KR20140122672A - 데이터 기반 함수 모델의 모델 계산 유닛, 제어 장치 및 계산 방법 - Google Patents
데이터 기반 함수 모델의 모델 계산 유닛, 제어 장치 및 계산 방법 Download PDFInfo
- Publication number
- KR20140122672A KR20140122672A KR1020140041361A KR20140041361A KR20140122672A KR 20140122672 A KR20140122672 A KR 20140122672A KR 1020140041361 A KR1020140041361 A KR 1020140041361A KR 20140041361 A KR20140041361 A KR 20140041361A KR 20140122672 A KR20140122672 A KR 20140122672A
- Authority
- KR
- South Korea
- Prior art keywords
- unit
- model
- calculation
- data
- addition
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/02—Digital function generators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
- G06F7/5443—Sum of products
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
- G06F7/556—Logarithmic or exponential functions
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Optimization (AREA)
- Computing Systems (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Complex Calculations (AREA)
- Logic Circuits (AREA)
- Test And Diagnosis Of Digital Computers (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Electrotherapy Devices (AREA)
Abstract
본 발명은 계산 모듈(31)을 포함하는 제어 장치(1)에서 데이터 기반 함수 모델을 계산하기 위한 모델 계산 유닛(3)에 관한 것으로서, 이때 계산 모듈(31)은,
- 승산의 하드웨어적 실행을 위한 승산 유닛(43)과,
- 가산의 하드웨어적 실행을 위한 가산 유닛(42)과,
- 지수 함수의 하드웨어적 계산을 위한 지수 함수 유닛(41)과,
- 계산될 데이터 기반 함수 모델의 하이퍼 매개변수들 및 노드 데이터들을 저장하기 위한 메모리, 특히 구성 레지스터(45)와,
- 데이터 기반 함수 모델을 산출하기 위해, 승산 유닛(43), 가산 유닛(42), 지수 함수 유닛(41) 및 메모리, 특히 구성 레지스터(45)에서 계산 과정의 하드웨어적 제어를 위한 논리 회로(46)를 포함한다.
- 승산의 하드웨어적 실행을 위한 승산 유닛(43)과,
- 가산의 하드웨어적 실행을 위한 가산 유닛(42)과,
- 지수 함수의 하드웨어적 계산을 위한 지수 함수 유닛(41)과,
- 계산될 데이터 기반 함수 모델의 하이퍼 매개변수들 및 노드 데이터들을 저장하기 위한 메모리, 특히 구성 레지스터(45)와,
- 데이터 기반 함수 모델을 산출하기 위해, 승산 유닛(43), 가산 유닛(42), 지수 함수 유닛(41) 및 메모리, 특히 구성 레지스터(45)에서 계산 과정의 하드웨어적 제어를 위한 논리 회로(46)를 포함한다.
Description
본 발명은 함수들의 하드웨어적 실행을 위해, 특히 엔진 시스템의 제어를 위해 데이터 기반 함수 모델들이 구현되는 제어 장치용 모델 계산 유닛들에 관한 것이다. 또한 본 발명은 이와 같은 모델 계산 유닛들에서 데이터 기반 함수 모델들의 계산 방법에 관한 것이다.
종래 기술에는 주 계산 유닛 및 데이터 기반 함수 모델들의 계산을 위한 별도의 모델 계산 유닛을 포함하는 제어 장치들이 공지되어 있다. 그래서 예컨대 문헌 DE 10 2010 028 266 A1호에는 모델 계산 유닛으로서 부가적 논리 회로를 갖는 제어 장치가 제공되고, 상기 논리 회로는 지수 함수들의 계산을 위해 하드웨어적으로 형성되어 있다. 이는 특히 가우시안 프로세스 모델의 계산을 위해 필요한 베이지안 회귀 방법을 하드웨어 유닛에서 지원하는 것을 가능하게 한다.
전체적으로, 모델 계산 유닛은 매개변수들 및 노드들 또는 트레이닝 데이터들에 기반하여 데이터 기반 함수 모델을 계산하기 위한 수학적 과정들을 실행하도록 설계되어 있다. 특히, 모델 계산 유닛이 지수 함수들의 효율적 계산을 위해 하드웨어적으로 형성되어서, 가우시안 프로세스 모델은 주 계산 유닛에서 가능한 것보다 더 빠른 계산 속도로 계산될 수 있다. 일반적으로 데이터 기반 함수 모델의 계산을 위한 매개변수 및 노드들을 포함하는 구성 데이터들은 모델 계산 유닛에서 계산 전에 이러한 유닛 내에 판독되고 나서 구성 데이터에 기반한 계산들이 모델 계산 유닛의 하드웨어를 통해 실행된다. 그러나 지금까지 이러한 모델 계산 유닛의 하드웨어의 구현은 구성 데이터가 바람직하지 않은 경우 계산 시 수치상의 문제를 야기할 수 있으므로, 오프라인으로 결정된 모든 데이터 기반 함수 모델들이 모델 계산 유닛에서 안정적으로 계산될 수 있는 것은 아니다.
본 발명에 따르면, 청구범위 제1항에 따른 계산 모듈을 갖는 제어 장치 내 데이터 기반 함수 모델의 계산을 위한 모델 계산 유닛 및 종속 청구항들에 따른 제어 장치 및 데이터 기반 함수 모델의 계산 방법이 제공된다.
본 발명의 다른 바람직한 실시예들은 종속항들에 명시되어 있다.
제1 양태에 따라 모델 계산 유닛은 제어 장치에서 데이터 기반 함수 모델의 계산을 위한 하드웨어 유닛으로서 형성되어 있고, 모델 계산 유닛은 계산 모듈을 포함하며, 이때 계산 모듈은,
- 승산의 하드웨어적 실행을 위한 승산 유닛과,
- 가산의 하드웨어적 실행을 위한 가산 유닛과,
- 지수 함수의 하드웨어적 계산을 위한 지수 함수 유닛과,
- 계산될 데이터 기반 함수 모델의 하이퍼 매개변수들 및 노드 데이터들을 저장하기 위한 구성 레지스터 또는 메모리와,
- 데이터 기반 함수 모델을 산출하기 위해, 승산 유닛, 가산 유닛, 지수 함수 유닛 및 구성 레지스터 또는 메모리에서 계산 과정의 하드웨어적 제어를 위한 논리 회로를 포함한다.
이 모델 계산 유닛은 하드웨어를 포함하는 논리 회로이며, 하드웨어는 데이터 기반 함수 모델을 위해 특정 계산들의 하드웨어적 실행을 위해, 특히 계산 모듈과의 공동 통합을 위해 형성되어 있다. 이러한 논리 회로에 의해, 베이지안 회귀 모델을 위해 사전에 트레이닝되고 하드웨어에 저장된 계산 방법이 온라인으로 실행된다. 데이터 기반 함수 모델로서 가우시안 프로세스 모델의 이용은, 특히 모델값이 산출되는 테스트 점의 입력 표준화의 변환과 지수 함수의 변환을 통해 가산과 승산 뿐 아니라 지수 함수의 결과로서 가우시안 프로세스 모델의 모델값을 산출하는 것을 가능하게 한다.
특히, 모델 계산 유닛은 상기 유닛들로만 구성될 수 있다.
하드웨어에서는, 하드웨어 기능 블록, 이른바 통합 계산을 위한 MAC(Multiplier-Accumulator) 블록 또는 FMAC(fused multiply accumulate) 블록이라고도 지칭되는 부동 소수점 계산들을 위한 FMA(fused multiply-add) 블록을 실현하는 것이 가능하다. 이러한 하드웨어 기능 블록은 본 명세서에서 정수 및 부동 소수점 계산을 위해 MAC 유닛이라 칭한다. MAC 유닛은 하드웨어에서 직접 구현됨으로써 특히 효율적이어서 신속하게 연산 을 실행할 수 있다. 이는 경우에 따라 작은 클록 사이클 범위 내에서 그리고 특별한 경우에는 하나의 클록 사이클 범위 내에서 가능하다.
하드웨어 내에 실현된 MAC 유닛 및 지수 함수의 배타적 계산을 위해 하드웨어 내에 실현된 지수 함수 유닛을 포함하는 상기 유형의 모델 계산 유닛이 별도로 제공됨으로써, 특히 효율적인 논리 회로가 제공될 수 있으며, 상기 논리 회로는 모델 계산 유닛으로서 (소프트웨어의 실행에 적합한) 계산 모듈과 통합되어 데이터 기반 함수 모델들, 특히 가우시안 프로세스 모델들에 대한 모델값들을 산출하기 위해 제어 장치 내에서 이용될 수 있다.
또한, 승산 유닛과 가산 유닛은 별도로 또는 통합적으로 하나의 MAC 유닛 내에 실현될 수 있다.
일 실시예에 따라, 복수의 계산 모듈이 제공될 수 있으며, 이때 복수의 계산 모듈 중 복수가 공동의 지수 함수 유닛 및/또는 공동의 MAC 유닛을 갖는다. 대안으로, 각 계산 모듈은 고유한 지수 함수 유닛 및 고유한 MAC 유닛을 가질 수 있다.
상기 함수 모델은 하나의 모델값을 복수의 입력 변수에 할당할 수 있으며, 이때 각각 MAC 유닛에 의해 입력 변수들의 입력 표준화의 계산을 위한 승산과 가산, 그리고 MAC 유닛에 의해 출력 변수의 출력 표준화의 계산을 위한 승산과 가산을 실행하기 위해, 계산 과정이 형성되어 있다.
일 실시예에 따라, 함수 모델은 항의 계산을 제공할 수 있으며, 이때 는 데이터 기반 함수 모델의 노드에 상응하고, 는 입력 변수들에 상응하며, 가산 유닛 및 승산 유닛을 통해 또는 MAC 유닛을 통해 상기 항의 계산을 실행하기 위해, 논리 회로가 가산 유닛과 승산 유닛 또는 MAC 회로를 제어한다.
다른 일 양태에 따라, 특히 내연기관을 포함하는 엔진 시스템을 위한 제어 장치가 제공되어 있으며, 상기 제어 장치는 계산 유닛과 상기 모델 계산 유닛을 포함한다.
다른 일 양태에 따라, 데이터 기반 함수 모델, 특히 가우시안 프로세스 모델의 계산 방법이 상기 모델 계산 유닛에 제공되고, 이때 상기 함수 모델은 차례로 실행된 계산 단계들을 통해 완전히 계산되고, 계산 단계들은 단지 승산과 가산의 조합 및 지수 함수의 계산을 포함한다.
본 발명의 바람직한 실시예들은 하기에서 첨부된 도면들을 참고하여 더 자세히 설명된다.
도 1은 물리적 시스템을 제어하기 위한 제어 장치에 대한 하드웨어 아키텍처의 개략도.
도 2는 입력 변수 벡터의 D 차원 입력값에 대한 가우시안 프로세스 모델을 위한 모델값 산출을 위한 블록도.
도 3은 제어 장치의 모델 계산 유닛 내 계산 모듈의 상세도.
도 4는 MAC 유닛과 지수 함수 유닛을 공동으로 이용하는 2개의 계산 모듈을 위한 하드웨어 아키텍처의 개략도.
도 5는 별도의 MAC 유닛과 공동의 지수 함수 유닛을 갖는 2개의 계산 모듈을 위한 다른 하드웨어 아키텍처의 개략도.
도 2는 입력 변수 벡터의 D 차원 입력값에 대한 가우시안 프로세스 모델을 위한 모델값 산출을 위한 블록도.
도 3은 제어 장치의 모델 계산 유닛 내 계산 모듈의 상세도.
도 4는 MAC 유닛과 지수 함수 유닛을 공동으로 이용하는 2개의 계산 모듈을 위한 하드웨어 아키텍처의 개략도.
도 5는 별도의 MAC 유닛과 공동의 지수 함수 유닛을 갖는 2개의 계산 모듈을 위한 다른 하드웨어 아키텍처의 개략도.
도 1에는 통합 제어 장치(1)를 위한 하드웨어 아키텍처의 개략도가 도시되어 있으며, 통합 제어 장치 내에는 계산 유닛(2) 및 데이터 기반 함수 모델의 하드웨어적 계산을 위한 모델 계산 유닛(3)이 통합된 방식으로 제공되어 있다. 계산 유닛(2)과 모델 계산 유닛(3)은 시스템 버스(4)를 통해 서로 통신 연결되어 있다.
기본적으로, 모델 계산 유닛(3)은 (하드와이어드) 하드웨어만을 가지며 바람직하게는 소프트웨어 코드를 실행하도록 형성되어 있지는 않다. 이러한 이유로, 모델 계산 유닛(3)에 프로세서를 제공하는 것도 불필요하다. 이런 점 때문에 이러한 모델 계산 유닛(3)의 자원 최적화 구현이 가능하다.
모델 계산 유닛(3)은 하나의 또는 복수의 계산 모듈(31), 하나의 내부 메모리(32) 및 하나의 DMA(Direct Memory Access) 유닛(33)을 포함할 수 있다. 계산 모듈들(31), 내부 메모리(32) 및 DMA 유닛(33)은 내부 통신 연결부(34)를 통해 서로 연결되어 있다.
비모수적 데이터 기반 함수 모델들의 이용은 베이지안 회귀 방법에 기반한다. 베이지안 회귀의 기초는 예컨대 문헌 [C.E.Rasmusen 등의 "Gaussian Processes for Machine Learning(MIT Press 2006)"]에 기술되어 있다. 베이지안 회귀는 모델에 기반하는 데이터 기반 방법이다. 트레이닝 데이터의 측정점들 및 출력 변수의 관련 출력 데이터가 필요하다. 트레이닝 데이터에 전체적으로 또는 부분적으로 상응하는 또는 이들로부터 생성되는 노드 데이터가 사용됨으로써, 상기 모델은 생성된다. 또한 추상적 하이퍼 매개변수들이 결정되고, 이들은 모델 함수들의 공간을 매개변수화하고 추후 모델 예측에 대한 트레이닝 데이터의 개별 측정점들의 영향을 효율적으로 가중시킨다.
추상적 하이퍼 매개변수들은 최적화 방법을 통해 결정된다. 이러한 최적화 방법은 주변 우도(maginal likelihood)()의 최적화일 수 있다. 주변 우도()는 모델 매개변수들(H)과 트레이닝 데이터의 x 값들의 제공 하에 벡터(Y)로서 표시된 트레이닝 데이터의 측정된 y 값들의 타당성을 표시한다. 데이터를 특히 양호하게 설명할 수 있는 적절한 하이퍼 매개변수들이 탐색됨으로써, 모델 트레이닝에서 가 최대화된다. 대수가 타당성 함수의 연속성을 변경하지 않기 때문에, 계산을 용이하게 하기 위해 의 대수는 최대화된다.
이때, 최적화 방법은 모델의 복잡도와 모델의 재현 정확도 사이의 트레이드 오프를 자동으로 제공한다. 모델 복잡도 증가에 의해 트레이닝 데이터의 임의의 높은 재현의 정확도가 달성될 수는 있지만, 이는 동시에 트레이닝 데이터에 모델의 과잉 매칭과 이로 인해 악화된 일반화 특성을 초래할 수도 있다.
가우시안 프로세스 모델의 계산은 도 2에 개략적으로 도시되어 있는 단계들에 상응하도록 이루어진다. 우선 테스트 점()(입력 변수 벡터)에 대한 입력값들()이, 정확하게는 하기의 식에 상응하게 표준화된다.
비모수 함수 모델의 생성의 결과로서 하기의 식이 얻어진다.
이때 는 표준화된 테스트 점()[차원(D)의 입력 변수 벡터]에서 표준화된 모델값(출력값)에 상응하고, 는 (비표준화된) 테스트 점()[차원(D)의 입력 변수 벡터]에서 (비표준화된) 모델값(출력값)에 상응하며, 는 노드 데이터의 노드에 상응하고, 은 노드 데이터의 노드의 수에 상응하며, 는 입력 데이터/트레이닝 데이터/노드 데이터 공간의 차원에 상응하고, 및 는 모델 트레이닝의 하이퍼 매개변수들에 상응한다. 벡터()는 하이퍼 매개변수들과 트레이닝 데이터에서 계산된 변수이다. 또한, 는 노드 데이터의 출력값들의 평균값과 관련하여 평균값 함수에 상응하고, 는 노드 데이터의 출력값들의 변화에 상응한다.
가우시안 프로세스 모델의 계산이 일반적으로 표준화된 공간에서 이루어지기 때문에, 입력 및 출력 표준화가 이루어진다.
계산의 초기에, 계산 유닛(2)은 계산될 함수 모델에 관한 구성 데이터를 메모리(5)로부터 내부 메모리(32)로 로딩하고, 구성 데이터에 의해 실시되는 계산을 계산 모듈(31)에서 시작할 것을 DMA 유닛(33)에 지시한다. 구성 데이터는 가우시안 프로세스 모델의 하이퍼 매개변수들 및 노드 데이터를 포함한다.
도 2에서 제공되는 처리 순서는 수치 계산을 위해 바람직하지 않고 본원의 경우에 경우에 따라 모델 계산 유닛(3)에서 불안정하게 계산될 수 있다. 그러므로 계산들이 더 용이한 방식으로 신속하게 그리고/또는 수치상 안정적으로 실행될 수 있도록 계산 모듈(31)은 형성된다. 이를 위해, 입력 표준화는 로 대체되며, 이 식에서 이고 이다.
내부의 합 루프는 노드 데이터와 테스트 점() 사이의 제곱 편차와 의 승산값들을 온라인으로 합산한다. 길이 척도()는 일반적으로 각 모델마다 상이하다. 입력 표준화의 변환 및 베이지안 회귀 모델의 변형에 의해, 계산 모듈(31)은 모델값의 계산을 위해 의 형식의 연산을 반복적으로 사용할 수 있다.
하드웨어 구현 시 의 형식의 계산은 소위 MAC 유닛에 의해 특히 효율적인 방식으로 가능하다. 이러한 MAC 유닛은, 더 적은 클록 사이클 범위 내에서 상응하는 계산을 실행할 수 있도록, 하드웨어에서 실현될 수 있다. 경우에 따라 계산은 심지어 하나의 클록 사이클 내에서 이루어질 수 있다. 또한 상술된 변환 및 변형은 계산 모듈(31)에서 모델값의 안정적인 수치 계산을 야기한다. 상기 계산은 첨부된 슈도 C 코드에 명시된 것처럼 하드웨어에서 실현된다.
/* 단계 1: 입력 표준화 */
/* 단계 2: 계산 외부 루프 */
/* 단계 2a: 계산 내부 루프 */
/* 단계 2b: 계산 지수 함수 */
/* 단계 2c: */
/* 단계 3: 출력 표준화 */
상기 변형을 통해, 도 2에 도시된 계산 과정이 도 3에 더 자세히 도시된 계산 모듈(31)에서 하기 유닛들에 의해 실행될 수 있다. 이를 위해, 계산 모듈(31)은 지수 함수 유닛(41), 승산 유닛(43), 가산 유닛(42) 또는 이들의, MAC 유닛(44)의 종전 결합 형태를 포함할 수 있다. 하드웨어의 유연성을 보장할 수 있도록, 필요한 매개변수들, 즉 테스트 점(), 노드 데이터(), 차원들의 수(), 트레이닝 데이터의 수()가 구성될 수 있다. 이들은 구성 레지스터 또는 메모리에서 결합되어 저장되고 예컨대 계산 유닛(2)에 의해 기록될 수 있는 레지스터(45) 및 포인터 레지스터로서 표시될 수 있다.
슈도 C 코드에 명시된 상기 계산 과정은 논리 회로(46)를 통해 제어된다. 논리 회로(46)에는 상응하는 와이어링 및 순차 제어 시스템이 도시되어 있다.
또한, 이 변형은 하드웨어에서 가우시안 프로세스 모델의 완전한 계산의 구현을 가능하게 한다. 상기 계산은 실질적으로 MAC 유닛(44) 및 지수 함수 유닛(41)에 의해 실행될 수 있다. 블록들의 이용은 상기 슈도 C 코드에서 우측에 명시되어 있다.
도 1에 도시된 것처럼, 복수의 가우시안 프로세스 모델들 또는 부분 모델들이 서로 독립적으로 그리고 병렬로 계산될 수 있도록, 모델 계산 유닛(3)에 복수의 계산 모듈들(31)이 제공될 수 있다. 도 4에 도시된 것처럼, 각 계산 모듈(31)은 고유한 구성 레지스터 또는 고유한 메모리를 가지고, 테스트 점()의 입력값들, 노드 데이터() 및 다른 모든 매개변수들이 상기 레지스터로 로딩된다. 복수의 계산 모듈(31)의 실현은 예컨대 파이프라인 기술을 통해 실현될 수 있다.
또한, 하드웨어 자원을 보호하기 위해, 모델 계산 유닛(3)의 하나의 또는 복수의 부분들이 일회만 실행되고 복수의 계산 모듈들(31)에 의해 이용되는 최적화 가능성도 존재한다. 그러므로 예컨대 계산 모듈들(31)은 공동의 MAC 유닛(44) 또는 공동의 지수 함수 유닛(41)에 액세스할 수 있다.
복수의 계산 모듈들(31)의 실현은 예컨대 (시간) 분할 기술을 통해 최적화될 수 있다. 시간 분할 기술에서 유닛들에, 예컨대 2개의 계산 모듈들(31)에 일정한 클록 할당이 존재하며, 즉 짝수 클록들 및 홀수 클록들이 예컨대 2개의 계산 모듈들 중 상응하는 하나의 클록에 할당된다.
일반적으로, 분할 기술에서 계산 모듈들(31)의 할당은 필요에 따라 [예컨대 논리 회로(46)에 의해] 실행된다. 또한, 이 분할 기술은 계산 모듈이 고장날 경우 이의 계산들이 다른 계산 모듈에 의해 실행될 수 있는 잉여성을 제공할 수 있다.
그에 반해, 도 5의 실현에서는 공동의 지수 함수 유닛(41)에 액세스하는, 각각 고유한 MAC 유닛(44)을 포함하는 2개의 계산 모듈들(31)이 표시된다.
Claims (11)
- 계산 모듈(31)을 포함하는 제어 장치(1)에서 데이터 기반 함수 모델을 계산하기 위한 모델 계산 유닛(3)으로서, 이때 계산 모듈(31)은,
- 승산의 하드웨어적 실행을 위한 승산 유닛(43)과,
- 가산의 하드웨어적 실행을 위한 가산 유닛(42)과,
- 지수 함수의 하드웨어적 계산을 위한 지수 함수 유닛(41)과,
- 계산될 데이터 기반 함수 모델의 하이퍼 매개변수들 및 노드 데이터들을 저장하기 위한 메모리와,
- 데이터 기반 함수 모델을 산출하기 위해, 승산 유닛(43), 가산 유닛(42), 지수 함수 유닛(41) 및 메모리에서 계산 과정의 하드웨어적 제어를 위한 논리 회로(46)를 포함하는 모델 계산 유닛. - 제1항에 있어서, 승산 유닛과 가산 유닛은 하드웨어 내에 통합된 MAC 유닛(44) 내에 제공되어 있는 모델 계산 유닛.
- 제1항 또는 제2항에 있어서, 복수의 계산 모듈들(31)이 제공되어 있으며, 이때 복수의 계산 모듈들(31) 중 복수가 공동의 지수 함수 유닛(41) 또는 공동의 MAC 유닛(44), 또는 두 유닛 모두를 갖는 모델 계산 유닛.
- 제1항 또는 제2항에 있어서, 함수 모델은 하나의 모델값을 복수의 입력 변수들에 할당하고, 이때 입력 변수들의 입력 표준화의 계산을 위한 승산과 가산을 실행하기 위해, 그리고 출력 변수들의 출력 표준화의 계산을 위한 승산과 가산을 실행하기 위해, 계산 과정이 형성되어 있는 모델 계산 유닛.
- - 계산 유닛(2)과,
- 제1항 또는 제2항에 따른 모델 계산 유닛(3)을 포함하는 제어 장치(1). - 제1항 또는 제2항에 따른 모델 계산 유닛(3)에서 데이터 기반 함수 모델의 계산 방법이며, 이때 함수 모델은 차례로 실행된 계산 단계들을 통해 완전히 계산되고, 상기 계산 단계들은 하나 이상의 통합된 승산 및 가산 또는 통합된 승산과 가산 계산들 및 지수 함수의 계산만을 포함하는 계산 방법.
- 제1항에 있어서, 메모리는 구성 레지스터(45)인 모델 계산 유닛.
- 제4항에 있어서, 입력 변수들의 입력 표준화의 계산을 위한 승산과 가산은 MAC 유닛(44)에 의해 실행되고, 출력 변수들의 출력 표준화의 계산을 위한 승산과 가산은 MAC 유닛(44)에 의해 실행되는 모델 계산 유닛.
- 제6항에 있어서, 내연기관을 구비한 엔진 시스템을 위한 제어 장치.
- 제7항에 있어서, 데이터 기반 함수 모델은 가우시안 프로세스 모델인, 계산 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013206302.4 | 2013-04-10 | ||
DE102013206302 | 2013-04-10 | ||
DE102013213420.7 | 2013-07-09 | ||
DE102013213420.7A DE102013213420A1 (de) | 2013-04-10 | 2013-07-09 | Modellberechnungseinheit, Steuergerät und Verfahrenzum Berechnen eines datenbasierten Funktionsmodells |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140122672A true KR20140122672A (ko) | 2014-10-20 |
KR102215271B1 KR102215271B1 (ko) | 2021-02-15 |
Family
ID=51618474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140041361A KR102215271B1 (ko) | 2013-04-10 | 2014-04-07 | 데이터 기반 함수 모델의 모델 계산 유닛, 제어 장치 및 계산 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10146248B2 (ko) |
JP (2) | JP2014206975A (ko) |
KR (1) | KR102215271B1 (ko) |
CN (1) | CN104102137A (ko) |
DE (1) | DE102013213420A1 (ko) |
FR (1) | FR3004567B1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190043616A (ko) * | 2016-09-07 | 2019-04-26 | 로베르트 보쉬 게엠베하 | 피드포워드 및 피드백을 포함한 다층 퍼셉트론 모델의 계산을 위한 모델 계산 유닛 및 그 제어 장치 |
KR20190044657A (ko) * | 2016-09-07 | 2019-04-30 | 로베르트 보쉬 게엠베하 | 다층 퍼셉트론 모델을 계산하기 위한 모델 계산 유닛 및 제어 장치 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013213420A1 (de) * | 2013-04-10 | 2014-10-16 | Robert Bosch Gmbh | Modellberechnungseinheit, Steuergerät und Verfahrenzum Berechnen eines datenbasierten Funktionsmodells |
DE102013209657A1 (de) * | 2013-05-24 | 2014-11-27 | Robert Bosch Gmbh | FMA-Einheit, insbesondere zur Verwendung in einer Modellberechnungseinheit zur rein hardwarebasierten Berechnung von Funktionsmodellen |
CN105892989B (zh) * | 2016-03-28 | 2017-04-12 | 中国科学院计算技术研究所 | 一种神经网络加速器及其运算方法 |
DE102017215420A1 (de) * | 2016-09-07 | 2018-03-08 | Robert Bosch Gmbh | Modellberechnungseinheit und Steuergerät zur Berechnung eines RBF-Modells |
US11176487B2 (en) * | 2017-09-28 | 2021-11-16 | Oracle International Corporation | Gradient-based auto-tuning for machine learning and deep learning models |
DE102017217972A1 (de) * | 2017-10-10 | 2019-04-11 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Erzeugen eines inversen Sensormodells und Verfahren zum Erkennen von Hindernissen |
JP2019157652A (ja) | 2018-03-07 | 2019-09-19 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
CN109739470B (zh) * | 2018-12-30 | 2023-06-13 | 南京大学 | 一种基于2型双曲cordic任意指数函数的计算系统 |
DE102020206916A1 (de) | 2020-06-03 | 2021-12-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Steuereinrichtung und Verfahren zum Auswählen von Auswertungspunkten für ein Bayessches Optimierungsverfahren |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6223196B1 (en) * | 1997-08-29 | 2001-04-24 | International Business Machines Corporation | Shared mac (multiply accumulate) system and method |
JP2001236496A (ja) * | 1999-10-04 | 2001-08-31 | Texas Instr Inc <Ti> | 絶対差分の合計および対称濾波用の再構成可能simdコプロセッサ構造 |
JP2005157876A (ja) * | 2003-11-27 | 2005-06-16 | Seiko Epson Corp | 誤差関数演算装置及び誤差関数演算方法 |
US20100198894A1 (en) * | 2009-01-30 | 2010-08-05 | Kameran Azadet | Digital Signal Processor Having Instruction Set With An Exponential Function Using Reduced Look-Up Table |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101369999A (zh) | 2007-08-17 | 2009-02-18 | 义隆电子股份有限公司 | 递归式离散傅立叶处理器单核心装置及其应用 |
DE102008001081B4 (de) | 2008-04-09 | 2021-11-04 | Robert Bosch Gmbh | Verfahren und Motorsteuergerät zum Steuern eines Verbrennungsmotors |
DE102010028259A1 (de) | 2010-04-27 | 2011-10-27 | Robert Bosch Gmbh | Mikrocontroller mit einer Recheneinheit und einer Logikschaltung sowie Verfahrung zur Durchführung von Rechnungen durch einen Mikrocontroller für eine Regelung oder eine Steuerung in einem Fahrzeug |
DE102010028266A1 (de) | 2010-04-27 | 2011-10-27 | Robert Bosch Gmbh | Steuergerät und Verfahren zur Berechnung einer Ausgangsgröße für eine Steuerung |
CN102175916B (zh) | 2011-01-30 | 2013-07-31 | 天津大学 | 短样本密集频率信号的参数测量方法 |
US9753695B2 (en) * | 2012-09-04 | 2017-09-05 | Analog Devices Global | Datapath circuit for digital signal processors |
DE102013213420A1 (de) * | 2013-04-10 | 2014-10-16 | Robert Bosch Gmbh | Modellberechnungseinheit, Steuergerät und Verfahrenzum Berechnen eines datenbasierten Funktionsmodells |
DE102013206320A1 (de) * | 2013-04-10 | 2014-10-16 | Robert Bosch Gmbh | Verfahren und Steuergerät zur Berechnung eines datenbasierten Funktionsmodells |
DE102013209657A1 (de) * | 2013-05-24 | 2014-11-27 | Robert Bosch Gmbh | FMA-Einheit, insbesondere zur Verwendung in einer Modellberechnungseinheit zur rein hardwarebasierten Berechnung von Funktionsmodellen |
DE102013212840B4 (de) * | 2013-07-02 | 2022-07-07 | Robert Bosch Gmbh | Modellberechnungseinheit und Steuergerät zur Berechnung eines datenbasierten Funktionsmodells mit Daten in verschiedenen Zahlenformaten |
DE102013212842A1 (de) * | 2013-07-02 | 2015-01-08 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Steuergeräts sowie Steuergerät mit einer Modellberechnungseinheit |
-
2013
- 2013-07-09 DE DE102013213420.7A patent/DE102013213420A1/de active Pending
-
2014
- 2014-04-07 US US14/247,136 patent/US10146248B2/en active Active
- 2014-04-07 KR KR1020140041361A patent/KR102215271B1/ko active IP Right Grant
- 2014-04-08 FR FR1453096A patent/FR3004567B1/fr active Active
- 2014-04-09 JP JP2014079820A patent/JP2014206975A/ja active Pending
- 2014-04-09 CN CN201410140041.0A patent/CN104102137A/zh active Pending
-
2019
- 2019-02-27 JP JP2019033450A patent/JP2019145111A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6223196B1 (en) * | 1997-08-29 | 2001-04-24 | International Business Machines Corporation | Shared mac (multiply accumulate) system and method |
JP2001236496A (ja) * | 1999-10-04 | 2001-08-31 | Texas Instr Inc <Ti> | 絶対差分の合計および対称濾波用の再構成可能simdコプロセッサ構造 |
JP2005157876A (ja) * | 2003-11-27 | 2005-06-16 | Seiko Epson Corp | 誤差関数演算装置及び誤差関数演算方法 |
US20100198894A1 (en) * | 2009-01-30 | 2010-08-05 | Kameran Azadet | Digital Signal Processor Having Instruction Set With An Exponential Function Using Reduced Look-Up Table |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190043616A (ko) * | 2016-09-07 | 2019-04-26 | 로베르트 보쉬 게엠베하 | 피드포워드 및 피드백을 포함한 다층 퍼셉트론 모델의 계산을 위한 모델 계산 유닛 및 그 제어 장치 |
KR20190044657A (ko) * | 2016-09-07 | 2019-04-30 | 로베르트 보쉬 게엠베하 | 다층 퍼셉트론 모델을 계산하기 위한 모델 계산 유닛 및 제어 장치 |
US11599787B2 (en) | 2016-09-07 | 2023-03-07 | Robert Bosch Gmbh | Model calculation unit and control device for calculating a multi-layer perceptron model |
Also Published As
Publication number | Publication date |
---|---|
FR3004567A1 (fr) | 2014-10-17 |
KR102215271B1 (ko) | 2021-02-15 |
JP2019145111A (ja) | 2019-08-29 |
DE102013213420A1 (de) | 2014-10-16 |
CN104102137A (zh) | 2014-10-15 |
US10146248B2 (en) | 2018-12-04 |
US20140310325A1 (en) | 2014-10-16 |
FR3004567B1 (fr) | 2019-01-25 |
JP2014206975A (ja) | 2014-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20140122672A (ko) | 데이터 기반 함수 모델의 모델 계산 유닛, 제어 장치 및 계산 방법 | |
US11216721B2 (en) | Method for calculating a neuron layer of a multi-layer perceptron model with simplified activation function | |
CN110008952B (zh) | 一种目标识别方法及设备 | |
CN102859158B (zh) | 用于计算控制用的输出参量的控制设备和方法 | |
US11216250B2 (en) | Dynamic, variable bit-width numerical precision on field-programmable gate arrays for machine learning tasks | |
TW201911138A (zh) | 神經網路計算方法、設備、處理器及電腦可讀儲存媒體 | |
CN112101541B (zh) | 对高位宽值数据进行拆分的装置、方法、芯片及板卡 | |
EP3451240A1 (en) | Apparatus and method for performing auto-learning operation of artificial neural network | |
TW201909040A (zh) | 神經網路處理方法、裝置、設備及電腦可讀儲存介質 | |
Peesapati et al. | Design and implementation of a realtime co-processor for denoising fiber optic gyroscope signal | |
US9569175B2 (en) | FMA unit, in particular for utilization in a model computation unit for purely hardware-based computing of function models | |
CN111144559A (zh) | 用于训练神经网络的设备、方法和集成电路板卡 | |
KR102257530B1 (ko) | 데이터 기반 함수 모델의 그래디언트를 결정하기 위한 방법 및 장치 | |
WO2020039493A1 (ja) | 演算最適化装置、方法およびプログラム | |
CN115129297A (zh) | 多点乘运算系统、方法、图形处理器、电子装置及设备 | |
US11360443B2 (en) | Model calculation unit and control unit for calculating a partial derivative of an RBF model | |
CN109661673A (zh) | 用于计算rbf模型的模型计算单元和控制设备 | |
KR102508098B1 (ko) | 다층 퍼셉트론 모델을 계산하기 위한 모델 계산 유닛 및 제어 장치 | |
US20170045880A1 (en) | Model numerical solver for system control | |
CN104570757B (zh) | 用于运行集成控制组件的方法和装置 | |
US20220413806A1 (en) | Information processing circuit and method of designing information processing circuit | |
CN114662549B (zh) | 一种信号的doa确定方法、装置及介质 | |
US20230206094A1 (en) | Inferring device, inferring method and non-transitory computer readable medium | |
CN110826705B (zh) | 运算方法、装置及相关产品 | |
JP2010123083A (ja) | 相関処理装置及びその相関処理装置で読みとり可能な媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |