KR20150024606A - Composition for inhibiting cellular senescence comprising extracts of Anisi Stellati Fructus or threo-1(4'-methoxyphenyl)-1,2-propandiol isolated from the same - Google Patents

Composition for inhibiting cellular senescence comprising extracts of Anisi Stellati Fructus or threo-1(4'-methoxyphenyl)-1,2-propandiol isolated from the same Download PDF

Info

Publication number
KR20150024606A
KR20150024606A KR20130101710A KR20130101710A KR20150024606A KR 20150024606 A KR20150024606 A KR 20150024606A KR 20130101710 A KR20130101710 A KR 20130101710A KR 20130101710 A KR20130101710 A KR 20130101710A KR 20150024606 A KR20150024606 A KR 20150024606A
Authority
KR
South Korea
Prior art keywords
extract
hexane
cell
senescence
cells
Prior art date
Application number
KR20130101710A
Other languages
Korean (ko)
Other versions
KR101550967B1 (en
Inventor
김재룡
손종근
양효현
황보경
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020130101710A priority Critical patent/KR101550967B1/en
Publication of KR20150024606A publication Critical patent/KR20150024606A/en
Application granted granted Critical
Publication of KR101550967B1 publication Critical patent/KR101550967B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/23Apiaceae or Umbelliferae (Carrot family), e.g. dill, chervil, coriander or cumin
    • A61K36/235Foeniculum (fennel)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/302Foods, ingredients or supplements having a functional effect on health having a modulating effect on age
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/306Foods, ingredients or supplements having a functional effect on health having an effect on bone mass, e.g. osteoporosis prevention
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/308Foods, ingredients or supplements having a functional effect on health having an effect on cancer prevention
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/33Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Birds (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

The present invention relates to a composition for inhibiting cellular senescence comprising extracts of Anisi stellati fructus or threo-1(4′-methoxyphenyl)-1,2-propandiol isolated from the same as an active ingredient. More specifically, provided is a composition for inhibiting cellular senescence derived from Adriamycin. The composition can be used for treating diseases such as skin aging, rheumatic arthritis, ostarthritis, hepatitis, chronic skin injury, artery hardening, prostatic hyperplasia, liver cancer, etc by inhibiting cellular senescence of fibroblast or umbilical vein endothelial cell. Also, the composition can be utilized for developing antiaging functional foods, anti-vein aging drugs, and cosmetics which can inhibit cellular senescence.

Description

팔각회향 추출물 또는 이로부터 분리된 트레오-1(4'-메톡시페닐)-1,2-프로판디올을 유효성분으로 함유하는 세포 노화 억제용 조성물{Composition for inhibiting cellular senescence comprising extracts of Anisi Stellati Fructus or threo-1(4'-methoxyphenyl)-1,2-propandiol isolated from the same}(4'-methoxyphenyl) -1,2-propanediol as an active ingredient isolated from an octagonal fennel extract or isolated therefrom (Composition for inhibiting cellular senescence comprising extracts of Anisi Stellati Fructus or threo-1 (4'-methoxyphenyl) -1,2-propanediol isolated from the same}

본 발명은 팔각회향 추출물 또는 이로부터 분리된 트레오-1(4'-메톡시페닐)-1,2-프로판디올[threo-1(4'-methoxyphenyl)-1,2-propandiol]을 유효성분으로 함유하는 세포 노화 억제용 조성물에 관한 것이다.The present invention relates to the use of an octopus fennel extract or threo-1 (4'-methoxyphenyl) -1,2-propanediol isolated therefrom as an active ingredient To a composition for inhibiting cell senescence.

정상 체세포는 일정 횟수 분열하면 더 이상 분열할 수 없게 되면서 세포노화 상태가 된다. 이는 염색체 말단의 텔로미어가 세포분열 과정에서 점점 짧아지면서 DNA 손상이 생기기 때문에 일어나는데, 이를 복제노화라고 한다. 텔로미어의 단축뿐만 아니라, 암유전자 및 암 억제 유전자의 기능 이상, 염증반응, 산화스트레스, 항암제, 자외선 및 방사선 등에 의해서도 세포노화가 유도된다. 노화 세포는 크기가 크고 모양이 더 편평해지며, 세포성장이 멈추고, 핵에 DNA 손상 흔적이 많으며, 다양한 염증성 단백질을 분비한다. 그리고 생화학적으로 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성이 증가하는 것으로 알려져 있다. 다양한 인자들에 의해 노화가 유도되지만 p53과 Rb/p16 암억제 유전자 신호전달 경로를 통하여 노화가 조절되는 것으로 밝혀져 있다.When normal somatic cells are divided a certain number of times, they can no longer divide and become aged. This is because the telomere at the end of the chromosome is becoming shorter and shorter in the process of cell division, resulting in DNA damage. Cellular senescence is induced not only by shortening of telomere but also by dysfunction of cancer gene and cancer suppressor gene, inflammation reaction, oxidative stress, anticancer agent, ultraviolet ray and radiation. Aging cells are large in size, flatter in shape, stop cell growth, have many signs of DNA damage in the nucleus, and secrete a variety of inflammatory proteins. And biochemically it is known that senescence-associated β-galactosidase (SA-β-gal) activity increases. Although senescence is induced by a variety of factors, it has been shown that senescence is regulated through the signaling pathway of p53 and Rb / p16 tumor suppressor genes.

세포노화 현상은 암을 억제하거나 촉진하기도 하며, 조직 재생과 복구, 조직/개체 노화와 노화관련 질환의 중요한 기전으로 제시되고 있다. 아울러 세포노화는 암, 동맥경화, 피부노화, 퇴행성 신경질환, 근감소증, 골다골증, 전립선비대증 등과 같은 다양한 노화관련 질환의 병인에 기여한다. 최근의 연구결과들은 세포노화를 선택적으로 조절하면 조직, 장기의 노화, 건강 수명, 노화관련 질환의 발생을 조절할 수 있는 것으로 보고되고 있다. 텔로머라제 결핍 생쥐는 노화가 빨리 오는 것으로 알려져 있는데, 늙은 텔로미어 결핍 생쥐에서 텔로머라제 발현을 증가시키면 노화에 따른 조직 또는 장기의 퇴행성 변화를 역전시킴을 확인하였다. 노화가 빨리 오는 생쥐 모델에 있어서 노화세포에서 발현이 증가하는 것으로 알려진 p16을 발현하는 세포를 선택적으로 제거한 결과 노화로 인한 조직 병변이 억제되며, 노화관련 질환의 발생이 감소하는 것을 확인하였다. 생쥐에서 간 섬유화가 일어나는 과정에서 간 성상세포의 노화가 나타나는데, 간성상세포의 노화가 과다한 간 섬유화를 억제하는 기능을 하는 것으로 알려져 있다. p53 활성이 적절하게 조절되지 않은 상태에서 지나치게 높아지면 노화가 빨리 나타나지만, 적절한 p53의 활성은 오히려 노화를 억제하는 것으로 알려져 있다. Cell senescence also inhibits or promotes cancer, and is suggested as an important mechanism of tissue regeneration and restoration, tissue / individual aging and aging related diseases. In addition, cellular senescence contributes to the pathogenesis of various aging-related diseases such as cancer, arteriosclerosis, skin aging, degenerative neurological diseases, myopenia, osteodystrophy, and hyperplasia of the prostate. Recent studies have shown that selective regulation of cell senescence can regulate tissue, organ aging, health life span, and the development of aging-related diseases. Telomerase-deficient mice are known to be aging rapidly, confirming that increasing telomerase expression in old telomeres-deficient mice reverses the degenerative changes of tissues or organs due to aging. In a mouse model with rapid senescence, selective removal of cells expressing p16, which is known to increase expression in senescent cells, inhibits senescence-induced tissue lesions and reduces the incidence of aging-related diseases. In the course of hepatic fibrosis in mice, aging of hepatic stellate cells occurs. It is known that aging of hepatic stellate cells inhibits excessive liver fibrosis. If the p53 activity is not properly regulated, the aging will occur quickly, but the proper p53 activity is known to inhibit aging.

그리고 세포노화를 억제하는 효능이 있는 물질들에 대한 연구 결과도 보고되고 있다. 비타민 C, N-아세틸시스테인(N-acetylcysteine), NS398 및 에피프리에데라놀(epifriedelanol)과 같은 약물 또는 단일 성분들이 이 세포노화를 억제한다. 그리고 라파마이신(rapamycin)이 생쥐모델에서, 4,4'-디아미노디페닐설폰(4,4'-diaminodiphenylsulfone)이 꼬마선충에서 노화관련 질환의 발생을 억제하며, 건강수명을 늘리는 것으로 보고되었다.Studies have also been reported on substances that have the potential to inhibit cellular senescence. Drugs or single components such as vitamin C, N-acetylcysteine, NS398 and epifriedelanol inhibit this cell senescence. In rapamycin-induced mouse models, 4,4'-diaminodiphenylsulfone has been reported to inhibit the development of aging-related diseases in small nematodes and to increase health life span.

팔각회향은 Illiciaceae에 속하는 상록교목으로서 잎은 호생하며 혁질로 엽편은 타원상도란형 또는 타원형도피침형이고, 가장자리는 밋밋하며 투명한 유점이 있다. 꽃은 한 개씩 액상하며, 화피편은 7~12개로 복와상의 여러 둘레로 배열하는데 안쪽 둘레는 분홍색 또는 진홍색이다. 팔각회향의 약리작용으로는 팔각회향의 수전제가 결핵간균, 고초간균에 대한 억제 작용이 있고, 알코올 추출물은 황색 포도상구균, 폐염구균, 디프테리아 균의 억제 작용이 있다고 알려져 있고 그 외, 방향성건위, 정장, 구풍, 거담약으로 쓰이며 한방학적 효능으로는 온중산한, 이기지통 작용이 있고 위한 구토, 식욕부진, 산기복통, 신허요통 등의 치료에 응용한다.The octagonal fennel is an evergreen tree belonging to Illiciaceae. Leaves are horny, and the leaves are oval or elliptical obovate, with a flat and transparent margin. Flower is one liquid each, 7 ~ 12 petal pieces arranged in various circumferences of the stomach and the inside circumference is pink or crimson. The pharmacological action of octagonal fennel is inhibition of tubercle bacillus and Bacillus thuringiensis on octagonal fennel. Alcohol extract is known to inhibit Staphylococcus aureus, Pneumococcus and Diphtheriae bacteria. In addition, It is used for the treatment of vomiting, anorexia, anemia of abdominal pain, and low back pain.

한편, 한국공개특허 제10-2012-0010984호에서는 팔각회향 추출물을 유효성분으로 함유하는 알러지 질환의 예방 또는 치료용 조성물에 관한 것으로, 팔각회향(Illicium verum) 추출물은 compound 48/80에 의해 비만세포(mast cell)로부터 분비가 증가된 히스타민(histamine) 분비량을 낮추고, PMA와 A23187로 증가된 알러지 유발 사이토카인(TNF-α, IL-4 및 IL-8)의 생성량을 감소시킨다고 개시하고 있으나, 본원 발명과 같이 제대정맥혈관내피세포나 섬유아세포 노화를 저해한다는 언급은 없다.Korean Patent Laid-Open No. 10-2012-0010984 discloses a composition for preventing or treating an allergic disease which contains an octagonal fennel extract as an active ingredient, wherein the extract of Illicium verum is a compound 48/80, (TNF-a, IL-4, and IL-8) by increasing the secreted histamine secreted from mast cells and decreasing the amount of allergen-induced cytokines (PMA and A23187) There is no mention of the inhibition of umbilical vein endothelial cells or fibroblast aging as in the invention.

본 발명의 목적은 팔각회향 추출물 또는 이로부터 분리된 트레오-1(4'-메톡시페닐)-1,2-프로판디올[threo-1(4'-methoxyphenyl)-1,2-propandiol]을 유효성분으로 함유하는 세포 노화 억제용 조성물을 제공하는 데에 있다.It is an object of the present invention to provide a method of producing an octagonal fennel extract or threo-1 (4'-methoxyphenyl) -1,2-propanediol, And a composition for inhibiting cell senescence.

상기 목적을 달성하기 위하여, 본 발명자들은 팔각회향 추출물과 팔각회향에서 분리한 4가지 단일성분들을 사람 혈관내피세포와 섬유아세포에서 세포노화 저해 효능이 있는지 조사하였다. 결과적으로 사람 혈관내피세포에서는 팔각회향 부탄올 추출물과 에틸아세테이트 추출물이, 사람 섬유아세포에서는 팔각회향 에틸아세테이트 추출물, 헥산 추출물과 ASF-2 (threo-1(4’-methyoxyphenyl)1,2-propandiol)가 세포노화 저해 효능이 있음을 확인하고 본 발명을 완성하였다.
To achieve the above object, the inventors of the present invention investigated whether the four monoclonal antibodies isolated from octopus fenugreek extract and octopus fenugrea inhibited cell senescence in human vascular endothelial cells and fibroblasts. As a result, in human vascular endothelial cells, octanol-fructose butanol extract and ethyl acetate extract were used. In human fibroblasts, octachloro-ethyl acetate extract, hexane extract and ASF-2 (threo-1 (4'-methyoxyphenyl) Confirming the cell aging inhibitory effect and completed the present invention.

본 발명은 팔각회향 추출물 또는 이로부터 분리된 하기 화학식 1로 표시되는 트레오-1(4'-메톡시페닐)-1,2-프로판디올[threo-1(4'-methoxyphenyl)-1,2-propandiol]을 유효성분으로 함유하는 세포 노화 억제용 약학 조성물을 제공한다.
(4'-methoxyphenyl) -1,2-propanediol represented by the following formula (1) separated from an octagonal fennel extract or threo-1 propanediol] as an active ingredient.

< 화학식 1 >&Lt; Formula 1 >

Figure pat00001

Figure pat00001

상세하게는, 상기 팔각회향 추출물은 팔각회향 메탄올 추출액에 증류수 및 헥산(n-hexane)을 첨가하여 분획화한 증류수 층에 에틸아세테이트(EtOAc)를 첨가하고 분획화하여 추출된 에틸아세테이트(EtOAc) 분획 추출물인 것을 특징으로 한다.
Specifically, the octopus fennel extract was prepared by adding ethyl acetate (EtOAc) to a distilled water layer fractionated by adding distilled water and n-hexane to methanol extract of octopus fennel and fractionating the extracted ethyl acetate (EtOAc) fraction Is an extract.

상세하게는, 상기 팔각회향 추출물은 팔각회향 메탄올 추출액에 증류수 및 헥산(n-hexane)을 첨가하여 분획화한 증류수 층에 에틸아세테이트(EtOAc)를 첨가하고, 이를 분획화한 증류수 층에 부탄올을 첨가하고 분획화하여 추출된 부탄올 분획 추출물이고, 보다 상세하게는 상기 세포는 제대정맥혈관내피세포인 것을 특징으로 한다.
Specifically, the octopus fennel extract was prepared by adding ethyl acetate (EtOAc) to a distilled water layer fractionated by adding distilled water and n-hexane to methanol extract of octopus fennel, adding butanol to the fractionated distilled water layer And the fraction is an extracted butanol fraction extract. More specifically, the cell is an umbilical vein endothelial cell.

상세하게는, 상기 팔각회향 추출물은 팔각회향 메탄올 추출액에 증류수 및 헥산(n-hexane)을 첨가하고 분획화하여 추출된 헥산(n-hexane) 분획 추출물이고, 보다 상세하게는 상기 세포는 섬유아세포인 것을 특징으로 한다.
Specifically, the octopus fennel extract is an extract of hexane (n-hexane) fraction extracted by adding distilled water and n-hexane to an octagonal fennel methanol extract, and more specifically, the cell extract is a fibroblast .

상세하게는, 상기 세포 노화는 아드리아마이신에 의해 유도되는 것을 특징으로 하고, 세포 노화 억제는 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성 억제를 측정하는 것을 특징으로 한다.
Specifically, the cell senescence is characterized by being induced by adriamycin, and inhibition of cell senescence is measured by measuring senescence-associated beta-galactosidase (SA-beta-gal) .

본 발명의 약학적 조성물인 경우, 상기 약학적 조성물은 상기 팔각회향 추출물 또는 트레오-1(4'-메톡시페닐)-1,2-프로판디올[threo-1(4'-methoxyphenyl)-1,2-propandiol] 이외에 약제학적으로 허용되는 담체를 포함할 수 있는데, 이러한 약학적으로 허용되는 담체는 약품 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘, 미네랄 오일 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 약학적 조성물은 첨가제로서 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.In the case of the pharmaceutical composition of the present invention, the pharmaceutical composition comprises the octopus fennel extract or threo-1 (4'-methoxyphenyl) -1, 2-propanediol, and the like. Such pharmaceutically acceptable carriers are those conventionally used in pharmaceutical preparations, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia But are not limited to, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, , Mineral oil, and the like, but are not limited thereto. In addition, the pharmaceutical composition may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. as an additive.

상기 약학적 조성물은 세포 노화의 증상 정도에 따라 투여 방법이 결정되는데, 통상적으로는 국소 투여 방식이 바람직하다. 또한, 상기 약학적 조성물 중 유효성분의 투여량은 투여경로, 질병의 정도, 환자의 나이, 성별, 체중 등에 따라 달라질 수 있으며, 일일 1회 내지 수회 투여할 수 있다.In the above pharmaceutical composition, the administration method is determined according to the degree of symptom of cell senescence. Usually, local administration method is preferable. The dosage of the active ingredient in the pharmaceutical composition may vary depending on the route of administration, the severity of the disease, the age, sex, and weight of the patient, and may be administered once to several times per day.

상기 약학적 조성물은 쥐, 생쥐, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁 내 경막 또는 뇌혈관 내(intracerebroventricular)주사에 의해 투여될 수 있다.The pharmaceutical composition may be administered to mammals such as rats, mice, livestock, humans, and the like in a variety of routes. All modes of administration may be expected, for example, by oral, rectal or intravenous, intramuscular, subcutaneous, intra-uterine or intracerebroventricular injections.

상기 약학적 조성물은 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때, 제형은 용액, 현탁액 또는 유화액 형태이거나 엘렉시르제, 엑스제, 분말제, 과립제, 정제, 경고제, 로션제, 연고제 등의 형태일 수 있다.
The pharmaceutical composition may be prepared in unit dose form by formulating it with a pharmaceutically acceptable carrier and / or excipient, or may be prepared by inserting it into a multi-dose container. The formulations may be in the form of solutions, suspensions or emulsions, or may be in the form of elixirs, excipients, powders, granules, tablets, alerts, lotions, ointments and the like.

한편, 상기 약학적 조성물은 피부노화, 류마티스성 관절염, 골관절염, 간염, 만성 피부손상 조직, 동맥경화, 전립샘 증식증 및 간암으로 이루어진 군에서 선택된 어느 하나의 질환을 치료할 수 있지만, 이에 한정되는 것은 아니다.Meanwhile, the pharmaceutical composition may treat any one selected from the group consisting of skin aging, rheumatoid arthritis, osteoarthritis, hepatitis, chronic skin injured tissue, arteriosclerosis, prostatic hyperplasia and liver cancer, but is not limited thereto.

본 발명자들은 팔각회향 추출물 또는 이로부터 분리된 트레오-1(4'-메톡시페닐)-1,2-프로판디올[threo-1(4'-methoxyphenyl)-1,2-propandiol]이 아드리아마이신에 의한 세포 노화를 억제하고, 아울러 세포 분열로 인한 복제노화를 저해함을 확인하였다. 이렇게 세포노화 과정을 억제함으로써 노화관련 질환, 예를 들어 피부노화, 류마티스성 관절염, 골관절염, 간염, 만성 피부손상 조직, 동맥경화, 전립샘 증식증 및 간암 등과 같은 질환 치료에 유용하게 사용될 수 있다. 또한, 혈관내피세포 및 섬유아세포의 세포노화를 저해할 수 있는 항노화 기능성 식품, 항혈관노화 약물 개발, 화장품 개발에 활용될 수 있을 것으로 기대된다. The present inventors have found that an octagonal fennel extract or threo-1 (4'-methoxyphenyl) -1,2-propanediol separated therefrom can be added to adriamycin Inhibits cell senescence by cell division and inhibits the replication senescence due to cell division. By inhibiting the cell senescence process, it can be useful for treating diseases such as aging-related diseases such as skin aging, rheumatoid arthritis, osteoarthritis, hepatitis, chronic skin damaged tissue, arteriosclerosis, prostatic hyperplasia and liver cancer. It is also expected to be useful for the development of anti-aging functional food, anti-vascular aging drug, and cosmetics which can inhibit cell aging of vascular endothelial cells and fibroblasts.

도 1은 팔각회향 추출물의 분리 모식도를 나타낸다.
도 2는 팔각회향으로부터 분리된 단일성분의 화학구조를 나타낸다.
도 3은 사람 제대정맥혈관내피세포에서 팔각회향 추출물의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 팔각회향 추출물의 세포독성 효과. 각 추출물을 10, 100ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, 팔각회향 추출물을 10, 100ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 4는 사람 제대정맥혈관내피세포에서 팔각회향 부탄올 추출물의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 팔각회향 부탄올 추출물의 세포독성 효과를 나타낸다. 각 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, 팔각회향 부탄올 추출물을 1-10 ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후, 평균과 표준편차로 나타냈다. D, p53, 인산화 S6K, p21의 발현을 나타낸다. 아드리아마이신 처리 후, 추출물을 1-10 ug/ml로 처리하고, 웨스턴 블랏법으로 각 단백질의 발현 정도를 조사하였다. NT, 미처리; Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 5는 사람 제대정맥혈관내피세포에서 팔각회향 에틸아세테이트 추출물의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 팔각회향 에틸아세테이트 추출물의 세포독성 효과를 나타낸다. 각 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, 팔각회향 에틸아세테이트 추출물을 1-10 ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후, 평균과 표준편차로 나타냈다. D, p53, 인산화 S6K, p21의 발현을 나타낸다. 아드리아마이신 처리 후, 추출물을 1-10 ug/ml로 처리하고, 웨스턴 블랏법으로 각 단백질의 발현 정도를 조사하였다. NT, 미처리; Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 6은 사람 제대정맥혈관내피세포에서 팔각회향 부탄올 추출물의 복제 세포노화 저해 효과를 나타낸다. A, 복제노화 세포에 대한 팔각회향 부탄올 추출물의 세포독성 효과를 나타낸다. 각 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 복제노화 세포에 팔각회향 부탄올 추출물을 1-10ug/ml 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Old, 늙은 세포(Old cells); DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 7은 사람 제대정맥혈관내피세포에서 팔각회향 에틸아세테이트 추출물의 복제 세포노화 저해 효과를 나타낸다. A, 복제노화 세포에 대한 팔각회향 에틸아세테이트 추출물의 세포독성 효과를 나타낸다. 각 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 복제노화 세포에 팔각회향 에틸아세테이트 추출물을 1-10ug/ml 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Old, 늙은 세포(Old cells); DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 8은 사람 제대정맥혈관내피세포에서 팔각회향 단일 성분의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 팔각회향 단일 성분의 세포독성 효과. 각 성분을 10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B, SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, ASF-1을 10ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine). *p<0.05 vs DMSO.
도 9는 사람 섬유아세포에서 팔각회향 추출물의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 팔각회향 추출물의 세포독성 효과. 각 추출물을 10, 100ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, 팔각회향 추출물을 10ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 10은 사람 섬유아세포에서 팔각회향 에틸아세테이트 추출물의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 팔각회향 에틸아세테이트 추출물의 세포독성 효과를 나타낸다. 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, 추출물을 1-10 ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후, 평균과 표준편차로 나타냈다. D, p53, 인산화 S6K, p21의 발현을 나타낸다. 아드리아마이신 처리 후, 추출물을 1-10 ug/ml로 처리하고, 웨스턴 블랏법으로 각 단백질의 발현 정도를 조사하였다. NT, 미처리; Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 11은 사람 섬유아세포에서 팔각회향 헥산 추출물의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 팔각회향 헥산 추출물의 세포독성 효과를 나타낸다. 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, 팔각회향 헥산 추출물을 1-10 ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후, 평균과 표준편차로 나타냈다. D, p53, 인산화 S6K, p21의 발현을 나타낸다. 아드리아마이신 처리 후, 추출물을 1-10 ug/ml로 처리하고, 웨스턴 블랏법으로 각 단백질의 발현 정도를 조사하였다. Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 12는 사람 섬유아세포에서 팔각회향 에틸아세테이트 추출물의 복제 세포노화 저해 효과를 나타낸다. A, 복제노화 세포에 대한 팔각회향 에틸아세테이트 추출물의 세포독성 효과를 나타낸다. 각 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 복제노화 세포에 팔각회향 추출물을 1-10ug/ml 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Old, 늙은 세포(Old cells); DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 13은 사람 섬유아세포에서 팔각회향 헥산 추출물의 복제 세포노화 저해 효과를 나타낸다. A, 복제노화 세포에 대한 팔각회향 헥산 추출물의 세포독성 효과를 나타낸다. 각 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 복제노화 세포에 팔각회향 헥산 추출물을 1-10ug/ml 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Old, 늙은 세포(Old cells); DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 14는 사람 섬유아세포에서 팔각회향 단일 성분의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 팔각회향 단일 성분의 세포독성 효과. 각 성분을 10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B, SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, 각 성분을 10ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine). *p<0.05 vs DMSO.
도 15는 사람 섬유아세포에서 팔각회향 단일 성분 ASF-2 (트레오-1(4'-메톡시페닐)-1,2-프로판디올)[threo-1(4'-methoxyphenyl)-1,2-propandiol]의 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A 및 B, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, ASF-2를 1-10ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. C, p53, 인산화 S6K, p21의 발현을 나타낸다. 아드리아마이신 처리 후, ASF-2를 1-10 ug/ml로 처리하고, 웨스턴 블랏법으로 각 단백질의 발현 정도를 조사하였다. NT, 미처리; Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 16은 사람 섬유아세포에서 활성산소 생성에 미치는 ASF-2 (트레오-1(4'-메톡시페닐)-1,2-프로판디올)[threo-1(4'-methoxyphenyl)-1,2-propandiol]의 효과를 나타낸다. A, 활성산소 유세포분석. B, 평균 활성산소량 비교. 섬유아세포에 아드리아마이신을 처리하고, ASF-2를 10 ug/ml 처리하여, 세포내 활성산소 정도를 유세포분석기로 조사하였다. 각 실험을 독립적으로 3회 이상 반복시행 한 후 평균과 표준편차로 나타냈다. ADR, 아드리아마이신(adriamycin); Y, 젊은 세포(young cells); Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or ** p<0.01 vs DMSO.
도 17은 사람 섬유아세포에서 ASF-2 (트레오-1(4'-메톡시페닐)-1,2-프로판디올)[threo-1(4'-methoxyphenyl)-1,2-propandiol]의 복제세포노화 저해 효과를 나타낸다. A, SA-β-gal 활성 염색 사진을 나타낸다. B, SA-β-gal 활성 염색 백분율을 나타낸다. C, ASF-2의 세포독성 효과를 나타낸다. 복제노화 세포에 ASF-2를 1-10 ug/ml 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 세포독성은 MTT법으로 조사하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Old, 늙은 세포(Old cells); DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
Fig. 1 is a schematic view showing the separation of the octopus fennel extract.
Figure 2 shows the chemical composition of a single component separated from octagonal fennel.
FIG. 3 shows cytotoxicity of octopus fennel extract and inhibition of cell senescence by adriamycin in human umbilical vein endothelial cells. A, Cytotoxic effect of octopus extract. Each extract was treated with 10, 100 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B, SA-β-gal active staining and SA-β-gal active staining percentage. After treatment with adriamycin, the octopus fennel extract was treated with 10, 100 ug / ml, and SA-β-gal activity staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 4 shows cytotoxicity and anti-aging effect of adriamycin on human umbilical vein endothelial cells from octopal-folic acid butanol extract. A, shows the cytotoxic effect of butanol extract of octopus ficus. Each extract was treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. After treatment with adriamycin, the octopal-fructose butanol extract was treated with 1-10 ug / ml, and SA-β-gal staining was performed 3 days later. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. D, p53, phosphorylated S6K, p21. After treatment with adriamycin, the extract was treated with 1-10 ug / ml, and the degree of expression of each protein was determined by Western blotting. NT, untreated; Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
FIG. 5 shows the cytotoxicity of the octachromatic ethyl acetate extract in human umbilical vein endothelial cells and the cytotoxic effect of adriamycin on cell senescence. A, indicating the cytotoxic effect of the octachromethane ethyl acetate extract. Each extract was treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. After treatment with adriamycin, the extracts of octagonal ethylacetate were treated with 1-10 .mu.g / ml, and SA-.beta.-gal staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. D, p53, phosphorylated S6K, p21. After treatment with adriamycin, the extract was treated with 1-10 ug / ml, and the degree of expression of each protein was determined by Western blotting. NT, untreated; Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
FIG. 6 shows the inhibitory effect of octanol-fructose butanol extract on the reproduction cell senescence in human umbilical vein endothelial cells. A, indicating the cytotoxic effect of the octanol-fructose butanol extract on the replicating senescent cells. Each extract was treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. The replanted senescent cells were treated with 1-10 ug / ml of octopal-fructose butanol extract and stained with SA-β-gal for 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Old, Old cells; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
FIG. 7 shows the effect of the octachromatic ethyl acetate extract on inhibition of cell senescence in human umbilical vein endothelial cells. A, the cytotoxic effect of the octachromatic ethyl acetate extract on reproductive aging cells. Each extract was treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. Reproductive aging cells were treated with 1-10 .mu.g / ml of octa-fructooligosaccharide ethyl acetate extract and subjected to SA-.beta.-gal active staining three days later. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Old, Old cells; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 8 shows cytotoxicity of single component of octopus folium and inhibition of cell senescence by adriamycin in human umbilical vein endothelial cells. A, Cytotoxic effect of single component of octagonal fennel. Each component was treated with 10 ug / ml, cultured for 3 days, and cytotoxic effect was investigated by MTT method. B, SA-β-gal active stain percentage. After adriamycin treatment, ASF-1 was treated with 10 ug / ml and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine. * p < 0.05 vs. DMSO.
Fig. 9 shows cytotoxicity of octopus fennel extract and inhibition of cell senescence by adriamycin in human fibroblasts. A, Cytotoxic effect of octopus extract. Each extract was treated with 10, 100 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B, SA-β-gal active staining and SA-β-gal active staining percentage. After treatment with adriamycin, the octopus fennel extract was treated with 10 ug / ml and after 3 days, SA-β-gal activity staining was performed. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 10 shows the cytotoxicity of the octachromate ethyl acetate extract in human fibroblasts and the cytotoxic effect of adriamycin on cell senescence. A, indicating the cytotoxic effect of the octachromethane ethyl acetate extract. The extracts were treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT assay. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. After treatment with adriamycin, the extract was treated with 1-10 .mu.g / ml, and SA-.beta.-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. D, p53, phosphorylated S6K, p21. After treatment with adriamycin, the extract was treated with 1-10 ug / ml, and the degree of expression of each protein was determined by Western blotting. NT, untreated; Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 11 shows the cytotoxicity of octane-fennel hexane extract in human fibroblasts and the cytotoxic effect of adriamycin on cell senescence. A, indicating the cytotoxic effect of octane extract of hexane. The extracts were treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT assay. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. After treatment with adriamycin, the extract was treated with 1-10 ug / ml of octane-fennel hexane extract and subjected to SA-β-gal staining three days later. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. D, p53, phosphorylated S6K, p21. After treatment with adriamycin, the extract was treated with 1-10 ug / ml, and the degree of expression of each protein was determined by Western blotting. Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 12 shows the effect of the octachromethane ethyl acetate extract on the inhibition of cell senescence in human fibroblasts. A, the cytotoxic effect of the octachromatic ethyl acetate extract on reproductive aging cells. Each extract was treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. Repeated aging cells were treated with 1-10 ug / ml of octopus extract and subjected to SA-β-gal staining three days later. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Old, Old cells; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 13 shows the effect of inhibiting the senescence of the cloned cells of the octane-fennel hexane extract in human fibroblasts. A, indicating the cytotoxic effect of the Octane Fennel hexane extract on the replicating senescent cells. Each extract was treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. The replanted senescent cells were treated with 1-10 ug / ml of octane-fennel hexane extract and subjected to SA-β-gal staining three days later. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Old, Old cells; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
14 shows cytotoxicity of a single component of octopus felis and inhibition of cell senescence by adriamycin in human fibroblasts. A, Cytotoxic effect of single component of octagonal fennel. Each component was treated with 10 ug / ml, cultured for 3 days, and cytotoxic effect was investigated by MTT method. B, SA-β-gal active stain percentage. After adriamycin treatment, each component was treated with 10 ug / ml and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine. * p < 0.05 vs. DMSO.
Fig. 15 shows the results obtained from human fibroblasts using an octagonal fennel single component ASF-2 (4'-methoxyphenyl) -1,2-propanediol ] Exhibit cytotoxic effects by adriamycin. A and B, SA-β-gal active staining and SA-β-gal active staining percentage. After adriamycin treatment, ASF-2 was treated with 1-10 ug / ml, and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. C, p53, phosphorylated S6K, p21. After treatment with adriamycin, ASF-2 was treated with 1-10 ug / ml, and the degree of expression of each protein was examined by Western blotting. NT, untreated; Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p &lt; 0.05 or ** p < 0.01 vs. DMSO.
16 shows the effect of ASF-2 (4'-methoxyphenyl) -1,2-propanediol) on the production of active oxygen in human fibroblasts. propanediol]. A, active oxygen flow cytometry. B, the average amount of active oxygen. The fibroblasts were treated with adriamycin, treated with ASF-2 at 10 ug / ml, and the degree of active oxygen in the cells was examined by flow cytometry. Each experiment was repeated three times or more independently and then expressed as mean and standard deviation. ADR, adriamycin; Y, young cells; Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p &lt; 0.05 or ** p &lt; 0.01 vs. DMSO.
FIG. 17 is a graph showing the effect of ASF-2 (tre-1 (4'-methoxyphenyl) -1,2-propanediol) [threo-1 (4'-methoxyphenyl) Exhibit an inhibitory effect on aging. A, SA-β-gal active dye images. B, SA-β-gal active staining percentage. C and ASF-2. Transfected senescent cells were treated with 1-10 μg / ml of ASF-2 and stained for SA-β-gal activity 3 days later. Cytotoxicity was assessed by MTT assay. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Old, Old cells; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p &lt; 0.05 or ** p &lt; 0.01 vs. DMSO.

이하, 하기 실시예를 통해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

< < 실시예Example 1 >  1> 팔각회향Octagonal fennel 추출물 분리 및 단일성분의 화학구조 Extraction Separation and Chemical Composition of a Single Component

1. 팔각회향 추출물 및 단일성분 분리1. Octagonal Fennel Extract and Single Component Separation

건조된 팔각회향 9kg을 MeOH:H2O = 9:1 (12.0 L)로 약 70℃에서 12시간씩 환류냉각하면서 3회 추출하여 추출액을 감압여과, 농축하여 MeOH 추출물 1.13kg을 얻었다. 이 MeOH 추출물에 증류수(1.5 L) 및 n-헥산(n-hexane)(1.5 L)을 가하여 분획 깔때기로 n-헥산(n-hexane)층과 수층으로 분획하는 조작을 2회 실시하고 n-헥산(n-hexane)층을 감압농축하여 n-헥산(n-hexane) 분획을 얻었고, 다시 수층을 상기와 같은 방법으로 에틸아세테이트(EtOAc), n-부탄올(n-butanol), H2O 순으로 추출하여 n-헥산(n-hexane) 분획 255.77g, EtOAc 분획 64.66g, n-부탄올(n-butanol) 분획 246.78g, H2O 분획 254.84g을 얻었다. 이들 중 n-부탄올(n-butanol) 분획 246.787g을 실리카겔 컬럼(silica gel column)으로 다음과 같이 분리하였다. column (길이 80cm, 지름 8cm )에 silica gel (No.9385, 230-400mesh, Merck)을 약 25 cm 정도 채우고 n-부탄올(n-butanol) = 100%로 3L로 용출(elution)시켜 고정상(stationary phase)을 균일한 상태로 만든 후 시료 246.78g을 silica gel (No.7734, 70-230mesh, Merck) 450g에 흡착시켜 컬럼(column)에 로딩(loading)시켰다. 이후 n-부탄올(n-butanol)= 100%로 이동상 용출(mobile phase elution)을 시작하여 n-butanol:AcOH:H2O = 100:1:1, 50:1:1, 10:1:1, 4:1:1 순으로 극성을 높여 용출(elution)하면서 컬럼(column)에 일정 압력을 가하는 플래쉬 컬럼 크로마토그래피(flash column chromatography)법으로 7개의 서브 분획(sub fraction) (BASF1-7)을 얻었다. Fraction BASF-2(10.9g)을 silica gel (No.7734, 70-230mesh, Merck) 20g에 흡착시켜 silica gel (No.9385, 230-400mesh, Merck)로 채워져 있는 길이 60cm 지름 4cm column에 로딩(loading)시켰다. 사용한 용매는 CH2Cl2:CH3OH:H2O = 15:2:0.1로 먼저 컬럼(column)을 포화시킨 후 12:2:0.1, 10:2:0.1, 8:2:0.1, 7:3:0.1, 4:6:0.1로 용출(elution) 시킨 후 마지막으로 CH3OH:H2O =100:0.1로 컬럼(column)을 세척하였다. Fraction BASF-2-4(625.3mg)를 다시 컬럼 크로마토그래피(column chromatography)를 실시하였다. 사용한 컬럼(column)은 reverse phase(particle size; 40~63㎛) column(길이 75cm, 지름 2cm)에 MeOH:H2O = 1:1 혼합 용매 1L로 용출(elution)시켜 고정상(stationary phase)를 균일하게 만들었다. 시료를 MeOH, H2O 혼합 용매에 녹여 컬럼(column)에 로딩(loading)시켰다 이 후 MeOH의 비율을 단계적으로 높이면서 용출(elution)시켜 두 개의 거울상 이성질체(enantiomer)가 혼합되어 있는 ASF-1(46.2 mg)과 ASF-1의 부분입체이성질체(diastreomer)인 ASF-2(38.4 mg)를 얻었다. Fraction BASF-2-11(657.5mg)을 다시 위와 같은 reverse phase column을 사용해 같은 용매 조건으로 컬럼(column)을 시행해서 ASF-3(20.7 mg), ASF-4(18.4 mg)를 분리하였다. 분리된 4종의 단일 물질들은 (1H, 13C, DEPT, 1H-1H COSY, HMQC, HMBC) 등 분광학적 분석방법을 이용하여 화합물의 화학구조를 결정하고 문헌과 비교하여 동정하였다(도 1).
9kg of dried octagonal fennel was extracted three times with MeOH: H 2 O = 9: 1 (12.0 L) at about 70 ° C for 12 hours while refluxing. The extract was filtered under reduced pressure and concentrated to obtain 1.13 kg of MeOH extract. The MeOH extract in distilled water (1.5 L) and n - performing an operation twice that fraction with hexane (n -hexane) layer from the aqueous layer and n - - hexane (n -hexane) n in a fraction funnel was added (1.5 L) hexane in butanol (n -butanol), H 2 O net - a layer (n -hexane) was concentrated under reduced pressure and n-hexane (n -hexane) and a fraction was obtained, ethyl acetate (EtOAc) and the aqueous layer in the same way as the back, n extracted with n - hexane (n -hexane) 255.77g fractions, 64.66g EtOAc fraction, n - butanol (n -butanol) fraction 246.78g, H 2 O to give a fraction 254.84g. N of which - with silica gel column (silica gel column) butanol (n -butanol) 246.787g fractions were isolated as follows. column (length 80cm, 8cm diameter) on silica gel (No.9385, 230-400mesh, Merck ) to about 25 cm filled with n - butanol (n -butanol) = eluted (elution) to a 3L fixed bed of 100% (stationary phase was homogenized, and 246.78 g of the sample was adsorbed on 450 g of silica gel (No. 7734, 70-230 mesh, Merck) and loaded on a column. Since n - starting butanol (n -butanol) = mobile phase elution (mobile phase elution) to 100% n -butanol: AcOH: H 2 O = 100: 1: 1, 50: 1: 1, 10: 1: 1 (BASF1-7) was prepared by flash column chromatography, which was performed by increasing the polarity in the order of 4: 1: 1 and eluting the column with a constant pressure. . Fraction After loading 20 g of BASF-2 (10.9 g) onto 20 g of silica gel (No. 7734, 70-230 mesh, Merck) and loading it with a column of 4 cm in diameter and 60 cm in length filled with silica gel (No. 9385, 230-400mesh, Merck) loading. The solvent used was saturated with a column of CH 2 Cl 2 : CH 3 OH: H 2 O = 15: 2: 0.1 and then 12: 2: 0.1, 10: 2: 0.1, 8: 2: : 3: 0.1, 4: 6: 0.1. Finally, the column was washed with CH 3 OH: H 2 O = 100: 0.1. Fraction BASF-2-4 (625.3 mg) was further subjected to column chromatography. The used column was eluted with 1 L of MeOH: H 2 O = 1: 1 mixed solvent in a reverse phase (particle size; 40 to 63 μm) column (length 75 cm, diameter 2 cm) And made uniform. The sample was dissolved in a mixed solvent of MeOH and H 2 O and was loaded on a column. After that, the ratio of MeOH was gradually increased to elute the ASF-1 mixture containing two enantiomers (46.2 mg) and ASF-2 (38.4 mg), a diastereomer of ASF-1, were obtained. ASF-3 (20.7 mg) and ASF-4 (18.4 mg) were separated by column chromatography using the same reverse-phase column as that of Fraction BASF-2-11 (657.5 mg). The chemical structure of the compounds was determined and compared with the literature by using spectroscopic methods such as ( 1 H, 13 C, DEPT, 1 H- 1 H COZY, HMQC, and HMBC) 1).

2. 분리된 물질의 물리화학적 특성2. Physico-chemical properties of separated materials

팔각회향의 n-부탄올(n-butanol) 분획에서 분리한 4 종의 화합물은 기지물질로서 (1H, 13C, DEPT, 1H-1H COSY, HMQC, HMBC) 등 각종 분광학적 분석방법으로 분석하고 문헌과 비교하여 ASF-1 (에리트로-1(4'-메톡시페닐)-1,2-프로판디올)[erythro-1(4'-methoxyphenyl)-1,2-propandiol], ASF -2 (트레오-1(4'-메톡시페닐)-1,2-프로판디올)[threo-1(4'-methoxyphenyl)-1,2-propandiol], ASF-3 (1-(4'-메톡시페닐)-(1S,2R)-프로판-1-올-2-O-β-D-글루코피라노시드)[1-(4'-methoxyphenyl)-(1S,2R)-propan-1-ol-2-O-β-D-glucopyranoside], ASF-4 (1-(4'-메톡시페닐)-(1S,2S)-프로판-1-올-2-O-β-D-글루코피라노시드)[1-(4'-methoxyphenyl)-(1S,2S)-propan-1-ol-2-O-β-D-glucopyranoside]로 확인하였다(도 2).
Octagonal fennel n - compounds of the four kinds of separation in butanol (n -butanol) fraction as a base material (1 H, 13 C, DEPT , 1 H- 1 H COSY, HMQC, HMBC) various spectroscopic analysis methods, such as (4'-methoxyphenyl) -1,2-propanediol], ASF-1 (erythro-1 (4'-methoxyphenyl) (4'-methoxyphenyl) -1,2-propanediol], ASF-3 (1- (4'-methoxyphenyl) Phenyl) - (1S, 2R) -propan-1-ol-2-O- beta -D-glucopyranoside) 2-O-? -D-glucopyranoside], ASF-4 (1- (4'-methoxyphenyl) - (1S, 2S) ) Was identified as [1- (4'-methoxyphenyl) - (1S, 2S) -propan-1-ol-2- O- beta -D-glucopyranoside] (FIG.

ASF -1 [white powder, IR νmax (KBr) cm-1: 3410 (OH), 1459 (C=C stretch); 1H-NMR (300 MHz, acetone-d 6) δ: 4.50 (dd, J = 3.9 Hz, H-1), 3.82 (m, J = 6.2 Hz, H-2), 1.02 (d, J = 6.2 Hz, H-3), 4.10 (d, J = 3.7 Hz, 1-OH), 3.51 (d, J = 5.0 Hz, 2-OH), 7.29 (d, J = 8.4 Hz, H-2'), 6.85 (d, J = 8.8 Hz, H-3'), 6.85 (d, J = 8.4 Hz, H-5'), 7.29 (d, J = 8.4 Hz, H-6'), 3.76 (s, H-OCH3); 13C-NMR (75 MHz, , acetone-d 6) d: 77.7 (C-1), 71.9 (C-2), 18.0 (C-3), 135.5 (C-1'), 128.6 (C-2'), 113.8 (C-3'), 159.5 (C-4'), 113.8 (C-5'), 128.6 (C-6'), 55.3 (OCH3). Positive FAB-MS m/z 205 [M+Na]+.] ASF- 1 [white powder, IR? Max (KBr) cm -1 : 3410 (OH), 1459 (C = C stretch); 1 H-NMR (300 MHz, acetone- d 6) δ: 4.50 (dd, J = 3.9 Hz, H-1), 3.82 (m, J = 6.2 Hz, H-2), 1.02 (d, J = 6.2 Hz, H-3), 4.10 (d, J = 3.7 Hz, 1-OH), 3.51 (d, J = 5.0 Hz, 2-OH), 7.29 (d, J = 8.4 Hz, H-2 '), 6.85 (d, J = 8.8 Hz , H-3 '), 6.85 (d, J = 8.4 Hz, H-5'), 7.29 (d, J = 8.4 Hz, H-6 '), 3.76 (s, H -OCH 3); 13 C-NMR (75 MHz, , acetone- d 6) d: 77.7 (C-1), 71.9 (C-2), 18.0 (C-3), 135.5 (C-1 '), 128.6 (C-2 '), 113.8 (C-3 '), 159.5 (C-4 '), 113.8 (C-5'), 128.6 (C-6 '), 55.3 (OCH 3). Positive FAB-MS m / z 205 [M + Na] &lt; + &gt;.

ASF -2 [white powder, IR νmax (KBr) cm-1: 3260 (OH), 1454 (C=C stretch); 1H-NMR (600 MHz, acetone-d 6) δ: 4.26 (dd, J = 7.3 Hz, H-1), 3.58 (m, J = 3.8 Hz, H-2), 0.93 (d, J = 6.3 Hz, H-3), 4.27 (d, J = 3.3 Hz, 1-OH), 3.82 (d, J = 3.8 Hz, 2-OH), 7.28 (d, J = 9.5, H-2'), 6.87 (d, J = 8.7Hz, H-3'), 6.87 (d, J = 8.7Hz, H-5'), 7.28 (d, J = 9.5, H-6'), 3.77 (s, H-OCH3); 13C-NMR (150 MHz, , acetone-d 6) δ: 79.3 (C-1), 72.6 (C-2), 19.1 (C-3), 135.1 (C-1'), 128.9 (C-2'), 114.0 (C-3'), 159.9 (C-4'), 114.0 (C-5'), 128.9 (C-6'), 55.3 (OCH3). Positive FAB-MS m/z 205 [M+Na]+.] ASF- 2 [white powder, IR? Max (KBr) cm -1 : 3260 (OH), 1454 (C = C stretch); 1 H-NMR (600 MHz, acetone- d 6) δ: 4.26 (dd, J = 7.3 Hz, H-1), 3.58 (m, J = 3.8 Hz, H-2), 0.93 (d, J = 6.3 Hz, H-3), 4.27 (d, J = 3.3 Hz, 1-OH), 3.82 (d, J = 3.8 Hz, 2-OH), 7.28 (d, J = 9.5, H-2 '), 6.87 (d, J = 8.7Hz, H -3 '), 6.87 (d, J = 8.7Hz, H-5'), 7.28 (d, J = 9.5, H-6 '), 3.77 (s, H-OCH 3 ); 13 C-NMR (150 MHz, , acetone- d 6) δ: 79.3 (C-1), 72.6 (C-2), 19.1 (C-3), 135.1 (C-1 '), 128.9 (C-2 '), 114.0 (3-C'), 159.9 (C-4 '), 114.0 (-C 5'), 128.9 (C-6 '), 55.3 (3 OCH). Positive FAB-MS m / z 205 [M + Na] &lt; + &gt;.

ASF -3 [yellow crystals, IR νmax (KBr) cm-1: 3397(OH), 1458 (C=C stretch); 1H-NMR (300 MHz, acetone-d 6) d: 4.90 (d, H-1), 4.04 (d, J = 6.1 Hz, H-2), 0.92 (d, J = 7.1 Hz, H-3), 7.32 (d, J = 8.1 Hz, H-2'), 6.86 (d, J = 8.1Hz, H-3'), 6.86 (d, J = 8.1 Hz, H-5'), 7.32(d, J = 8.1 Hz, H-6'), 3.75(s, H-OCH3), 4.63 (d, J = 7.6 Hz, H-1"), 3.43 (dd, J = 3.9 Hz, H-2"), 3.54 (t, J = 6.0 Hz, H-3"), 3.47 (t, J = 3.5 Hz, H-4"), 3.41 (m, H-5"), 3.75 (dd, J = 10.0 Hz, H-6"); 13C-NMR (75 MHz, , acetone-d 6) δ: 74.5 (C-1), 80.5 (C-2), 15.3 (C-3), 134.0 (C-1'), 128.5 (C-2'), 114.0 (C-3'), 159.5 (C-4'), 114.0 (C-5'), 128.5 (C-6'), 55.4 (OCH3), 103.1 (C-1"), 74.8 (C-2"), 77.5 (C-3"), 71.1 (C-4"), 77.1 (C-5"), 62.5 (C-6"). ASF- 3 [yellow crystals, IR? Max (KBr) cm -1 : 3397 (OH), 1458 (C = C stretch); 1 H-NMR (300 MHz, acetone- d 6) d: 4.90 (d, H-1), 4.04 (d, J = 6.1 Hz, H-2), 0.92 (d, J = 7.1 Hz, H-3 ), 7.32 (d, J = 8.1 Hz, H-2 '), 6.86 (d, J = 8.1Hz, H-3'), 6.86 (d, J = 8.1 Hz, H-5 '), 7.32 (d , J = 8.1 Hz, H- 6 '), 3.75 (s, H-OCH 3), 4.63 (d, J = 7.6 Hz, H-1 "), 3.43 (dd, J = 3.9 Hz, H-2" ), 3.54 (t, J = 6.0 Hz, H-3 "), 3.47 (t, J = 3.5 Hz, H-4"), 3.41 (m, H-5 "), 3.75 (dd, J = 10.0 Hz , H-6 "); 13 C-NMR (75 MHz, , acetone- d 6) δ: 74.5 (C-1), 80.5 (C-2), 15.3 (C-3), 134.0 (C-1 '), 128.5 (C-2 '), 114.0 (C-3 '), 159.5 (C-4 '), 114.0 (C-5'), 128.5 (C-6 '), 55.4 (OCH 3), 103.1 (C-1 "), 74.8 (C-2 "), 77.5 (C-3"), 71.1 (C-4 "), 77.1 (C-5"), 62.5 (C-6 ").

ASF -4 [yellow crystals, IR νmax (KBr) cm-1: 3405 (OH), 1613 (C=C stretch); 1H-NMR (300 MHz, acetone-d 6) δ: 4.43 (dd, J = 7.7 Hz, H-1), 3.85 (m, J = 12.1 Hz, H-2), 1.00 (d, J = 5.7 Hz, H-3), 7.26 (d, J = 8.3, H-2'), 6.86 (d, J = 8.3Hz, H-3'), 6.87 (d, J = 8.3 Hz, H-5'), 7.26 (d, J = 8.3, H-6'), 3.73 (s, H-OCH3), 4.54 (d, J = 7.5 Hz, H-1"), 4.79 (s, H-2"), 3.45 (t, J = 6.0 Hz, H-3"), 3.29 (m, H-4"), 3.30 (m, H-5"), 3.70 (m, H-6"); 13C-NMR (75 MHz, , acetone-d 6) δ: 79.3 (C-1), 72.6 (C-2), 19.1 (C-3), 135.1 (C-1'), 128.9 (C-2'), 114.0 (C-2'), 159.9 (C-2'), 114.0 (C-2'), 128.9 (C-2'), 55.3 (OCH3), 105.4 (C-1"), 75.3 (C-2"), 78.4 (C-3"), 71.1 (C-4"), 77.6 (C-5"), 62.4 (C-6").
ASF -4 [yellow crystals, IR? Max (KBr) cm -1 : 3405 (OH), 1613 (C = C stretch); 1 H-NMR (300 MHz, acetone- d 6) δ: 4.43 (dd, J = 7.7 Hz, H-1), 3.85 (m, J = 12.1 Hz, H-2), 1.00 (d, J = 5.7 Hz, H-3), 7.26 (d, J = 8.3, H-2 '), 6.86 (d, J = 8.3Hz, H-3'), 6.87 (d, J = 8.3 Hz, H-5 ') , 7.26 (d, J = 8.3 , H-6 '), 3.73 (s, H-OCH 3), 4.54 (d, J = 7.5 Hz, H-1 "), 4.79 (s, H-2"), 3.45 (t, J = 6.0 Hz, H-3 ''), 3.29 (m, H-4 ''), 3.30 (m, H-5 ''), 3.70 (m, H-6 ''); 13 C-NMR (75 MHz, acetone- d 6 ) ?: 79.3 (C-1), 72.6 (C-2), 19.1 '), 114.0 (C-2 '), 159.9 (C-2 '), 114.0 (C-2'), 128.9 (C-2 '), 55.3 (OCH 3), 105.4 (C-1 "), 75.3 (C-2 "), 78.4 (C-3"), 71.1 (C-4 "), 77.6 (C-5"), 62.4 (C-6 ").

< < 실시예Example 2 >  2> 팔각회향Octagonal fennel 추출물 및 단일 성분의 세포 독성 및 세포 노화 저해 효능 조사 Investigation of cytotoxicity and inhibition of cellular senescence of extracts and single components

1. 실험 재료1. Experimental material

사람 섬유아세포와 제대정맥혈관내피세포는 Lonza (Walkersville, MD, 미국)에서 구입하였다. 둘베코스-변형 이글스 배지(Dubeccos-Modified Eagle's medium; DMEM), 우태아혈청, 항생제 용액 페니실린-스트렙토마이신(Penicillin-Streptomycin)은 WelGene (Daegu, Korea), 내피세포성장 배양액-2(endothelial cell growth medium-2, EGM-2)는 Lonza (Walkersvill, MD, 미국)에서 구입하였다. p53에 대한 항체는 SantaCruz Biotech, Inc. (SantaCruz, CA, 미국)에서 구입하였으며, p21과 pS6에 대한 항체는 Cell Signaling Technology Inc.(Beverly, MA, 미국)에서 구입하였다. GAPDH 항체는 한국생명공학연구원 권기선 박사로부터 분양받았다. 아드리아마이신은 일동제약주식회사 제품을 사용하였다.
Human fibroblasts and umbilical vein endothelial cells were purchased from Lonza (Walkersville, MD, USA). (Penicillin-Streptomycin, WelGene (Daegu, Korea), Endothelial Cell Growth Medium-2 (DMEM), Dulbecco's Modified Eagle's Medium -2, EGM-2) were purchased from Lonza (Walkersville, MD, USA). Antibodies to p53 were obtained from Santa Cruz Biotech, Inc. (SantaCruz, CA, USA), and antibodies against p21 and pS6 were purchased from Cell Signaling Technology Inc. (Beverly, MA, USA). The GAPDH antibody was obtained from Dr. Kwon Sun - sun of Korea Biotechnology Research Institute. Adriamycin was manufactured by Ildong Pharmaceutical Co., Ltd.

2. 세포 배양2. Cell culture

사람 섬유아세포는 10% 우태아혈청과 1% 항생제 [페니실린(penicillin) 10,000unit/ml, 스트렙토마이신(stretomycin) 10,000ug/ml)가 포함된 DMEM 배양액을 이용하여 100 mm 배양접시에 세포를 1 × 105개로 분주한 후, 37℃, 5% 이산화탄소 배양기에서 배양하였다. 배양접시의 바닥에 세포가 80-90% 정도 자라면, 트립신-EDTA 용액 (2.5X) 을 넣어 세포를 분리한 후, 계대 배양하였다. 제대혈관내피세포는 EGM-2를 배양액으로 사용하여 사람 섬유아세포와 같은 방법으로 세포를 배양하였다. 세포를 계대할 때마다 세포 수를 측정하여 세포가 몇 회 분열하였는지 분열 횟수를 조사하였다. 세포의 분열 횟수 (population doubling, PD)는 PD= log2F/log2I (F=마지막 세포수, I=처음 세포수)의 식을 이용하여 계산하였다. 실험에 사용한 세포들은 분열횟수가 사람 섬유아세포의 경우 PD<35 또는 PD>75, 제대혈관내피세포는 PD<30 또는 PD>50회의 것을 사용하였다.
Human fibroblasts were cultured in DMEM medium supplemented with 10% fetal bovine serum and 1% antibiotic (penicillin 10,000 цm / ml, streomycin 10,000 ug / ml) 10 5 , and then cultured in a 5% carbon dioxide incubator at 37 ° C. If the cells were grown at the bottom of the culture dish by 80-90%, trypsin-EDTA solution (2.5X) was added to separate the cells, followed by subculture. Cells in umbilical cord blood were cultured in the same manner as human fibroblasts using EGM-2 as a culture medium. The number of cells was measured every time the cells were transferred, and the number of times of division of the cells was examined. The population doubling (PD) was calculated using the equation: PD = log 2 F / log 2 I (F = final cell number, I = initial cell number). The cells used for the experiment were PD <35 or PD> 75 in the case of human fibroblasts, and PD <30 or PD> 50 in the cord blood.

3. 아드리아마이신 처리에 의한 세포노화 유도3. Induction of cell aging by treatment with adriamycin

직경 100mm 배양접시에 사람 섬유아세포, 제대정맥혈관내피세포를 1.5x105개 분주하였다. 3일간 37℃, 5% 이산화탄소배양기에서 배양한 후, 세포 배양액을 제거하였다. 세포를 항생제가 포함된 DMEM 배양액으로 2회 세척하였다. 세포에 500 nM 아드리아마이신을 4시간 처리한 후, 항생제가 포함된 DMEM 배양액으로 3회 세척하였다. 사람 섬유아세포는 10% 우태아혈청과 1% 항생제가 포함된 DMEM 배양액으로, 사람 제대정맥혈관내피세포는 EGM-2 배양액으로 배양하였다. 4일 후, 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성 염색으로 세포노화가 유도됨을 확인하였다.
Human fibroblasts and umbilical vein endothelial cells were plated at a density of 1.5x10 5 cells in a 100 mm diameter culture dish. After culturing for 3 days at 37 ° C in a 5% carbon dioxide incubator, the cell culture medium was removed. Cells were washed twice with DMEM containing antibiotics. Cells were treated with 500 nM adriamycin for 4 hours and then washed three times with DMEM medium containing antibiotics. Human fibroblasts were cultured in DMEM containing 10% fetal bovine serum and 1% antibiotic, and human umbilical vein endothelial cells were cultured in EGM-2. After 4 days, it was confirmed that senescence-associated β-galactosidase (SA-β-gal) staining resulted in cell senescence.

4. 3-(4, 5-디메틸티아졸-2일)-2, 5-디페닐테트라졸리움 브로마이드(3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide; MTT) 측정 방법4. Measurement of 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT)

팔각회향 추출물과 화합물이 세포의 성장속도에 미치는 영향은 MTT법으로 조사하였다. 0.1% MTT 용액을 96 웰(well) 배양용기의 각 웰(well) 당 50 ul씩 넣고 3시간 동안 37℃, 5% 이산화탄소배양기에서 반응시켰다. 배양액과 MTT 용액을 제거 한 후, 디메틸설폭사이드(dimethyl sulfoxide) 100 ul를 첨가하여 형성된 결정을 녹였다. 마이크로플레이트 리더(microplate reader)를 이용하여 550 nm에서 흡광도를 측정하여 세포의 성장속도를 측정하였다.
The effects of octopus extracts and compounds on cell growth rate were investigated by MTT method. 0.1% MTT solution was added to each well of a 96-well culture vessel in an amount of 50 μl per well and reacted in a 5% carbon dioxide incubator at 37 ° C for 3 hours. After removing the culture solution and MTT solution, 100 μl of dimethyl sulfoxide was added to dissolve the crystals formed. The cell growth rate was measured by measuring the absorbance at 550 nm using a microplate reader.

5. 아드리아마이신에 의한 세포노화에서 팔각회향 추출물 및 단일성분의 효과 조사5. Investigation of the effect of single-component extracts and octopus extracts on cell senescence by adriamycin

아드리아마이신에 의해 노화된 세포에 팔각회향 추출물과 이 추출물로부터 분리된 단일 화합물들이 효과가 있는지 조사하였다. 아드리아마이신을 4시간 처리한 세포들을 트립신-EDTA로 배양접시에서 분리하여 96well, 12well, 24well 세포배양용기로 분주하였다. 96well 세포배양용기에 각 well당 섬유아세포는 500개, 제대혈관내피세포는 1,000개씩 분주하였다. 24well에는 섬유아세포는 3000개/well, 제대혈관내피세포는 5000개/well로 분주하였으며, 12well은 섬유아세포 5000개/well, 재대혈관내피세포 7000개/well을 분주하였다. 하루 동안 37℃, 5% 이산화탄소배양기에서 배양하였다. 96well에는 각 well에 10% 우태아혈청과 1% 항생제가 포함된 DMEM 배양액과 EGM-2배양액을 100ul씩 더 넣어 주고 12well과 24well은 배양액을 교환한 후, 추출물은 100ug/ml, 단일 화합물은 10 ug/ml로 처리하였다. 음성 대조군으로 디메틸설폭사이드(dimethyl sulfoxide)를, 양성 대조군으로 N-아세틸시스테인(N-acetylcysteine) 5mM과 라파마이신(rapamycin) 500nM을 첨가하였다. 3일 동안 37℃, 5% 이산화탄소배양기에서 배양한 후, 세포의 성장 정도는 MTT법으로, 세포노화 정도는 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성 염색법으로 조사하였다.
We investigated whether the octagonal fennel extract and single compounds isolated from this extract were effective on aged cells by adriamycin. Cells treated with adriamycin for 4 hours were separated from the culture dish with trypsin-EDTA and dispensed into 96-well, 12-well, 24-well cell culture vessels. In a 96-well cell culture container, 500 fibroblasts and 1,000 cells were placed in each well. 24 wells were plated at 3000 cells / well, cord blood cells were plated at 5000 cells / well and 12 wells were plated at 5000 cells / well and 7000 cells / well of vascular endothelial cells. And cultured in a 5% carbon dioxide incubator at 37 ° C for one day. In 96 wells, 100 μl of DMEM culture medium containing 10% fetal bovine serum and 1% antibiotic and 100 μl of EGM-2 culture medium were added to each well. After 12 and 24-well cultures were exchanged, &lt; / RTI &gt; ug / ml. Dimethylsulfoxide was used as a negative control, and 5 mM N-acetylcysteine and 500 nM rapamycin were added as a positive control. After 3 days of incubation at 37 ° C in a 5% carbon dioxide incubator, the degree of cell growth was measured by MTT method and the degree of cell senescence was measured by senescence-associated β-galactosidase (SA-β-gal) Staining method.

6. 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성 염색6. senescence-associated β-galactosidase (SA-β-gal) active staining

세포노화에 대한 효과는 SA-β-gal 활성 염색으로 조사하였다. 24 well 또는 12 well 배양용기에 단일 화합물을 3일 동안 처리한 후, 세포를 인산완충액으로 세척하였다. 3.7% 파라포름알데히드(paraformaldehyde)로 세포를 고정한 후, 고정액을 제거하고 다시 인산완충액으로 세척하였다. SA-β-gal 염색 용액 [40 mM 시트릭산(citric acid)/포스페이트(phosphate); pH 5.8, 5 mM 포타슘 페로시아나이드(potassium ferrocyanide), 5 mM 포타슘 페리시아나이드(potassium ferricyanide), 150 mM NaCl, 2 mM MgCl2, X-gal 1 mg/ml]을 24 well 배양용기에는 각 well 당 250 ul, 12 well 배양용기에는 각 well 당 500ul를 넣어 주었다. 은박지로 싸서 37℃에서 17시간 동안 반응시켰다. 인산완충용액(PBS)으로 2번 세척한 후, 1% 에오진 용액으로 1분간 염색하였다. 인산완충용액으로 2회 세척 한 후, 광학현미경으로 파란색으로 염색된 세포를 관찰하였다. SA-β-gal 활성 정도는 총 50~100개의 세포 중에서 세포질에 파란색으로 염색된 세포 수를 측정하여 백분율 (%)로 표시하였다.
The effect on cell senescence was examined by SA-β-gal active staining. After 3 days of treatment with a single compound in a 24 well or 12 well culture vessel, the cells were washed with phosphate buffer. The cells were fixed with 3.7% paraformaldehyde, and the fixative solution was removed and washed again with phosphate buffer solution. SA-β-gal staining solution [40 mM citric acid / phosphate; pH 5.8, 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, 150 mM NaCl, 2 mM MgCl 2 , X-gal 1 mg / ml] was added to each well 250 ul per well and 500 ul per well in a 12 well culture vessel. Wrapped in silver foil and reacted at 37 캜 for 17 hours. After washing twice with phosphate buffered saline (PBS), the cells were stained with 1% ezine solution for 1 minute. After washing twice with phosphate buffer, blue-stained cells were observed under an optical microscope. The degree of SA-β-gal activity was expressed in percentage (%) by measuring the number of cells stained blue in the cytoplasm among 50-100 cells in total.

7. 세포 단백질 추출7. Cell protein extraction

각 세포를 60 mm 배양접시에 1x105개로 분주한 후 37℃, 5% 이산화탄소 배양기에서 배양하였다. 세포를 항생제가 포함된 DMEM 배양액으로 2회 세척한 후, 팔각회향 추출물과 단일성분을 농도 별로 1시간 전 처리하고, 아드리아마이신 500 nM을 4시간 동안 처리하였다. 배양액을 제거한 후, 인산완충액으로 2회 세척하였다. 배양접시 당 세포 용해 용액 [25mM Tris-HCl(pH 7.6), 150mM Nacl, 1% 트리톤(Tryton) X-100, 0.5% 소듐 데옥시콜레이트(sodium deoxycholate), 0.1% SDS, 1mM 소듐 바나데이트(Sodium vanadate), 5mM NaF, 프로테아제 억제제(protease inhibitor) 또는 1mM PMSF]을 50 ul를 넣었다. 세포 긁개를 이용하여 배양접시를 긁어 용액과 세포를 모은 후 미세원침관으로 옮겼다. 얼음에서 30분간 반응시키면서 매 10분마다 용액을 진탕하였다. 12,000 rpm에서 15분간 원침하여 상청액을 새 튜브로 옮겼다. 용액 속의 단백질 양은 우혈청알부민을 표준단백질로 사용하여 바이신코니닉산(bicinchoninic acid; BCA) 법 (Pierce Biotechnology Inc., Rockford IL, 미국)으로 정량하였다.
Each cell was placed in a 60 mm culture dish at 1 × 10 5 cells and cultured at 37 ° C. in a 5% CO 2 incubator. Cells were washed twice with DMEM medium containing antibiotics, treated with an octagonal extract of fenugreek and a single component for 1 hour before treatment, and adriamycin 500 nM for 4 hours. After the culture medium was removed, the cells were washed twice with phosphate buffer. The cell lysate solution (25 mM Tris-HCl, pH 7.6), 150 mM Nacl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM sodium vanadate vanadate), 5 mM NaF, protease inhibitor or 1 mM PMSF]. The cells were scraped using a cell scraper to scrape the culture dish, and then transferred to a microneedle tube. The solution was shaken every 10 minutes while reacting on ice for 30 minutes. The supernatant was transferred to a new tube by spinning at 12,000 rpm for 15 minutes. The amount of protein in the solution was quantified by bicinchoninic acid (BCA) method (Pierce Biotechnology Inc., Rockford IL, USA) using bovine serum albumin as a standard protein.

8. 웨스턴 블랏(Western blot) 분석8. Western blot analysis

단백질 (30μg)을 10% SDS-폴리아크릴아미드(SDS-polyacrylamide) 겔에서 전기영동하여 분리하였다. 니트로셀룰로스 막으로 단백질을 이동시킨 후, 5% 전지분유가 포함된 트윈-20-트리스 완충된 식염수(Tween-20-Tris buffered saline; TTBS)에서 30분 동안 반응시켰다. 니트로셀룰로스 막을 p53, pS6 또는 p21에 대한 일차항체가 포함된 5% 전지분유-TTBS 용액에서 밤새도록 반응시켰다. TTBS 용액으로 10분씩 3회 세척 한 후, 겨자무 과산화효소(horseradish peroxidase)가 결합된 2차 항체와 1시간 30분 동안 반응시켰다. TTBS로 막을 7분씩 5회 세척 한 후, 향상된 화학발광(enhanced chemiluminescence) 용액을 이용하여 p53, pS6 또는 p21의 양을 측정하였다. 각 항체와 반응한 특정 단백질의 양은 LAS-3000 영상장치 (Fujifilm Corp., Stanford, CT, 미국)을 사용하여 측정하였다. 각 실험에 동일한 양의 단백질이 사용되었음은 글리세르알데히드-3-포스페이트 디하이드로게나아제(glyceraldehyde-3-phosphate dehydrogease; GAPDH) 항체를 이용해 비교하였다.
Protein (30 μg) was separated by electrophoresis on a 10% SDS-polyacrylamide gel. Proteins were transferred to a nitrocellulose membrane and allowed to react for 30 minutes in Tween-20-Tris buffered saline (TTBS) containing 5% whole milk powder. The nitrocellulose membrane was reacted overnight in a 5% whole milk powder-TTBS solution containing the primary antibody against p53, pS6 or p21. After washing three times for 10 minutes with TTBS solution, the cells were reacted with a secondary antibody conjugated with horseradish peroxidase for 1 hour and 30 minutes. The membranes were washed five times with TTBS for 7 min each, and then the amount of p53, pS6 or p21 was measured using an enhanced chemiluminescence solution. The amount of specific protein reacted with each antibody was measured using a LAS-3000 imaging device (Fujifilm Corp., Stanford, CT, USA). The same amount of protein used in each experiment was compared using glyceraldehyde-3-phosphate dehydrogease (GAPDH) antibody.

9. 세포 내 활성산소(ROS) 농도 측정9. Measurement of intracellular reactive oxygen (ROS) concentration

세포를 100mm 배양접시에 1.5x105개로 분주한 후 37℃, 5% 이산화탄소 배양기에서 3일 동안 배양하였다. 세포를 항생제가 포함된 DMEM 배양액으로 2회 세척한 후, 아드리아마이신 500 nM을 4시간 동안 처리하였다. 인산완충액으로 한 번 세척하고, 트립신-EDTA 용액 (2.5%) 을 처리하여 세포를 분리한 후, 60mm 배양접시에 1 X 105개로 분주하였다. 하루 동안 37℃, 5% 이산화탄소배양기에서 배양하였다. 배양액을 갈아주고 단일화합물을 10 ug/ml, 1 ug/ml로 처리하였다. 음성 대조군으로 디메틸설폭사이드(dimethyl sulfoxide)를 양성 대조군으로 N-아세틸시스테인(N-acetylcysteine) 5mM과 라파마이신(rapamycin) 500nM을 첨가하였다. 3일 동안 37℃, 5% 이산화탄소배양기에서 배양한 후, 항생제가 포함된 DMEM 배양액으로 2회 세척하고 H2DCFDA 250uM을 20분 동안 처리하였다. 인산완충용액으로 1회 세척하고 트립신-EDTA 용액을 넣어 세포를 분리하여 미세원침관으로 옮겼다. 5,000×g 에서 1분간 원침하여 상청액을 버리고 2% 우태아혈청을 포함한 인산완충용액을 1ml 넣어 세포를 세척하고 다시 5,000×g에서 1분간 원침하였다. 세척과정을 2회 반복한 후, 1% 파라포름알데히드(paraformaldehyde)를 1ml 넣어 주었다. 세포 내 ROS 양은 BD FACS CantoⅡ 유세포 분류기 (BD Biosciences, San Jose, CA)를 사용하여 측정하였다.
Cells were plated at 1.5 × 10 5 in a 100 mm culture dish and cultured in a 5% carbon dioxide incubator at 37 ° C. for 3 days. Cells were washed twice with DMEM medium containing antibiotics and treated with 500 nM adriamycin for 4 hours. The cells were washed once with phosphate buffer and treated with trypsin-EDTA solution (2.5%), and then the cells were divided into 1 × 10 5 cells in a 60 mm culture dish. And cultured in a 5% carbon dioxide incubator at 37 ° C for one day. The culture medium was changed and the single compound was treated with 10 ug / ml and 1 ug / ml. As a negative control, dimethyl sulfoxide was added as a positive control, 5 mM N-acetylcysteine and 500 nM rapamycin. After incubation for 3 days in a 5% CO 2 incubator at 37 ° C, the cells were washed twice with DMEM containing antibiotics and treated with 250 μM H 2 DCFDA for 20 minutes. The cells were washed once with phosphate buffered saline, and the trypsin-EDTA solution was added to the cells. The supernatant was discarded at 5,000 × g for 1 minute, and the cells were washed with 1 ml of phosphate buffer solution containing 2% fetal bovine serum, and further washed at 5,000 × g for 1 minute. The washing procedure was repeated twice, followed by the addition of 1 ml of 1% paraformaldehyde. The amount of intracellular ROS was measured using a BD FACS Canto II flow cytometer (BD Biosciences, San Jose, Calif.).

10. 결과10. Results

(1) 사람 제대혈관내피세포에서 팔각회향 추출물의 세포독성과 세포 노화 저해 효능 조사(1) Cytotoxicity and inhibition of cell senescence of octopus fenugreek extract in human umbilical cord blood

사람 제대혈관내피세포에서 팔각회향 추출물 5가지에 대한 세포독성을 먼저 조사하였다. 부탄올 추출물은 100 ug/ml에서 세포독성이 나타나지 않았으나, 나머지 추출물은 100 ug/ml에서 세포독성이 나타났다. 그러나 이들 추출물을 10 ug/ml로 처리하였을 때, 헥산 추출물은 세포독성이 있었으나, 다른 추출물은 세포독성이 나타나지 않았다 (도 3A). 다음으로 팔각회향 추출물이 아드리아마이신에 의해 유도되는 세포노화를 억제하는지 조사하였다. 부탄올 추출물은 100과 10 ug/ml, 다른 추출물은 10 ug/ml로 각각 처리하였다. 부탄올 추출물 10 ug/ml을 처리하였을 때 아드리아마이신 처리에 의해 증가되는 SA-β-gal 활성이 유의하게 감소되었고, 에틸아세테이트 추출물도 SA-β-gal 활성이 감소되었다 (도 3B). 그러나 다른 추출물은 SA-β-gal 활성을 저해하지 않았다. 부탄올 추출물과 에틸아세테이트 추출물을 농도를 증가시키면서 SA-β-gal 활성을 저해하는지 조사하였다. 그 결과 농도의존적으로 아드리아마이신에 의해 증가되는 SA-β-gal 활성을 저해하였다 (도 4 및 5). 따라서 부탄올 추출물과 에틸아세테이트 추출물이 아드리아마이신에 의한 세포노화를 억제하는 효능이 있음을 확인하였다.Cytotoxicity of five octopus extracts from human umbilical cord blood was investigated. The butanol extract did not show cytotoxicity at 100 ug / ml, but the remaining extract showed cytotoxicity at 100 ug / ml. However, when these extracts were treated with 10 ug / ml, the hexane extract was cytotoxic, while the other extracts did not show cytotoxicity (FIG. 3A). Next, we investigated whether the octopus fennel extract inhibited adriamycin - induced cell senescence. Butanol extracts were treated with 100 and 10 ug / ml, and other extracts with 10 ug / ml. When 10 ug / ml of butanol extract was treated, the SA-β-gal activity increased by adriamycin treatment was significantly decreased, and the ethyl acetate extract also decreased SA-β-gal activity (FIG. 3B). However, other extracts did not inhibit SA-β-gal activity. Butanol extract and ethyl acetate extract were investigated to increase SA-β-gal activity. As a result, it inhibited SA-β-gal activity which was increased in a concentration-dependent manner by adriamycin (FIGS. 4 and 5). Therefore, it was confirmed that the butanol extract and the ethyl acetate extract have an effect of inhibiting adiamycin-induced cell senescence.

두 가지 추출물이 아드리아마이신에 의한 세포노화 과정에서 증가되는 p53, p21, 인산화S6K와 같은 단백질의 발현에 어떤 영향이 있는지 조사하였다. 부탄올 추출물이 아드리아마이신에 의해 증가되는 p53과 p21의 발현을 억제하는 것을 확인하였다 (도 4D). We investigated the effect of two extracts on the expression of proteins such as p53, p21, and phosphorylated S6K, which are increased during adiamycin - induced cell senescence. Butanol extract inhibited the expression of p53 and p21, which are increased by adriamycin (Fig. 4D).

부탄올 추출물과 에틸아세테이트 추출물이 아드리아마이신에 의한 세포노화뿐만 아니라, 복제노화가 유도된 세포에서도 세포노화를 억제하는지 조사하였다. 그 결과 두 추출물이 농도의존적으로 복제노화에 의해 증가된 SA-β-gal 활성을 감소시켰다 (도 6 및 7). Butanol extract and ethyl acetate extract inhibited cell senescence by adriamycin as well as cell senescence induced by replication. As a result, both extracts decreased SA-β-gal activity increased by repletion aging in a concentration-dependent manner (FIGS. 6 and 7).

이상의 결과로부터 팔각회향 부탄올 추출물과 에틸아세테이트 추출물이 아드리아마이신에 의한 세포노화와 세포 분열로 인한 복제노화를 저해하는 효능이 있음을 확인하였다.
From the above results, it was confirmed that the octanol-fructose butanol extract and the ethyl acetate extract were effective in inhibiting adipocyte-induced cell senescence and cell senescence.

(2) 사람 제대혈관내피세포에서 팔각회향 단일성분의 세포독성 효과와 세포노화 저해 효능 조사(2) Cytotoxic effect and cell aging inhibition effect of single component of octopus fennel in human umbilical cord blood

사람 제대혈관내피세포에서 팔각회향 단일성분 4가지에 대한 세포독성을 조사하였다. 화합물을 각각 10 ug/ml 처리하였을 때 모두 세포독성이 관찰되지 않았다 (도 8A). 이 중 ASF-1이 세포노화를 억제하는지 조사하였고 세포노화 억제에 영향을 미치지 않는 것을 확인하였다 (도 8B).Cytotoxicity of four components of octagonal fennel was investigated in human umbilical cord blood. No cytotoxicity was observed when each compound was treated at 10 ug / ml (Fig. 8A). Among these, ASF-1 was examined to inhibit cell senescence and it was confirmed that it did not affect cell senescence inhibition (Fig. 8B).

이상의 결과로 팔각회향으로부터 분리된 단일 성분들은 제대혈관내피세포에서 세포노화를 저해하지 않는다는 것을 확인하였다.
As a result, it was confirmed that the single components isolated from the octagonal fennel did not inhibit cell senescence in the cord blood cells.

(3) 사람 섬유아세포에서 팔각회향 추출물의 세포독성과 세포 노화 저해 효능 조사(3) Cytotoxicity and inhibition of cell senescence of octopus fennel extract in human fibroblasts

사람 섬유아세포에서 팔각회향 추출물 5가지에 대한 세포독성을 먼저 조사하였다. 물 추출물, 부탄올, 에틸아세테이트 추출물은 100 ug/ml에서 세포독성이 나타나지 않았으나, 헥산 추출물과 메탄올 추출물은 100 ug/ml에서 세포독성이 나타났다. 그러나 이들 추출물을 10 ug/ml로 처리하였을 때는 헥산 추출물만이 세포독성이 나타났으며, 나머지 추출물에서는 세포독성이 나타나지 않았다 (도 9A). 다음으로 팔각회향 추출물이 아드리아마이신에 의해 유도되는 세포노화를 억제하는지 조사하였다. 물 추출물과 부탄올, 에틸아세테이트 추출물은 100과 10 ug/ml, 헥산, 메탄올 추출물은 10 ug/ml로 각각 처리하였다. 에틸아세테이트와 헥산 추출물을 10 ug/ml처리하였을 때 아드리아마이신에 의해 증가되는 SA-β-gal 활성이 감소되었다 (도 9B). 그러나 다른 추출물은 SA-β-gal 활성을 저해하지 않았다. 따라서 에틸아세테이트 추출물과 헥산 추출물이 10 ug/ml에서 아드리아마이신에 의한 세포노화를 억제하는 효능이 있음을 확인하였다. 에틸아세테이트 추출물과 헥산 추출물의 농도에 따른 세포노화 저해 효능을 더 조사하였다. 그 결과 두 물질 모두 농도의존적으로 아드리아마이신에 의해 증가되는 SA-β-gal 활성을 저해하였다 (도 10, 11). The cytotoxicity of five fenugreek extracts from human fibroblasts was examined first. Water extract, butanol and ethyl acetate extract did not show cytotoxicity at 100 ug / ml, but hexane extract and methanol extract showed cytotoxicity at 100 ug / ml. However, when these extracts were treated with 10 ug / ml, only the hexane extract showed cytotoxicity, and the remaining extract did not show cytotoxicity (FIG. 9A). Next, we investigated whether the octopus fennel extract inhibited adriamycin - induced cell senescence. Water extract, butanol and ethyl acetate extract were treated with 100 and 10 ug / ml, respectively, and hexane and methanol extract with 10 ug / ml, respectively. When treated with 10 μg / ml of ethyl acetate and hexane extract, the SA-β-gal activity increased by adriamycin was reduced (FIG. 9B). However, other extracts did not inhibit SA-β-gal activity. Therefore, it was confirmed that the extract of ethyl acetate and the extract of hexane inhibited cell senescence by adriamycin at 10 ug / ml. The cell aging inhibitory effects of ethyl acetate and hexane extracts were further investigated. As a result, both substances inhibited SA-β-gal activity which was increased by adriamycin in a concentration-dependent manner (FIGS. 10 and 11).

두 가지 추출물이 아드리아마이신에 의한 세포노화 과정에서 증가되는 p53, p21, 인산화S6K와 같은 단백질의 발현에 어떤 영향이 있는지 조사하였다. 에틸아세테이트 추출물은 10 ug/ml의 농도에서 p53, pS6, p21 단백질 발현을 모두 감소시켰고 (도 10D), 헥산 추출물은 p21 단백질 발현만을 감소시켰다 (도 11D). We investigated the effect of two extracts on the expression of proteins such as p53, p21, and phosphorylated S6K, which are increased during adiamycin - induced cell senescence. Ethyl acetate extract reduced p53, pS6 and p21 protein expression at a concentration of 10 ug / ml (Fig. 10D), while hexane extract reduced p21 protein expression only (Fig. 11D).

에틸아세테이트 추출물과 헥산 추출물이 아드리아마이신에 의한 세포노화뿐만 아니라, 복제노화가 유도된 세포에서도 세포노화를 억제하는지 조사하였다. 그 결과 두 추출물이 농도의존적으로 복제노화에 의해 증가된 SA-β-gal 활성을 감소시켰다 (그림 12, 13). Ethyl acetate extract and hexane extract inhibited cell senescence by adriamycin as well as cell senescence induced by replication. As a result, both extracts decreased the SA-β-gal activity, which was increased by repletion aging in a concentration-dependent manner (Fig. 12, 13).

이상의 결과로부터 사람 섬유아세포에서 팔각회향 에틸아세테이트 추출물과 헥산 추출물이 아드리아마이신에 의한 세포노화와 세포 분열로 인한 복제노화를 저해하는 효능이 있음을 확인하였다.
From the above results, it was confirmed that the extract of octagonal ethylacetate and the extract of hexane in human fibroblasts inhibit the aging of the cells due to adiamycin-induced cell senescence and cell division.

(4) 사람 섬유아세포에서 팔각회향 단일성분의 세포독성 효과와 세포노화 저해 효능 조사(4) Cytotoxic effect and cellular aging inhibition effect of single component of octopus folium in human fibroblasts

사람 섬유아세포에서 팔각회향 단일성분 4가지 (ASF-1, ASF-2, ASF-3, ASF-4)에 대한 세포독성을 조사하였다. 각 단일성분을 10 ug/ml 처리하였을 때 세포독성은 관찰되지 않았다 (도 14A). 4가지 단일성분이 아드리아마이신에 의해 유도되는 세포노화를 억제하는지 조사한 결과, 4가지 모두 아드리아마이신 처리에 의해 증가되는 SA-β-gal 활성을 저해하였다 (도 14B, 14C). 이 중 세포 모양이 젊은 세포와 가장 비슷하게 변한 ASF-2의 세포노화 저해 효능을 더 확인하기 위하여 농도에 따른 세포노화 저해 효능을 조사하였다. ASF-2 농도 의존적으로 SA-β-gal 활성이 감소되었다 (도 15A, 15B). 또한 ASF-2 10 ug/ml 처리하였을 때, p53 단백질 발현이 감소되었다 (도 15C). 아드리아마이신에 의한 세포 내 ROS의 양의 변화를 측정한 결과, ASF-2 10 ug/ml 처리하면 ROS의 양이 감소하나 통계적 유의성은 없었다 (도 16). ASF-가 복제노화가 유도된 세포에서도 세포노화를 억제하는지 조사한 결과, 복제노화에 의해 증가된 SA-β-gal 활성이 감소됨을 관찰하였다 (도 17).We examined the cytotoxicity of human fibroblasts on four single components (ASF-1, ASF-2, ASF-3, and ASF-4) No cytotoxicity was observed when each single component was treated at 10 ug / ml (Fig. 14A). Four of the single components inhibited adiamycin-induced cell senescence, all of which inhibited increased SA-β-gal activity by adriamycin treatment (FIGS. 14B, 14C). In order to further confirm the cell aging inhibitory effect of ASF-2 whose cell shape is most similar to that of young cells, the cell aging inhibitory effect according to the concentration was investigated. SA-β-gal activity was decreased in an ASF-2 concentration-dependent manner (FIGS. 15A and 15B). Also, when 10 μg / ml of ASF-2 was treated, expression of p53 protein was decreased (FIG. 15C). As a result of measuring the amount of ROS in the cells by adriamycin, the amount of ROS decreased when treated with 10 μg / ml of ASF-2, but was not statistically significant (FIG. 16). As a result of investigating whether ASF- inhibits cell senescence in cells induced by replication senescence, it was also observed that the SA-β-gal activity increased by replicative senescence (FIG. 17).

이상의 결과로부터 팔각회향으로부터 분리된 ASF-2 (threo-1(4'-methoxyphenyl)-1,2-propandiol)이 10 ug/ml의 농도에서 아드리아마이신에 의한 세포노화와 세포 분열로 인한 복제노화를 저해하는 효능이 있음을 확인하였다.
These results suggest that ASF-2 (threo-1 (4'-methoxyphenyl) -1,2-propanediol) isolated from the octagonal fennel can induce replication senescence due to adiamycin-induced cell senescence and cell division at a concentration of 10 ug / ml Which is known to have an inhibitory effect.

Claims (9)

팔각회향 추출물 또는 이로부터 분리된 하기 화학식 1로 표시되는 트레오-1(4'-메톡시페닐)-1,2-프로판디올[threo-1(4'-methoxyphenyl)-1,2-propandiol]을 유효성분으로 함유하는 세포 노화 억제용 약학 조성물.
< 화학식 1 >
Figure pat00002
(4'-methoxyphenyl) -1,2-propanediol] represented by the following formula (1) separated from the octagonal fennel extract or threo-1 A pharmaceutical composition for inhibiting cell senescence comprising as an active ingredient.
&Lt; Formula 1 &gt;
Figure pat00002
제 1 항에 있어서, 상기 팔각회향 추출물은 팔각회향 메탄올 추출액에 증류수 및 헥산(n-hexane)을 첨가하여 분획화한 증류수 층에 에틸아세테이트(EtOAc)를 첨가하고 분획화하여 추출된 에틸아세테이트(EtOAc) 분획 추출물인 것을 특징으로 하는 세포 노화 억제용 약학 조성물.The method according to claim 1, wherein the octopus fennel extract is obtained by adding ethyl acetate (EtOAc) to a distilled water layer fractionated by adding distilled water and n-hexane to methanol extract of octopus fennel, and extracting ethyl acetate (EtOAc ) &Lt; / RTI &gt; fractions. 제 1 항에 있어서, 상기 팔각회향 추출물은 팔각회향 메탄올 추출액에 증류수 및 헥산(n-hexane)을 첨가하여 분획화한 증류수 층에 에틸아세테이트(EtOAc)를 첨가하고, 이를 분획화한 증류수 층에 부탄올을 첨가하고 분획화하여 추출된 부탄올 분획 추출물인 것을 특징으로 하는 세포 노화 억제용 약학 조성물.The method according to claim 1, wherein the octopus fennel extract is obtained by adding ethyl acetate (EtOAc) to a distilled water layer obtained by adding distilled water and n-hexane to an octachromatic methanol extract, Wherein the extract is a butanol fraction extracted by fractionation. 제 3 항에 있어서, 상기 세포는 제대정맥혈관내피세포인 것을 특징으로 하는 세포 노화 억제용 약학 조성물.The pharmaceutical composition for inhibiting cell senescence according to claim 3, wherein the cell is an umbilical vein endothelial cell. 제 1 항에 있어서, 상기 팔각회향 추출물은 팔각회향 메탄올 추출액에 증류수 및 헥산(n-hexane)을 첨가하고 분획화하여 추출된 헥산(n-hexane) 분획 추출물인 것을 특징으로 하는 세포 노화 억제용 약학 조성물.The method according to claim 1, wherein the octopus fennel extract is an extract of hexane (n-hexane) extracted by adding fractionated water and hexane (n-hexane) to an octagonal fennel methanol extract. Composition. 제 5 항에 있어서, 상기 세포는 섬유아세포인 것을 특징으로 하는 세포 노화 억제용 약학 조성물.The pharmaceutical composition for inhibiting cell senescence according to claim 5, wherein the cell is a fibroblast. 제 1 항에 있어서, 상기 세포 노화는 아드리아마이신에 의해 유도되는 것을 특징으로 하는 세포 노화 억제용 약학 조성물.The pharmaceutical composition for inhibiting cell senescence according to claim 1, wherein the cell aging is induced by adriamycin. 제 1 항에 있어서, 상기 세포 노화 억제는 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성 억제를 측정하는 것을 특징으로 하는 세포 노화 억제용 약학 조성물.The pharmaceutical composition for inhibiting cell senescence according to claim 1, wherein the inhibition of cell senescence measures the inhibition of senescence-associated beta-galactosidase (SA-beta-gal) activity. 제 1 항에 있어서, 상기 약학 조성물은 피부노화, 류마티스성 관절염, 골관절염, 간염, 만성 피부손상 조직, 동맥경화, 전립샘 증식증 및 간암으로 이루어진 군에서 선택된 어느 하나의 질환을 예방 또는 치료하는 것을 특징으로 하는 세포 노화 억제용 약학 조성물.The pharmaceutical composition according to claim 1, wherein the pharmaceutical composition is characterized by preventing or treating any one selected from the group consisting of skin aging, rheumatoid arthritis, osteoarthritis, hepatitis, chronic skin damaged tissue, arteriosclerosis, prostatic hyperplasia and liver cancer Or a pharmaceutically acceptable salt thereof.
KR1020130101710A 2013-08-27 2013-08-27 Composition for inhibiting cellular senescence comprising extracts of Anisi Stellati Fructus or threo-1(4'-methoxyphenyl)-1,2-propandiol isolated from the same KR101550967B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130101710A KR101550967B1 (en) 2013-08-27 2013-08-27 Composition for inhibiting cellular senescence comprising extracts of Anisi Stellati Fructus or threo-1(4'-methoxyphenyl)-1,2-propandiol isolated from the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130101710A KR101550967B1 (en) 2013-08-27 2013-08-27 Composition for inhibiting cellular senescence comprising extracts of Anisi Stellati Fructus or threo-1(4'-methoxyphenyl)-1,2-propandiol isolated from the same

Publications (2)

Publication Number Publication Date
KR20150024606A true KR20150024606A (en) 2015-03-09
KR101550967B1 KR101550967B1 (en) 2015-09-08

Family

ID=53021152

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130101710A KR101550967B1 (en) 2013-08-27 2013-08-27 Composition for inhibiting cellular senescence comprising extracts of Anisi Stellati Fructus or threo-1(4'-methoxyphenyl)-1,2-propandiol isolated from the same

Country Status (1)

Country Link
KR (1) KR101550967B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092074A1 (en) * 2014-12-12 2016-06-16 L'oreal Novel 1-phenylmono- or -polyhydroxypropane compounds, compositions and cosmetic uses thereof
KR20200083354A (en) * 2018-12-28 2020-07-08 연세대학교 산학협력단 Composition for prevention and treatment of muscular disorder or improvement of muscular functions comprising Illicium verum extract or shikimic acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201229A (en) * 2001-10-23 2003-07-18 Shiseido Co Ltd Matrix metalloprotease activity inhibitor and ageing- resistant cosmetic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092074A1 (en) * 2014-12-12 2016-06-16 L'oreal Novel 1-phenylmono- or -polyhydroxypropane compounds, compositions and cosmetic uses thereof
FR3029910A1 (en) * 2014-12-12 2016-06-17 Oreal NOVEL 1-PHENYL MONO OR POLYHYDROXYPROPANE COMPOUNDS, COMPOSITIONS AND USE IN COSMETICS
US10307353B2 (en) 2014-12-12 2019-06-04 L'oreal 1-phenylmono- or -polyhydroxypropane compounds, compositions and cosmetic uses thereof
KR20200083354A (en) * 2018-12-28 2020-07-08 연세대학교 산학협력단 Composition for prevention and treatment of muscular disorder or improvement of muscular functions comprising Illicium verum extract or shikimic acid
WO2020139057A3 (en) * 2018-12-28 2020-08-20 연세대학교 산학협력단 Composition for preventing and treating muscle disease or improving muscle function, comprising illicium verum extract or shikimic acid

Also Published As

Publication number Publication date
KR101550967B1 (en) 2015-09-08

Similar Documents

Publication Publication Date Title
KR101784050B1 (en) Pharmaceutical composition for preventing or treating cell senescence comprising exosome
De et al. Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells
KR101435717B1 (en) Composition for inhibiting cellular senescence comprising quercetin-3-O-β-D-glucuronide
KR101528190B1 (en) Composition for inhibiting cellular senescence comprising 2,5-dihydroxy-4-methoxyacetophenone isolated from Paeonia suffruticosa
KR101589793B1 (en) Composition for inhibiting cellular senescence comprising extracts of Melandrium firmum Rohrbach or bornesitol isolated from the same
Sarikaki et al. Biomimetic synthesis of oleocanthal, oleacein, and their analogues starting from oleuropein, a major compound of olive leaves
KR101062616B1 (en) Anti-aging pharmaceutical composition containing epipriedellanol as an active ingredient
KR101437729B1 (en) Composition for inhibiting cellular senescence comprising loliolide
KR101550967B1 (en) Composition for inhibiting cellular senescence comprising extracts of Anisi Stellati Fructus or threo-1(4&#39;-methoxyphenyl)-1,2-propandiol isolated from the same
KR101437728B1 (en) Composition for inhibiting cellular senescence comprising juglanin
KR101503586B1 (en) Composition for inhibiting cellular senescence comprising extracts of Inula japonica Thunberg or britanin isolated from the same
KR101698234B1 (en) Composition for inhibiting cellular senescence comprising extracts of Evodia officinalis or rutaecarpine or limocitrin 3-O-rutinoside isolated from the same
KR101503600B1 (en) Composition for inhibiting cellular senescence comprising erthro-austrobailignan-6 isolated from Saururus chinensis
KR101503585B1 (en) Composition for inhibiting cellular senescence comprising extracts of Inula japonica Thunberg or quercetagetin 3,4&#39;-dimethyl ether isolated from the same
KR102659740B1 (en) Anti-cancer use of sea cucumber gonad extract or the compound derived from the same
KR101649047B1 (en) Use of Kazinol C for treating or preventing cancer
JP2003277271A (en) Anticancer drug
KR20110035127A (en) Anti-inflammatory composition containing phlorotannins from ecklonia stolonifera and ecklonia cava extract as a effective component
KR102467971B1 (en) Composition for anti-cancer comprising caudatin compound
KR101852054B1 (en) Composition for inhibiting a growth of cancer stem cells comprising cis-3-hexenal
KR20100059050A (en) Composition for preventing or treating ceramide metabolism-related enzyme mediated disease comprising lignan derivatives as an active ingredient
KR101491914B1 (en) Pharmaceutical composition for preventing or treating cancer comprising the extract of Euonymi lignum suberalatu
KR20150005250A (en) Pharmaceutical composition for preventing or treating cancer comprising the extract of Chaenomelis langenariae radix
KR20150005251A (en) Pharmaceutical composition for preventing or treating cancer comprising the extract of Polygoni multiflori radix
KR20160073071A (en) Composition for preventing and treating cardiovascular diseases comprising Sagassum serratifolium extract

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180703

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190708

Year of fee payment: 5