KR101698234B1 - Composition for inhibiting cellular senescence comprising extracts of Evodia officinalis or rutaecarpine or limocitrin 3-O-rutinoside isolated from the same - Google Patents

Composition for inhibiting cellular senescence comprising extracts of Evodia officinalis or rutaecarpine or limocitrin 3-O-rutinoside isolated from the same Download PDF

Info

Publication number
KR101698234B1
KR101698234B1 KR1020130101711A KR20130101711A KR101698234B1 KR 101698234 B1 KR101698234 B1 KR 101698234B1 KR 1020130101711 A KR1020130101711 A KR 1020130101711A KR 20130101711 A KR20130101711 A KR 20130101711A KR 101698234 B1 KR101698234 B1 KR 101698234B1
Authority
KR
South Korea
Prior art keywords
aging
cells
adriamycin
extract
senescence
Prior art date
Application number
KR1020130101711A
Other languages
Korean (ko)
Other versions
KR20150024607A (en
Inventor
김재룡
손종근
양효현
장해연
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020130101711A priority Critical patent/KR101698234B1/en
Publication of KR20150024607A publication Critical patent/KR20150024607A/en
Application granted granted Critical
Publication of KR101698234B1 publication Critical patent/KR101698234B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/75Rutaceae (Rue family)
    • A61K36/754Evodia
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/302Foods, ingredients or supplements having a functional effect on health having a modulating effect on age
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/306Foods, ingredients or supplements having a functional effect on health having an effect on bone mass, e.g. osteoporosis prevention
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/308Foods, ingredients or supplements having a functional effect on health having an effect on cancer prevention
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/33Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Nutrition Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 오수유 추출물 또는 이로부터 분리된 루타에카르핀(rutaecarpine) 또는 리모시트린 3-루티노시드(limocitrin 3-O-rutinoside)을 유효성분으로 함유하는 세포 노화 억제용 조성물에 관한 것으로, 아드리아마이신에 의해 유도되는 것을 특징으로 하는 세포 노화 억제용 약학 조성물을 제공한다. 이렇게 섬유아세포 또는 제대정맥혈관내피세포의 세포노화 과정을 억제함으로써 노화관련 질환, 예를 들어 피부노화, 류마티스성 관절염, 골관절염, 간염, 만성 피부손상 조직, 동맥경화, 전립샘 증식증 및 간암 등과 같은 질환 치료에 유용하게 사용될 수 있다. 또한 세포노화를 저해할 수 있는 항노화 기능성 식품, 항혈관노화 약물 개발, 화장품 개발에 활용될 수 있을 것으로 기대된다.The present invention relates to a composition for inhibiting cell senescence comprising as an active ingredient ounce oil extract or rutaecarpine or limocitrin 3-O-rutinoside isolated therefrom, wherein the adriamycin The present invention also provides a pharmaceutical composition for inhibiting cell senescence. The present invention relates to a method of treating diseases such as aging-related diseases such as skin aging, rheumatoid arthritis, osteoarthritis, hepatitis, chronic skin damaged tissue, arteriosclerosis, prostate hyperplasia and liver cancer by inhibiting the cell senescence process of fibroblast or umbilical vein endothelial cells . ≪ / RTI > It is also expected to be useful for development of anti-aging functional food, anti-aging drug, and cosmetics which can inhibit cell senescence.

Description

오수유 추출물 또는 이로부터 분리된 루타에카르핀 또는 리모시트린 3-루티노시드를 유효성분으로 함유하는 세포 노화 억제용 조성물{Composition for inhibiting cellular senescence comprising extracts of Evodia officinalis or rutaecarpine or limocitrin 3-O-rutinoside isolated from the same}[0001] The present invention relates to compositions for inhibiting cellular senescence comprising, as an active ingredient, extracts of oyster oil or rutaecarpine or 3,3-rutinoside isolated therefrom, isolated from the same}

본 발명은 오수유 추출물 또는 이로부터 분리된 루타에카르핀(rutaecarpine) 또는 리모시트린 3-루티노시드(limocitrin 3-O-rutinoside)를 유효성분으로 함유하는 세포 노화 억제용 조성물에 관한 것이다.The present invention relates to a composition for inhibiting cell senescence comprising as an active ingredient a crude oil extract or rutaecarpine or limocitrin 3-O-rutinoside isolated therefrom.

정상 체세포는 일정 횟수 분열하면 더 이상 분열할 수 없게 되면서 세포노화 상태가 된다. 이는 염색체 말단의 텔로미어가 세포분열 과정에서 점점 짧아지면서 DNA 손상이 생기기 때문에 일어나는데, 이를 복제노화라고 한다. 텔로미어의 단축뿐만 아니라, 암유전자 및 암 억제 유전자의 기능 이상, 염증반응, 산화스트레스, 항암제, 자외선 및 방사선 등에 의해서도 세포노화가 유도된다. 노화 세포는 크기가 크고 모양이 더 편평해지며, 세포성장이 멈추고, 핵에 DNA 손상 흔적이 많으며, 다양한 염증성 단백질을 분비한다. 그리고 생화학적으로 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성이 증가하는 것으로 알려져 있다. 다양한 인자들에 의해 노화가 유도되지만 p53과 Rb/p16 암억제 유전자 신호전달 경로를 통하여 노화가 조절되는 것으로 밝혀져 있다.When normal somatic cells are divided a certain number of times, they can no longer divide and become aged. This is because the telomere at the end of the chromosome is becoming shorter and shorter in the process of cell division, resulting in DNA damage. Cellular senescence is induced not only by shortening of telomere but also by dysfunction of cancer gene and cancer suppressor gene, inflammation reaction, oxidative stress, anticancer agent, ultraviolet ray and radiation. Aging cells are large in size, flatter in shape, stop cell growth, have many signs of DNA damage in the nucleus, and secrete a variety of inflammatory proteins. And biochemically it is known that senescence-associated β-galactosidase (SA-β-gal) activity increases. Although senescence is induced by a variety of factors, it has been shown that senescence is regulated through the signaling pathway of p53 and Rb / p16 tumor suppressor genes.

세포노화 현상은 암을 억제하거나 촉진하기도 하며, 조직 재생과 복구, 조직/개체 노화와 노화관련 질환의 중요한 기전으로 제시되고 있다. 아울러 세포노화는 암, 동맥경화, 피부노화, 퇴행성 신경질환, 근감소증, 골다골증, 전립선비대증 등과 같은 다양한 노화관련 질환의 병인에 기여한다. 최근의 연구결과들은 세포노화를 선택적으로 조절하면 조직, 장기의 노화, 건강 수명, 노화관련 질환의 발생을 조절할 수 있는 것으로 보고되고 있다. 텔로머라제 결핍 생쥐는 노화가 빨리 오는 것으로 알려져 있는데, 늙은 텔로미어 결핍 생쥐에서 텔로머라제 발현을 증가시키면 노화에 따른 조직 또는 장기의 퇴행성 변화를 역전시킴을 확인하였다. 노화가 빨리 오는 생쥐 모델에 있어서 노화세포에서 발현이 증가하는 것으로 알려진 p16을 발현하는 세포를 선택적으로 제거한 결과 노화로 인한 조직 병변이 억제되며, 노화관련 질환의 발생이 감소하는 것을 확인하였다. 생쥐에서 간 섬유화가 일어나는 과정에서 간 성상세포의 노화가 나타나는데, 간성상세포의 노화가 과다한 간 섬유화를 억제하는 기능을 하는 것으로 알려져 있다. p53 활성이 적절하게 조절되지 않은 상태에서 지나치게 높아지면 노화가 빨리 나타나지만, 적절한 p53의 활성은 오히려 노화를 억제하는 것으로 알려져 있다. Cell senescence also inhibits or promotes cancer, and is suggested as an important mechanism of tissue regeneration and restoration, tissue / individual aging and aging related diseases. In addition, cellular senescence contributes to the pathogenesis of various aging-related diseases such as cancer, arteriosclerosis, skin aging, degenerative neurological diseases, myopenia, osteodystrophy, and hyperplasia of the prostate. Recent studies have shown that selective regulation of cell senescence can regulate tissue, organ aging, health life span, and the development of aging-related diseases. Telomerase-deficient mice are known to be aging rapidly, confirming that increasing telomerase expression in old telomeres-deficient mice reverses the degenerative changes of tissues or organs due to aging. In a mouse model with rapid senescence, selective removal of cells expressing p16, which is known to increase expression in senescent cells, inhibits senescence-induced tissue lesions and reduces the incidence of aging-related diseases. In the course of hepatic fibrosis in mice, aging of hepatic stellate cells occurs. It is known that aging of hepatic stellate cells inhibits excessive liver fibrosis. If the p53 activity is not properly regulated, the aging will occur quickly, but the proper p53 activity is known to inhibit aging.

그리고 세포노화를 억제하는 효능이 있는 물질들에 대한 연구 결과도 보고되고 있다. 비타민 C, N-아세틸시스테인(N-acetylcysteine), NS398 및 에피프리에데라놀(epifriedelanol)과 같은 약물 또는 단일 성분들이 이 세포노화를 억제한다. 그리고 라파마이신(rapamycin)이 생쥐모델에서, 4,4'-디아미노디페닐설폰(4,4'-diaminodiphenylsulfone)이 꼬마선충에서 노화관련 질환의 발생을 억제하며, 건강수명을 늘리는 것으로 보고되었다.Studies have also been reported on substances that have the potential to inhibit cellular senescence. Drugs or single components such as vitamin C, N-acetylcysteine, NS398 and epifriedelanol inhibit this cell senescence. In rapamycin-induced mouse models, 4,4'-diaminodiphenylsulfone has been reported to inhibit the development of aging-related diseases in small nematodes and to increase health life span.

오수유는 중국 원산으로 경주지방에서 심고 있으며, 높이가 5m에 달하고 어린 가지에 털이 있다. 한방에서는 열매를 약재로 이용한다. 성분은 휘발성 정유를 함유하고 있는데, 주성분은 에보덴(evoden), 오시멘(ocimene), 에보딘(evodin)이며, 알칼로이드 성분으로 에보디아민(evodiamine), 루타에카르핀(rutaecarpine)이 들어 있다. 건위, 구충, 해독 및 이뇨제로 사용한다고 알려져 있으며, 항암활성, 항염증작용, 심혈관계질환관련 효능, 간경화 억제 효능 등이 보고되었다.
It is native to China and is planted in Gyeongju province. Its height is 5m and hairy on young branches. In one room, fruits are used as medicines. The ingredient contains a volatile essential oil. The main ingredients are evoden, ocimene, and evodin. The alkaloids contain evodiamine and rutaecarpine. It is known to be used as an anticancer, antiparasitic agent, detoxification and diuretic agent. Anticancer activity, antiinflammatory effect, cardiovascular disease-related efficacy and cirrhosis-inhibiting effect have been reported.

한편, 한국등록특허 제10-11812164호에서는 오수유(Evodia fructus)로부터 유래된 퀴놀론 알칼로이드계 화합물을 유효성분으로 포함하는 염증성 질환 또는 감염성 질환의 예방 및 치료용 약학적 조성물에 관한 것으로서, 감기증상의 개선 또는 감기의 예방 또는 치료 효과에 대해 개시하고 있으나, 본원 발명과 같이 제대정맥혈관내피세포나 섬유아세포 노화를 저해한다는 언급은 없다.Korean Patent No. 10-11812164 discloses a pharmaceutical composition for the prevention and treatment of inflammatory diseases or infectious diseases comprising quinolone alkaloid compounds derived from Evodia fructus as an active ingredient, Or cold, but there is no mention of inhibiting umbilical vein endothelial cells or fibroblast aging as in the present invention.

본 발명의 목적은 오수유 추출물 또는 이로부터 분리된 루타에카르핀(rutaecarpine) 또는 리모시트린 3-루티노시드(limocitrin 3-O-rutinoside)를 유효성분으로 함유하는 세포 노화 억제용 조성물을 제공하는 데에 있다.It is an object of the present invention to provide a composition for inhibiting cell senescence comprising as an active ingredient ounce oil extract or rutaecarpine or limocitrin 3-O-rutinoside isolated therefrom .

상기 목적을 달성하기 위하여, 본 발명자들은 오수유 추출물과 오수유에서 분리한 8가지 단일성분들을 사람 혈관내피세포와 섬유아세포에서 세포노화 저해 효능이 있는지 조사하였다. 결과적으로 사람 혈관내피세포에서는 오수유 에틸아세테이트 추출물이, 사람 섬유아세포에서는 오수유 메탄올 추출물과 EO-1 (rutaecarpine), EO-8 (limocitrin 3-O-rutinoside)이 세포노화 저해 효능이 있음을 확인하고 본 발명을 완성하였다.
In order to achieve the above object, the inventors of the present invention investigated whether the eight monoclonal antibodies isolated from the crude oil extract and the crude oil were effective in inhibiting cell senescence in human vascular endothelial cells and fibroblasts. As a result, it was confirmed that the extracts of ethyl acetate in human vascular endothelial cells and the extracts of methanolic extract of oolong oil, EO-1 (rutaecarpine) and EO-8 (limocitrin 3-O-rutinoside) Thereby completing the invention.

본 발명은 오수유 추출물 또는 이로부터 분리된 하기 화학식 1로 표시되는 루타에카르핀(rutaecarpine) 또는 화학식 2로 표시되는 리모시트린 3-루티노시드(limocitrin 3-O-rutinoside)를 유효성분으로 함유하는 세포 노화 억제용 약학 조성물을 제공한다. 상세하게는, 상기 세포는 섬유아세포인 것을 특징으로 한다.
The present invention relates to a pharmaceutical composition comprising a crude oil extract or rutaecarpine represented by the following general formula (1) separated therefrom or limocitrin 3-O-rutinoside represented by the general formula (2) A pharmaceutical composition for inhibiting cell senescence is provided. Specifically, the cell is a fibroblast.

< 화학식 1 >&Lt; Formula 1 >

Figure 112013078051863-pat00001
Figure 112013078051863-pat00001

< 화학식 2 >(2)

Figure 112013078051863-pat00002
Figure 112013078051863-pat00002

R1 = OH 이고, R2 = OCH3 임.
R 1 a = OH, R 2 = OCH 3 Im.

상세하게는, 상기 오수유 추출물은 오수유 메탄올 추출액에 증류수, 헥산(n-hexane), 에틸아세테이트(EtOAc) 및 부탄올을 첨가하고 분획화하여 추출된 에틸아세테이트(EtOAc) 분획 추출물이고, 보다 상세하게는 상기 세포는 제대정맥혈관내피세포인 것을 특징으로 한다.
Specifically, the sour milk extract is an ethyl acetate (EtOAc) fraction extract obtained by adding distilled water, n-hexane, ethyl acetate (EtOAc) and butanol to a methanol extract of sour milk, The cell is characterized by being an umbilical vein endothelial cell.

상세하게는, 상기 세포 노화는 아드리아마이신에 의해 유도되는 것을 특징으로 하고, 세포 노화 억제는 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성 억제를 측정하는 것을 특징으로 한다.
Specifically, the cell senescence is characterized by being induced by adriamycin, and inhibition of cell senescence is measured by measuring senescence-associated beta-galactosidase (SA-beta-gal) .

본 발명의 약학적 조성물인 경우, 상기 약학적 조성물은 상기 오수유 추출물 또는 이로부터 분리된 루타에카르핀(rutaecarpine) 또는 리모시트린 3-루티노시드(limocitrin 3-O-rutinoside) 이외에 약제학적으로 허용되는 담체를 포함할 수 있는데, 이러한 약학적으로 허용되는 담체는 약품 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘, 미네랄 오일 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 약학적 조성물은 첨가제로서 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.In the case of the pharmaceutical composition of the present invention, the pharmaceutical composition is pharmaceutically acceptable in addition to the oolong oil extract or rutaecarpine or limocitrin 3-O-rutinoside isolated therefrom. Such pharmaceutically acceptable carriers are those conventionally used in pharmaceutical preparations and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin , Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil and the like , But is not limited thereto. In addition, the pharmaceutical composition may further include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. as an additive.

상기 약학적 조성물은 세포 노화의 증상 정도에 따라 투여 방법이 결정되는데, 통상적으로는 국소 투여 방식이 바람직하다. 또한, 상기 약학적 조성물 중 유효성분의 투여량은 투여경로, 질병의 정도, 환자의 나이, 성별, 체중 등에 따라 달라질 수 있으며, 일일 1회 내지 수회 투여할 수 있다.In the above pharmaceutical composition, the administration method is determined according to the degree of symptom of cell senescence. Usually, local administration method is preferable. The dosage of the active ingredient in the pharmaceutical composition may vary depending on the route of administration, the severity of the disease, the age, sex, and weight of the patient, and may be administered once to several times per day.

상기 약학적 조성물은 쥐, 생쥐, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁 내 경막 또는 뇌혈관 내(intracerebroventricular)주사에 의해 투여될 수 있다.The pharmaceutical composition may be administered to mammals such as rats, mice, livestock, humans, and the like in a variety of routes. All modes of administration may be expected, for example, by oral, rectal or intravenous, intramuscular, subcutaneous, intra-uterine or intracerebroventricular injections.

상기 약학적 조성물은 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때, 제형은 용액, 현탁액 또는 유화액 형태이거나 엘렉시르제, 엑스제, 분말제, 과립제, 정제, 경고제, 로션제, 연고제 등의 형태일 수 있다.
The pharmaceutical composition may be prepared in unit dose form by formulating it with a pharmaceutically acceptable carrier and / or excipient, or may be prepared by inserting it into a multi-dose container. The formulations may be in the form of solutions, suspensions or emulsions, or may be in the form of elixirs, excipients, powders, granules, tablets, alerts, lotions, ointments and the like.

한편, 상기 약학적 조성물은 피부노화, 류마티스성 관절염, 골관절염, 간염, 만성 피부손상 조직, 동맥경화, 전립샘 증식증 및 간암으로 이루어진 군에서 선택된 어느 하나의 질환을 치료할 수 있지만, 이에 한정되는 것은 아니다.Meanwhile, the pharmaceutical composition may treat any one selected from the group consisting of skin aging, rheumatoid arthritis, osteoarthritis, hepatitis, chronic skin injured tissue, arteriosclerosis, prostatic hyperplasia and liver cancer, but is not limited thereto.

본 발명자들은 오수유 추출물 또는 이로부터 분리된 루타에카르핀(rutaecarpine) 또는 리모시트린 3-루티노시드(limocitrin 3-O-rutinoside)가 아드리아마이신에 의한 세포 노화를 억제하고, 아울러 세포 분열로 인한 복제노화를 저해함을 확인하였다. 이렇게 세포노화 과정을 억제함으로써 노화관련 질환, 예를 들어 피부노화, 류마티스성 관절염, 골관절염, 간염, 만성 피부손상 조직, 동맥경화, 전립샘 증식증 및 간암 등과 같은 질환 치료에 유용하게 사용될 수 있다. 또한, 혈관내피세포 및 섬유아세포의 세포노화를 저해할 수 있는 항노화 기능성 식품, 항혈관노화 약물 개발, 화장품 개발에 활용될 수 있을 것으로 기대된다. The inventors of the present invention found that oats extract or rutaecarpine or limocitrin 3-O-rutinoside isolated therefrom inhibits cell senescence by adriamycin and also inhibits replication due to cell division And inhibited aging. By inhibiting the cell senescence process, it can be useful for treating diseases such as aging-related diseases such as skin aging, rheumatoid arthritis, osteoarthritis, hepatitis, chronic skin damaged tissue, arteriosclerosis, prostatic hyperplasia and liver cancer. It is also expected to be useful for the development of anti-aging functional food, anti-vascular aging drug, and cosmetics which can inhibit cell aging of vascular endothelial cells and fibroblasts.

도 1은 오수유 추출물의 분리 모식도를 나타낸다.
도 2는 오수유로부터 분리된 단일성분의 화학구조를 나타낸다.
도 3은 사람 제대정맥혈관내피세포에서 오수유 추출물의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 오수유 추출물의 세포독성 효과. 각 추출물을 10, 100ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, 오수유 추출물을 10, 100ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 4는 사람 제대정맥혈관내피세포에서 오수유 에틸아세테이트 추출물의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 오수유 에틸아세테이트 추출물의 세포독성 효과를 나타낸다. 각 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, 오수유 에틸아세테이트 추출물을 1-10 ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후, 평균과 표준편차로 나타냈다. D, p53, 인산화 S6K, p21의 발현을 나타낸다. 아드리아마이신 처리 후, 추출물을 1-10 ug/ml로 처리하고, 웨스턴 블랏법으로 각 단백질의 발현 정도를 조사하였다. NT, 미처리; Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 5는 사람 제대정맥혈관내피세포에서 오수유 에틸아세테이트 추출물의 복제 세포노화 저해 효과를 나타낸다. A, 복제노화 세포에 대한 오수유 에틸아세테이트 추출물의 세포독성 효과를 나타낸다. 각 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 복제노화 세포에 오수유 에틸아세테이트 추출물을 1-10ug/ml 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Old, 늙은 세포(Old cells); DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 vs DMSO.
도 6은 사람 제대정맥혈관내피세포에서 오수유 단일 성분의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 오수유 단일 성분의 세포독성 효과. 각 성분을 10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B, SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, EO-4를 10ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine).
도 7은 사람 제대정맥혈관내피세포에서 오수유 단일 성분의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 오수유 단일 성분의 세포독성 효과. 각 성분을 10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B, SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, EO-3과 EO-7을 1ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine). *p<0.05 or **p<0.01 vs DMSO.
도 8은 사람 제대정맥혈관내피세포에서 오수유 단일 성분 EO-1의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, EO-1의 세포독성 효과. EO-1을 0.1ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B, SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, EO-1을 0.1ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine).
도 9는 사람 섬유아세포에서 오수유 추출물의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 오수유 추출물의 세포독성 효과. 각 추출물을 10, 100ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, 오수유 추출물을 10, 100ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 10은 사람 섬유아세포에서 오수유 메탄올 추출물의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 오수유 메탄올 추출물의 세포독성 효과를 나타낸다. 각 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, 오수유 메탄올 추출물을 1-10 ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후, 평균과 표준편차로 나타냈다. D, p53, 인산화 S6K, p21의 발현을 나타낸다. 아드리아마이신 처리 후, 추출물을 1-10 ug/ml로 처리하고, 웨스턴 블랏법으로 각 단백질의 발현 정도를 조사하였다. NT, 미처리; Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 11은 사람 섬유아세포에서 오수유 메탄올 추출물의 복제 세포노화 저해 효과를 나타낸다. A, 복제노화 세포에 대한 오수유 메탄올 추출물의 세포독성 효과를 나타낸다. 각 추출물을 1-10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B 및 C, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 복제노화 세포에 오수유 메탄올 추출물을 1-10ug/ml 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Old, 늙은 세포(Old cells); DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 12는 사람 섬유아세포에서 오수유 단일 성분의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A, 오수유 단일 성분의 세포독성 효과. 각 성분을 10ug/ml 처리 후, 3일 동안 배양하여 MTT법으로 세포독성 효과를 조사하였다. B, SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, EO-4 및 EO-8을 10ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine). *p<0.05 or **p<0.01 vs DMSO.
도 13은 사람 섬유아세포에서 오수유 단일 성분 EO-8 [리모시트린 3-루티노시드(limocitrin 3-O-rutinoside)]의 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A 및 B, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, EO-8을 1-10ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. C, p53, 인산화 S6K, p21의 발현을 나타낸다. 아드리아마이신 처리 후, EO-8을 1-10 ug/ml로 처리하고, 웨스턴 블랏법으로 각 단백질의 발현 정도를 조사하였다. NT, 미처리; Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 14는 사람 섬유아세포에서 활성산소 생성에 미치는 EO-8 [리모시트린 3-루티노시드(limocitrin 3-O-rutinoside)]의 효과를 나타낸다. A, 활성산소 유세포분석. B, 평균 활성산소량 비교. 섬유아세포에 아드리아마이신을 처리하고, EO-8을 10 ug/ml 처리하여, 세포내 활성산소 정도를 유세포분석기로 조사하였다. 각 실험을 독립적으로 3회 이상 반복시행 한 후 평균과 표준편차로 나타냈다. ADR, 아드리아마이신(adriamycin); Y, 젊은 세포(young cells); Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or ** p<0.01 vs DMSO.
도 15는 사람 섬유아세포에서 EO-8 [리모시트린 3-루티노시드(limocitrin 3-O-rutinoside)]의 복제세포노화 저해 효과를 나타낸다. A, SA-β-gal 활성 염색 사진을 나타낸다. B, SA-β-gal 활성 염색 백분율을 나타낸다. C, EO-8의 세포독성 효과를 나타낸다. 복제노화 세포에 EO-8을 1-10 ug/ml 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 세포독성은 MTT법으로 조사하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. Old, 늙은 세포(Old cells); DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 16은 사람 섬유아세포에서 오수유 단일 성분 EO-1 [루타에카르핀(rutaecarpine)]의 세포독성 및 아드리아마이신에 의한 세포노화 저해 효과를 나타낸다. A 및 B, EO-1의 세포독성 효과. C 및 D, SA-β-gal 활성 염색 사진 및 SA-β-gal 활성 염색 백분율. 아드리아마이신 처리 후, EO-1을 0.1ug/ml로 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. E, p53, 인산화 S6K, p21의 발현을 나타낸다. 아드리아마이신 처리 후, EO-1을 0.1 ug/ml로 처리하고, 웨스턴 블랏법으로 각 단백질의 발현 정도를 조사하였다. NT, 미처리; Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or **p<0.01 vs DMSO.
도 17은 사람 섬유아세포에서 활성산소 생성에 미치는 EO-1 [루타에카르핀(rutaecarpine)]의 효과를 나타낸다. A, 활성산소 유세포분석. B, 평균 활성산소량 비교. 섬유아세포에 아드리아마이신을 처리하고, EO-1을 0.1 ug/ml 처리하여, 세포내 활성산소 정도를 유세포분석기로 조사하였다. 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. ADR, 아드리아마이신(adriamycin); Y, 젊은 세포(young cells); Cont, 대조군; DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin). *p<0.05 or ** p<0.01 vs DMSO.
도 18은 사람 섬유아세포에서 EO-1 [루타에카르핀(rutaecarpine)]의 복제세포노화 저해 효과를 나타낸다. A, SA-β-gal 활성 염색 사진을 나타낸다. B, SA-β-gal 활성 염색 백분율을 나타낸다. C, EO-1의 세포독성 효과를 나타낸다. 복제노화 세포에 EO-1을 0.1 ug/ml 처리하고, 3일 후 SA-β-gal 활성 염색을 시행하였다. 세포독성은 MTT법으로 조사하였다. 결과는 각 실험을 독립적으로 3회 이상 반복시행한 후 평균과 표준편차로 나타냈다. DMSO, 디메틸설폭사이드(dimethylsulfoxide); NAC, N-아세틸시스테인(N-acetylcysteine); Rap, 라파마이신(rapamycin).
Fig. 1 is a schematic view showing the separation of the crude oil extract.
Fig. 2 shows the chemical composition of a single component separated from flax oil.
Fig. 3 shows the cytotoxicity of oolong oil extract and the inhibitory effect of adriamycin on cell senescence in human umbilical vein endothelial cells. A, Cytotoxic effect of oolong oil extract. Each extract was treated with 10, 100 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B, SA-β-gal active staining and SA-β-gal active staining percentage. After treatment with adriamycin, the crude oil extract was treated with 10, 100 ug / ml, and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 4 shows the cytotoxicity of the ethyl acetate extract of pomegranate juice and the cytotoxic effect of adriamycin on human umbilical vein endothelial cells. A, and the cytotoxic effect of ethyl acetate extract. Each extract was treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. After treatment with adriamycin, ethyl acetate extract of citrus oil was treated with 1-10 ug / ml, and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. D, p53, phosphorylated S6K, p21. After treatment with adriamycin, the extract was treated with 1-10 ug / ml, and the degree of expression of each protein was determined by Western blotting. NT, untreated; Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
FIG. 5 shows the inhibitory effect of ethyl acetate extract of oyster oil on the reproduction cell senescence in human umbilical vein endothelial cells. A, the cytotoxic effect of the ethyl acetate extract of citrus oil on the reproductive aging cells. Each extract was treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. Reproductive aging cells were treated with 10 ug / ml of ethyl acetate extract of citrus milk and 3 days later, SA-β-gal active staining was performed. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Old, Old cells; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 vs. DMSO.
FIG. 6 shows the cytotoxicity of single component of folic acid and the inhibition of cell senescence by adriamycin in the umbilical vein endothelial cells of human umbilical vein. A, cytotoxic effect of single component of folate. Each component was treated with 10 ug / ml, cultured for 3 days, and cytotoxic effect was investigated by MTT method. B, SA-β-gal active stain percentage. After adriamycin treatment, EO-4 was treated with 10 ug / ml, and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine.
Fig. 7 shows the cytotoxicity of single component of folate oil and inhibition of cell senescence by adriamycin in human umbilical vein endothelial cells. A, cytotoxic effect of single component of folate. Each component was treated with 10 ug / ml, cultured for 3 days, and cytotoxic effect was investigated by MTT method. B, SA-β-gal active stain percentage. After adriamycin treatment, EO-3 and EO-7 were treated with 1 ug / ml, and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 8 shows the cytotoxicity of folic acid single component EO-1 in the umbilical vein endothelial cells of the umbilical vein and the cell aging inhibitory effect by adriamycin. A, EO-1. EO-1 was treated with 0.1 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B, SA-β-gal active stain percentage. After adriamycin treatment, EO-1 was treated with 0.1 ug / ml, and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine.
Fig. 9 shows cytotoxicity of oolong oil extract in human fibroblasts and inhibition of cell senescence by adriamycin. A, Cytotoxic effect of oolong oil extract. Each extract was treated with 10, 100 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B, SA-β-gal active staining and SA-β-gal active staining percentage. After treatment with adriamycin, the crude oil extract was treated with 10, 100 ug / ml, and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 10 shows the cytotoxicity of the methanol extract of oyster oil from human fibroblasts and the inhibitory effect on cell aging by adriamycin. A, indicating the cytotoxic effect of methanol extract of sour milk. Each extract was treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. After treatment with adriamycin, the methanol extract of sour milk was treated with 1-10 ug / ml, and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. D, p53, phosphorylated S6K, p21. After treatment with adriamycin, the extract was treated with 1-10 ug / ml, and the degree of expression of each protein was determined by Western blotting. NT, untreated; Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 11 shows the effect of the methanol extract of oyster oil on inhibition of cell senescence in human fibroblasts. A, cytotoxic effect of methanol extract of sour milk on reproductive aging cells. Each extract was treated with 1-10 ug / ml for 3 days, and cytotoxic effect was investigated by MTT method. B and C, SA-β-gal active staining and SA-β-gal active staining percentage. Reproductive aging cells were treated with 1-10 ug / ml of methanol extract of citrus milk and 3 days later, SA-β-gal active staining was performed. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Old, Old cells; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 12 shows cytotoxicity of single component of folic acid in human fibroblasts and cytotoxic effect of adriamycin on cell senescence. A, cytotoxic effect of single component of folate. Each component was treated with 10 ug / ml, cultured for 3 days, and cytotoxic effect was investigated by MTT method. B, SA-β-gal active stain percentage. After adriamycin treatment, EO-4 and EO-8 were treated with 10 ug / ml, and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 13 shows the cytotoxic effect of adriamycin on the osmolysis of single component EO-8 (limocitrin 3-O-rutinoside) in human fibroblasts. A and B, SA-β-gal active staining and SA-β-gal active staining percentage. After treatment with adriamycin, EO-8 was treated with 1-10 ug / ml, and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. C, p53, phosphorylated S6K, p21. After treatment with adriamycin, EO-8 was treated with 1-10 ug / ml, and the degree of expression of each protein was examined by Western blotting. NT, untreated; Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Figure 14 shows the effect of EO-8 (limocitrin 3-O-rutinoside) on the production of active oxygen in human fibroblasts. A, active oxygen flow cytometry. B, the average amount of active oxygen. The fibroblasts were treated with adriamycin, treated with 10 μg / ml of EO-8, and the degree of active oxygen in the cells was examined by flow cytometry. Each experiment was repeated three times or more independently and then expressed as mean and standard deviation. ADR, adriamycin; Y, young cells; Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 15 shows the effect of EO-8 [limocitrin 3-O-rutinoside] on human cell fibroblasts in inhibiting the senescence of the cloned cells. A, SA-β-gal active dye images. B, SA-β-gal active staining percentage. C and EO-8. Reproductive aging cells were treated with 1-10 μg / ml of EO-8 and stained for SA-β-gal activity 3 days later. Cytotoxicity was assessed by MTT assay. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. Old, Old cells; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 16 shows the cytotoxicity of folic acid single component EO-1 [rutaecarpine] in human fibroblasts and the cytotoxic effect of adriamycin on cell senescence. Cytotoxic effects of A and B, EO-1. C and D, SA-β-gal active staining and SA-β-gal active staining percentage. After adriamycin treatment, EO-1 was treated with 0.1 ug / ml, and SA-β-gal active staining was performed after 3 days. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. E, p53, phosphorylated S6K, p21. After treatment with adriamycin, EO-1 was treated with 0.1 μg / ml and the degree of expression of each protein was examined by Western blotting. NT, untreated; Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Figure 17 shows the effect of EO-1 [rutaecarpine] on the production of active oxygen in human fibroblasts. A, active oxygen flow cytometry. B, the average amount of active oxygen. The fibroblasts were treated with adriamycin, treated with 0.1 μg / ml of EO-1, and the degree of active oxygen in the cells was examined by flow cytometry. Each experiment was repeated three times or more independently and then expressed as mean and standard deviation. ADR, adriamycin; Y, young cells; Cont, control group; DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin. * p < 0.05 or ** p < 0.01 vs. DMSO.
Fig. 18 shows the effect of EO-1 [rutaecarpine] on human cell fibroblasts in the inhibition of cell senescence. A, SA-β-gal active dye images. B, SA-β-gal active staining percentage. C and EO-1. Reproductive aging cells were treated with 0.1 μg / ml of EO-1 and subjected to SA-β-gal active staining three days later. Cytotoxicity was assessed by MTT assay. The results were expressed as mean and standard deviation after each experiment repeated 3 times or more independently. DMSO, dimethylsulfoxide; NAC, N-acetylcysteine; Rap, rapamycin.

이하, 하기 실시예를 통해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

< < 실시예Example 1 >  1> 오수유Sour milk 추출물 분리 및 단일성분의 화학구조 Extraction Separation and Chemical Composition of a Single Component

1. 오수유 추출물 및 단일성분 분리1. Sour oil extract and single component separation

오수유 9.0 kg을 MeOH (12ℓ)로 약 60 ℃에서 12 시간 환류 냉각하여 추출하고 감압 농축하여 MeOH 추출물 1.23 kg을 얻었다. 이 MeOH 추출물에 H2O 1.5 L을 가하고 진탕하여 현탁액으로 한 후, 동량의 n-헥산(n-Hexane), EtOAC, n-BuOH를 가하여 용매분획을 하여 n-헥산(n-Hexane) 분획 73.0 g, EtOAC 분획 308.68 g, n-BuOH 분획 198.89 g, 물층 630.62 g을 얻었다.9.0 kg of crude oil was refluxed with MeOH (12 L) at about 60 ° C for 12 hours and then concentrated under reduced pressure to obtain 1.23 kg of MeOH extract. After this suspension MeOH extract the H 2 O 1.5 L was added to the shaking, the same amount of n - hexane was added to (n -Hexane), EtOAC, n -BuOH and the solvent fraction n - hexane (n -Hexane) 73.0 g of fraction, 308.68 g of EtOAC fraction, 198.89 g of n- BuOH fraction and 630.62 g of water layer were obtained.

70 × 6 cm 사이즈의 Silica-gel (230-400mesh) column을 만든 후, EtOAC 분획 26.4 g을 로딩하고, 이동상 용매로 기울기 용리 [n-Hexane: EtOAC]하여 TLC로 확인하였으며 22개의 서브 분획(sub fraction) (EOE1~22)을 얻었다. fraction EOE-9 (1.2 g), fraction EOE-10 (110.0 mg), fraction EOE-14 (35.0 mg), fraction EOE-15 (48.0 mg)을 재결정하는 방법으로 EO-1 (890 mg), EO-2 (26.0 mg), EO-3 (10.0 mg), EO-4 (31.0 mg)얻었다. fraction EOE-18 과 fraction EOE-16을 60 × 2.0 cm 사이즈의 RP-18 column 에 각각 로딩하고, 이동상 용매로 기울기 용리 [MeOH : H2O]하여 EO-5 (12.0 mg), EO-6 (12.0 mg), EO-7 (20.0 mg)을 얻었다.A 70 × 6 cm size Silica-gel (230-400 mesh) column was loaded, loaded with 26.4 g of EtOAC fraction and eluted with mobile phase solvent [ n- Hexane: EtOAC] fraction (EOE1 ~ 22). EO-1 (890 mg), EOE-15 (48.0 mg), and fraction EOE-9 were obtained by recrystallization of fraction EOE-9 (1.2 g), fraction EOE-10 (110.0 mg), fraction EOE- 2 (26.0 mg), EO-3 (10.0 mg) and EO-4 (31.0 mg). EOE-18 and fraction EOE-16 were loaded on a RP-18 column (size 60 × 2.0 cm) and eluted with mobile phase solvent [MeOH: H 2 O] 12.0 mg) and EO-7 (20.0 mg).

80 × 10 cm 사이즈의 diaion column을 만든 후, H2O 분획 130.0 g을 로딩하고, 이동상 용매로 기울기 용리 [H2O:MeOH]하여 TLC로 확인하였으며 5개의 서브 분획(sub fraction) (EOW1~5)을 얻었다. fraction EOE-4 (2 g)을 75 × 4.0 cm 사이즈의 RP-18 column 에 로딩하고, 이동상 용매로 기울기 용리 [MeOH : H2O]하여 15개의 서브 분획(sub fraction) (EOW4-1~15)을 얻었다. fraction EOE-4-8 (200.0 mg)을 60 × 2.0 cm 사이즈의 RP-18 column 에 로딩하고, 이동상 용매로 기울기 용리 [MeOH : H2O]하여 EO-8 (10.0 mg)을 얻었다 (도 1). 분리된 8종의 단일 물질들은 MS, NMR (1H, 13C, DEPT, 1H-1H COSY, HMQC, HMBC) 등 분광학적 분석방법을 이용하여 화합물의 화학구조를 결정하고 문헌과 비교하여 동정하였다.
A diaion column with an 80 × 10 cm size was loaded, and 130.0 g of H 2 O fraction was loaded. The gradient elution [H 2 O: MeOH] was confirmed by TLC using mobile phase solvent. Five subfractions (EOW1 ~ 5). Fraction EOE-4 (2 g) was loaded on a 75 x 4.0 cm RP-18 column and gradient eluted with mobile phase solvent [MeOH: H 2 O] to give 15 subfractions (EOW4-1-15 ). EO-8 (10.0 mg) was obtained by loading fraction EOE-4-8 (200.0 mg) onto a RP-18 column of 60 × 2.0 cm size and using a mobile phase solvent [MeOH: H 2 O] ). The chemical structure of the compounds was determined by using spectroscopic methods such as MS, NMR ( 1 H, 13 C, DEPT, 1 H- 1 H COZY, HMQC and HMBC) Respectively.

2. 분리된 물질의 물리화학적 특성2. Physico-chemical properties of separated materials

오수유의 EtOAC 분획과 물층에서 분리한 8 종의 화합물은 기지물질로서 MS, NMR (1H, 13C, DEPT, 1H-1H COSY, HMQC, HMBC) 등 각종 분광학적 분석방법으로 분석하고 문헌과 비교하여 EO-1 [루타에카르핀(rutaecarpine)], EO-2 [에보디아민(evodiamine)], EO-3 [7-하이드록시루타에카르핀(7-hydroxyrutaecarpine)], EO-4 [우추유아미드 1(wuchuyuamide 1)], EO-5 [1-메틸-2-[(Z)-9-펜타데세닐]-4(1H)-퀴놀론)(1-Methyl-2-[(Z)-9-pentadecenyl]-4(1H)-quinolone)], EO-6 [에보카르핀(evocarpine)], EO-7 [디하이드로에보카르핀(dihydroevocarpine)], EO-8 [리모시트린 3-루티노시드(limocitrin 3-O-rutinoside)]로 확인하였다 (도 2).
Eight kinds of compounds separated from EtOAC fraction and water layer of oolong oil were analyzed by various spectroscopic methods such as MS and NMR ( 1 H, 13 C, DEPT, 1 H- 1 H COZY, HMQC, and HMBC) EO-1 [rutaecarpine], EO-2 [evodiamine], EO-3 [7-hydroxyrutaecarpine], EO-4 [ (1-Methyl-2 - [(Z) -9-pentadecenyl] -4 (1H) -quinolone), EO- EO-7 [dihydroevocarpine], EO-8 [remorse citrin-3-yl] -9-pentadecenyl] -4 (1H) -quinolone)], EO-6 [evocarpine] Limocitrin 3-O-rutinoside] (Fig. 2).

EO -1 ( Rutaecarpine ): Pale yellow amorphous solid; 1H-NMR (CDCI3, 250 MH z) 9.80 (1H, s, NH), 8.30 (1H, dd, J= 8.0,1.2 Hz, H-19), 7.77 (1H, ddd, J= 8.2, 7.0, 1.2 Hz, H-17), 7.70 (1H, brd, J= 8.0 Hz, H-9), 7.64 (1H, brd, J= 8.2 Hz, H-16), 7.42 (1H, brd, J = 8.2 Hz, H-12), 7.32 (1H, brdd, J= 8.0, 7.0 Hz, H-18), 7.27 (1H, brdd, J = 8.2, 7.0 Hz, H-11), 7.15 (1H, brdd, J = 8.0, 7.0 Hz, H-10), 4.56 (2H, t, J = 7.0 Hz, H-5), 3.22 (2H, t, J = 7.0 Hz, H-6); 13C-NMR (CDCI3, 62.9 MHz) 161.5 (C-5), 147.2 (C-la), 145.3 (C-14a), 138.5 (C-12a), 134.4 (C-2), 127.3 (C-4), 127.2 (C-3a), 126.9 (C-1), 126.2 (C-3), 125.6(C-9a), 125.4 (C ), 112.2 (C-12), 41.2 (C-7), 19.6 (C-8); Positive FAB-MS m/z 288 [M+H]+. EO- 1 ( Rutaecarpine ): Pale yellow amorphous solid; 1 H-NMR (CDCI 3, 250 MH z) 9.80 (1H, s, NH), 8.30 (1H, dd, J = 8.0,1.2 Hz, H-19), 7.77 (1H, ddd, J = 8.2, 7.0 , 1.2 Hz, H-17), 7.70 (1H, brd, J = 8.0 Hz, H-9), 7.64 (1H, brd, J = 8.2 Hz, H- 8.2, 7.0 Hz, H-11), 7.15 (1H, brdd, J), 7.27 (1H, brdd, J = = 8.0, 7.0 Hz, H-10), 4.56 (2H, t, J = 7.0 Hz, H-5), 3.22 (2H, t, J = 7.0 Hz, H-6); 13 C-NMR (CDCl 3 , 62.9 MHz) 161.5 (C-5), 147.2 (C-la), 145.3 4), 127.2 (C-3a), 126.9 (C-1), 126.2 (C-3), 125.6 19.6 (C-8); Positive FAB-MS m / z 288 [M + H] &lt; + &gt;.

EO -2 ( Evodiamine ): Pale yellow plates; 1H-NMR (CDCI3, 250 MHz) 2.48 (NCH3,s), 2.94 (2H, m), 3.25 (1H, m), 4.87 (1H, m), 7.19 (4H, m), 7.43 (2H, m), 7.58 (1H, d, J = 7.8 Hz), 8.10 (1H,dd, J = 1.4, 7.8 Hz), 8.32 (1H, s); 13C-NMR (CDCI3, 62.9 MHz) 164.8 (C-21), 150.7 (C-15), 136.7 (C-13), 133.0 (C-17), 129.0 (C-9), 128.2 (C-2), 126.2 (C-8), 124.0 (C-10), 123.7 (C-20), 123.0 (C-11), 122.3 (C-16), 120.0 (C-18), 118.9 (C-19), 113.6 (C-7), 111.3 (C-12), 68.8 (C-3), 39.5 (C-5), 37.2 (N-CH3), 20.1(C-6); Positive FAB-MS m/z 304 [M+H]+. EO- 2 ( Evodiamine ): Pale yellow plates; 1 H-NMR (CDCI 3, 250 MHz) 2.48 (NCH 3, s), 2.94 (2H, m), 3.25 (1H, m), 4.87 (1H, m), 7.19 (4H, m), 7.43 (2H , 7.58 (1H, d, J = 7.8 Hz), 8.10 (1H, dd, J = 1.4, 7.8 Hz), 8.32 (1H, s); 13 C-NMR (CDCl 3 , 62.9 MHz) 164.8 (C-21), 150.7 (C-15), 136.7 (C-12), 126.0 (C-8), 124.0 (C-10), 123.7 ), 113.6 (C-7) , 111.3 (C-12), 68.8 (C-3), 39.5 (C-5), 37.2 (N-CH 3), 20.1 (C-6); Positive FAB-MS m / z 304 [M + H] &lt; + &gt;.

EO -3 (7- Hydroxyrutaecarpine ): Pale yellow powder (10.0 mg); 1H-NMR (pyridine-d 5 , 250 MHz) 13.3 (1H, s, 1-NH), 9.3 (1H, br, 5-OH), 8.4 (1H, dd, J = 8, 1.5 Hz, H-19), 7.7 (1H, ddd, J= 8, 7.5, 1.5 Hz, H-17), 7.6 (1H, d, J= 7.5 Hz, H-9), 7.6 (1H, d, J = 8 Hz, H-16), 7.5 (1H, dd, J = 5.5, 1.5 Hz, H-5), 7.4 (1H, d, J = 8.5 Hz, H-12), 7.4 (1H, dd, J = 8, 7.5 Hz, H-18), 7.3 (1H, ddd, J = 8.5, 7, 1 Hz, H-11),7.2 (1H, ddd, J= 8, 7, 1 Hz, H-10), 3.77 (1H, dd, J= 16.8, 1.5 Hz, H-6eq), 3.4 (1H, dd, J= 16.8, 5.5 Hz, H-6ax); 13C-NMR (pyridine-d 5 , 62.9 MHz) 161.6 (C-21), 148.6 (C-15), 145.1 (C-3), 139.9 (C-13), 134.6 (C-17), 127.7 (C-19), 127.5 (C-16), 127.2 (C-18), 127.1 (C-2), 126.0 (C-11),125.2 (C-8), 122.0 (C-20), 120.4 (C-10), 120.3 (C-9), 115.5 (C-7), 112.8 (C-12), 74.6 (C-5), 28.5 (C-6); Positive FAB-MS m/z 304 [M+H] +. EO- 3 (7- Hydroxyrutaecarpine ): Pale yellow powder (10.0 mg); 1 H-NMR (pyridine- d 5 , 250 MHz) 13.3 (1H, s, 1-NH), 9.3 D, J = 8 Hz, 1H), 7.7 (1H, ddd, J = (1H, d, J = 8.5 Hz, H-16), 7.5 (1H, dd, J = 5.5, 1.5 Hz, H- Hz, H-18), 7.3 (1H, ddd, J = 8.5,7,1 Hz, H-11), 7.2 (1H, ddd, J = , dd, J = 16.8, 1.5Hz, H-6eq), 3.4 (1H, dd, J = 16.8,5.5Hz, H-6ax); 13 C-NMR (pyridine- d 5 , 62.9 MHz) 161.6 (C-21), 148.6 (C-15), 145.1 (C-3), 139.9 (C-13), 134.6 (C-17), 127.7 ( (C-18), 127.0 (C-16), 127.2 (C-18), 127.1 -10), 120.3 (C-9), 115.5 (C-7), 112.8 (C-12), 74.6 (C-5), 28.5 (C-6); Positive FAB-MS m / z 304 [M + H] &lt; + &gt;.

EO -4 ( Wuchuyuamide 1): Amorphous powder; 1H-NMR (pyndlne-d 5 , 250 MHz) 11.66 (1H, s, 1-NH), 8.26 (1H, dd, J= 6.4, 1.6 Hz, H-19), 7.77 (1H, d, J = 7.2 Hz, H-9), 7.50 (1H, m, H-17), 7.211 (1H, m, H-11), 7.15 (1H, t, J= 7.6 Hz, H-18), 7.07 (1H, d, J= 8.4 Hz, H-16), 7.02 (1H, t, J= 7.4 Hz, H-10), 6.99 (1H, d, J = 8.0 Hz, H-12), 5.05 (1H, br., 7-OH), 4.84, 4.76 (each 1H, m, H-5), 3.36 (3H, s, H-22), 2.90, 2.82 (each 1H, m, H-6); 13C-NMR (pyridine-d 5 , 62.9 MHz) 180.8 (C-2), 161.6 (C-21), 150.8 (C-3), 142.9 (C-13), 140.8 (C-15), 134.7 (C-17), 133.3 (C-8), 129.4(C-11), 128.5 (C-19), 124.8 (C-9), 122.6 (C-18), 122.2(C-10), 115.9 (C-20), 114.1 (C-16), 110.2 (C-12), 75.7(C-7), 37.5 (C-5), 36.3 (C-6), 30.4 (C-22). Positive FAB-MS m/z 352 [M+H] +. EO- 4 ( Wuchuyuamide 1): Amorphous powder; 1 H-NMR (pyndlne- d 5 , 250 MHz) 11.66 (1H, s, 1-NH), 8.26 (1H, dd, J = 6.4, 1.6 Hz, H-19), 7.77 (1H, d, J = (1H, m, H-11), 7.15 (1H, t, J = 7.6 Hz, H-18), 7.07 d, J = 8.4 Hz, H-16), 7.02 (1H, t, J = 7.4 Hz, H-10), 6.99 (1H, d, J = 8.0 Hz, H-12) , 7-OH), 4.84, 4.76 (each 1H, m, H-5), 3.36 (3H, s, H-22), 2.90, 2.82 (each 1H, m, H-6); 13 C-NMR (pyridine- d 5 , 62.9 MHz) 180.8 (C-2), 161.6 (C-21), 150.8 (C-3), 142.9 (C-13), 140.8 (C-15), 134.7 ( C-17), 133.3 (C-8), 129.4 (C-11), 128.5 (C-19), 124.8 -20), 114.1 (C-16), 110.2 (C-12), 75.7 (C-7), 37.5 (C-5), 36.3 (C-6), 30.4 (C-22). Positive FAB-MS m / z 352 [M + H] &lt; + &gt;.

EO -5 (1- Methyl -2-[(Z)-9- pentadecenyl ]-4(1H)- quinolone ): Colorless oil; 1H-NMR (CDCI3, 250 MHz) 8.5 (1 H, dd, J =1.5 Hz, 8.0 Hz, H-5), 7.7 (1H, m, H-7), 7.6 (1H, d, J= 8.0 Hz, H-8), 7.4 (1H, t, J = 8.0 Hz, H-6), 6.4 (1H, s, H-3), 5.3 (2H, m, olefinic proton), 3.8 (3H, s, N-Me), 2.8 (2H, t, J = 7.6 Hz, H-I'), 2.0 (4H, m, allyl proton), 1.7 (2H, m, H-2'), 1.25-1.47 (16H, m), 0.9 (3H, J = 7.0 Hz, H-15'); 13C-NMR (CDCI3, 62.9 MHz) 177.5 (C-4), 154.7 (C-2), 141.7 (C-8a). 131.9 (C-7), 129.9 (C-10), 129.5 (C-9), 126.3 (C-5), 126.2 (C-4a), 123.1 (C-6), 115.3 (C-8), 110.8 (C-3), 34.6 (C-1'), 34.0 (N-CH3), 31.8 (C-13'), 29.1 (C-7'), 28.9 (C-6'), 28.5 (C-4'), 27.0 (C-5'), 26.9 (C-11'), 26.8 (C-12'), 22.5 (C-2',3',6',8'), 22.2 (C-14'), 14.0 (C-15'). Positive FABMS m/z 367 [M+H]+. EO -5 (1- Methyl- 2 - [(Z) -9- pentadecenyl ] -4 (1H) -quinolone ): Colorless oil; 1 H-NMR (CDCI 3, 250 MHz) 8.5 (1 H, dd, J = 1.5 Hz, 8.0 Hz, H-5), 7.7 (1H, m, H-7), 7.6 (1H, d, J = 8.0 (1H, s, H-3), 5.3 (2H, m, olefinic proton), 3.8 (3H, s, (2H, m, H-2 '), 1.25-1.47 (16H, m, H- , m), 0.9 (3H, J = 7.0 Hz, H-15 '); 13 C-NMR (CDCl 3 , 62.9 MHz) 177.5 (C-4), 154.7 (C-2), 141.7 (C-8a). (C-10), 129.9 (C-9), 126.3 (C-5), 126.2 (C-3), 34.6 ( C-1 '), 34.0 (N-CH 3), 31.8 (C-13'), 29.1 (C-7 '), 28.9 (C-6'), 28.5 (C- 2 ', 3', 6 ', 8'), 22.2 (C-12 '), 22.5 '), 14.0 (C-15'). Positive FABMS m / z 367 [M + H] &lt; + &gt;.

EO -6 (Evocarpine): Colorless oil; 1H-NMR (CDCI3, 250 MHz) 8.28 (1H, dd, J = 1.5, 8.0 Hz, H-5), 7.51 (1H, m, H-7), 7.33 (1H, d, J = 8.0 Hz, H-8), 7.21 (1H, t, J = 8.0 Hz, H-6), 6.03 (1H, s, H-3), 5.20 (2H, m, olefinic proton), 3.56 (3H, s, N-Me), 2.52 (2H, t, J = 7.6 Hz, H-I'), 1.92 (4H, m, allyl proton), 1.49 (2H, m, H-2'), 1.31-1.21 (12H, m), 0.82 (3H, J = 7.0 Hz, H-15'); 13C-NMR (CDCI3, 62.9 MHz) 177.5 (C-4), 154.5 (C-2), 141.8 (C-8a), 131.7 (C-7), 129.7 (C-8'), 129.3 (C-9'), 126.1 (C-5), 126.1 (C-4a), 122.9 (C-6), 115.2 (C-8), 110.6 (C-3), 34.4 (C-1'), 33.9 (N-CH3), 31.7 (C-11'), 29.4 (C-2'), 29.1 (C-3'), 28.9 (C-4'), 28.6 (C-5'), 28.1 (C-6'), 26.9 (C-7'), 26.6 (C-10'), 22.1 (C-12'), 13.8 (C-13'); Positive FAB-MS m/z 340 [M+H] +. EO- 6 ( Evocarpine ): Colorless oil; 1 H-NMR (CDCI 3, 250 MHz) 8.28 (1H, dd, J = 1.5, 8.0 Hz, H-5), 7.51 (1H, m, H-7), 7.33 (1H, d, J = 8.0 Hz (2H, m, olefinic proton), 3.56 (3H, s, N-H), 7.21 (1H, t, J = 8.0Hz, H-6), 6.03 (2H, m, H-2 '), 1.31-1.21 (12H, m), 2.52 (2H, t, J = 7.6 Hz, ), 0.82 (3H, J = 7.0 Hz, H-15 '); 13 C-NMR (CDCI 3, 62.9 MHz) 177.5 (C-4), 154.5 (C-2), 141.8 (C-8a), 131.7 (C-7), 129.7 (C-8 '), 129.3 (C (C-5), 126.1 (C-4a), 122.9 (C-6), 115.2 (C-8), 110.6 N-CH 3), 31.7 ( C-11 '), 29.4 (C-2'), 29.1 (C-3 '), 28.9 (C-4'), 28.6 (C-5 '), 28.1 (C- 6 '), 26.9 (C-7'), 26.6 (C-10 '), 22.1 (C-12'), 13.8 (C-13 '); Positive FAB-MS m / z 340 [M + H] &lt; + &gt;.

EO -7 (Dihydroevocarpine): Colorless powder; 1H-NMR (CDCI3, 250 MHz) 8.38 (1H, dd, J= 1.5, 8.0 Hz, H-5), 7.60 (1H, m, H-7), 7.43 (1H, d, J = 8.0 Hz, H-8), 7.30 (1H, t, J = 8.0 Hz, H-6), 6.15 (1H, s, H-3), 3.67 (3H, s, N-Me), 2.63 (2H, t, J = 7.6 Hz, H-I'), 1.60 (2H, m, H-12'), 1.21-1.36 (20H, m), 0.83 (3H, J = 7.0 Hz, H-13'); 13C-NMR (CDCI3, 62.9 MHz) 177.6 (C-4), 154.7 (C-2), 141.8 (C-8a), 131.9 (C-7), 126.4 (C-5), 126.4 (C-4'), 123.1 (C-6), 115.3 (C-8), 110.9 (C-3), 34.6 (C-1'), 34.0 (N-CH3), 31.8 (C-11'), 29.5-28.8 (C-3'~10'), 28.4 (C-2'), 22.6 (C-12'), 14.0 (C-13'); Positive FAB-MS m/z 342[M+H] +. EO- 7 ( Dihydroevocarpine ): Colorless powder; 1 H-NMR (CDCI 3, 250 MHz) 8.38 (1H, dd, J = 1.5, 8.0 Hz, H-5), 7.60 (1H, m, H-7), 7.43 (1H, d, J = 8.0 Hz H-8), 7.30 (1H, t, J = 8.0 Hz, H-6), 6.15 (1H, s, H- J = 7.6 Hz, H-1 '), 1.60 (2H, m, H-12'), 1.21-1.36 (20H, m), 0.83 (3H, J = 7.0 Hz, H-13 '); 13 C-NMR (CDCI 3, 62.9 MHz) 177.6 (C-4), 154.7 (C-2), 141.8 (C-8a), 131.9 (C-7), 126.4 (C-5), 126.4 (C- 4 '), 123.1 (C- 6), 115.3 (C-8), 110.9 (C-3), 34.6 (C-1'), 34.0 (N-CH 3), 31.8 (C-11 '), 29.5 -28.8 (C-3 'to 10'), 28.4 (C-2 '), 22.6 (C-12'), 14.0 (C-13 '); Positive FAB-MS m / z 342 [M + H] &lt; + &gt;.

EO -8 ( Limocitrin 3-O- rutinoside ): Yellow solid; 1H-NMR (CD3OD, 250 MHz) 8.0 (1H, d, J= 2.5 Hz, H-2'), 7.8 (1H, dd, J = 2.5, 8.5 Hz, H-6'), 7.7 (1H, d, J= 8.5 Hz, H-5'), 6.3 (1H, s, H-6), 5.3 (1H, dd, J= 7 Hz, H-glu-l"), 4.5 (1H, s, H-rham-l'"), 4.0 (3H, s, 3'-OCH3), 3.9 (3H, s, 8-OCH3), 1.1 (3H, d, J = 6.5 Hz, rham-CH3); 13C-NMR(CD3OD, 62.9 MHz) 179.5 (C-4), 158.6 (C-7, 2), 157.9 (C-5), 151.0 (C-4'), 150.4 (C-9), 148.4 (C-3'), 135.5 (C-3), 129.1 (C-8), 124.0 (C-6'), 123.0 (C-1'), 116.2 (C-5'), 114.3 (C-2'), 105.6 (C-10), 104.4 (C-glu-l"), 102.6 (C-rham-l"'), 100.1 (C-6), 76.6 (C-3"), 76.2 (C-5"), 74.5 (C-2"), 72.0 (C-4'"), 70.8 (C-3'"), 70.6 (C-2'"), 70.3 (C-4"), 68.5 (C-5'"), 67.1 (C-6"), 62.1 (8-OCH3), 56.7 (3'-OCH3), 17.9 (C-6'"); Positive FAB-MS m/z 654.5 [M+H]+.
EO- 8 ( Limocitrin 3-O- rutinoside ): Yellow solid; 1 H-NMR (CD 3 OD , 250 MHz) 8.0 (1H, d, J = 2.5 Hz, H-2 '), 7.8 (1H, dd, J = 2.5, 8.5 Hz, H-6'), 7.7 ( 1H, d, J = 8.5 Hz, H-5 '), 6.3 (1H, s, H-6), 5.3 (1H, dd, J = 7 Hz, H- , H-rham-l '" ), 4.0 (3H, s, 3'-OCH 3), 3.9 (3H, s, 8-OCH 3), 1.1 (3H, d, J = 6.5 Hz, rham-CH 3 ); 13 C-NMR (CD 3 OD , 62.9 MHz) 179.5 (C-4), 158.6 (C-7, 2), 157.9 (C-5), 151.0 (C-4 '), 150.4 (C-9), C-3 '), 129.1 (C-8), 124.0 (C-6'), 123.0 (C-1 '), 116.2 2 '), 105.6 (C-10), 104.4 (C-glu-1''), 102.6 (C-2 ''), 72.0 (C-4 ''), 70.8 (C-3 ''), 70.6 C-5 '"), 67.1 (C-6"), 62.1 (8-OCH 3), 56.7 (3'-OCH 3), 17.9 (C-6'"); Positive FAB-MS m / z 654.5 [M + H] &lt; + &gt;.

< < 실시예Example 2 >  2> 오수유Sour milk 추출물 및 단일 성분의 세포 독성 및 세포 노화 저해 효능 조사 Investigation of cytotoxicity and inhibition of cellular senescence of extracts and single components

1. 실험 재료1. Experimental material

사람 섬유아세포와 제대정맥혈관내피세포는 Lonza (Walkersville, MD, 미국)에서 구입하였다. 둘베코스-변형 이글스 배지(Dubeccos-Modified Eagle's medium; DMEM), 우태아혈청, 항생제 용액 페니실린-스트렙토마이신(Penicillin-Streptomycin)은 WelGene (Daegu, Korea), 내피세포성장 배양액-2(endothelial cell growth medium-2, EGM-2)는 Lonza (Walkersvill, MD, 미국)에서 구입하였다. p53에 대한 항체는 SantaCruz Biotech, Inc. (SantaCruz, CA, 미국)에서 구입하였으며, p21과 pS6에 대한 항체는 Cell Signaling Technology Inc.(Beverly, MA, 미국)에서 구입하였다. GAPDH 항체는 한국생명공학연구원 권기선 박사로부터 분양받았다. 아드리아마이신은 일동제약주식회사 제품을 사용하였다.
Human fibroblasts and umbilical vein endothelial cells were purchased from Lonza (Walkersville, MD, USA). (Penicillin-Streptomycin, WelGene (Daegu, Korea), Endothelial Cell Growth Medium-2 (DMEM), Dulbecco's Modified Eagle's Medium -2, EGM-2) were purchased from Lonza (Walkersville, MD, USA). Antibodies to p53 were obtained from Santa Cruz Biotech, Inc. (SantaCruz, CA, USA), and antibodies against p21 and pS6 were purchased from Cell Signaling Technology Inc. (Beverly, MA, USA). The GAPDH antibody was obtained from Dr. Kwon Sun - sun of Korea Biotechnology Research Institute. Adriamycin was manufactured by Ildong Pharmaceutical Co., Ltd.

2. 세포 배양2. Cell culture

사람 섬유아세포는 10% 우태아혈청과 1% 항생제 [페니실린(penicillin) 10,000unit/ml, 스트렙토마이신(stretomycin) 10,000ug/ml)가 포함된 DMEM 배양액을 이용하여 100 mm 배양접시에 세포를 1 × 105개로 분주한 후, 37℃, 5% 이산화탄소 배양기에서 배양하였다. 배양접시의 바닥에 세포가 80-90% 정도 자라면, 트립신-EDTA 용액 (2.5X) 을 넣어 세포를 분리한 후, 계대 배양하였다. 제대혈관내피세포는 EGM-2를 배양액으로 사용하여 사람 섬유아세포와 같은 방법으로 세포를 배양하였다. 세포를 계대할 때마다 세포 수를 측정하여 세포가 몇 회 분열하였는지 분열 횟수를 조사하였다. 세포의 분열 횟수 (population doubling, PD)는 PD= log2F/log2I (F=마지막 세포수, I=처음 세포수)의 식을 이용하여 계산하였다. 실험에 사용한 세포들은 분열횟수가 사람 섬유아세포의 경우 PD<35 또는 PD>75, 제대혈관내피세포는 PD<30 또는 PD>50회의 것을 사용하였다.
Human fibroblasts were cultured in DMEM medium supplemented with 10% fetal bovine serum and 1% antibiotic (penicillin 10,000 цm / ml, streomycin 10,000 ug / ml) 10 5 , and then cultured in a 5% carbon dioxide incubator at 37 ° C. If the cells were grown at the bottom of the culture dish by 80-90%, trypsin-EDTA solution (2.5X) was added to separate the cells, followed by subculture. Cells in umbilical cord blood were cultured in the same manner as human fibroblasts using EGM-2 as a culture medium. The number of cells was measured every time the cells were transferred, and the number of times of division of the cells was examined. The population doubling (PD) was calculated using the equation: PD = log 2 F / log 2 I (F = final cell number, I = initial cell number). The cells used for the experiment were PD <35 or PD> 75 in the case of human fibroblasts, and PD <30 or PD> 50 in the cord blood.

3. 아드리아마이신 처리에 의한 세포노화 유도3. Induction of cell aging by treatment with adriamycin

직경 100mm 배양접시에 사람 섬유아세포, 제대정맥혈관내피세포를 1.5x105개 분주하였다. 3일간 37℃, 5% 이산화탄소배양기에서 배양한 후, 세포 배양액을 제거하였다. 세포를 항생제가 포함된 DMEM 배양액으로 2회 세척하였다. 세포에 500 nM 아드리아마이신을 4시간 처리한 후, 항생제가 포함된 DMEM 배양액으로 3회 세척하였다. 사람 섬유아세포는 10% 우태아혈청과 1% 항생제가 포함된 DMEM 배양액으로, 사람 제대정맥혈관내피세포는 EGM-2 배양액으로 배양하였다. 4일 후, 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성 염색으로 세포노화가 유도됨을 확인하였다.
Human fibroblasts and umbilical vein endothelial cells were plated at a density of 1.5x10 5 cells in a 100 mm diameter culture dish. After culturing for 3 days at 37 ° C in a 5% carbon dioxide incubator, the cell culture medium was removed. Cells were washed twice with DMEM containing antibiotics. Cells were treated with 500 nM adriamycin for 4 hours and then washed three times with DMEM medium containing antibiotics. Human fibroblasts were cultured in DMEM containing 10% fetal bovine serum and 1% antibiotic, and human umbilical vein endothelial cells were cultured in EGM-2. After 4 days, it was confirmed that senescence-associated β-galactosidase (SA-β-gal) staining resulted in cell senescence.

4. 3-(4, 5-디메틸티아졸-2일)-2, 5-디페닐테트라졸리움 브로마이드(3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide; MTT) 측정 방법4. Measurement of 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT)

오수유 추출물과 화합물이 세포의 성장속도에 미치는 영향은 MTT법으로 조사하였다. 0.1% MTT 용액을 96 웰(well) 배양용기의 각 웰(well) 당 50 ul씩 넣고 3시간 동안 37℃, 5% 이산화탄소배양기에서 반응시켰다. 배양액과 MTT 용액을 제거 한 후, 디메틸설폭사이드(dimethyl sulfoxide) 100 ul를 첨가하여 형성된 결정을 녹였다. 마이크로플레이트 리더(microplate reader)를 이용하여 550 nm에서 흡광도를 측정하여 세포의 성장속도를 측정하였다.
The effects of the extracts and compounds on the growth rate of the cells were investigated by MTT method. 0.1% MTT solution was added to each well of a 96-well culture vessel in an amount of 50 μl per well and reacted in a 5% carbon dioxide incubator at 37 ° C for 3 hours. After removing the culture solution and MTT solution, 100 μl of dimethyl sulfoxide was added to dissolve the crystals formed. The cell growth rate was measured by measuring the absorbance at 550 nm using a microplate reader.

5. 아드리아마이신에 의한 세포노화에서 오수유 추출물 및 단일성분의 효과 조사5. Investigation of the effects of oolong oil extract and single component in cell senescence by adriamycin

아드리아마이신에 의해 노화된 세포에 오수유 추출물과 이 추출물로부터 분리된 단일 화합물들이 효과가 있는지 조사하였다. 아드리아마이신을 4시간 처리한 세포들을 트립신-EDTA로 배양접시에서 분리하여 96well, 12well, 24well 세포배양용기로 분주하였다. 96well 세포배양용기에 각 well당 섬유아세포는 500개, 제대혈관내피세포는 1,000개씩 분주하였다. 24well에는 섬유아세포는 3000개/well, 제대혈관내피세포는 5000개/well로 분주하였으며, 12well은 섬유아세포 5000개/well, 재대혈관내피세포 7000개/well을 분주하였다. 하루 동안 37℃, 5% 이산화탄소배양기에서 배양하였다. 96well에는 각 well에 10% 우태아혈청과 1% 항생제가 포함된 DMEM 배양액과 EGM-2배양액을 100ul씩 더 넣어 주고 12well과 24well은 배양액을 교환한 후, 추출물은 100ug/ml, 단일 화합물은 10 ug/ml로 처리하였다. 음성 대조군으로 디메틸설폭사이드(dimethyl sulfoxide)를, 양성 대조군으로 N-아세틸시스테인(N-acetylcysteine) 5mM과 라파마이신(rapamycin) 500nM을 첨가하였다. 3일 동안 37℃, 5% 이산화탄소배양기에서 배양한 후, 세포의 성장 정도는 MTT법으로, 세포노화 정도는 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성 염색법으로 조사하였다.
We investigated the effects of osmotic oil extracts and single compounds isolated from this extract on the cells aged by adriamycin. Cells treated with adriamycin for 4 hours were separated from the culture dish with trypsin-EDTA and dispensed into 96-well, 12-well, 24-well cell culture vessels. In a 96-well cell culture container, 500 fibroblasts and 1,000 cells were placed in each well. 24 wells were plated at 3000 cells / well, cord blood cells were plated at 5000 cells / well and 12 wells were plated at 5000 cells / well and 7000 cells / well of vascular endothelial cells. And cultured in a 5% carbon dioxide incubator at 37 ° C for one day. In 96 wells, 100 μl of DMEM culture medium containing 10% fetal bovine serum and 1% antibiotic and 100 μl of EGM-2 culture medium were added to each well. After 12 and 24-well cultures were exchanged, &lt; / RTI &gt; ug / ml. Dimethylsulfoxide was used as a negative control, and 5 mM N-acetylcysteine and 500 nM rapamycin were added as a positive control. After 3 days of incubation at 37 ° C in a 5% carbon dioxide incubator, the degree of cell growth was measured by MTT method and the degree of cell senescence was measured by senescence-associated β-galactosidase (SA-β-gal) Staining method.

6. 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성 염색6. senescence-associated β-galactosidase (SA-β-gal) active staining

세포노화에 대한 효과는 SA-β-gal 활성 염색으로 조사하였다. 24 well 또는 12 well 배양용기에 단일 화합물을 3일 동안 처리한 후, 세포를 인산완충액으로 세척하였다. 3.7% 파라포름알데히드(paraformaldehyde)로 세포를 고정한 후, 고정액을 제거하고 다시 인산완충액으로 세척하였다. SA-β-gal 염색 용액 [40 mM 시트릭산(citric acid)/포스페이트(phosphate); pH 5.8, 5 mM 포타슘 페로시아나이드(potassium ferrocyanide), 5 mM 포타슘 페리시아나이드(potassium ferricyanide), 150 mM NaCl, 2 mM MgCl2, X-gal 1 mg/ml]을 24 well 배양용기에는 각 well 당 250 ul, 12 well 배양용기에는 각 well 당 500ul를 넣어 주었다. 은박지로 싸서 37℃에서 17시간 동안 반응시켰다. 인산완충용액(PBS)으로 2번 세척한 후, 1% 에오진 용액으로 1분간 염색하였다. 인산완충용액으로 2회 세척 한 후, 광학현미경으로 파란색으로 염색된 세포를 관찰하였다. SA-β-gal 활성 정도는 총 50~100개의 세포 중에서 세포질에 파란색으로 염색된 세포 수를 측정하여 백분율 (%)로 표시하였다.
The effect on cell senescence was examined by SA-β-gal active staining. After 3 days of treatment with a single compound in a 24 well or 12 well culture vessel, the cells were washed with phosphate buffer. The cells were fixed with 3.7% paraformaldehyde, and the fixative solution was removed and washed again with phosphate buffer solution. SA-β-gal staining solution [40 mM citric acid / phosphate; pH 5.8, 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, 150 mM NaCl, 2 mM MgCl 2 , X-gal 1 mg / ml] was added to each well 250 ul per well and 500 ul per well in a 12 well culture vessel. Wrapped in silver foil and reacted at 37 캜 for 17 hours. After washing twice with phosphate buffered saline (PBS), the cells were stained with 1% ezine solution for 1 minute. After washing twice with phosphate buffer, blue-stained cells were observed under an optical microscope. The degree of SA-β-gal activity was expressed in percentage (%) by measuring the number of cells stained blue in the cytoplasm among 50-100 cells in total.

7. 세포 단백질 추출7. Cell protein extraction

각 세포를 60 mm 배양접시에 1x105개로 분주한 후 37℃, 5% 이산화탄소 배양기에서 배양하였다. 세포를 항생제가 포함된 DMEM 배양액으로 2회 세척한 후, 오수유 추출물과 단일성분을 농도 별로 1시간 전 처리하고, 아드리아마이신 500 nM을 4시간 동안 처리하였다. 배양액을 제거한 후, 인산완충액으로 2회 세척하였다. 배양접시 당 세포 용해 용액 [25mM Tris-HCl(pH 7.6), 150mM Nacl, 1% 트리톤(Tryton) X-100, 0.5% 소듐 데옥시콜레이트(sodium deoxycholate), 0.1% SDS, 1mM 소듐 바나데이트(Sodium vanadate), 5mM NaF, 프로테아제 억제제(protease inhibitor) 또는 1mM PMSF]을 50 ul를 넣었다. 세포 긁개를 이용하여 배양접시를 긁어 용액과 세포를 모은 후 미세원침관으로 옮겼다. 얼음에서 30분간 반응시키면서 매 10분마다 용액을 진탕하였다. 12,000 rpm에서 15분간 원침하여 상청액을 새 튜브로 옮겼다. 용액 속의 단백질 양은 우혈청알부민을 표준단백질로 사용하여 바이신코니닉산(bicinchoninic acid; BCA) 법 (Pierce Biotechnology Inc., Rockford IL, 미국)으로 정량하였다.
Each cell was placed in a 60 mm culture dish at 1 × 10 5 cells and cultured at 37 ° C. in a 5% CO 2 incubator. Cells were washed twice with DMEM medium containing antibiotics, and then treated with 500 μM adriamycin for 4 hours. After the culture medium was removed, the cells were washed twice with phosphate buffer. The cell lysate solution (25 mM Tris-HCl, pH 7.6), 150 mM Nacl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM sodium vanadate vanadate), 5 mM NaF, protease inhibitor or 1 mM PMSF]. The cells were scraped using a cell scraper to scrape the culture dish, and then transferred to a microneedle tube. The solution was shaken every 10 minutes while reacting on ice for 30 minutes. The supernatant was transferred to a new tube by spinning at 12,000 rpm for 15 minutes. The amount of protein in the solution was quantified by bicinchoninic acid (BCA) method (Pierce Biotechnology Inc., Rockford IL, USA) using bovine serum albumin as a standard protein.

8. 웨스턴 블랏(Western blot) 분석8. Western blot analysis

단백질 (30μg)을 10% SDS-폴리아크릴아미드(SDS-polyacrylamide) 겔에서 전기영동하여 분리하였다. 니트로셀룰로스 막으로 단백질을 이동시킨 후, 5% 전지분유가 포함된 트윈-20-트리스 완충된 식염수(Tween-20-Tris buffered saline; TTBS)에서 30분 동안 반응시켰다. 니트로셀룰로스 막을 p53 또는 p21에 대한 일차항체가 포함된 5% 전지분유-TTBS 용액에서 밤새도록 반응시켰다. TTBS 용액으로 10분씩 3회 세척 한 후, 겨자무 과산화효소(horseradish peroxidase)가 결합된 2차 항체와 1시간 30분 동안 반응시켰다. TTBS로 막을 7분씩 5회 세척 한 후, 향상된 화학발광(enhanced chemiluminescence) 용액을 이용하여 p53, 또는 p21의 양을 측정하였다. 각 항체와 반응한 특정 단백질의 양은 LAS-3000 영상장치 (Fujifilm Corp., Stanford, CT, 미국)을 사용하여 측정하였다. 각 실험에 동일한 양의 단백질이 사용되었음은 글리세르알데히드-3-포스페이트 디하이드로게나아제(glyceraldehyde-3-phosphate dehydrogease; GAPDH) 항체를 이용해 비교하였다.
Protein (30 μg) was separated by electrophoresis on a 10% SDS-polyacrylamide gel. Proteins were transferred to a nitrocellulose membrane and allowed to react for 30 minutes in Tween-20-Tris buffered saline (TTBS) containing 5% whole milk powder. Nitrocellulose membranes were reacted overnight in 5% whole milk powder-TTBS solution containing primary antibody against p53 or p21. After washing three times for 10 minutes with TTBS solution, the cells were reacted with a secondary antibody conjugated with horseradish peroxidase for 1 hour and 30 minutes. The membranes were washed five times with TTBS for 7 min and then the amount of p53 or p21 was measured using an enhanced chemiluminescence solution. The amount of specific protein reacted with each antibody was measured using a LAS-3000 imaging device (Fujifilm Corp., Stanford, CT, USA). The same amount of protein used in each experiment was compared using glyceraldehyde-3-phosphate dehydrogease (GAPDH) antibody.

9. 세포 내 활성산소(ROS) 농도 측정9. Measurement of intracellular reactive oxygen (ROS) concentration

세포를 100mm 배양접시에 1.5x105개로 분주한 후 37℃, 5% 이산화탄소 배양기에서 3일 동안 배양하였다. 세포를 항생제가 포함된 DMEM 배양액으로 2회 세척한 후, 아드리아마이신 500 nM을 4시간 동안 처리하였다. 인산완충액으로 한 번 세척하고, 트립신-EDTA 용액 (2.5%) 을 처리하여 세포를 분리한 후, 60mm 배양접시에 1 X 105개로 분주하였다. 하루 동안 37℃, 5% 이산화탄소배양기에서 배양하였다. 배양액을 갈아주고 단일화합물을 각각의 농도로 처리하였다. 음성 대조군으로 디메틸설폭사이드(dimethyl sulfoxide)를 양성 대조군으로 N-아세틸시스테인(N-acetylcysteine) 5mM과 라파마이신(rapamycin) 500nM을 첨가하였다. 3일 동안 37℃, 5% 이산화탄소배양기에서 배양한 후, 항생제가 포함된 DMEM 배양액으로 2회 세척하고 H2DCFDA 250uM을 20분 동안 처리하였다. 인산완충용액으로 1회 세척하고 트립신-EDTA 용액을 넣어 세포를 분리하여 미세원침관으로 옮겼다. 5,000×g 에서 1분간 원침하여 상청액을 버리고 2% 우태아혈청을 포함한 인산완충용액을 1ml 넣어 세포를 세척하고 다시 5,000×g에서 1분간 원침하였다. 세척과정을 2회 반복한 후, 1% 파라포름알데히드(paraformaldehyde)를 1ml 넣어 주었다. 세포 내 ROS 양은 BD FACS CantoⅡ 유세포 분류기 (BD Biosciences, San Jose, CA)를 사용하여 측정하였다.
Cells were plated at 1.5 × 10 5 in a 100 mm culture dish and cultured in a 5% carbon dioxide incubator at 37 ° C. for 3 days. Cells were washed twice with DMEM medium containing antibiotics and treated with 500 nM adriamycin for 4 hours. The cells were washed once with phosphate buffer and treated with trypsin-EDTA solution (2.5%), and then the cells were divided into 1 × 10 5 cells in a 60 mm culture dish. And cultured in a 5% carbon dioxide incubator at 37 ° C for one day. The culture medium was changed and a single compound was treated at each concentration. As a negative control, dimethyl sulfoxide was added as a positive control, 5 mM N-acetylcysteine and 500 nM rapamycin. After incubation for 3 days in a 5% CO 2 incubator at 37 ° C, the cells were washed twice with DMEM containing antibiotics and treated with 250 μM H 2 DCFDA for 20 minutes. The cells were washed once with phosphate buffered saline, and the trypsin-EDTA solution was added to the cells. The supernatant was discarded at 5,000 × g for 1 minute, and the cells were washed with 1 ml of phosphate buffer solution containing 2% fetal bovine serum, and further washed at 5,000 × g for 1 minute. The washing procedure was repeated twice, followed by the addition of 1 ml of 1% paraformaldehyde. The amount of intracellular ROS was measured using a BD FACS Canto II flow cytometer (BD Biosciences, San Jose, Calif.).

10. 결과10. Results

(1) 사람 제대혈관내피세포에서 오수유 추출물의 세포독성과 세포 노화 저해 효능 조사(1) Cytotoxicity and cell aging inhibitory effect of oolong oil extract in human umbilical cord blood

사람 제대혈관내피세포에서 오수유 추출물 5가지에 대한 세포독성을 먼저 조사하였다. 물 추출물, 부탄올, 메탄올 추출물은 100 ug/ml에서 세포독성이 나타나지 않았으나, 에틸아세테이트, 헥산 추출물은 100 ug/ml에서 세포독성이 나타났다 (도 3A). 그러나 이들 추출물을 10 ug/ml로 처리하였을 때는 모두 세포독성이 나타나지 않았다 (도 3A).Cytotoxicity of five extracts of oyster oil in human umbilical cord blood was examined first. Water extract, butanol and methanol extract showed no cytotoxicity at 100 ug / ml, whereas ethyl acetate and hexane extract showed cytotoxicity at 100 ug / ml (FIG. 3A). However, when these extracts were treated with 10 ug / ml, no cytotoxicity was observed (Fig. 3A).

오수유 추출물이 아드리아마이신에 의해 유도되는 세포노화를 억제하는지 조사하였다. 물 추출물과 부탄올, 메탄올 추출물은 100과 10 ug/ml, 에틸아세테이트 추출물, 헥산 추출물은 10 ug/ml로 각각 처리하였다. 에틸아세테이트 추출물을 처리하였을 때 아드리아마이신 처리에 의해 증가되는 SA-β-gal 활성이 감소되었다 (도 3B). 그러나 다른 추출물은 SA-β-gal 활성을 저해하지 않았다. 에틸아세테이트 추출물의 농도를 증가시키면서, 세포노화 저해 효능을 조사한 결과, 농도의존적으로 아드리아마이신에 의해 증가되는 SA-β-gal 활성을 저해함을 관찰하였다 (도 4A, 4B 및 4C). We investigated whether osseous oil extract inhibited adriamycin-induced cell senescence. Water extract, butanol and methanol extracts were treated with 100 and 10 ug / ml, ethyl acetate extract, and hexane extract with 10 ug / ml, respectively. When the ethyl acetate extract was treated, SA-β-gal activity increased by adriamycin treatment was decreased (FIG. 3B). However, other extracts did not inhibit SA-β-gal activity. As a result of investigating the cell aging inhibitory effect while increasing the concentration of ethyl acetate extract, it was observed that SA-β-gal activity, which is increased by adriamycin in a concentration-dependent manner, is inhibited (FIGS. 4A, 4B and 4C).

에틸아세테이트 추출물이 아드리아마이신에 의한 세포노화 과정에서 증가되는 p53, p21, 인산화S6K와 같은 단백질의 발현에 어떤 영향이 있는지 조사하였다. 그 결과 아드리아마이신에 의해 증가되는 p53의 발현을 억제하는 것을 확인하였다 (도 4D). We investigated the effect of ethyl acetate extract on the expression of proteins such as p53, p21, and phosphorylated S6K, which are increased during adiamycin - induced cell senescence. As a result, it was confirmed that the expression of p53, which is increased by adriamycin, is suppressed (Fig. 4D).

에틸아세테이트 추출물이 아드리아마이신에 의한 세포노화 뿐만 아니라, 복제노화가 유도된 세포에서도 세포노화를 억제하는지 조사한 결과, 농도의존적으로 복제노화에 의해 증가된 SA-β-gal 활성을 감소시켰다 (도 5). Ethyl acetate extract inhibited cell senescence not only in adriamycin-induced cell senescence but also in senescence-induced cells, resulting in a dose-dependent decrease in SA-β-gal activity induced by replicative senescence (FIG. 5) .

이상의 결과로부터 오수유 에틸아세테이트 추출물이 아드리아마이신에 의한 세포노화와 세포 분열로 인한 복제노화를 저해하는 효능이 있음을 확인하였다.
From the above results, it was confirmed that the ethyl acetate extract of Pseudomonas aeruginosa inhibits adipocyte aging and cell senescence by cell division.

(2) 사람 제대혈관내피세포에서 오수유 단일성분의 세포독성 효과와 세포노화 저해 효능 조사(2) Cytotoxic effect and cellular aging inhibition effect of single component of folic acid in human umbilical cord blood

사람 제대혈관내피세포에서 오수유 단일성분 8가지에 대한 세포독성을 조사하였다. 화합물을 각각 10 ug/ml 처리하였을 때, EO-4와 EO-8만 세포독성이 관찰되지 않았다 (도 6A). 이 중 EO-4가 세포노화를 억제하는지 조사하였고 아드리아마이신에 의한 세포노화를 저해하지 않는 것을 확인하였다 (도 6B). Cytotoxicity of 8 single components of folic acid was investigated in human umbilical cord blood. When the compounds were each treated at 10 ug / ml, EO-4 and EO-8 alone were not cytotoxic (Fig. 6A). Among them, EO-4 was examined to inhibit cell senescence and it was confirmed that adiamycin does not inhibit cell senescence (FIG. 6B).

단일성분의 농도를 낮추어 1 ug/ml 처리하였을 때, EO-1을 제외한 나머지 화합물은 세포독성이 나타나지 않았다 (도 7A). EO-3, EO-7이 세포노화를 억제하는지 조사하였고 아드리아마이신에 의한 세포노화를 저해하지 않는 것을 확인하였다 (도 7B).When the concentration of the single component was lowered to 1 ug / ml, the other compounds except EO-1 showed no cytotoxicity (Fig. 7A). EO-3 and EO-7 inhibited cell senescence and confirmed that it did not inhibit cell senescence by adriamycin (Fig. 7B).

EO-1의 농도를 더 낮추어 0.1 ug/ml로 처리하였을 때 세포독성은 나타내지 않았으나 세포노화 억제 효능도 관찰할 수 없었다 (도 8A, 8B)
When the concentration of EO-1 was further lowered to 0.1 ug / ml, no cytotoxicity was shown, but no cytostatic effect was observed (Figs. 8A and 8B)

(3) 사람 섬유아세포에서 오수유 추출물의 세포독성과 세포 노화 저해 효능 조사(3) Cytotoxicity and cell aging inhibitory effect of oolong oil extract in human fibroblasts

사람 섬유아세포에서 오수유 추출물 5가지에 대한 세포독성을 먼저 조사하였다. 물 추출물, 부탄올, 메탄올 추출물은 100 ug/ml에서 세포독성이 나타나지 않았으나, 에틸아세테이트, 헥산 추출물은 100 ug/ml에서 세포독성이 나타났다. 그러나 이들 추출물을 10 ug/ml로 처리하였을 때는 모두 세포독성이 나타나지 않았다 (도 9A).The cytotoxicity of five extracts from human fibroblasts was examined first. Water extract, butanol and methanol extract did not show cytotoxicity at 100 ug / ml, but ethylacetate and hexane extract showed cytotoxicity at 100 ug / ml. However, when these extracts were treated with 10 ug / ml, no cytotoxicity was observed (Fig. 9A).

오수유 추출물이 아드리아마이신에 의해 유도되는 세포노화를 억제하는지 조사하였다. 물 추출물과 부탄올, 메탄올 추출물은 100과 10 ug/ml, 에틸아세테이트 추출물, 헥산 추출물은 10 ug/ml로 각각 처리하였다. 메탄올 추출물 10 ug/ml 처리하였을 때 아드리아마이신에 의해 증가되는 SA-β-gal 활성이 감소되었다 (도 9B). 그러나 다른 추출물은 SA-β-gal 활성을 저해하지 않았다. 따라서 낮은 농도의 메탄올 추출물이 아드리아마이신에 의한 세포노화를 억제하는 효능이 있음을 확인하였다. 메탄올 추출물 농도에 따른 세포노화 저해 효능을 더 조사하였다. 그 결과 농도의존적으로 아드리아마이신에 의해 증가되는 SA-β-gal 활성을 저해함을 관찰하였다 (도 10A, 10B 및 10C). 메탄올 추출물이 아드리아마이신에 의한 세포노화 과정에서 증가되는 p53, p21, 인산화S6K와 같은 단백질의 발현에 어떤 영향이 있는지 조사하였으나 큰 변화가 없는 것을 확인하였다 (도 10D). We investigated whether osseous oil extract inhibited adriamycin-induced cell senescence. Water extract, butanol and methanol extracts were treated with 100 and 10 ug / ml, ethyl acetate extract, and hexane extract with 10 ug / ml, respectively. When treated with methanol extract at 10 ug / ml, SA-β-gal activity increased by adriamycin was reduced (FIG. 9B). However, other extracts did not inhibit SA-β-gal activity. Therefore, it was confirmed that low concentration of methanol extract inhibits adiamycin-induced cell senescence. The cell aging inhibitory effect according to methanol extract concentration was further investigated. As a result, it was observed that inhibition of SA-β-gal activity, which is increased by adriamycin in a concentration-dependent manner (FIGS. 10A, 10B and 10C). The effect of methanol extract on the expression of proteins such as p53, p21, and phosphorylated S6K, which are increased during adiamycin-induced cell senescence, was examined, but it was confirmed that there was no significant change (Fig. 10D).

메탄올 추출물이 아드라이마아신에 의한 세포노화 뿐만 아니라, 복제노화가 유도된 세포에서도 세포노화를 억제하는지 조사하였더니 농도의존적으로 복제노화에 의해 증가된 SA-β-gal 활성을 감소시켰다 (도 11). Methanol extract inhibited not only cell senescence by arrythmiaein but also cell senescence induced by replication-induced senescence, and decreased SA-beta-gal activity increased by replica senescence in a concentration-dependent manner (Fig. 11 ).

이상의 결과로부터 오수유 메탄올 추출물이 아드리아마이신에 의한 세포노화와 세포 분열로 인한 복제노화를 저해하는 효능이 있음을 확인하였다.
From the above results, it was confirmed that the methanol extract of sour milk methanol has the effect of inhibiting adipocyte aging and cell senescence due to cell division.

(4) 사람 섬유아세포에서 오수유 단일성분의 세포독성 효과와 세포노화 저해 효능 조사(4) Cytotoxic effect and cellular aging inhibition effect of single component of folic acid in human fibroblasts

사람 섬유아세포에서 오수유 단일성분 8가지에 대한 세포독성을 조사하였다. 화합물을 각각 10 ug/ml 처리하였을 때, EO-1, EO-5, EO-6만 세포독성이 관찰되었다 (도 12A). 이 중 EO-4, EO-8이 아드리아마이신에 의한 세포노화를 억제하는지 조사하였고 EO-8이 아드리아마이신에 의해 증가되는 SA-β-gal 활성을 저해하였다 (도 12B, 12C). EO-8 농도에 따른 세포노화 저해 효능을 조사하였다. 그 결과, EO-8 농도 의존적으로 SA-β-gal 활성이 감소되었다 (도 13A, 13B). 하지만 p53, p21, pS6단백질 발현에는 변화가 없었다 (도 13C). EO-8 처리 후 아드리아마이신에 의해 증가된 세포 내 ROS 변화를 조사한 결과, EO-8에 의해 ROS의 양이 감소하나 통계적인 유의성은 없었다 (도 14A, 14B). EO-8이 아드리아마이신에 의한 세포노화 뿐만 아니라, 복제노화가 유도된 세포에서도 세포노화를 억제하는지 조사하였다. EO-8 농도 의존적으로 복제노화에 의해 증가된 SA-β-gal 활성이 감소됨을 관찰하였다 (도 15A, 15B 및 15C). To investigate the cytotoxicity of human fibroblasts on 8 single components of foliar oil. When each compound was treated at 10 ug / ml, only EO-1, EO-5, and EO-6 were cytotoxic (FIG. 12A). EO-4 and EO-8 inhibited adriamycin-induced cell senescence and EO-8 inhibited SA-β-gal activity increased by adriamycin (FIGS. 12B and 12C). The effect of EO-8 concentration on cell senescence inhibition was investigated. As a result, SA-β-gal activity was decreased in an EO-8 concentration-dependent manner (FIGS. 13A and 13B). However, there was no change in p53, p21, pS6 protein expression (Fig. 13C). After intracellular ROS changes induced by adriamycin after EO-8 treatment, the amount of ROS was decreased by EO-8 but not statistically significant (FIGS. 14A and 14B). We investigated whether EO-8 inhibits cell senescence by adriamycin as well as cell senescence induced by replication. It was observed that the SA-β-gal activity increased by replication aging in a EO-8 concentration-dependent manner (FIGS. 15A, 15B and 15C).

EO-1는 농도를 낮추어 1, 0.1 ug/ml로 처리하였을 때, 1 ug/ml에서는 세포독성이 관찰되었으나 (도 16A), 0.1 ug/ml에서는 세포 독성이 없었다 (도 16B). EO-1 0.1 mg/ml을 처리하여 아드리아마이신에 의한 세포노화 저해 효능을 조사하였다. 그 결과 아드리아마이신에 의해 증가된 SA-β-gal 활성과 p53, 인산화 S6K의 발현이 감소되었다. 1 ug/ml로 더 낮추어 처리하였더니 독성이 나타나지 않았고 아드리아마이신에 의한 세포노화를 억제하였다 (도 16C, 16D 및 16E). 아울러 EO-1은 아드라이마이신 처리에 의해 증가되는 ROS 양도 감소시켰다 (도 17A, 17B). EO-1이 아드리아마이신에 의한 세포노화뿐만 아니라, 복제노화가 유도된 세포에서도 세포노화를 억제하는지 조사한 결과, 복제노화에 의해 증가된 SA-β-gal 활성이 감소됨을 관찰하였다 (도 18).When EO-1 was treated at a concentration of 1, 0.1 ug / ml, cytotoxicity was observed at 1 ug / ml (Fig. 16A), but no cytotoxicity at 0.1 ug / ml (Fig. 16B). EO-1 was treated with 0.1 mg / ml to examine the effect of adriamycin on cell senescence. As a result, the expression of SA-β-gal activity and the expression of p53 and phosphorylated S6K were decreased by adriamycin. 1 &lt; / RTI &gt; ug / ml, no cytotoxicity was observed and the cell aging by adriamycin was inhibited (Fig. 16C, 16D and 16E). In addition, EO-1 also reduced the amount of ROS that was increased by the treatment with arkadimine (FIGS. 17A and 17B). It was observed that EO-1 not only inhibited cell senescence by adriamycin but also inhibited cell senescence in cells induced by transcriptional aging. As a result, it was observed that SA-β-gal activity increased by transcriptional aging (FIG. 18).

이상의 결과로부터 10 ug/ml의 농도에서는 EO-8 (Limocitrin 3-O-rutinoside)이, 0.1 ug/ml의 농도에서는 EO-1 (rutaecarpine)이 사람 섬유아세포에서 아드리아마이신에 의한 세포노화와 세포 분열로 인한 복제노화를 저해하는 효능이 있음을 확인하였다.
These results suggest that EO-8 (Limocitrin 3-O-rutinoside) at a concentration of 10 ug / ml and EO-1 (rutaecarpine) at a concentration of 0.1 ug / ml may inhibit cell senescence and cell division by adriamycin Which is an effective inhibitor of replication aging.

Claims (7)

오수유 메탄올 추출물로부터 분리된 화학식 2로 표시되는 리모시트린 3-루티노시드(limocitrin 3-O-rutinoside)를 유효성분으로 함유하는 피부노화 예방 또는 치료용 약학 조성물로서, 상기 피부노화 예방 또는 치료는 아드리아마이신에 의해 유도되는 섬유아세포 노화를 억제하고, 상기 섬유아세포 노화 억제는 노화 베타-갈락토시다제(senescence-associated β-galactosidase; SA-β-gal) 활성 억제를 통해 측정되는 것을 특징으로 하는, 피부노화 예방 또는 치료용 약학 조성물.

< 화학식 2 >
Figure 112016101505676-pat00004

R1 = OH 이고, R2 = OCH3 임.
A pharmaceutical composition for preventing or treating skin aging comprising, as an active ingredient, limocitrin 3-O-rutinoside represented by the formula (2) isolated from methanol extract of oyster oil, Characterized in that it inhibits fibroblastogenesis induced by myosin and inhibition of fibroblastogenesis is measured through inhibition of senescence-associated beta-galactosidase (SA-beta-gal) activity. A pharmaceutical composition for preventing or treating skin aging.

(2)
Figure 112016101505676-pat00004

R 1 a = OH, R 2 = OCH 3 Im.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020130101711A 2013-08-27 2013-08-27 Composition for inhibiting cellular senescence comprising extracts of Evodia officinalis or rutaecarpine or limocitrin 3-O-rutinoside isolated from the same KR101698234B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130101711A KR101698234B1 (en) 2013-08-27 2013-08-27 Composition for inhibiting cellular senescence comprising extracts of Evodia officinalis or rutaecarpine or limocitrin 3-O-rutinoside isolated from the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130101711A KR101698234B1 (en) 2013-08-27 2013-08-27 Composition for inhibiting cellular senescence comprising extracts of Evodia officinalis or rutaecarpine or limocitrin 3-O-rutinoside isolated from the same

Publications (2)

Publication Number Publication Date
KR20150024607A KR20150024607A (en) 2015-03-09
KR101698234B1 true KR101698234B1 (en) 2017-01-19

Family

ID=53021153

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130101711A KR101698234B1 (en) 2013-08-27 2013-08-27 Composition for inhibiting cellular senescence comprising extracts of Evodia officinalis or rutaecarpine or limocitrin 3-O-rutinoside isolated from the same

Country Status (1)

Country Link
KR (1) KR101698234B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188013B1 (en) * 2018-07-25 2020-12-07 (주)옥천당 Composition for prevention or improvement of muscular fuctions comprising extract of evodiaefructus and use therof
CN111333628B (en) * 2020-04-20 2022-05-10 大连医科大学附属第一医院 Indole alkaloid, preparation method and application as hypoglycemic drug

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Biosci. Biotechnol. Biochem. 2005. Vol. 69, No. 11, pp. 2227-2231*
Eur. J. Pharmacol. 2004. Vol. 498, pp. 19-25*
J. Korean Soc. Appl. Biol. Chem. 2010. Vol. 53, No. 6, pp. 677-684*
Molecules. 2010. Vol. 15, pp. 1873-1881*

Also Published As

Publication number Publication date
KR20150024607A (en) 2015-03-09

Similar Documents

Publication Publication Date Title
KR101784050B1 (en) Pharmaceutical composition for preventing or treating cell senescence comprising exosome
KR101945865B1 (en) Anti-aging Composition Including Dendranthema zawadskii Extract
WO2014038873A1 (en) COMPOSITION FOR INHIBITING CELLULAR SENESCENCE COMPRISING QUERCETIN-3-O-β-D-GLUCURONIDE
KR101589793B1 (en) Composition for inhibiting cellular senescence comprising extracts of Melandrium firmum Rohrbach or bornesitol isolated from the same
KR101528190B1 (en) Composition for inhibiting cellular senescence comprising 2,5-dihydroxy-4-methoxyacetophenone isolated from Paeonia suffruticosa
KR101062616B1 (en) Anti-aging pharmaceutical composition containing epipriedellanol as an active ingredient
KR101698234B1 (en) Composition for inhibiting cellular senescence comprising extracts of Evodia officinalis or rutaecarpine or limocitrin 3-O-rutinoside isolated from the same
KR101437729B1 (en) Composition for inhibiting cellular senescence comprising loliolide
JP5295227B2 (en) Composition for prevention and treatment of cancer diseases comprising a Zudayakushu extract or a compound isolated therefrom
KR101503600B1 (en) Composition for inhibiting cellular senescence comprising erthro-austrobailignan-6 isolated from Saururus chinensis
KR101550967B1 (en) Composition for inhibiting cellular senescence comprising extracts of Anisi Stellati Fructus or threo-1(4&#39;-methoxyphenyl)-1,2-propandiol isolated from the same
KR101503586B1 (en) Composition for inhibiting cellular senescence comprising extracts of Inula japonica Thunberg or britanin isolated from the same
KR101522596B1 (en) Pharmaceutical Compositions for Prevention or Treatment of Disease Causing Aging of Vascular Endothelial Cell Comprising Extract of Physalis Angulata
JP5149548B2 (en) Melanin production inhibitor containing as an active ingredient an extract from the genus Thymellaa, a whitening pharmaceutical composition containing the same, and a cosmetic composition
KR101503585B1 (en) Composition for inhibiting cellular senescence comprising extracts of Inula japonica Thunberg or quercetagetin 3,4&#39;-dimethyl ether isolated from the same
KR101780939B1 (en) Method for Seperation of Compound Derived from Ginseng and Composition for anti-inflammatory Using the same
KR101649047B1 (en) Use of Kazinol C for treating or preventing cancer
KR20110041710A (en) Pharmaceutical composition for inhibiting aging comprising herb extract
KR102463930B1 (en) Pharmaceutical composition for preventing or treating cancer containing 2α-Hydroxyeudesma-4,11(13)-Dien-8β,12-Olide as an active ingredient
KR101038022B1 (en) A novel sugar compound
KR100962984B1 (en) A Pharmaceutical Composition for Treating or Preventing Cancer Comprising Ubiquinone-9 or Pharmaceutically Acceptable Salt Thereof
KR101643058B1 (en) Composition for inhibition of lung cancer metastasis comprising extracts of Pseudocyphellaria coriacea, or physciosporin or salt thereof as an active ingredient
KR100891943B1 (en) Novel obovatol derivatives or pharmaceutically acceptable salt thereof, preparation method thereof and pharmaceutical composition for the the prevention and treatment of cancer containing the same as an active ingredient
KR20120054577A (en) Anti-inflammatory composition containing phlorotannins from ecklonia stolonifera and ecklonia cava extract as a effective component
KR20150005250A (en) Pharmaceutical composition for preventing or treating cancer comprising the extract of Chaenomelis langenariae radix

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
X701 Decision to grant (after re-examination)
FPAY Annual fee payment

Payment date: 20200113

Year of fee payment: 4