exchanger 204. As the temperature is increased by absorbing the heat energy of the second thermal medium 30, vaporization is performed. Thereafter, the high temperature first heat medium 20 exiting the second heat exchanger 204 is compressed to high temperature and high pressure through the first compressor 301, and then the first heat exchanger 104 to heat the working fluid 10. Is supplied.
도 6은 도 5에 있어서, 제2외기증발기가 추가된 실시예를 보인 개념도이다.FIG. 6 is a conceptual view illustrating an embodiment in which a second external evaporator is added in FIG. 5.
본 발명의 다른 실시 예에 따르면, 상기 히트펌프모듈(300)은, 상기 제2팽창밸브(302)에서 출력된 제2열매체(30)를 유입하여, 공기열을 흡수하여 증발시키고 상기 제3열교환기(304)로 출력하는 제2외기증발기(303)를 포함한다.According to another embodiment of the present invention, the heat pump module 300 is introduced into the second heat medium 30 output from the second expansion valve 302, absorbs air heat and evaporates the third heat exchanger. And a second external evaporator 303 output to 304.
상기 제2외기증발기(303)는 외기의 열에너지를 흡수하여 제2열매체(30)를 1차적으로 증발시킨 다음 제3열교환기(304)로 공급한다. 따라서, 제3열교환기(304)에 공급되는 제2열매체(30)의 온도는 증가될 수 있으며, 결과적으로, 제3열교환기(304)에서 출력된 제2열매체(30)에 포함된 열에너지는 증가될 수 있다. The second external evaporator 303 absorbs the heat energy of the external air and primarily evaporates the second heat medium 30, and then supplies it to the third heat exchanger 304. Therefore, the temperature of the second heat medium 30 supplied to the third heat exchanger 304 may be increased, and as a result, the heat energy contained in the second heat medium 30 output from the third heat exchanger 304 may be increased. Can be increased.
전술한 실시 예에 따르면, 상기 제2열매체(30)는 제2열교환기(204)와, 제2팽창밸브(302)와, 제2외기증발기(303)와, 제3열교환기(304) 및 제2압축기(301)를 순환하게 된다. According to the above-described embodiment, the second heat medium 30 may include a second heat exchanger 204, a second expansion valve 302, a second outdoor evaporator 303, a third heat exchanger 304, and The second compressor 301 is circulated.
본 발명의 일실시예에 따르면, 상기 히트펌프모듈(200)은, 상기 제3열교환기(304)에서 출력된 제2열매체(30)에 포함된 액체를 분리하고 기체만 상기 제2압축기(301)로 출력하는 액분리기를 더 포함한다. 상기 액분리기의 추가 구성으로 상기 제2압축기(301)로 가스와 함께 액이 유입하여 액압축이 일어나는 것을 방지할 수 있다.According to an embodiment of the present invention, the heat pump module 200 separates the liquid contained in the second heat medium 30 output from the third heat exchanger 304 and only the gas is the second compressor 301. It further comprises a liquid separator for outputting. An additional configuration of the liquid separator may prevent the liquid from coming into the second compressor 301 together with the gas to cause the liquid compression.
한편, 상기와 같이 제2팽창밸브(302)를 포함할 경우, 제2열매체(30)는 증발을 일으킬 수 있는 상태로 감압이 이루어진 후, 제2외기증발기(303)로 공급되기 때문에 제2외기증발기(303)에서 제2열매체(30)의 가열 및 증발이 보다 효과적으로 이루어질 수 있다.On the other hand, when including the second expansion valve 302 as described above, after the second heat medium 30 is decompressed in a state that can cause evaporation, since the second external air evaporator 303 is supplied to the second outside air In the evaporator 303, heating and evaporation of the second thermal medium 30 may be more effectively performed.
도 7 내지 도 9는 본 발명의 또 다른 실시예를 보인 개념도이다.7 to 9 is a conceptual diagram showing another embodiment of the present invention.
도 7을 참조하면, 상기 히트펌프모듈(300)은, 외부에서 유입된 제2열매체(30)를 압축시켜 상기 제2열교환기(204)로 공급하는 제2압축기(301)와, 상기 제2열교환기(204)를 통과한 제2열매체(30)의 압력을 낮춰 출력하는 제2팽창밸브(302)와, 상기 제2팽창밸브(302)에서 출력된 제2열매체(30)를 유입하여, 공기열을 흡수하여 증발시키고, 상기 제2압축기(301)로 출력하는 제2외기증발기(303)를 포함한다. 따라서, 상기 제2열매체(30)는 제2열교환기(204)와 제2팽창밸브(302)와, 제2외기증발기(303)와, 제2압축기(301)를 순환한다.Referring to FIG. 7, the heat pump module 300 may include a second compressor 301 for compressing the second heat medium 30 introduced from the outside and supplying the second heat medium 30 to the second heat exchanger 204. A second expansion valve 302 for lowering and outputting a pressure of the second thermal medium 30 passing through the heat exchanger 204 and a second thermal medium 30 output from the second expansion valve 302 flow in; And a second external air evaporator 303 which absorbs and heats the air heat and outputs the same to the second compressor 301. Accordingly, the second heat medium 30 circulates through the second heat exchanger 204, the second expansion valve 302, the second external evaporator 303, and the second compressor 301.
본 발명의 다른 실시 예에 따르면, 상기 히트펌프모듈(300)은, 상기 제2팽창밸브(302)와 상기 제2외기증발기(303) 사이에 설치되어 제2열매체(30)의 이동을 단속하는 제1밸브(501)와, 상기 제2외기증발기(303)와 상기 제2압축기(301) 사이에 설치되어 제2열매체(30)의 이동을 단속하는 제2밸브(502)를 포함한다.According to another embodiment of the present invention, the heat pump module 300 is installed between the second expansion valve 302 and the second external evaporator 303 to control the movement of the second thermal medium 30. And a second valve 502 installed between the first valve 501 and the second external air evaporator 303 and the second compressor 301 to control the movement of the second heat medium 30.
상기한 실시 예의 경우, 후술되는 제3밸브(503), 제4밸브(504), 제5밸브(505)는 차단되고, 제1밸브(501)와 제2밸브(502)만 개방된다.In the above embodiment, the third valve 503, the fourth valve 504, and the fifth valve 505 to be described later are shut off, and only the first valve 501 and the second valve 502 are opened.
도 8을 참조하면, 상기 히트펌프모듈(300)은, 외부에서 유입된 제2열매체(30)를 압축시켜 상기 제2열교환기(204)로 공급하는 제2압축기(301)와, 상기 제2열교환기(204)를 통과한 제2열매체(30)의 압력을 낮춰 출력하는 제2팽창밸브(302)와, 지중에 설치되어 상기 제2팽창밸브(302)에서 출력된 제2열매체(30)와 지열을 열교환시키고 상기 제2압축기(301)로 출력하는 지중열교환기(403)를 포함한다. 따라서, 상기 제2열매체(30)는 제2열교환기(204)와 제2팽창밸브(302)와, 지중열교환기(403), 제2압축기(301)를 순환한다.Referring to FIG. 8, the heat pump module 300 may include a second compressor 301 compressing the second heat medium 30 introduced from the outside and supplying the second heat medium 30 to the second heat exchanger 204. A second expansion valve 302 for lowering and outputting a pressure of the second thermal medium 30 passing through the heat exchanger 204, and a second thermal medium 30 installed in the ground and output from the second expansion valve 302. And an underground heat exchanger 403 which heat-exchanges geothermal heat and outputs it to the second compressor 301. Therefore, the second heat medium 30 circulates through the second heat exchanger 204, the second expansion valve 302, the underground heat exchanger 403, and the second compressor 301.
본 발명의 다른 실시 예에 따르면, 상기 히트펌프모듈(300)은, 상기 제2팽창밸브(302)와 상기 지중열교환기(403) 사이에 설치되어 제2열매체(30)의 이동을 단속하는 제3밸브(503)와, 상기 지중열교환기(403)와 상기 제2압축기(301) 사이에 설치되어 제2열매체(30)의 이동을 단속하는 제4밸브(504)를 포함한다.According to another embodiment of the present invention, the heat pump module 300 is installed between the second expansion valve 302 and the underground heat exchanger 403 to control the movement of the second heat medium (30) And a third valve 503 and a fourth valve 504 installed between the underground heat exchanger 403 and the second compressor 301 to control the movement of the second heat medium 30.
상기한 실시 예의 경우, 상기한 제1밸브(501), 제2밸브(502) 및 후술되는 제5밸브(505)는 차단되고, 상기 제3밸브(503)와 제4밸브(504)만 개방된다.In the above-described embodiment, the first valve 501, the second valve 502, and the fifth valve 505 to be described later are shut off, and only the third valve 503 and the fourth valve 504 are opened. do.
도 9를 참조하면, 상기 히트펌프모듈(300)은, 외부에서 유입된 제2열매체(30)를 압축시켜 상기 제2열교환기(204)로 공급하는 제2압축기(301)와, 상기 제2열교환기(204)를 통과한 제2열매체(30)의 압력을 낮춰 출력하는 제2팽창밸브(302)와, 지중에 설치되어 상기 제2팽창밸브(302)에서 출력된 제2열매체(30)와 지열을 열교환시켜 출력하는 지중열교환기(403)와, 상기 지중열교환기(403)에서 출력된 제2열매체(30)를 유입하여, 공기열을 흡수하여 증발시키고, 상기 제2압축기(301)로 출력하는 제2외기증발기(303)를 포함한다. 따라서, 상기 제2열매체(30)는 제2열교환기(204)와 제2팽창밸브(302)와, 지중열교환기(403), 제2외기증발기(303)와, 제2압축기(301)를 순환한다.Referring to FIG. 9, the heat pump module 300 may include a second compressor 301 for compressing the second heat medium 30 introduced from the outside and supplying the second heat medium 30 to the second heat exchanger 204. A second expansion valve 302 for lowering and outputting a pressure of the second thermal medium 30 passing through the heat exchanger 204, and a second thermal medium 30 installed in the ground and output from the second expansion valve 302. And a ground heat exchanger (403) for heat-exchanging the ground heat and the ground heat exchanger (403), and the second heat medium (30) output from the ground heat exchanger (403), and absorbs and evaporates the air heat to the second compressor (301). It includes a second external evaporator 303 to output. Accordingly, the second heat medium 30 may include a second heat exchanger 204, a second expansion valve 302, an underground heat exchanger 403, a second outdoor evaporator 303, and a second compressor 301. Circulate
본 발명의 다른 실시 예에 따르면, 상기 히트펌프모듈(300)은, 상기 제2팽창밸브(302)와 상기 지중열교환기(403) 사이에 설치되어 제2열매체(30)의 이동을 단속하는 제3밸브(503)와, 상기 지중열교환기(403)와 상기 제2외기증발기(303) 사이에 설치되어 제2열매체(30)의 이동을 단속하는 제5밸브(505)와, 상기 제2외기증발기(303)와 상기 제2압축기(301) 사이에 설치되어 제2열매체(30)의 이동을 단속하는 제2밸브(502)를 포함한다. According to another embodiment of the present invention, the heat pump module 300 is installed between the second expansion valve 302 and the underground heat exchanger 403 to control the movement of the second heat medium (30) A third valve 503, a fifth valve 505 provided between the underground heat exchanger 403 and the second external air evaporator 303 to control movement of the second heat medium 30, and the second external air A second valve 502 is installed between the evaporator 303 and the second compressor 301 to control the movement of the second heat medium 30.
상기한 실시 예의 경우, 상기한 제2밸브(502), 제3밸브(503) 및 제5밸브(505)는 개방되고, 상기 제1밸브(501)와 제4밸브(504)는 차단된다. In the above embodiment, the second valve 502, the third valve 503, and the fifth valve 505 are opened, and the first valve 501 and the fourth valve 504 are shut off.
상기한 바와 같은 본 발명에 따르면, 지중에 설치된 지중열교환기에 의해 지열에너지를 회수하고, 히트펌프모듈로 지열에너지를 전달하여, 히트펌프모듈의 열원을 추가적으로 확보함에 따라, 에너지의 생산효율을 높일 수 있으며, 복수의 히트펌프모듈을 구현함과 동시에 상기 터빈을 통과한 작동유체의 열에너지를 히트펌프모듈의 열원으로 활용하여 에너지 효율 및 발전량을 높일 수 있다.According to the present invention as described above, by collecting the geothermal energy by the underground heat exchanger installed in the ground, and transfer the geothermal energy to the heat pump module, by additionally securing the heat source of the heat pump module, it is possible to increase the production efficiency of energy In addition, by implementing a plurality of heat pump modules and at the same time using the heat energy of the working fluid passed through the turbine as a heat source of the heat pump module can increase the energy efficiency and power generation.
본 발명은 도면에 도시된 일 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시 예가 가능하다는 점을 이해할 것이다.Although the present invention has been described with reference to one embodiment shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent embodiments thereof are possible.
따라서 본 발명의 진정한 보호 범위는 첨부된 청구범위에 의해서만 정해져야 할 것이다.Therefore, the true scope of protection of the present invention should be defined only by the appended claims.

Claims (10)

  1. 외부에서 공급된 적어도 하나 이상의 열원과의 열교환을 통해 액체상태의 제1열매체를 기체상태로 증발시켜 출력하는 제2열교환기와, 상기 제2열교환기에서 유입된 기체상태의 제1열매체를 압축시켜 출력하는 제1압축기를 포함하는 히트펌프모듈;A second heat exchanger for evaporating and outputting a liquid first heat medium to a gas state through heat exchange with at least one heat source supplied from the outside, and compressing and outputting the first heat medium in a gas state introduced from the second heat exchanger A heat pump module including a first compressor;
    상기 히트펌프모듈에서 출력된 제1열매체의 열에너지를 회수하여 작동유체를 고온고압의 기체상태로 변화시켜 출력하는 제1열교환기;A first heat exchanger for recovering thermal energy of the first heat medium output from the heat pump module to change the working fluid into a gaseous state at a high temperature and high pressure and output the gas;
    상기 제1열교환기에서 출력된 기체상태의 작동유체를 공급받아 동력을 생성하는 터빈;A turbine configured to generate power by receiving a gas working fluid output from the first heat exchanger;
    상기 터빈의 동력에 의해 전력을 생산하는 발전기;를 포함하되,Including; a generator for producing electric power by the power of the turbine;
    상기 터빈을 통과한 고온의 작동유체는 상기 제2열교환기로 공급되어 상기 제1열매체가 기화되는데 필요한 열원으로 활용되고, 상기 제1열매체에 열에너지를 빼앗긴 작동유체는 상기 제1열교환기로 재공급되는 것을 특징으로 하는 복합열원을 이용한 발전 시스템.The high temperature working fluid passed through the turbine is supplied to the second heat exchanger to be used as a heat source necessary for vaporizing the first heat medium, and the working fluid deprived of heat energy to the first heat medium is resupplied to the first heat exchanger. Power generation system using a composite heat source characterized in that.
  2. 제 1항에 있어서,The method of claim 1,
    상기 히트펌프모듈은, 상기 제1열교환기에서 출력된 제1열매체의 압력을 낮춰 상기 제2열교환기로 출력하는 제1팽창밸브를 포함하는 것을 특징으로 하는 복합열원을 이용한 발전 시스템.The heat pump module is a power generation system using a complex heat source, characterized in that it comprises a first expansion valve to lower the pressure of the first heat medium output from the first heat exchanger to output to the second heat exchanger.
  3. 제 1항에 있어서,The method of claim 1,
    상기 히트펌프모듈은, 외부의 공기열을 흡수하여 상기 제1열교환기에서 출력된 제1열매체를 증발시켜 상기 제2열교환기로 공급하는 제1외기증발기를 포함하는 것을 특징으로 하는 복합열원을 이용한 발전 시스템.The heat pump module includes a first external air evaporator for absorbing external air heat and evaporating the first heat medium output from the first heat exchanger to the second heat exchanger. .
  4. 제 1항에 있어서,The method of claim 1,
    상기 히트펌프모듈은, 지중에 설치되어 제3열매체와 지열을 열교환시키는 지중열교환기를 포함하고, 상기 제3열매체는 상기 제2열교환기와 상기 지중열교환기를 순환하며 지열을 전달하는 것을 특징으로 하는 복합열원을 이용한 발전 시스템.The heat pump module includes a ground heat exchanger installed in the ground to exchange heat between the third heat medium and the ground heat, wherein the third heat medium circulates the second heat exchanger and the ground heat exchanger to transfer ground heat. Power generation system.
  5. 제 1항에 있어서,The method of claim 1,
    상기 히트펌프모듈은, 지중에 설치되어 제3열매체와 지열을 열교환시키는 지중열교환기와, 상기 제1열교환기에서 출력된 제1열매체와 상기 제3열매체를 열교환시키고 각각 제2열교환기와 지중열교환기로 출력하는 제4열교환기를 포함하는 것을 특징으로 하는 복합열원을 이용한 발전 시스템.The heat pump module is a ground heat exchanger installed in the ground to heat-exchange the third heat medium and the ground heat, and heat-exchanging the first heat medium and the third heat medium output from the first heat exchanger and output to the second heat exchanger and the ground heat exchanger, respectively. A power generation system using a complex heat source, characterized in that it comprises a fourth heat exchanger.
  6. 제 1항에 있어서,The method of claim 1,
    상기 히트펌프모듈은:The heat pump module is:
    외부에서 유입된 제2열매체를 압축시켜 상기 제2열교환기로 출력하는 제2압축기;A second compressor for compressing the second heat medium introduced from the outside and outputting the second heat medium to the second heat exchanger;
    상기 제2열교환기에서 상기 제1열매체와 열교환이 이루어고 배출된 제2열매체의 압력을 낮춰 출력하는 제2팽창밸브;A second expansion valve configured to exchange heat with the first heat medium in the second heat exchanger and to lower the pressure of the discharged second heat medium;
    상기 제2팽창밸브에서 출력된 제2열매체를 제3열매체와 열교환시켜 상기 제2압축기로 출력하는 제3열교환기;A third heat exchanger for exchanging the second heat medium output from the second expansion valve with a third heat medium and outputting the heat to the second compressor;
    지중에 설치되어 상기 제3열매체와 지열을 열교환시키는 지중열교환기;를 포함하고, 상기 제3열매체는 상기 제3열교환기와 상기 지중열교환기를 순환하는 것을 특징으로 하는 복합열원을 이용한 발전 시스템. And a ground heat exchanger installed in the ground to exchange heat between the third heat medium and the ground heat, wherein the third heat medium circulates the third heat exchanger and the ground heat exchanger.
  7. 제 6항에 있어서,The method of claim 6,
    상기 히트펌프모듈은, 상기 제2팽창밸브에서 출력된 제2열매체를 유입하여, 공기열을 흡수하여 증발시키고 상기 제3열교환기로 출력하는 제2외기증발기를 포함하는 것을 특징으로 하는 복합열원을 이용한 발전 시스템. The heat pump module is a power generation using a complex heat source, characterized in that the second heat medium output from the second expansion valve, the second heat evaporator absorbs and evaporates the air heat and outputs to the third heat exchanger system.
  8. 제 1항에 있어서,The method of claim 1,
    상기 히트펌프모듈은:The heat pump module is:
    외부에서 유입된 제2열매체를 압축시켜 상기 제2열교환기로 공급하는 제2압축기;A second compressor for compressing the second heat medium introduced from the outside and supplying the second heat medium to the second heat exchanger;
    상기 제2열교환기를 통과한 제2열매체의 압력을 낮춰 출력하는 제2팽창밸브;A second expansion valve for lowering and outputting a pressure of the second heat medium passing through the second heat exchanger;
    상기 제2팽창밸브에서 출력된 제2열매체를 유입하여, 공기열을 흡수하여 증발시키고, 상기 제2압축기로 출력하는 제2외기증발기;를 포함하는 것을 특징으로 하는 복합열원을 이용한 발전 시스템. And a second external air evaporator for introducing the second heat medium output from the second expansion valve, absorbing and evaporating air heat, and outputting the second heat medium to the second compressor.
  9. 제 1항에 있어서,The method of claim 1,
    상기 히트펌프모듈은:The heat pump module is:
    외부에서 유입된 제2열매체를 압축시켜 상기 제2열교환기로 공급하는 제2압축기;A second compressor for compressing the second heat medium introduced from the outside and supplying the second heat medium to the second heat exchanger;
    상기 제2열교환기를 통과한 제2열매체의 압력을 낮춰 출력하는 제2팽창밸브;A second expansion valve for lowering and outputting a pressure of the second heat medium passing through the second heat exchanger;
    지중에 설치되어 상기 제2팽창밸브에서 출력된 제2열매체와 지열을 열교환시키고 상기 제2압축기로 출력하는 지중열교환기;를 포함하는 것을 특징으로 하는 복합열원을 이용한 발전 시스템. And a ground heat exchanger installed in the ground to heat-exchange the second heat medium and the ground heat output from the second expansion valve and output the ground heat to the second compressor.
  10. 제 1항에 있어서,The method of claim 1,
    상기 히트펌프모듈은:The heat pump module is:
    외부에서 유입된 제2열매체를 압축시켜 상기 제2열교환기로 공급하는 제2압축기;A second compressor for compressing the second heat medium introduced from the outside and supplying the second heat medium to the second heat exchanger;
    상기 제2열교환기를 통과한 제2열매체의 압력을 낮춰 출력하는 제2팽창밸브;A second expansion valve for lowering and outputting a pressure of the second heat medium passing through the second heat exchanger;
    지중에 설치되어 상기 제2팽창밸브에서 출력된 제2열매체와 지열을 열교환시켜 출력하는 지중열교환기;An underground heat exchanger installed in the ground to heat-exchange the second heat medium and the ground heat output from the second expansion valve;
    상기 지중열교환기에서 출력된 제2열매체를 유입하여, 공기열을 흡수하여 증발시키고, 상기 제2압축기로 출력하는 제2외기증발기;를 포함하는 것을 특징으로 하는 복합열원을 이용한 발전 시스템. And a second external air evaporator for introducing the second heat medium outputted from the underground heat exchanger, absorbing and evaporating air heat, and outputting the second heat medium to the second compressor.
PCT/KR2014/009251 2013-10-02 2014-10-01 System for generating electricity using compound heat sources WO2015050372A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20130118223A KR20150039541A (en) 2013-10-02 2013-10-02 Electrocity generation system
KR10-2013-0118223 2013-10-02
KR20130118232A KR20150039662A (en) 2013-10-03 2013-10-03 Electricity Generation System
KR10-2013-0118232 2013-10-03
KR20130118868A KR20150040404A (en) 2013-10-06 2013-10-06 Electricity generation system
KR10-2013-0118868 2013-10-06

Publications (1)

Publication Number Publication Date
WO2015050372A1 true WO2015050372A1 (en) 2015-04-09

Family

ID=52778916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009251 WO2015050372A1 (en) 2013-10-02 2014-10-01 System for generating electricity using compound heat sources

Country Status (1)

Country Link
WO (1) WO2015050372A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20170100159A (en) * 2017-04-05 2019-01-25 Αργυριος Βασιλειου Μπενος Thermal energy-recycling pump
CN109826683A (en) * 2019-01-03 2019-05-31 上海海事大学 A kind of organic Rankine cycle power generation system that can efficiently utilize cryogenic cold energy
CN109826684A (en) * 2019-01-03 2019-05-31 上海海事大学 A kind of low-pressure type organic Rankine cycle power generation system that can efficiently utilize cryogenic cold energy
WO2021248289A1 (en) * 2020-06-08 2021-12-16 孙诚刚 Transducing method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090105213A (en) * 2008-04-02 2009-10-07 주식회사 피닉스건설 The hot water exclusive use terrestrial heat complex system
JP2012112369A (en) * 2010-11-19 2012-06-14 Atsuo Morikawa Heat pump power generator
KR101166154B1 (en) * 2011-12-15 2012-07-20 써클파워 주식회사 Dual Refrigeration Cycle Heat Pump Using Refrigerant Turbine Generator
JP2012251456A (en) * 2011-06-01 2012-12-20 Hiroshi Kodera Power generation system
KR20130063394A (en) * 2011-12-06 2013-06-14 유한회사 한마루에너지 Geothermal heat exchanger and heat exchange system using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090105213A (en) * 2008-04-02 2009-10-07 주식회사 피닉스건설 The hot water exclusive use terrestrial heat complex system
JP2012112369A (en) * 2010-11-19 2012-06-14 Atsuo Morikawa Heat pump power generator
JP2012251456A (en) * 2011-06-01 2012-12-20 Hiroshi Kodera Power generation system
KR20130063394A (en) * 2011-12-06 2013-06-14 유한회사 한마루에너지 Geothermal heat exchanger and heat exchange system using the same
KR101166154B1 (en) * 2011-12-15 2012-07-20 써클파워 주식회사 Dual Refrigeration Cycle Heat Pump Using Refrigerant Turbine Generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20170100159A (en) * 2017-04-05 2019-01-25 Αργυριος Βασιλειου Μπενος Thermal energy-recycling pump
CN109826683A (en) * 2019-01-03 2019-05-31 上海海事大学 A kind of organic Rankine cycle power generation system that can efficiently utilize cryogenic cold energy
CN109826684A (en) * 2019-01-03 2019-05-31 上海海事大学 A kind of low-pressure type organic Rankine cycle power generation system that can efficiently utilize cryogenic cold energy
CN109826684B (en) * 2019-01-03 2022-05-10 上海海事大学 Low-pressure organic Rankine cycle power generation system capable of efficiently utilizing low-temperature cold energy
WO2021248289A1 (en) * 2020-06-08 2021-12-16 孙诚刚 Transducing method and system

Similar Documents

Publication Publication Date Title
US7178348B2 (en) Refrigeration power plant
FI102405B (en) Method for improving the total useful energy production of a thermal power plant i and a power plant with a liquid-cooled thermal power plant
WO2015050372A1 (en) System for generating electricity using compound heat sources
US20010054288A1 (en) Method of and apparatus for producing power description
WO2012065296A1 (en) Absorption cooling and power co-supply circulation system and absorption cooling and power co-supply method
NZ248729A (en) High pressure geothermal power plant with secondary low pressure turbogenerator
BRPI0418895B1 (en) Heat cycle system
WO2012036361A1 (en) Heat pump system using heat from the earth
WO2015037791A1 (en) Trigeneration energy supply system
CN202808553U (en) Comprehensive sludge drying energy utilization system employing industrial waste gas
CN102338051A (en) Solar/ground source heat integrated electricity generation/cold/heating co-supply device
JP2012145326A (en) Water recovery system for cooling tower
KR20140085001A (en) Energy saving system for using waste heat of ship
WO2010117953A2 (en) Air-water power generation system
CN204098972U (en) Adopt the low temperature water power generation system of extraction cycle technology
WO2016098949A1 (en) High-efficiency ocean thermal energy conversion power system using liquid-vapor ejector and motive pump
KR101960572B1 (en) Trigeneration system
KR101423647B1 (en) Dissipating Heat Collection System of Steam Turbin Generator Room
KR20120111793A (en) Generator of ship using the organic rankine cycle
KR20150109102A (en) Organic Rankine Cycle electricity generation system
KR101603253B1 (en) Condenser Waste-heat Recovery System
KR101985671B1 (en) Desiccant Air-Conditioning Apparatus and Tri-Generation System and Operation Method thereof
WO2015041501A1 (en) Heat pump power generating system and driving method therefor
WO2015050368A1 (en) System for generating electricity using air heat source
CN202813542U (en) Waste heat extracting and heat supply stepped heating system in power plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/07/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14850566

Country of ref document: EP

Kind code of ref document: A1