KR20150013302A - 배터리의 충전 밸런싱 - Google Patents

배터리의 충전 밸런싱 Download PDF

Info

Publication number
KR20150013302A
KR20150013302A KR1020147035147A KR20147035147A KR20150013302A KR 20150013302 A KR20150013302 A KR 20150013302A KR 1020147035147 A KR1020147035147 A KR 1020147035147A KR 20147035147 A KR20147035147 A KR 20147035147A KR 20150013302 A KR20150013302 A KR 20150013302A
Authority
KR
South Korea
Prior art keywords
cells
battery
combination
cell
charging means
Prior art date
Application number
KR1020147035147A
Other languages
English (en)
Other versions
KR102054345B1 (ko
Inventor
마끄 뤼쎄아
로랭 갸르니에
Original Assignee
르노 에스.아.에스.
꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 르노 에스.아.에스., 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 filed Critical 르노 에스.아.에스.
Publication of KR20150013302A publication Critical patent/KR20150013302A/ko
Application granted granted Critical
Publication of KR102054345B1 publication Critical patent/KR102054345B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 한 세트의 전기화학 축전 셀(C1, C2, ..., CR)이 포함된 배터리(2)의 충전을 밸런싱하는 장치에 관한 것으로서, 적어도 하나의 셀로 이루어진 다수의 조합을 재충전하는 충전 수단(R1, ..., RS)을 포함한다. 여기서 각 조합마다는, 충전 수단이 이 조합 내의 모든 셀을 동시에 재충전하기 위하여 배치되고, 다수의 조합은 조합 유형의 수 N(N은 1보다 확실히 더 큰 수임)을 정의하는데, 각 조합 유형이 상기 조합 내의 셀들의 수 m에 대응하도록 정의한다. 그리고 충전 수단은, 조합 유형의 수 N보다 확실히 적은 수의 전력 등급의 수 P에서 동작된다.

Description

배터리의 충전 밸런싱{CHARGE BALANCING IN A BATTERY}
본 발명은 배터리(특히, 리튬 이온 배터리)의 충전 밸런싱에 관한 것이다.
본 발명의 응용 분야는 자동차 산업, 특히, 전기 자동차 및/또는 하이브리드 자동차에서 찾을 수 있지만, 본 발명이 이러한 응용 분야에만 제한되는 것은 아니다. 본 발명은 예를 들어 임베디드 시스템 또는 그 밖의 시스템에도 적용할 수 있다.
배터리는 직렬 및/또는 병렬로 배치된 전기화학 축전 셀 또는 전기화학 축전기(예컨대, 리튬 이온 배터리)의 집합으로 구성된다.
비가역적(되돌리지 못하는) 열화를 방지하기 위해, 각 셀을 제한된 전압 범위 내에 유지시키도록 노력하고 있다. 예를 들어, 리튬 이온 배터리의 경우, 셀 전압이 최대 임계량을 초과하는 경우에는 화재의 위험이 있고, 전압이 최소 임계량 이하로 떨어질 때에는 셀이 비가역적으로 열화될 위험이 있다.
실제로, 다수의 셀을 조립하여 배터리팩을 만들 때, 예를 들어, 전기 자동차용으로 96쌍의 셀로 배터리 팩을 조립할 때, 이 셀들은 약간 다른 특징을 보여줄 가능성이 있는데, 그들 중 몇 가지, 예를 들어, 자동 방전 전류, 충전시의 패러데이 수율(Faraday yield), 최대 충전량 등은 셀의 충전 상태에 직접적인 영향을 줄 수 있다. 이에 따라, 배터리 팩이 충전될 경우에, 충전량의 변동이 셀마다 관찰될 수 있다.
셀의 과충전의 경우에 셀을 방전시키기 위하여, 각 셀에 또는 셀들의 층에 스위치를 통해서 저항을 병렬로 연결하는 구성이 공지되어 있다. 이는 소모식 밸런싱(dissipative balancing)으로서, 잉여 에너지를 열로서 소모시키는 것을 의미한다.
가장 많이 충전된 셀로부터 다른 셀들로 에너지를 전달하도록 관리하는 것도 또한 공지되어 있다. 이러한 유형의 비소모식 밸런싱 시스템은 열복사량이 더 적기 때문에 유리할 수 있으며, 따라서 인접한 셀과 전자 회로에 대한 모든 잠재적 손상을 방지할 수 있다. 또한 이러한 비소모식 밸런싱 작용이 배터리의 방전 동안에 실행된다면, 개별 셀의 충전량을 최적으로 분배하여서 각 셀의 최소 충전 상태가 거의 동시에 이루어지도록 할 수 있다. 이는 배터리의 사용 수명을 연장시킬 수 있다.
배터리의 충전 밸런싱 장치에 변환기(converter)가 포함되어 있는 것이 공지되어 있는데, 이에 각 변환기는 한 번에 하나의 셀을 충전시키도록 한다. 변환기의 수를 증가시키지 않도록 하기 위해, 특히 트랜지스터를 이용하여서 충전해야 할 또는 방전해야 할 셀을 선택하도록 시스템을 구성할 수 있다. 그리하여 변환기의 2차측은 선택된 셀에 연결된다. 그러나, 이러한 선택 시스템은 추가적인 손실을 발생할 수 있다.
여러 셀을 동시 충전하는 것도 또한 공지되어 있다. 배터리 충전 밸런싱 시스템에, 배터리 내의 다수의 셀의 동시 충전을 위한 변환기가 포함된 것이 공지되어 있다. 예를 들어, FR2956260은 이러한 유형의 시스템을 개시하고 있다. 이 문헌에서, 변환기는 일정한 크기의 전압을 출력하는 정전압 발생기로서 작용하여, 사전 설정된 밸런싱 전류를 각 셀에 전달한다. 이 시스템의 주요 단점은, 변환기가, 재충전해야 할 셀의 수에 관계없이 일정한 충전 전류로 셀을 재충전한다는 것이다. 이에 의해, 동시에 재충전시킬 수 있는 셀의 개수와 동일한 수의 변환기 서비스 용량 등급이 얻어진다. 즉, 제1등급은 1개 셀에만 재충전하는 것에 해당되고, 제2등급은 동시에 2개 셀을 재충전하는 것에 해당되고, 제3등급은 동시에 3개 셀을 재충전하는 것에 해당되는 등등이다. 이것이 의미하는 것은, 대다수의 경우에, 변환기는 그 최적의 성능 용량을 넘어서 동작한다는 것이다. 따라서 결과적으로 상당한 에너지가 손실된다. 또 다른 단점은, 정전류(constant current) 동작은, 특히 적은 양까지 방전된 소수의 셀을 보다 신속하게 재충전할 수 없다는 것이다. 이는 밸런싱 시스템의 성능상의 잠재적 한계이다.
따라서, 보다 효율적인 밸런싱 시스템이 필요하다.
한 세트의 전기화학 축전 셀이 포함된 배터리에 사용되는 충전 밸런싱 장치가 본 발명에서 제안된다.
이 장치는 적어도 하나의 셀로 이루어진 다수의 조합(combination)을 재충전하는 충전 수단을 포함한다. 적어도 하나의 (그리고 유리하게는 각각의) 조합마다, 충전 수단이 이 조합 내의 모든 셀을 동시에 충전하기 위하여 배치된다. 다수의 조합은 조합 유형(combination type)의 수 N을 정의하는데, 각 조합 유형이 상기 조합 내의 셀들의 수 m에 대응하도록 정의한다. 여기서 N은 1보다 확실히 더 큰 수이다. 충전 수단은, 조합 유형의 수 N보다 확실히 적은 수의 전력 등급(power level) 수 P에서 동작할 수 있게 된다.
따라서, 셀들의 조합(또는 집합(세트))의 유형보다 적은 수의 전력 등급이 있고, 충전 수단은, 사전에 설정된 전류가 각 셀로 전달되었던 종래 기술에 비해서, 그 최적의 동작점(working point)에 가깝게 동작할 수 있다.
실제로, 종래 기술에서는, 각각의 셀이 사전에 설정된 전류를 받기 때문에, 충전 수단에 의해 전달되는 전력은 특히, 동시에 공급되어야 할 셀의 수와 관련되어 있다. 가용한 전력 등급의 수를 제한함으로써, 충전 수단(예컨대, 변환기)을 최적의 서비스 용량(service capacity)에 가깝게 동작시킬 수 있는데, 이는 에너지 손실을 제한하고 밸런싱 장치의 성능을 향상시킬 수 있다.
충전 수단은 다수의 충전 모듈을 포함하는 것이 유리한데, 적어도 하나의 (그리고 유리하게는 각각의) 충전 모듈은 배터리의 전체 구성 셀 중에서 선택된 M개 셀들로 이루어진 그룹에 대응된다(이에 제한되는 것은 아님). 따라서, 각 충전 모듈(예를 들어 변환기)은 해당 그룹의 M개 셀 중의 m개 셀의 조합을 재충전할 수 있다.
수 P는 M/2의 정수 부분, 유리하게는 M/3의 정수 부분과 같거나 적은 것이 유리하다.
동시에 충전가능한 셀의 수를 제한할 수도 있고 제한하지 않을 수도 있다. 예를 들어, 동시 충전가능한 셀의 수를, 3개 셀 충전 모듈의 사용으로 제한시킬 수 있다. 이 경우에 N은 3인데, 왜냐하면 3가지의 조합 유형, 즉, 그룹 내의 M개 셀 중 하나의 셀의 조합, 그룹 내의 M개 셀 중 두 개 셀의 조합, 그리고 그룹 내의 M개 셀 중 3개 셀의 조합이 가능할 것이기 때문이다.
또는 이에 대안적으로, 충전 모듈을 1 내지 M개 셀을 동시 재충전하도록 구성할 수 있다. 이 경우에는 M가지의 조합 유형이 가능할 것이므로 N은 M과 같다. 제1의 조합 유형은 그룹 내 M개 셀 중 하나의 셀의 선택에 해당되고, 제2의 조합 유형은 M개 셀 중에서 두 개 셀을 선택하는 것에 해당되는, 등등이다. M 번째 조합 유형은 그룹 내의 모든 M개 셀에 해당된다.
충전 수단은, 이 충전 수단에 대응하는 셀 그룹의 각 셀이 이 그룹 내의 다른 셀들과 독립적으로 충전될 수 있도록 구성되는 것이 유리한데, 이에 제한되는 것은 아니다. 즉, 셀은 개별적으로 선택될 수도 있다.
실시예의 일 형태에서 전력 등급의 수 P는 1이다. 따라서, 충전 수단은 동시에 재충전해야 할 셀의 수에 관계없이, 하나의 전력 등급에서 동작한다. 이러한 실시예는 또한, 셀 그룹 내의 하나의 셀이 보다 낮은 충전량을 보일 경우에 유리할 것인데, 이 경우에는 해당 셀이 상대적으로 짧은 시간 동안에 제한되도록 변환기가 비교적 높은 재충전 전류로 재충전을 실행할 것이기 때문에, 이 셀이 상대적으로 빠르게 재충전된다.
실시예의 다른 형태에서는 다수의 전력 등급이 제공된다. 예를 들어, 두 개, 세 개, 또는 네 개의 전력 등급이 제공된다. 이는 특히, 충전을 위해 선택된 셀의 수가 비교적 적은 경우에 충전 전류를 제한시킬 수 있다. 따라서, 이 실시예의 형태에서는 충전 전류가 제한될 것이기 때문에 배선 및 회로가 비교적 단순해질 수 있다.
예를 들어, 세 개의 전력 등급이 제공될 수 있다.
- 16와트의 전력 등급: 한 개 셀의 충전에 해당. 셀 전압이 4V에 가까우면, 16와트의 전력 등급은 4A에 가까운 충전 전류에 해당된다.
- 32와트의 전력 등급: 두 개 셀의 동시 충전에 해당. 여기서도 충전 전류는 약 4A이다.
- 48와트의 전력 등급: 세 개 이상의 셀의 동시 충전에 해당.
변환기가 정확히 3개의 셀의 충전을 담당하는 경우에, 각 셀은 거의 4A의 전류를 받을 것이다. 변환기가 4개의 셀의 충전을 담당하는 경우, 각 셀에 할당되는 전류는 3A에 가까울 것이다. 6개 셀의 동시 충전의 경우에는, 하나의 셀에 대응하는 전류는 2A에 가까울 것이다. 따라서, 한 셀에 대응하는 전류는 셀의 수가 증가함에 따라 감소한다. 그러나 이러한 감소는 상대적이다.
받은 에너지를 변환할 수 있는 변환기가 충전 수단에 포함되는 것이 유리하겠지만, 본 발명은 충전 수단의 형태로 인해 제한되지 않는다. 예를 들어, 충전 수단을, 밸런싱을 이루어야 하는 배터리의 셀에 추가 배터리를 연결시키는 수단과 함께, 밸런싱 기능을 전담하는 추가 배터리를 포함하도록 구성할 수 있다.
마찬가지로, 본 발명은 변환기가 받는 에너지의 원천으로 인해 제한되지 않는다.
유리한 것은, 충전 수단, 예를 들어 변환기는, 밸런싱할 배터리에 의해 전달되는 것보다 낮은 전압 정격의 회로망에 연결될 수 있는데, 그러나 이에 제한되는 것은 아니다.
유리하게는, 이러한 낮은 전압 정격의 회로망은 밸런싱할 배터리에 의해 공급될 수 있는데, 이에 제한되는 것은 아니다.
자동차의 경우에, 14V 회로망은 밸런싱할 배터리에 의해 전력을 공급받는 고전압 회로망에 의해 자체적으로 공급받는다. 따라서, 그리고 간접적으로, 에너지는 배터리의 모든 셀로부터 따오게(tap) 된다. 상대적으로 낮은 전압의 에너지가 변환기로 들어간다는 점에서 14V 회로망의 선택은 또한 유리하다. 이로써 변환기 및 회로에 대한 설계 제약을 제한할 수 있다.
실시예의 또다른 형태에서는, 밸런싱할 배터리 내의 셀의 적어도 일부와 변환기 입력이 연결되도록 배치할 수 있는데, 이로써, 이들 셀(셀들의 그룹이든 배터리 내의 모든 셀이든)에서 생성되는 에너지를 직접 취할 수 있게 된다. 첫 번째 경우에는, 변환기 입력에서의 과도하게 높은 전류 및 전압을 피할 수 있다. 두 번째 경우에는 밸런싱과 관련된 방전이 덜 중요하게 되는데, 왜냐하면 밸런싱에 관련된 방전이 모든 셀로 분배되기 때문이다.
전체 셀에는 다수의, 가령 약 100개의 셀이 포함될 수 있다. 셀들로 이루어진 그룹은 셀의 총 수보다 적은 수의 셀, 예를 들어, 약 10개의 셀을 포함할 수 있다.
유리하게는, 충전 수단은, 셀 그룹 내의 셀들에 변환기를 가역적으로 연결시키기 위한 다수의 스위치를 포함할 수 있다. 그러나 이에 제한되는 것은 아니다.
유리하게는, 충전 수단은, 스위치를 제어하기 위한 신호를 생성할 수 있는 처리 수단을 포함할 수 있다. 그러나 이에 제한되는 것은 아니다. 이러한 처리 수단은 전류 충전량의 함수로서 재충전해야 할 셀을 검출하도록, 그리고 재충전해야 할 이들 셀을 선택하기 위한 충전 수단을 제어하도록 구성할 수 있다.
유리하게는, 상기 처리 수단은, 전력 공급해야 할 셀의 수의 함수로서 변환기의 서비스 용량의 등급(service capacity level)을 결정하도록 구성할 수 있다. 그러나 이에 제한되는 것은 아니다.
실시예의 일 형태에서, 충전 수단은 인버터에 연결된 1차 권선과, 이 충전 수단에 대응하는 셀 그룹 내의 각 셀에 대한 2차 권선을 포함할 수 있고 이와 함께 정류기를 포함할 수 있다.
유리하게는, 처리 수단은, 전력 등급의 수 P 중에서 조합 유형의 수 N보다 확실히 적게 선택된 수신 전력 등급으로 변환기를 설정하도록 충전 전류를 제어함으로써, 인버터 및/또는 정류기를 제어할 수 있다. 그러나 이에 제한되는 것은 아니다.
본 발명은 변환기의 형태로 인해 제한되지 않는다. 예를 들어 변환기는 초퍼(chopper), 전하 펌프 변환기(charge pump converter), 또는 다른 유형의 형태로 제공될 수 있다.
배터리와 상술한 밸런싱 장치를 포함하는, 특히 자동차용으로의 전기 공급 시스템도 또한 본 발명에서 제안된다.
전기 자동차 및/또는 하이브리드 차량에의 응용을 위해, 밸런싱할 배터리는 차량 추진 시스템에 전력을 공급할 수 있다.
상기한 바와 같은 전기 공급 시스템을 포함하는, 예를 들면, 전기 자동차 또는 하이브리드 자동차가 또한 제안된다.
한 세트의 전기화학 축전 셀을 포함하는 배터리를 위한 충전 밸런싱 장치(이 밸런싱 장치는 다수의 셀을 동시에 재충전할 수 있는 충전 수단을 포함함)의 제어 방법이 또한 제안된다. 이 방법은,
- 하나의 조합 유형보다 확실히 큰 수 N을 정의하는 다수의 조합 중에서, 동시에 재충전할 적어도 하나의 셀의 조합을, 각 조합 유형이 상기 조합의 셀의 수 m에 대응하도록 선택하고,
- 전력 등급의 수 P 중에서 이 P가 조합 유형의 수 N보다 확실히 적도록 선택된 전력 등급을 변환기에 부과한다.
본 방법은, 예를 들어, 전술한 밸런싱 장치에 배치될 수 있다. 또는, 밸런싱 장치와 별도인 또는 통합된 제어 장치 내에 배치될 수 있다.
제어 장치는 디지털 또는 아날로그 신호 처리 장치, 예를 들어 프로세서를 포함하거나 이에 통합될 수 있다.
구체적으로, 제어 장치는,
- 충전 수단에 의해 전달되는 충전 전력을 받는 요소, 예를 들면 1차 권선, 그리고/또는
- 충전 수단에 의해 전달되는 충전 전력을 보내는 요소, 예를 들면 정류기 및/또는 2차 권선을 제어할 수 있다.
이러한 제어는, 충전을 위해 선택된 각 셀의 충전 전류를 증가시키는 수단으로서 실행될 수 있는데, 이때, 선택되는 셀의 수는 감소된다. 따라서, 본 방법은, 충전 수단의 전력 등급이, 등급 수 P 중에서 P가 조합 유형의 수 N보다 확실히 적도록 선택된 등급에 대응되도록 하여, 재충전할 셀들의 조합 내의 셀의 수의 함수로서 적어도 하나의 셀 충전 전류를 결정하도록 구성된 단계를 포함할 수 있다. 전력 등급의 수가 1보다 많은 경우에는, 본 방법은 재충전할 셀의 수의 함수로서 전력 등급을 결정하도록 구성된 단계를 포함할 수 있다.
전기화학 축전 셀의 세트를 포함하는 배터리를 위한 충전 밸런싱 장치를 위한 제어 장치가 또한 제안된다. 이 밸런싱 장치는 적어도 하나의 셀로 이루어진 다수의 조합(combination)을 재충전하는 충전 수단을 포함하는데, 여기서, 다수의 조합 중 각 조합마다, 충전 수단은 이 조합 내의 모든 셀을 동시에 충전하도록 배치되며, 이 다수의 조합은 하나의 조합 유형보다 확실히 큰 수 N을 정의하는데, 각 조합 유형이 상기 조합 내의 셀들의 수 m에 대응하도록 정의한다. 제어 장치는 전력 등급의 수 P 중에서 이 P가 조합 유형의 수 N보다 확실히 적도록 선택된 전력 등급을 변환기에 부과하도록 구성된다.
유리하게, 제어 장치는 또한, 배터리 셀의 충전량 값의 함수로서 재충전할 셀(들)의 조합의 선택을 하도록 구성될 수 있다.
제한적이지 않은 예시적으로 제공된 실시예를 도시하는 이하의 도면을 참조하여 본 발명에 대해서 명확하게 설명한다.
도 1은 본 발명의 실시예의 한 형태에 따른, 자동차용 전기 공급 시스템을 나타내는 개략도이다.
도 2는 본 발명의 실시예의 한 형태에 따른, 배터리용 충전 밸런싱 장치의 일례를 나타내는 개략도이다.
동일하거나 유사한 구성요소를 지정하기 위하여 동일한 참조번호를 각 도면에서 공통으로 사용한다.
도 1을 참조하면, R개의 전기 셀 C1, C2, ..., CR의 집합을 포함하는 고전압 배터리(2)가 고전압 회로망(1)에 전력을 공급한다. 이 리튬 이온 배터리(2)는 특히 차량을 추진시키기 위한 전동기(3)에 전력을 공급한다. 배터리(2)는 예를 들면, 70 볼트 내지 400 볼트 범위의 전압을 공급할 수 있다.
차량은 또한, 10 볼트 내지 16 볼트 범위의 전압, 예를 들어 14 볼트의 전압이 공급되는 보조장치(5, 6)로 이루어지는 저전압 회로망(4)을 포함한다. 이러한 보조장치(5, 6)는, 예를 들어 차량의 전동식 스티어링 액추에이터 또는 다른 보조 장치일 수 있다.
저전압 회로망(4)은 d.c./d.c. 컨버터(7)를 통해 고전압 회로망(1)에 연결된다. 저전압 회로망(4)의 저전압 배터리(8)(예를 들면 납-산 배터리)의 충전을 위해, 고전압 배터리(2)로부터 컨버터(7)를 이용하여 에너지의 일부를 따온다(tap).
고전압 배터리(2) 내에 직렬로 배열된 모든 셀 C1, C2, ..., CR에는, 저전압 배터리(8)의 재충전 중에 동일한 충전량 변화가 있게 된다.
이 시스템은 또한 S개의 변환기 R1, ..., RS를 포함한다. 각 변환기 R1, ..., RS는 각 당해 변환기에 연결된, M개 셀로 이루어진 그룹 내의 셀들을 재충전시킨다. M개 셀(예컨대 12개 셀)의 그룹은 배터리(2)의 R개 셀 중에서 선택된다.
예를 들어, 배터리(2)는 96개의 셀 C1, C2, ..., CR을 포함한다. 이들 96개 셀은 각각 12개 셀로 이루어지는 8개 그룹으로 분할된다. 이 예에서, 변환기의 수 S는 따라서 8이며, 셀의 개수 R은 96이다. 그룹당 셀의 수 M은 12이다.
이러한 형태의 실시예에서, S개의 변환기 R1, ..., RS는 각자의 1차 권선을 통해서 14V 회로망(4)에 연결되고, 각자의 2차 권선을 통해 연결된 M개의 셀 중의 하나 이상의 셀에 에너지를 전달하도록 되어 있다.
따라서, 상기 S개의 변환기는 저전압 회로망(4)으로부터 에너지를 따오며, 이 저전압 회로망 자체는 고전압 배터리(2)로부터 전력을 공급받는다. 즉, 변환기 R1, ..., RS는, 고전압 배터리(2) 내의 R개의 셀 C1, C2, ..., CR의 조합으로부터 따온 에너지를 간접적으로 사용한다.
따라서, 이렇게 따온 에너지는 상기 모든 R개 셀들로 분배되는데, 이로써, 그룹과 그룹 간의 충전의 불균형을 방지할 수 있다.
아울러, 변환기 R1, ..., RS의 1차측 전압은 14 볼트에 불과하므로, 이들 변환기 R1, ..., RS는 비교적 단순한 설계이어도 되며 정격 전압이 낮은 경우에 적합할 수 있다.
도 2는 변환기 RS의 예를 보다 상세하게 도시한다. 이 예에서 변환기 RS는 명확성을 위해 4개의 셀 CS1, CS2, CS3, CS4에만 연결되어 있는 것으로 나타내었지만, 셀의 수는 4개가 아니라 특히 12개일 수도 있음을 이해할 것이다.
변환기 RS에는, 인버터(11)를 통해 14V 회로망(4)에 연결되는 1차 권선(10)이 포함된다.
변환기 RS에는 또한, 여기에 연결된 셀 CS1, CS2, CS3, CS4의 수만큼의 2차 권선 ES1, ..., ES4가 있다. 따라서, M개 셀들로 이루어진 그룹에 대응하는 변환기 RS의 경우에는 M개의 2차 권선을 포함할 것이다.
해당 셀에 대응되는 2차 권선 이외에도, 변환기 RS에는, 여기에 연결된 M개의 셀 각각에 대하여 스위치 IS1, ..., IS4가 있다.
도 2에서는, 스위치 IS1, ..., IS4가 컨버터 RS의 하우징의 외부에 있는 것으로 도시되어 있지만, 이들 스위치가 하우징의 내부에 배치되는 것이 유리할 수 있음을 이해할 것이다.
각 스위치 IS1, ..., IS4는 해당 셀과 해당 2차 권선 간의 연결을 위해서 배치된 것이다. 각 스위치 IS1, ..., IS4는 처리 수단(12), 예컨대 전자 제어 유닛(ECU)에 의해 전기적으로 제어된다.
처리 수단(12)은 프로세서, 예를 들어, 마이크로콘트롤러, 마이크로프로세서, 또는 기타 프로세서를 포함하거나 이들에 통합될 수 있다.
또한 변환기 RS는, 여기에 연결된 M개 셀로 이루어진 그룹 내의 각 셀에 대해 정류기 JS1, ..., JS4를 포함한다.
인버터(10) 및 정류기 JS1, ..., JS4는 처리 수단(12)에 의해 제어되는데, 이 처리 수단(12)은 변환기로 수신되는 전류 Itot와, 셀 CS1, CS2, CS3, CS4를 위한 충전 전류를 제어한다.
실시예의 한 형태에서, 각 밸런싱 변환기 R1, ..., RS는 단방향이다. 즉, 상기 각 변환기 R1, ..., RS는 저전압 회로망으로부터 각 변환기에 연결된 셀(들)로 에너지를 전달하지만, 그 반대 방향으로의 에너지 전달은 막는다.
이러한 실시예의 형태에서, 각 변환기 R1, ..., RS는 정용량(constant capacity)으로 작용한다. 이것이 의미하는 것은, 적어도 하나의 셀의 재충전의 선택에 의해서 이 셀에 연계된 제어 스위치가 닫히면, 저전압 회로망에서 따온 1차측의 전력이 사전설정된 값 P0으로 설정된다는 것이다. 이에 따라, 변환기의 2차 권선에 연결된 각 셀에 흐르는 전류는 재충전할 셀 수의 함수가 될 것이다.
보다 구체적으로, η를 에너지 전달 시스템의 전체 효율(변환기, 명령어 작용, 케이블에 관련된 손실도 포함함)이라고 하면, 아래 식과 같이 된다.
Figure pct00001
여기서,
V14V는 저전압 회로망의 전압, 전형적으로 14 볼트,
Itot는 변환기의 1 차측에 나타나는 저전압 회로망에서 따온 총 전류,
Vi는 i로 나타낸 셀의 전압(i는 1 내지 M),
Ii는 셀 i의 재충전 중에 이 셀 i에 흐르는 밸런싱 전류,
δi는 불린 신호(Boolean signal)로서, 셀 i가 재충전되고 있을 때, 즉, 이 셀에 연계된 스위치가 닫힐 때에 1이고 그 반대의 경우에는 0임.
따라서, 해당 변환기에 연계된 M개 셀들 중 하나의 셀이 재충전되는 경우에, 이 셀에 흐르는 전류는, 모든 M개 셀이 재충전되는 경우보다 대략 M배 더 클 것이다. 이러한 근사치는 특히, M개 셀로 이루어진 그룹 내의 모든 셀들이 정확하게 동일한 전압에 있을 필요는 없다는 사실로부터 기인한다.
따라서, 셀의 재충전 속도는 높아질 것이고 재충전해야 할 셀의 수는 적어질 것이다.
비소모식 밸런싱 시스템은, 배터리(4) 내의 모든 셀의 방전시에, 최대 수의 셀(유리하게는, 모든 셀)이 동시에 그 최소 충전량에 이를 수 있어서 배터리(4)에 저장된 에너지의 최적 이용이 가능하도록 하기 때문에, 한층 더 유리하다.
셀들 간에 용량의 분산이 있는 경우, 배터리(4) 내의 전체 셀 중 최저 용량의 셀이 가장 빠른 시점에 낮은 임계량에 이르게 될 것인바, 이로써 배터리(4)의 추가적 사용이 방지된다. 변환기 R1, ..., RS는 상기 최소 충전된 셀(cell at minimum charge)이 초기에 신속하게 재충전되도록 한다. 따라서 이들 변환기는, 이 제한적인 셀(limiting cell)이 더 늦게 더 낮은 임계량에 이르게 될 것이기 때문에, 배터리의 보다 효율적인 이용을 가능케 해준다.
하나의 전력 등급 P0이 있도록 구성된 경우, 하나의 최소 충전된 셀의 경우에는 이 최소 충전된 셀에 흐르는 밸런싱 전류가 비교적 커서, 이 제한적인 셀을 두 번째로 최소 충전된 셀과 동일한 충전량으로 신속하게 복원시키는 것이 가능하고, 이후에, 이들 두 셀의 동시 재충전이 지시받게 될 것이다. 이 과정은 M개 셀들의 그룹의 전체의 밸런싱이 완료될 때까지 계속된다.
다른 말로 설명하면, 단일의 전력 등급으로 구성된 경우에, 평형 상태로의 수렴이 종래 기술에서보다 더 빠르게 이루어질 수 있고, 이 경우에 밸런싱 작용을 하는 변환기는, 사전에 설정된 밸런싱 전류를 전달하기 위하여 전압 레벨이 유지되는(즉, 정전압) 전압 발생기로서 작용한다. 변환기가 전류 발생기로서 작용하는 이러한 장치는 각 셀에 밸런싱 전류를 전달하는데, 이 전류가 클수록 밸런싱 과정에서의 셀의 개수는 더 적어지게 될 것이다.
일정 전력(constant power)에서 동작하는 이러한 작용에 관련된 또다른 장점은, 단일의 동작점(working point)을 갖도록 각 변환기의 설계를 최적화할 수 있어서 에너지 전달 효율을 개선할 수 있다는 것이다. 따라서 다수 셀들의 동작이 특정의 동작점에 근접하도록 이들의 동시 재충전을 조화시키는 것이 가능하다.
각각의 대응하는 셀 그룹들의 하나 이상의 셀의 재충전에 사용되는 변환기는, 전기 자동차의 보조장치 회로망에 의해 전력을 공급받는다. 따라서, 하나 이상의 셀의 재충전시에는, 도 1에서 고전압 배터리(2)의 전체 셀 C1, C2, ..., CR로부터 컨버터(7)가 전력을 따와서 저전압 회로망(4)에 공급하기 때문에, 전체 셀들의 약간의 방전이 수반된다. 이에, 셀들이 모인 배터리팩(2)의 밸런싱 속도가 더욱 증가하게 된다. 왜냐하면 재충전되지 않고 있는 셀들 그리고 이에 따라 다른 셀들보다 더 높은 충전 상태에 있는 셀들이, 최소 충전된 셀들이 재충전되는만큼 약간 방전하게 될 것이기 때문이다. 이러한 방식으로, 하나의 셀 그룹에서 다른 그룹으로 옮겨서 실행하는 2단의 변환기에 의지하지 않고도, 한 세트의 셀들을 밸런싱하는 것이 가능하다.
실시예의 다른 형태에서, 제안된 시스템은 유사 일정 전력(pseudo-constant power)으로 작용할 수 있다. 즉, 각 변환기는 다수의 전력 등급으로 동작하도록 구성될 수 있다(예컨대 세 개의 전력 등급).
M개 셀로 이루어진 그룹 내에서 하나의 셀이 충전되는 예를 들면, 변환기 RS 의 1차측에 나타나는 따온 전력은 P1 값에 고정된다. 이 값 P1은 앞의 실시예 형태에서의 단일 전력 등급에 해당하는 값 P0보다 낮다.
2개의 셀이 재충전되는 경우에, 변환기의 1차측에 나타나는 따온 전력 P1은 P2 값에 고정될 것인데, 이 P2는 P1과 P0 사이에 있으며 이들 두 전력 값과 완전히 다른 값이다. 적어도 3개의 셀이 재충전되는 경우에는, 변환기의 1차측에 나타나는 따온 전력은, P0 값과 동일한 P3 값으로 고정될 수 있다.
3개의 전력 등급으로 구성하기 위해서 밸런싱 장치를 위한 표준 부품, 특히, 변환기의 2차측에 사용하는 부품들(구체적으로는, 트랜지스터 및/또는 정류 다이오드, 케이블 및 전원 회로를 위한 각종 부품, 변환기 권선 등)을 선택할 수 있다.
M=12개의 셀로 이루어진 그룹의 예를 들면, P0와 동일한 전력 P3은 36W로 선택할 수 있고, 전력 P1은 12W로 선택할 수 있고, 전력 P2는 24W로 선택할 수 있다. 따라서, 약 4볼트의 셀 전압의 경우에 밸런싱 전류는, 1개, 2개, 또는 3개의 셀이 충전되는 3A에 가까울 것이며, 그 후에, 3개보다 많은 셀에 대해서는 모든 12개 셀이 충전되는 대략 0.75A까지 떨어지게 될 것이다. 당연히, 이러한 크기는 설명을 위하여 제시한 것에 불과하다.
다른 실시예 형태에서는, 자동차의 저전압 회로망에서 변환기의 1차측으로 공급하지 않고 고전압 배터리로부터 직접 모든 셀로 공급하도록 구성할 수 있다. 이에 따르면, 변환기의 1차측과 2차측 모두가 배터리에 연결된다. 이러한 변형에 의해서, 특히 산업계 또는 임베디드 시스템에서 저전압 회로망을 사용할 수 없는 응용분야(예를 들어, 휴대용 컴퓨터 배터리, 태양광 패널 등)에도 밸런싱을 실행하는 것이 가능하다. 이러한 변형예는 따라서, 해당 시스템의 독립적 동작을 가능하게 해 줄 수 있다.
예를 들어, 변환기의 1차측은 M개 셀들의 그룹의 단자 또는 배터리(2)의 단자에 연결될 수 있으며, 2차측은 밸런싱하고자 할 M개 셀 각각의 단자에 연결될 수 있다.
변환기의 1차측이 M개 셀들의 그룹의 단자에 연결되고 2차측은 M개의 셀에 개별적으로 연결되는 경우에, 밸런싱은 이 M개 셀의 그룹 내에서 완성된다. 변환기에 의해 관리되는 전압은 동일한 전압 크기로 유지될 것이다.
변환기의 1차측이 배터리(2)의 단자에 연결되고 2차측은 12개 셀의 그룹에만 연결되는 경우에는 1차측의 전압이 더 높아질 수 있지만, 그러나, 이 구조에서는 M개 셀의 그룹에서의 평균 충전량의 상호 밸런싱이 가능할 것이다.

Claims (10)

  1. 한 세트의 전기화학 축전 셀(C1, C2, ..., CR)이 포함된 배터리(2)에 사용되는 충전 밸런싱 장치에 있어서,
    적어도 하나의 셀로 이루어진 다수의 조합을 재충전하는 충전 수단(R1, ..., RS)을 포함하며,
    상기 각 조합마다, 충전 수단이 이 조합 내의 모든 셀을 동시에 재충전하기 위하여 배치되고,
    상기 다수의 조합은 조합 유형의 수 N(N은 1보다 확실히 더 큰 수임)을 정의하는데, 각 조합 유형이 상기 조합 내의 셀들의 수 m에 대응하도록 정의하고,
    수 P는 조합 유형의 수 N보다 확실히 적은 수이고, 상기 충전 수단은 전력 등급의 수 P에서 동작이 허용되는, 배터리 충전 밸런싱 장치.
  2. 제1항에 있어서,
    충전 수단의 전력 등급의 수 P는 1인, 배터리 충전 밸런싱 장치.
  3. 제1항에 있어서,
    충전 수단의 전력 등급의 수 P는 1보다 확실히 더 큰, 배터리 충전 밸런싱 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    충전 수단은 적어도 하나의 변환기(R1, ..., RS)를 포함하는, 배터리 충전 밸런싱 장치.
  5. 제4항에 있어서,
    적어도 하나의 변환기(R1, ..., RS)는 배터리(2)에 의해 전달되는 전압보다 낮은 전압 정격의 저전압 회로망(4)으로부터 에너지를 받도록 배치되며, 상기 저전압 회로망은 상기 배터리로부터 전력을 공급받는, 배터리 충전 밸런싱 장치.
  6. 제4항에 있어서,
    적어도 하나의 변환기가 배터리 내의 셀들 중 적어도 일부에 연결되어서, 이들 셀에서 발생된 에너지를 직접 취할 수 있도록 하는, 배터리 충전 밸런싱 장치.
  7. 제4항 내지 제6항 중 어느 한 항에 있어서, 상기 변환기는,
    에너지의 입력을 위한 1차 권선(10),
    인버터(11),
    상기 변환기에 의해 재충전가능한 각 셀(CS1, ..., CS4) 마다의 2차 권선(ES1, ..., ES4), 스위치(IS1, ..., IS4), 및 정류기(JS1, ..., Js4), 그리고
    스위치, 인버터, 및/또는 정류기의 제어를 위한 처리 수단(12)을 포함하는, 배터리 충전 밸런싱 장치.
  8. 자동차용 전기 공급 시스템으로서,
    자동차 추진 시스템에 전력을 공급하는 배터리(2)와,
    제1항 내지 제7항 중 어느 한 항에 따른 밸런싱 장치를 포함하는, 자동차용 전기 공급 시스템.
  9. 제8항에 따른 전기 공급 시스템을 포함하는 자동차.
  10. 밸런싱 장치가 다수의 셀을 동시에 재충전할 수 있는 충전 수단을 포함하며, 한 세트의 전기화학 축전 셀을 포함하는 배터리를 위한 충전 밸런싱 장치의 제어 방법에 있어서, 상기 방법은,
    다수의 조합은 1보다 확실히 큰 조합 유형의 수 N을 정의하고, 각 조합 유형은 상기 조합의 셀의 수 m에 대응하도록, 다수의 조합 중에서 동시에 재충전할 적어도 하나의 셀의 조합을 선택하는 단계, 및
    P가 조합 유형의 수 N보다 확실히 적도록, 전력 등급의 수 P 중에서 선택된 전력 등급을 변환기에 부과하는 단계를 포함하는, 배터리 충전 밸런싱 장치의 제어 방법.






KR1020147035147A 2012-05-15 2013-05-13 배터리의 충전 밸런싱 KR102054345B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1254446A FR2990800B1 (fr) 2012-05-15 2012-05-15 Equilibrage de charge pour une batterie
FR1254446 2012-05-15
PCT/FR2013/051042 WO2013171416A1 (fr) 2012-05-15 2013-05-13 Equilibrage de charge pour une batterie

Publications (2)

Publication Number Publication Date
KR20150013302A true KR20150013302A (ko) 2015-02-04
KR102054345B1 KR102054345B1 (ko) 2019-12-10

Family

ID=48577118

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147035147A KR102054345B1 (ko) 2012-05-15 2013-05-13 배터리의 충전 밸런싱

Country Status (7)

Country Link
US (1) US10008861B2 (ko)
EP (1) EP2850715B1 (ko)
JP (2) JP6346887B2 (ko)
KR (1) KR102054345B1 (ko)
CN (1) CN104380561B (ko)
FR (1) FR2990800B1 (ko)
WO (1) WO2013171416A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831689B2 (en) 2015-03-20 2017-11-28 Postech Academy-Industry Foundation Battery cell balancing method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140340023A1 (en) * 2013-05-17 2014-11-20 Ying-Haw Shu Hybrid battery balancing system
FR3014253B1 (fr) 2013-11-29 2017-05-19 Commissariat Energie Atomique Dispositif d'equilibrage de charge des elements d'une batterie de puissance
CN104868514A (zh) * 2014-10-22 2015-08-26 北汽福田汽车股份有限公司 均衡电流采集装置及主动均衡效率计算方法、系统
DE102016212568A1 (de) * 2016-07-11 2018-01-11 Robert Bosch Gmbh Batteriesystem mit einer Batterie zum Einspeisen von elektrischer Energie in ein erstes Spannungsnetz und ein zweites Spannungsnetz
CN107150608A (zh) * 2017-06-08 2017-09-12 合肥凯利科技投资有限公司 一种电动车电池管理装置
CN106981912A (zh) * 2017-06-08 2017-07-25 合肥凯利科技投资有限公司 一种带有电池管理功能的充电式电机控制器
CN107070354A (zh) * 2017-06-08 2017-08-18 合肥凯利科技投资有限公司 一种多功能充电式电机控制器
CN107017688A (zh) * 2017-06-08 2017-08-04 合肥凯利科技投资有限公司 一种集成有dc‑dc功能的电池管理装置
TWI655826B (zh) * 2017-10-24 2019-04-01 聯華聚能科技股份有限公司 Method of balancing battery voltage
DE102017221033A1 (de) * 2017-11-24 2019-05-29 Audi Ag Verfahren zum Betreiben einer elektrischen Energiespeichereinrichtung für ein Kraftfahrzeug sowie entsprechende Energiespeichereinrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044802A (ja) * 2007-08-06 2009-02-26 Pues Corp 電圧均等化制御装置
JP2011211808A (ja) * 2010-03-29 2011-10-20 Sanyo Electric Co Ltd 電源装置及びこの電源装置を備える車両

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228097B2 (ja) * 1995-10-19 2001-11-12 株式会社日立製作所 充電システム及び電気自動車
SE507339C2 (sv) * 1995-10-31 1998-05-18 Xicon Battery Electronics Ab System för utjämning av laddningsnivå i batterier bestående av seriekopplade battericeller eller batteriblock
US5666041A (en) 1996-08-27 1997-09-09 The University Of Toledo Battery equalization circuit with ramp converter
JP3750318B2 (ja) * 1997-11-14 2006-03-01 日産自動車株式会社 モジュール充放電器
US6373223B1 (en) * 2000-11-21 2002-04-16 Nagano Japan Radio Co., Ltd. Voltage equalizing apparatus and voltage equalizing method for battery devices
JP2003333762A (ja) * 2002-05-14 2003-11-21 Japan Storage Battery Co Ltd 組電池用の電圧レベル均等化装置
US20050077879A1 (en) * 2003-10-14 2005-04-14 Near Timothy Paul Energy transfer device for series connected energy source and storage devices
JP2005151720A (ja) * 2003-11-17 2005-06-09 Mitsubishi Heavy Ind Ltd セルバランス補正装置、二次電池、セルバランス補正方法及びセルバランス補正プログラム
JP4875320B2 (ja) 2005-06-30 2012-02-15 富士重工業株式会社 蓄電素子の電圧均等化装置
KR100836457B1 (ko) 2006-05-18 2008-06-09 (주) 다쓰테크 배터리 충전 균등화기
KR101124725B1 (ko) * 2006-06-15 2012-03-23 한국과학기술원 전하 균일 장치
US7612530B2 (en) * 2006-11-21 2009-11-03 Industrial Technology Research Institute Bridge battery voltage equalizer
JP4807275B2 (ja) * 2007-02-07 2011-11-02 株式会社デンソー 車両用電池管理装置
KR101124800B1 (ko) * 2007-02-09 2012-03-23 한국과학기술원 전하 균일 장치
CN101145625A (zh) 2007-08-08 2008-03-19 何茂彬 串联电池组均衡充放电方法及电路
US8541980B2 (en) 2009-05-22 2013-09-24 Intersil Americas LLC System and method for cell balancing and charging
JP5229389B2 (ja) * 2009-06-10 2013-07-03 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
US8148942B2 (en) * 2009-11-05 2012-04-03 O2Micro International Limited Charging systems with cell balancing functions
WO2011070517A1 (en) * 2009-12-09 2011-06-16 Panacis Inc. System and method of integrated battery charging and balancing
CN102668311B (zh) * 2009-12-14 2016-04-06 李持国际有限公司 平衡多芯电池的系统和方法
WO2011095610A2 (fr) * 2010-02-05 2011-08-11 Commissariat à l'énergie atomique et aux énergies alternatives Systeme d'equilibrage de charge pour batteries
FR2956260B1 (fr) * 2010-02-05 2012-04-13 Commissariat Energie Atomique Systeme d'equilibrage de charge pour batteries
FR2959885B1 (fr) * 2010-05-05 2014-12-05 Commissariat Energie Atomique Systeme d'equilibrage pour batterie de puissance, procede d'equilibrage de charge et procede combine d'equilibrage de charge et d'alimentation correspondants
US8742722B2 (en) 2010-08-27 2014-06-03 International Rectifier Corporation Dynamic power management system and method
US8089249B2 (en) * 2010-11-08 2012-01-03 O2Micro, Inc. Battery management systems and methods
FR2972581B1 (fr) * 2011-03-09 2015-01-02 Commissariat Energie Atomique Systeme d'equilibrage de charge pour batteries
US8933661B2 (en) * 2012-04-30 2015-01-13 Tesla Motors, Inc. Integrated inductive and conductive electrical charging system
US9821810B2 (en) * 2012-09-14 2017-11-21 Ford Global Technologies, Llc Method and system for heating auxiliary battery of vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044802A (ja) * 2007-08-06 2009-02-26 Pues Corp 電圧均等化制御装置
JP2011211808A (ja) * 2010-03-29 2011-10-20 Sanyo Electric Co Ltd 電源装置及びこの電源装置を備える車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831689B2 (en) 2015-03-20 2017-11-28 Postech Academy-Industry Foundation Battery cell balancing method

Also Published As

Publication number Publication date
CN104380561A (zh) 2015-02-25
FR2990800B1 (fr) 2014-05-02
US20150137736A1 (en) 2015-05-21
US10008861B2 (en) 2018-06-26
JP2018110525A (ja) 2018-07-12
CN104380561B (zh) 2017-06-13
JP2015519865A (ja) 2015-07-09
EP2850715B1 (fr) 2019-02-20
KR102054345B1 (ko) 2019-12-10
JP6346887B2 (ja) 2018-06-20
FR2990800A1 (fr) 2013-11-22
WO2013171416A1 (fr) 2013-11-21
EP2850715A1 (fr) 2015-03-25

Similar Documents

Publication Publication Date Title
JP6346887B2 (ja) バッテリの充電平衡
KR101893045B1 (ko) 배터리용 충전 밸런싱 시스템
CN110281810B (zh) 智能电池的直流充电
US10971941B2 (en) Charging circuit and charging method for an electrical energy storage system
US8129952B2 (en) Battery systems and operational methods
US8330418B2 (en) Power supply device capable of equalizing electrical properties of batteries
US9240685B2 (en) Reconfigurable matrix-based power distribution architecture
TWI804503B (zh) 蓄電系統以及電氣機器
EP3314718B1 (en) Battery balancing circuit
CN105074484A (zh) 电池管理系统
US11063308B2 (en) Battery for an electric vehicle
CN108377010B (zh) 带直流电压转换器的充电电路和对电蓄能系统的充电方法
JP2010279120A (ja) 電気自動車の電池監視装置
US20140077594A1 (en) Current diverting device, a method and a computer program product
CN110816311A (zh) 用于运行电池组系统的方法和电动车辆
KR101401861B1 (ko) 고전압 시스템을 구비한 자동차를 위한 컨버터 장치 및 상응하는 컨버터 장치를 포함하는 고전압 시스템의 작동 방법
US10744899B2 (en) Balancing energy in a parallelized battery system
US20150194835A1 (en) Power control of batteries
KR20210047750A (ko) 배터리 관리 시스템 및 밸런싱 방법
KR20210012224A (ko) 전원 시스템
US11951871B2 (en) Multi-voltage storage system for an at least partly electrically driven vehicle
US20230133126A1 (en) Battery system and method for controlling a battery system
WO2010069405A1 (en) Battery energy storage system, and method
CN117543740A (zh) 蓄电系统

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant