KR20140116504A - 초임계 유체를 사용한 동력 발생 시스템 및 방법 - Google Patents

초임계 유체를 사용한 동력 발생 시스템 및 방법 Download PDF

Info

Publication number
KR20140116504A
KR20140116504A KR1020147022820A KR20147022820A KR20140116504A KR 20140116504 A KR20140116504 A KR 20140116504A KR 1020147022820 A KR1020147022820 A KR 1020147022820A KR 20147022820 A KR20147022820 A KR 20147022820A KR 20140116504 A KR20140116504 A KR 20140116504A
Authority
KR
South Korea
Prior art keywords
supercritical fluid
air
combustion gas
turbine
expanded
Prior art date
Application number
KR1020147022820A
Other languages
English (en)
Other versions
KR102038166B1 (ko
Inventor
다비드 에스. 스탭
Original Assignee
페레그린 터빈 테크놀로지스, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 페레그린 터빈 테크놀로지스, 엘엘씨 filed Critical 페레그린 터빈 테크놀로지스, 엘엘씨
Publication of KR20140116504A publication Critical patent/KR20140116504A/ko
Application granted granted Critical
Publication of KR102038166B1 publication Critical patent/KR102038166B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)

Abstract

본 발명은 초임계 유체와 화석 연료를 사용하여 축 동력을 발생시키는 듀얼 사이클 시스템에 관한 것이다. 제1 사이클은 개방형 공기 흡입 브레이턴 사이클이다. 제2 사이클은 폐쇄형 초임계 유체 브레이턴 사이클이다. 제1 사이클에서 공기가 압축된 후, 압축된 공기가 제1 크로스 사이클 열교환기를 통해 흐르며, 제2 사이클로부터의 초임계 유체가 압축된 다음 터빈에서 팽창된 후 제1 크로스 사이클 열교환기를 통해 흐른다. 제1 크로스 사이클 열교환기에서는, 상기 압축된 공기가 가열되고 상기 팽창된 초임계 유체가 냉각된다.

Description

초임계 유체를 사용한 동력 발생 시스템 및 방법 {SYSTEM AND METHOD FOR GENERATING POWER USING A SUPERCRITICAL FLUID}
관련 출원
본원은 2012년 11월 16일자로 출원된 미국 특허 출원 번호 제 13/679,856 호; 2012년 1월 17일자로 출원된 미국 가출원 번호 제 61/632,030 호; 2012년 3월 29일자로 출원된 미국 가출원 번호 제 61/686,043 호; 2012년 5월 11일자로 출원된 미국 가출원 번호 제 61/688,310 호; 및 2012년 7월 17일자로 출원된 미국 가출원 번호 제 61/741,303 호를 우선권을 주장하며, 이 출원들 각각의 개시 내용은 그 전체가 인용에 의해 본원에 통합되어 있다.
기술 분야
본 발명은 축 동력을 발생시키기 위한 시스템 및 방법에 관한 것으로, 특히, 화석 연료와 폐쇄형 초임계 유체 사이클을 사용하는 시스템 및 방법에 관한 것이다.
전통적으로, 브레이턴(Brayton) 사이클과 같은 열역학적 동력 발생 사이클은 대기 등의 이상 기체를 이용한다. 이러한 사이클들은, 공기가 사이클의 구성 요소를 통과한 후 비교적 높은 온도로 대기로 다시 배출됨으로써 연료 연소에 의해 발생한 상당량의 열이 사이클로부터 손실된다는 점에서, 개방형이다. 브레이턴 사이클에서 폐열을 수집하여 활용하기 위한 일반적인 접근법은 회수기(recuperator)를 사용하여 터빈 배기 가스로부터 열을 추출하고, 압축기로부터 배출되는 공기에 이 열을 열교환기를 통해 전달하는 것이다. 이러한 열전달은 연소기로 유입되는 공기의 온도를 상승시키기 때문에, 원하는 터빈 입구 온도를 달성하기 위해 더 적은 연료가 요구된다. 결과적으로, 전체적인 열역학적 사이클의 열 효율이 개선되고, 일반적으로, 효율이 약 40% 정도 향상된다. 블레이드가 공기 역학적으로 보다 개선되어 설계된 대형 터빈은 더 큰 효율을 달성할 수 있다. 그러나, 이러한 회수형 사이클에서도, 열은 고온 소오스로부터 저온 싱크로만 흐를 수 있기 때문에, 터빈 배기 가스 온도가 압축기 배출 공기의 온도 아래로 결코 냉각될 수 없다는 사실로 인해, 열 효율이 제한된다. 이는, 전체 터빈의 효율을 향상시키는 높은 압력비를 채용하면, 압축기 배출 온도가 높아지고, 이에 따라, 회수기에서 열이 적게 회수된다는 사실로 인해, 악화된다.
최근에는, 폐쇄형 열역학적 동력 발생 사이클에서 초임계 이산화탄소 등의 초임계 유체의 사용에 대한 관심이 생겨났다. 유리하게, 초임계 유체(즉, 액상과 기상이 평형을 이루는 "임계점" 이상의 유체)는 액체에 가까운 밀도와 압축성을 가짐으로써, 원하는 압력비로 유체를 압축하기 위해 필요한 일량이 공기 등의 이상 기체의 경우보다 훨씬 더 낮다.
불행하게도, 초임계 유체 사이클은 그 용도가 제한적이라는 몇 가지 단점이 있다. 첫째, 초임계 유체가 동력을 발생시킨 후 사이클 입구로 반환된다는 점에서 초임계 유체 사이클을 일반적으로 폐쇄형이라 할 수 있지만, 압축기로 재도입되기 전에 임계점 부근으로 초임계 유체를 복원하기 위해 필요한 열이 모두 동력으로 효율적으로 변환될 수 없기 때문에, 압축기로 재도입되기 전에 외부 히트 싱크로의 열전달을 통해 초임계 유체를 냉각시켜야만 한다. 이러한 냉각은 사이클로부터의 열 손실과 열효율의 저하를 초래한다.
둘째, 공기 기반 개방형 사이클에서 통상적으로 이루어지는 것과는 달리, 산화제의 첨가와 폐쇄형 사이클로부터 연소 부산물의 후속 제거 없이는 화석 연료가 초임계 유체에서 연소될 수 없다. 따라서, 초임계 유체는 핵 반응에 의해 열원이 제공되는 원자력 발전소와 함께 사용하기 위해 매우 자주 제안되었다. 종래의 화석 연료로 가열되는 가스 터빈으로부터 연소 가스가 공급되는 열교환기에서 초임계 유체를 가열하는 것이 가능하기는 하지만, 연소 생성물로부터 사이클로 열을 전달하는 제한된 능력과 회수된 높은 압축기 배출 온도와 관련하여 전술한 비효율성 때문에, 초임계 유체를 가열하기 위해 상대적으로 고가인 화석 연료를 사용하면, 그러한 연료의 사용이 비실용적인 것이 된다.
셋째, 예컨대, 7.0㎫을 초과하는, 초임계 유체의 높은 압력은 초임계 유체 터빈에 의해 생성된 토크를 전달하는 축계의 밀봉을 곤란하게 한다. 전력을 생산하기 위해 초임계 유체 사이클이 사용되는 경우, 하나의 접근법은 동력 축이 압력 용기를 관통할 필요가 없도록 터빈과 함께 압력 용기에 전기 발전기를 포함시키는 것이다. 그러나, 이 접근법은 다수의 결점을 갖는다. 예컨대, 발전기에서 풍손이 커지고, 오일리스 베어링이 필요하다. 또한, 전기 발전기의 유지 및 보수가 더 곤란해진다. 또한, 대형 발전기는 대형 격납 압력 용기를 필요로 할 것이며, 이는 상당한 비용으로 이어지고 추가적인 고장점을 생성한다. 또한, 이러한 접근법은, 어떤 종류의 운송체의 추진(즉, 터보프롭/터보팬 분야, 자동차 및 장거리 트럭 구동, 선박 추진)이나 가스관 부스터 압축기를 포함한 오일 및 가스 산업 분야 등의 기타 분야와 같이, 전력 생산을 목적으로 하지 않는 분야에서는 사용될 수 없다.
넷째, 초임계 유체 사이클의 효율은 임계 온도 부근에서 초임계 유체의 미미한 온도 편차에 의해 크게 영향을 받는다. 그러나, 최대 효율로 작동하도록 보장하기 위해 필요한 정밀도로 유체의 온도를 측정하는 것이 곤란하다.
마지막으로, 종래의 초임계 이산화탄소 브레이턴 사이클은 통상적으로 전술한 바와 같이 회수를 이용한다; 그 이유는 SCO2 사이클에서 터빈 배기 온도가 여전히 매우 높고 압축기 배출 온도가 매우 낮아서 이상적인 회수 레시피에 도움이 되기 때문이다. 다른 이유는 핵 및 태양광 분야에서 SCO2 브레이턴 사이클이 매우 효율적이기 때문이다. 불행하게도, 화석 연료를 열원으로 사용하는 경우, 회수된 압축기 배출물을 열교환기를 통해 통과시키면, 유입 온도가 이미 너무 높기 때문에, SCO2 흐름에 열을 전달하는 것이 어렵게 된다.
따라서, 화석 연료로 작동하는 열역학적 사이클에서 초임계 유체를 효율적으로 사용하여 축 동력 및/또는 고온수를 발생시키기 위한 시스템 및 방법에 대한 요구가 존재한다. 또한, 초임계 유체 터빈의 축으로부터 토크를 효율적으로 전달하기 위한 장치 및 방법에 대한 요구가 존재한다. 또한, 임계점 부근에서 초임계 유체의 온도를 측정하는 정확한 방법에 대한 요구가 존재한다.
본 발명은 공기 사이클과 초임계 유체 사이클을 포함하는 시스템에서 축 동력을 발생시키는 방법을 포함한다. 상기 방법은, (a) 화석 연료를 공기 중에서 연소시켜 연소 가스를 생성하는 단계와, (b) 상기 연소 가스를 적어도 제1 터빈에서 팽창시켜 팽창된 연소 가스를 생성하는 단계로서, 상기 연소 가스의 팽창으로 인해 축 동력이 발생하는 단계와, (c) 제1 압축기에서 초임계 유체를 압축하는 단계와, (d) 상기 연소 가스와 압축된 초임계 유체의 적어도 일부를 제1 크로스 사이클 열교환기를 통해 흐르게 하여 상기 연소 가스로부터 상기 압축된 초임계 유체로 열을 전달함으로써 가열된 압축 초임계 유체를 생성하는 단계와, (e) 상기 가열된 압축 초임계 유체의 적어도 일부를 제2 터빈에서 팽창시켜 팽창된 초임계 유체를 생성하는 단계로서, 상기 초임계 유체의 팽창으로 인해 추가적인 축 동력이 발생하는 단계와, (f) 상기 화석 연료를 공기 중에서 연소시키기 전에, 공기와 팽창된 초임계 유체의 적어도 일부를 제2 크로스 사이클 열교환기를 통해 흐르게 하여 상기 팽창된 초임계 유체로부터 공기로 열을 전달하는 단계를 포함한다. 본 발명의 일 실시예에 따르면, 상기 방법은, 상기 화석 연료가 압축된 공기 중에서 연소되도록, 상기 화석 연료를 공기 중에서 연소시키기 전에, 상기 공기를 제2 압축기에서 압축하여 압축된 공기를 생성하는 단계를 더 포함하며, 상기 압축된 공기는 상기 제2 크로스 사이클 열교환기를 통해 흘러서 상기 팽창된 초임계 유체로부터 상기 압축된 공기로 열을 전달한다.
또한, 본 발명은 초임계 유체 사이클과 공기 사이클을 포함하는 시스템에서 축 동력을 발생시키는 방법을 포함하며, 상기 방법은, (a) 화석 연료를 공기 중에서 연소시켜 연소 가스를 생성하는 단계와, (b) 초임계 유체를 제1 압축기에서 압축하는 단계와, (c) 상기 연소 가스로부터 압축된 초임계 유체로 열을 전달하여 냉각된 연소 가스와 가열된 압축 초임계 유체를 생성하는 단계와, (d) 상기 가열된 압축 초임계 유체의 적어도 일부를 제1 터빈에서 팽창시켜 팽창된 초임계 유체를 생성하는 단계로서, 상기 초임계 유체의 팽창으로 인해 축 동력이 발생하는 단계와, (e) 상기 팽창된 초임계 유체를 상기 제1 압축기로 반환하는 단계와, (f) 상기 화석 연료를 공기 중에서 연소시키기 전에 그리고 상기 초임계 유체를 제1 압축기로 반환하기 전에, 상기 팽창된 초임계 유체로부터 공기로 열을 전달하여 초임계 유체를 그 임계 온도에 가깝게 냉각시키는 단계를 포함한다. 본 발명의 일 실시예에서, 상기 방법은, 상기 냉각된 연소 가스로부터 물의 흐름으로 열을 전달하여 가열된 물의 흐름을 생성하는 단계를 더 포함한다.
또한, 본 발명은 2개의 초임계 유체 사이클들과 공기 사이클을 포함하는 시스템에서 축 동력을 발생시키는 방법을 포함하며, 상기 방법은, (a) 화석 연료를 공기 중에서 연소시켜 연소 가스를 생성하는 단계와, (b) 초임계 유체의 제1 흐름을 제1 압축기에서 압축하여 압축된 초임계 유체의 제1 흐름을 생성하는 단계와, (c) 상기 연소 가스로부터 상기 압축된 초임계 유체의 제1 흐름으로 열을 전달하여 냉각된 연소 가스와 가열된 압축 초임계 유체의 제1 흐름을 생성하는 단계와, (d) 상기 가열된 압축 초임계 유체의 제1 흐름의 적어도 일부를 제1 터빈에서 팽창시켜 팽창된 초임계 유체의 제1 흐름을 생성하는 단계로서, 상기 초임계 유체의 제1 흐름의 팽창으로 인해 축 동력이 발생하는 단계와, (e) 상기 팽창된 초임계 유체의 제1 흐름을 상기 제1 압축기로 반환하는 단계와, (f) 상기 초임계 유체의 제1 흐름을 상기 제1 압축기로 반환하기 전에, 상기 팽창된 초임계 유체의 제1 흐름으로부터 공기로 열을 전달하는 단계와, (g) 초임계 유체의 제2 흐름을 제2 압축기에서 압축하여 압축된 초임계 유체의 제2 흐름을 생성하는 단계와, (h) 상기 냉각된 연소 가스로부터 상기 압축된 초임계 유체의 제2 흐름으로 열을 전달하여 가열된 압축 초임계 유체의 제2 흐름을 생성하는 단계와, (i) 상기 가열된 압축 초임계 유체의 제2 흐름을 제2 터빈에서 팽창시켜 팽창된 초임계 유체의 제2 흐름을 생성하고 추가적인 축 동력을 발생시키는 단계를 포함한다.
또한, 본 발명은 제1 유로와 제2 유로를 포함하며 공기 사이클과 초임계 유체 사이클을 사용하여 축 동력을 발생시키는 시스템을 포함한다. 상기 제1 유로는 공기를 포함한 제1 유체의 흐름을 전송하며, (ⅰ) 상기 제1 유로에 연결되어 상기 공기의 적어도 일부를 수용하는 연소기로서, 상기 공기 중에서 연소하여 가열된 연소 가스를 생성하기 위해 화석 연료가 공급되는 연소기와, (ⅱ) 상기 제1 유로에 연결된 제1 터빈을 포함한다. 상기 제2 유로는 초임계 유체를 포함한 제2 유체의 흐름을 전송하며, 공기와 초임계 유체의 혼합을 방지하기 위해 상기 제1 유로로부터 분리되어 있다. 상기 제2 유로는, (ⅰ) 상기 제2 유로에 연결되어 상기 초임계 유체를 수용하여 그 내부에서 압축하고 압축된 초임계 유체를 제2 유로로 배출하는 제1 압축기와, (ⅱ) 상기 제2 유로에 연결되어 상기 초임계 유체를 팽창시키고 팽창된 초임계 유체를 제2 유로로 배출하는 제2 터빈을 포함한다. 또한, 상기 시스템은 (ⅰ) 상기 공기의 적어도 일부가 상기 연소기에 의해 수용되기 전에, 상기 공기의 적어도 일부를 수용하여 그 공기에 열을 전달함으로써 가열하기 위해, 그리고 (ⅱ) 가열된 공기를 제1 유로로 배출하기 위해, 상기 제1 및 제2 유로에 연결된 제1 크로스 사이클 열교환기를 포함하며, 상기 제1 크로스 사이클 열교환기는 제2 유로에 연결되어 상기 제2 터빈으로부터 배출되는 팽창된 초임계 유체의 적어도 일부를 수용하여 그 팽창된 초임계 유체로부터 열을 전달함으로써 팽창된 초임계 유체의 적어도 일부를 냉각시키고, 냉각된 팽창 초임계 유체를 제2 유로로 배출하며, 상기 팽창된 초임계 유체는 공기로 열을 전달한다. 또한, 상기 시스템은, 상기 연소기에 의해 생성된 연소 가스의 적어도 일부를 수용하여 그 연소 가스로부터 열을 전달함으로써 연소 가스를 냉각시키고 냉각된 연소 가스를 제1 유로로 배출하기 위해, 그리고 상기 제1 압축기로부터 압축된 초임계 유체의 적어도 일부를 수용하여 그 압축된 초임계 유체에 열을 전달함으로써 가열하고 가열된 초임계 유체를 제2 유로로 배출하기 위해, 제1 및 제2 유로에 연결된 제2 크로스 사이클 열교환기를 포함하며, 상기 연소 가스는 압축된 초임계 유체로 열을 전달한다. 상기 시스템에서, 상기 제1 터빈은 상기 제1 유로에 연결되어 상기 연소기에 의해 생성된 연소 가스의 적어도 일부를 수용하여 그 내부에서 팽창시키고, 팽창된 연소 가스를 제1 유로로 배출하는 반면, 상기 제2 터빈은 상기 제2 유로에 연결되어 상기 제2 크로스 사이클 열교환기로부터 배출되는 가열된 초임계 유체를 수용하며, 상기 제2 터빈은 제2 축을 갖고, 상기 제2 터빈 내에서 압축된 초임계 유체가 팽창함으로써 상기 제2 축을 회전 구동시킨다.
또한, 본 발명은 초임계 유체 사이클과 공기 사이클을 사용하여 축 동력을 발생시키는 시스템을 포함하며, 상기 시스템은, (a) 화석 연료를 공기 중에서 연소시켜 연소 가스를 생성하는 연소기와, (b) 초임계 유체를 압축하여 압축된 초임계 유체를 생성하는 제1 압축기와, (c) 상기 연소 가스로부터 상기 압축된 초임계 유체로 열을 전달하여 냉각된 연소 가스와 가열된 압축 초임계 유체를 생성하는 제1 크로스 사이클 열교환기와, (d) 상기 가열된 압축 초임계 유체의 적어도 일부를 팽창시켜 팽창된 초임계 유체를 생성하는 제1 터빈으로서, 상기 초임계 유체의 팽창으로 인해 축 동력이 발생하게 하는, 제1 터빈과, (e) 상기 팽창된 초임계 유체를 상기 제1 압축기로 반환하는 제1 유로와, (f) 상기 연소기 내의 공기 중에서 화석 연료를 연소시키기 전에 그리고 초임계 유체를 제1 압축기로 반환하기 전에, 상기 팽창된 초임계 유체로부터 공기로 열을 전달하여 초임계 유체를 그 임계 온도에 가깝게 냉각시키는 제2 크로스 사이클 열교환기를 포함한다.
또한, 본 발명은 초임계 유체 사이클과 공기 사이클을 사용하여 축 동력을 발생시키는 시스템을 포함하며, 상기 시스템은, (a) 화석 연료를 공기 중에서 연소시켜 연소 가스를 생성하는 연소기와, (b) 초임계 유체의 제1 흐름을 압축하여 압축된 초임계 유체의 제1 흐름을 생성하는 제1 압축기와, (c) 상기 연소 가스로부터 상기 압축된 초임계 유체의 제1 흐름으로 열을 전달하여 냉각된 연소 가스와 가열된 압축 초임계 유체의 제1 흐름을 생성하는 제1 열교환기와, (d) 상기 가열된 압축 초임계 유체의 제1 흐름의 적어도 일부를 팽창시켜 팽창된 초임계 유체의 제1 흐름을 생성하는 제1 터빈으로서, 상기 초임계 유체의 제1 흐름의 팽창으로 인해 축 동력이 발생하게 하는, 제1 터빈과, (e) 상기 팽창된 초임계 유체의 제1 흐름을 상기 제1 압축기로 반환하는 유로와, (f) 상기 초임계 유체의 제1 흐름을 상기 제1 압축기로 반환하기 전에, 상기 팽창된 초임계 유체의 제1 흐름으로부터 공기로 열을 전달하는 제2 열교환기와, (g) 초임계 유체의 제2 흐름을 압축하여 압축된 초임계 유체의 제2 흐름을 생성하는 제2 압축기와, (h) 상기 냉각된 연소 가스로부터 상기 압축된 초임계 유체의 제2 흐름으로 열을 전달하여 가열된 압축 초임계 유체의 제2 흐름을 생성하는 제3 열교환기와, (i) 상기 가열된 압축 초임계 유체의 제2 흐름을 팽창시켜 팽창된 초임계 유체의 제2 흐름을 생성하고 추가적인 축 동력을 발생시키는 제2 터빈을 포함한다.
또한, 본 발명은 터빈에서 초임계 유체를 팽창시킴으로써 축 동력을 발생시키는 시스템에서 터빈 축으로부터 구동 축으로 토크를 전달하기 위한 커플링을 포함한다. 상기 커플링은 (a) 상기 터빈 축에 연결되어 상기 터빈 축과 함께 회전하도록 구성된 유도 회전자와, (b) 상기 구동 축에 연결되어 상기 구동 축과 함께 회전하도록 구성된 제1 및 제2 전기자와, (c) 당해 커플링 내에 자속을 생성하는 자석으로서, 상기 제1 및 제2 전기자에 연결되어 함께 회전함으로써, 상기 유도 회전자의 회전이 제1 및 제2 전기자에 토크를 부여하여 상기 구동 축의 회전을 발생시키도록 하는, 자석과, (d) 상기 초임계 유체의 일부를 상기 유도 회전자에 전송하여 상기 유도 회전자를 냉각시킴으로써, 상기 초임계 유체의 일부가 가열되도록 하는, 제1 유로와, (e) 가열된 초임계 유체를 터빈에 전송하여 그 내부에서 팽창하도록 하는, 제2 유로를 포함한다. 본 발명의 일 실시예에서, 상기 커플링은 유도 회전자와 제1 및 제2 전기자 사이에 배치된 압력 멤브레인을 더 포함하며, 상기 압력 멤브레인은 대략 구형상의 표면을 갖는다.
도 1은 축 동력이 터보프롭을 구동하는 본 발명에 따른 동력 발생 시스템의 일 실시예의 개략도이다.
도 2는 X-축이 온도(T)이고 y-축이 압력(P)의 로그(log)인, 초임계 이산화탄소에 대한 압력-온도 상태도이다.
도 3은 본 발명에 따른 동력 발생 시스템의 다른 실시예의 개략도이다.
도 4는 본 발명에 따른 동력 발생 시스템의 또 다른 실시예의 개략도이다.
도 5는 본 발명에 따른 동력 발생 시스템의 또 다른 실시예의 일부분의 개략도이다.
도 6은 초임계 유체의 재가열을 사용하는 본 발명에 따른 동력 발생 시스템의 또 다른 실시예의 개략도이다.
도 7은 초임계 유체의 재가열을 사용하는 본 발명에 따른 동력 발생 시스템의 또 다른 실시예의 개략도이다.
도 8은 연소 가스의 재가열을 사용하는 본 발명에 따른 동력 발생 시스템의 또 다른 실시예의 개략도이다.
도 9는 연소 가스의 재가열을 사용하는 본 발명에 따른 동력 발생 시스템의 또 다른 실시예의 개략도이다.
도 10은 증기 분사를 포함하는 본 발명에 따른 동력 발생 시스템의 또 다른 실시예의 개략도이다.
도 11은 고온수를 또한 생성하는 본 발명에 따른 동력 발생 시스템의 또 다른 실시예의 개략도이다.
도 12는 고온수를 생성하고 진공 사이클을 또한 사용하는 본 발명에 따른 동력 발생 시스템의 또 다른 실시예의 개략도이다.
도 13은 제2 초임계 유체 사이클을 포함하는 본 발명에 따른 동력 발생 시스템의 또 다른 실시예의 개략도이다.
도 14는 제2 초임계 유체 사이클을 포함하는 본 발명에 따른 동력 발생 시스템의 또 다른 실시예의 개략도이다.
도 15는 임계 온도(TC) 부근에서 온도의 함수로서 SCO2의 비열(cp)의 변화를 나타내는 그래프이다.
도 16은 SCO2 압축기의 입구로 유입되는 SCO2의 온도를 측정하기 위한 장치를 나타내는 부분 개략도이다.
도 17은 7.4㎫에서 °K 단위의 온도의 함수로서 SCO2에서의 음속을 m/s의 단위로 나타내는 그래프이다.
도 18은 SCO2 압축기의 입구로 유입되는 SCO2의 온도를 측정하기 위한 다른 장치를 나타내는 부분 개략도이다.
도 19은 본 발명에 따른 동력 발생 시스템의 터빈 커플링 부분을 통과하는 종단면도이다.
도 20은 XX-XX선을 따라 취한, 도 19에 나타낸 터빈 커플링을 통과하는 횡단면도이다.
도 21 및 도 22는 도 19에 나타낸 터빈 커플링을 통과하는 단면 사시도이다.
도 23은 도 19에 나타낸 터빈 커플링의 일부를 통과하는 단면도이다.
본 발명에 따라 축 동력을 발생시키기 위해 화석 연료로 가열되는 듀얼 사이클 초임계 유체-공기 시스템의 일 실시예가 도 1에 도시되어 있다. 상기 시스템은 작동 유체가 초임계 이산화탄소(SCO2)와 같은 초임계 유체인 제1 브레이턴 사이클 시스템(2)과, 작동 유체가 주변 공기인 제2 브레이턴 사이클 시스템(4)을 포함한다. 이 사이클들은 압축기, 터빈, 연소기 및 열교환기 등의 다양한 구성 요소가 연결되는 배관, 덕트 또는 기타 적절한 도관으로 형성될 수 있는 유로(6, 23)를 각각 포함한다. SCO2 사이클 유로(6)와 공기 흡입 사이클 유로(23)는, 양 유로 내의 유체가 거의 또는 전혀 혼합되지 않도록, 분리되는 것이 바람직하다.
초임계 브레이턴 사이클 시스템(2)은 초임계 유체가 흐르는 폐쇄형 사이클 유로(6)를 형성한다. 먼저, 초임계 유체의 스트림(3)이 축류, 반경류 또는 심지어 왕복형일 수 있는 압축기(8)의 입구에 공급된다. 유량계(32)는 압축기의 입구에 공급되는 유체의 유량을 측정한다. 이는 폐쇄형 시스템에서 SCO2 전체 질량을 제어할 뿐만 아니라 천이 흐름 거동을 제어하기 위한 본 발명에 따른 제어 수단을 제공한다. 바람직하게, 초임계 유체는, 임계점에 가까운 온도와 압력으로 후술하는 바와 같이 냉각 및 팽창된 후, 압축기(8)의 입구로 유입된다. 이 임계점이, 이 경우에서는 이산화탄소인 초임계 유체에 대한 압력-온도 상태도인 도 2에 도시되어 있다. 이산화탄소는 영역(A)에서 고체이고, 영역(B)에서 액체이며, 영역(C)에서 기체이다. 임계점(E)의 온도 및 압력보다 높은 영역(D)에서, 이산화탄소는 초임계 유체로서 존재한다. 따라서, 본원에서 사용되는 바와 같이, 용어 "초임계 유체"는 분명한 액상과 기상이 존재하지 않는 유체를 의미하며, 용어 초임계 유체의 "임계점"은 물질이 초임계 상태에 있다고 할 수 있는 최저 온도 및 압력을 의미한다. 용어 "임계 온도" 및 "임계 압력"은 임계점에서의 온도 및 압력을 의미한다. 이산화탄소의 경우, 임계점은 대략 304.2 °K 및 7.35㎫이다. 바람직하게, 압축기(8)에 유입되는 초임계 유체는 적어도 임계점의 ±2 °K 이내로 냉각되며, 더 바람직하게는 임계점의 ±1 °K 이내로 냉각되고, 가장 바람직하게는 임계점의 ±0.2 °K 이내로 냉각된다.
압축기(8)에서 압축된 후, SCO2의 스트림(5)은 인쇄 회로 열교환기(PCHE) 또는 기타 적절한 타입일 수 있는 크로스 사이클 열교환기(10)에서 가열되며, 상기 열교환기는 SCO2 사이클과 공기 흡입 사이클 모두의 유로(6, 23)에 연결되어 있다. 본원에서 사용된 바와 같이, 용어 "크로스 사이클 교환기"는 공기 흡입 사이클로부터의 공기 또는 연소 가스뿐만 아니라 초임계 유체 사이클로부터의 초임계 유체를 모두 수용하여 양 사이클들 내의 유체들 간에 열을 전달하는 열교환기를 의미한다. 그리고, 열교환기(10)로부터 가열된 SCO2의 스트림(7)은 축류, 반경류 또는 혼합류 타입일 수 있는 터빈(12)의 입구로 전송되며, 상기 터빈에서 SCO2가 팽창하여 축(9)을 통해 SCO2 압축기(8)를 구동하고 축(17)과 감속 기어(16)를 통해 터보프롭(14)을 구동하는 축 동력을 생성한다. 터빈(12)에서 팽창된 후, SCO2의 스트림(9)은 PCHE 타입일 수 있는 제2 크로스 사이클 열교환기(18)에서 냉각되며, 상기 열교환기는 SCO2 사이클과 공기 흡입 사이클 모두의 유로(6, 23)에 연결되어 있다. 냉각된 SCO2의 스트림(3)은 유로(6)를 통해 압축기(8)의 입구로 반환된다. 바람직하게, 크로스 사이클 열교환기(18)는 전술한 바와 같이 임계 온도에 가까운 온도로 압축기(8)로 반환되는 SCO2를 냉각시키기에 충분한 표면적을 갖는다. 시스템으로부터의 임의의 SCO2를 보충하기 위해, 공급부(31)로부터의 추가적인 SCO2가 압축기(8)로 전송되는 SCO2의 스트림(3)에 도입될 수 있다. 또한, 시스템에 대한 추가적인 SCO2의 도입은 천이시 시스템 다이내믹스를 약화시키기 위해 조절될 수 있다. 어떤 경우에나, SCO2의 스트림(3)이 압축기(8)의 입구로 반환되며, 압축-가열-팽창-냉각의 단계들이 반복된다.
도 1에 도시된 바와 같이, 전체 시스템 중 공기 흡입 브레이턴 시스템(4) 부분은 개방형 유로(23)를 형성한다. 먼저, 주변 공기(11)가 축류, 반경류 또는 왕복형일 수 있는 압축기(20)에 공급된다. 그리고, 압축기(20)로부터 압축된 공기의 스트림(13)이, 터빈(12)에서 SCO2가 팽창된 후 상기 SCO2로부터의 열 전달에 의해, 열교환기(18)에서 가열된다. 그리고, 가열된 압축 공기의 스트림(15)이 연소기(24)로 전송되며, 상기 연소기에는 연료 제어기(28)에 의해 제트 연료, 디젤 연료, 천연 가스 또는 바이오 연료와 같은 화석 연료(27)가 도입되어 공기 중에서 연소하여 고온의 연소 가스를 생성한다. 연소기(24)로부터 연소 가스의 스트림(37)은 열교환기(10)로 전송되며, 상기 열교환기에서 전술한 바와 같이 SCO2로 열이 전달된다. 열교환기(10)를 빠져나온 후, 연소 가스의 스트림(19)은 축류, 반경류 또는 혼합류 타입일 수 있는 터빈(26)에서 팽창되며, 상기 터빈은 축(21)을 통해 공기 압축기(20)를 구동하는 동력을 생성한다. 터빈(26)에서 팽창된 후, 연소 가스(47)는 대기로 배출된다.
이제, 예측 결과를 예로 하여, 도 1에 나타낸 시스템의 동작에 대해 설명한다. 터보프롭/터보팬에 적용하기 위한 이 예에서, 9000m의 표준일(standard day) 조건의 주변 공기가 229.7 °K 및 32㎪로 압축기(20)의 입구에 공급된다. 공기 압축기(20)는 약 2.0의 압축비로만 동작하므로, 상기 압축기에 의해 배출되어 열교환기(18)로 전송되는 압축 공기는 약 295 °K 및 65㎪의 온도 및 압력만을 갖는다. 터빈(12)으로부터 배출되어 열교환기(18)로 전송되는 SCO2는 약 935 °K 및 7.5㎫의 압력 및 온도를 갖는다. 압축 공기가 약 295 °K에서 약 923 °K로 가열되고 SCO2가 약 935 °K에서 그 임계 온도에 가까운 약 305 °K로 냉각되도록, 열교환기(18)는 충분한 열전달 표면적을 갖는다. 압축기(8)로 유입되는 SCO2의 온도를 제어하여 그 임계 온도에 가깝게 유지하기 위해, 압축기(20)에 의해 배출된 압축 공기는 냉각 유체가 공급되는 열교환기(미도시)로 전송될 수 있다. 열교환기(18) 내에서의 열전달이 SCO2를 그 임계 온도에 가까운 온도로 냉각시키도록, 열교환기(18)로 유입되는 압축 공기의 온도를 조절하기 위해, 냉각 유체의 유량 및/또는 온도가 변경될 수 있다.
이 예에서는, 충분한 연료가 연소기(24)에서 연소되어, 열교환기(18)로부터 배출되는 압축 공기를 약 886 °K에서, 열교환기(10)로 유입되는 온도인 약 1121 °K로 가열한다. SCO2 압축기(8)는 공기 흡입 압축기(20)보다 훨씬 더 높은 압축비로 동작하고, SCO2를 임계 압력에 가까운 7.4㎫의 유입 압력에서, 약 25.9㎫의 압력과 약 383 °K의 온도로 압축하며, 이 온도와 압력으로 SCO2가 열교환기(10)로 공급된다. 열교환기(10)는 SCO2가 약 383 °K에서 약 1103 °K로 가열되고 연소 가스가 약 1121 °K에서 약 399 °K로 냉각되도록 하기에 충분한 열전달 표면적을 포함한다. 연소 가스가 터빈(26)에서 팽창된 후에, 약 341 °K의 대기로 배출된다. SCO2는 터빈(12)에서 팽창된 후, 약 935 °K로 배출되어 열교환기(18)를 가열하며, 전술한 바와 같이 SCO2 압축기(8)의 입구로 반환되기 전에, 상기 열교환기에서 약 305 °K로 냉각된다.
도 1에 도시된 시스템은 몇 가지 중요한 장점을 갖고 있다. SCO2와 같은 초임계 유체는 매우 낮은 동점성과 높은 비열을 갖고 있으며, 이는 주어진 크기와 중량에 대해 낮은 압력 강하와 높은 효율성을 가진 열교환기의 사용을 용이하게 한다. 또한, SCO2와 같은 초임계 유체는 액체에 가까운 밀도와 압축성을 갖고 있기 때문에, 유체를 원하는 압력비로 압축하는데 필요한 일량이 공기와 같은 이상 기체의 경우보다 훨씬 더 낮다. 이는 SCO2 터빈(12)으로부터 이용가능한 순일을 증가시킬 뿐만 아니라, SCO2 압축기로부터의 압축기 배출 온도를 낮춤으로써, 열교환기(10)에서 이루어지는, 연소 가스로부터 압축기(8)에 의해 배출되는 SCO2로의 열전달을 증가시킨다.
또한, 공기 압축기(20)가 비교적 낮은 압축비로 동작하기 때문에, 공기 압축기로부터 배출되는 공기가 비교적 낮은 온도(상기 예에서는 295 °K)가 됨으로써, 열교환기(18) 내의 SCO2로부터 회수될 수 있는 열을 증대시킨다. 열교환기(18)에서의 높은 열전달로 인하여, 압축기(8)의 입구로 반환하기 위해 적절한-바람직하게는 임계 온도에 가까운-온도로 터빈(12)으로부터 배출되는 SCO2를 냉각하는 임의의 "외부" 냉각기를 채용할 필요가 없을 수 있다. 따라서, 터빈(12)에서의 SCO2 후속 팽창을 냉각시키기 위해 냉각탑에서 나온 냉각수와 같은 외부 히트 싱크로 사이클로부터 손실되었을 사이클 방열(rejection heat)이 시스템 내에 유지된다.
터빈(12, 26)의 효율을 87%로 가정하고, SCO2 압축기(8) 및 공기 압축기(20)의 효율을 각각 85% 및 87%로 가정하면, 도 1에 도시되고 전술한 바와 같이 동작하는 시스템의 전체 사이클 효율은 약 54%로 계산된다.
본 발명의 장점을 달성하기 위해 다음과 같은 특징을 모두 포함할 필요는 없지만, 높은 열 효율에 기여하는 도 1에 도시된 시스템의 특징은, (ⅰ) 하나(시스템(2))가 초임계 유체, 바람직하게는, SCO2로 동작하고, 다른 하나(시스템(4))가 이상 기체와 유사하게 작용하는 주변 공기로 동작하는, 병렬로 동작하는 2개의 브레이턴 사이클과, (ⅱ) SCO2를 (바람직하게는 그 임계 온도에 가까운) 원하는 압축기 입구 온도로 냉각할 때 일반적으로 손실되는 사이클 방열이 SCO2 사이클 내의 터빈(12)으로부터 배출된 SCO2로부터 공기 흡입 사이클 내의 압축기(20)로부터 배출되는 공기로 대신 전달되는 제1 크로스 사이클 열교환기(열교환기(18))와, (ⅲ) 공기 흡기 사이클의 연소 가스로부터 SCO2 사이클 내의 압축기 배출물로 열이 전달되는 제2 크로스 사이클 열교환기(열교환기(10))와, (ⅳ) 관습적으로 생각하면 차선으로 간주될 수 있으나, 본 발명에서는 터빈으로부터 배출된 SCO2를 원하는 압축기 입구 온도로 냉각할 때 대량의 열을 시스템으로 반환할 수 있도록 하는, 공기 흡입 압축기(20)에서의 비교적 낮은 압축비의 사용이다.
전술한 시스템은 터보프롭에 축 동력을 공급하는 것으로 도시되었으나, 본 발명은, 이에 한정되지는 않지만, 전력 발생, 해상 추진 시스템, 레일 엔진 드라이브, 자동차 및 트럭용 하이브리드 드라이브, 오일 및 가스 산업용 가스 부스터 펌프, 농업용 펌프 및 건설 장비 드라이브를 포함하는, 축 동력을 활용하는 임의의 기타 응용예에도 적용될 수 있음을 이해하여야 한다.
나란히 배치된 초임계 브레이턴 사이클 시스템과 공기 흡입 브레이턴 사이클 시스템을 모두 사용함으로써 본 발명에 따라 최상의 장점을 얻고 있지만, 그럼에도 불구하고, 도 1에 도시된 양 시스템을 주변 공기로 작동시킴으로써 어떤 장점을 달성할 수 있다. 이러한 실시예는 낮은 품질의 화석 연료, 바이오매스 및 심지어 태양열 포함한 다양한 연료를 사용할 수 있는 능력을 제공한다. 이러한 시스템에서는, 애쉬를 포함한 연소 생성물이 고온 터빈(12)을 통과하지 않기 때문에, 터빈 공기로 냉각되는 구성 요소가 오손되지 않는다. 애쉬와 연소 부산물은 훨씬 낮은 온도로 저팽창 터빈(26)을 통과할 것이므로, 냉각 통로가 불필요하여 미립자 저항 터빈이 매우 간단하게 된다. 하류 측 열교환기(10)에 축적된 미립자는 정례적인 운전 정지시 이루어질 수 있는 주기적인 세정 또는 세척 사이클을 통해 처리될 수 있다.
도 1의 실시예는 연소기(24)로부터 열교환기(10)로 그리고 터빈(26)으로 연소 가스(37)를 전송하는 것으로 도시되었으나, 예컨대, 도 4에 도시된 실시예와 관련하여 후술하는 바와 같이, 본 발명은 연소기로부터 터빈(26)으로 연소 가스를 먼저 전송하여 팽창시킨 다음, 팽창된 가스를 열교환기(10)로 전송함으로써 실시될 수도 있다.
본 발명의 다른 실시예가 도 3에 도시되어 있으며, 유사한 구성 요소는 유사한 참조 번호로 표시되어 있다. 본 실시예에서는, 열교환기(18)로 도입되기 전에 공기 압축기(20)로부터 배출되는 공기(13')의 온도를 제어하여 SCO2 압축기(8)로 유입되는 SCO2의 온도를 제어하기 위해, 육상에 기반을 둔 응용예의 경우에는 냉각탑으로부터의 물과 같은 냉각 유체(30)가 공급되는 냉각기(22) 또는 항공 응용예의 경우에는 공기 냉각기가 사용된다. 전술한 바와 같이, 바람직하게는, 압축기(8)로 유입되는 SCO2의 온도가 그 임계 온도에 가깝게 제어된다. 이러한 온도 제어는, 냉각기(22)로 공급되는 냉각 유체의 유량 및/또는 온도를 제어함으로써, 이루어질 수 있다.
도 3의 실시예에서는, 2개의 SCO2 터빈이 사용된다. 제1 터빈(12')은 SCO2 압축기(8)를 구동하는 SCO2 압축기 터빈인 반면, 제2 SCO2 터빈(12")은 시스템의 동력 출력을 제공하는 동력 터빈이다. 또한, 본 실시예에서, SCO2 압축기 터빈(12')으로부터 배출되는 SCO2의 흐름(41)은 밸브(38)에 의해 2개의 스트림으로 분할될 수 있다. 제1 스트림(42)은 동력 터빈(12)에서 팽창하도록 전송될 수 있는 반면, 제2 스트림(44)은 SCO2의 압력을 SCO2 압축기(8)의 입구 압력에 가깝게 감압하는 등엔탈피 팽창 노즐(34)로 전송될 수 있다. 이들 2개의 스트림은 합류부(40)에서 합류되어, 조합된 스트림이 이전과 같이 열교환기(18)로 전송된다. SCO2의 일부가 제2 SCO2 터빈(12")을 우회하도록 하기 위해 노즐(34)이 사용되는 것으로 도 3에 도시되어 있으나, 상기 노즐(34)은, 오직 1개의 SCO2 터빈만이 사용됨으로써 노즐로 전송된 SCO2가 그 단일의 SCO2 터빈을 우회하는, 도 1에 도시된 실시예와 유사한 실시예에 통합될 수도 있다.
동력 터빈(12")을 우회하도록 SCO2 압축기 터빈(12')으로부터 배출되는 SCO2의 일부(44)를 전환시키면, 효율을 감소시킬 수도 있지만, 터빈(12')을 그 설계점 입구 온도와 압력비로 유지함으로써, 동력 터빈(12")에 부하가 거의 또는 전혀 없을 때, 시스템이 최상의 효율을 유지할 수 있도록 한다. 이는 동력 터빈(12")의 효율을 증대시킬 뿐만 아니라, "고온" 터빈 구성 요소의 가용 수명에 대한 열 사이클의 악영향을 저감한다. 또한, 밸브(38)의 동작은 동력 터빈(12")이 동력 수요의 증가에 신속하게 대응할 수 있도록 하며, 동력 수요 천이에 직면하여 시스템의 안정성을 향상시킨다. 유리하게, 등엔탈피 팽창 노즐(34)에서 SCO2의 압력은 감소하지만, 그 온도가 높게 유지됨으로써, 사용되지 않은 열이 열교환기(18) 내의 시스템으로 반환되어 연소기(24)로 전송되는 공기의 온도를 높이기 때문에, 원하는 연소기 출구 온도를 달성하기 위해 연소되어야 하는 연료가 저감된다. 도 3에는 팽창 노즐(34)이 2개의 SCO2 터빈(12', 12")을 채용한 시스템의 제1 터빈(12')으로부터 부분적으로 팽창된 SCO2의 스트림(42)을 수용하는 것으로 도시되어 있으나, 상기 팽창 노즐(34)은, 열교환기(10)로부터 SCO2의 일부가 터빈(12)을 우회하여, 팽창된 후, 열교환기(18)로 전송되도록, 도 1에 도시된 바와 같이 오직 1개의 SCO2 터빈(12)만을 채용한 시스템에 통합될 수도 있다.
도 3에 도시된 시스템의 다른 개선 사항은 연소 가스로부터의 열을 SCO2 압축기(8)로부터 배출되는 SCO2에 전달하기 위해 2개의 열교환기(10', 10")를 사용하는 것이다. 열교환기(10')에서의 SCO2와 연소 가스의 온도가 열교환기(10")에서보다 낮기 때문에, 이러한 구성은 열교환기(10")에서 저렴한 물질이 사용될 수 있도록 허용한다.
후술하는 바와 같이, 본 발명의 일 실시예에 따르면, 동력 터빈 축(17)으로부터, 예컨대, 터보프롭 또는 발전기의 축일 수 있는 피동 축(58)으로 동력을 전달하기 위해 와전류 커플링(36)이 사용된다. 따라서, SCO2 압축기(8)로부터 배출되는 SCO2 스트림(48)의 일부(52)는 밸브(51)에 의해 냉각을 목적으로 와전류 커플링으로 전송되는 반면, SCO2 스트림(48)의 나머지 부분(50)은 열교환기(10")로 전송된다. 바람직하게, 와전류 커플링(36)에서 열을 흡수한 후, 가열된 SCO2의 스트림(54)은 열교환기(10')로 전송되어 스트림(53)과 혼합되며, SCO2 터빈에서 더 가열되고 팽창됨으로써, 커플링으로부터 흡수된 열이 시스템으로부터 손실되지 않는다.
도 4는 압축기 배출 온도를 더 낮게 유지하여 열교환기(18)에서 최대 열전달을 달성하기 위해 공기 압축기(20)에서의 압축비가 낮게 유지되어야 하는 육상에 기반을 둔 응용예에서 특히 유용할 수 있는 도 3의 실시예에 대한 변형예를 도시하고 있다. 본 실시예에서는, 연소기(24)로부터 배출되는 연소 가스가 공기 터빈(26)에서 먼저 팽창된 다음, SCO2 압축기(8)에 의해 배출되는 SCO2로 열을 전달하기 위해 열교환기(10', 10")로 전송된다. 열교환기(10', 10")를 통과한 후, 냉각된 연소 가스는 대기로 배출된다.
도 5는 도 3 및 도 4의 실시예들과 유사한 시스템의 일부를 도시하고 있으며, 도 5에 도시되지 않은 시스템의 부분들은 도 3 및 도 4의 부분들과 동일하다. 도 5에 도시된 실시예는 높은 고도나 해수면에서 최대 성능을 가능하게 하기 위해 도 3 또는 도 4의 실시예 중 어느 하나 또는 2개의 실시예들의 조합에 따라 동작할 수 있는 유연성을 허용한다. 본 실시예에서, 제1 밸브(62)는 연소기(24) 하류 측의 유로에 통합되며, 제2 밸브(68)는 공기 터빈(26)의 하류 측에 통합되고, 제3 밸브(77)는 열교환기(10")의 하류 측에 통합된다. 밸브(62)의 동작은 연소기(24)로부터 배출되는 연소 가스(19)의 전부 또는 일부가 처음에 공기 터빈(26)(스트림(64))이나 열교환기(10')(스트림(74))로 전송될 수 있도록 허용한다. 밸브(68)의 동작은 공기 터빈(26)으로부터 배출되는 가스(66)의 전부 또는 일부가 열교환기(10')(스트림(72))로 전송되거나 대기(스트림(70))로 배출될 수 있도록 허용한다. 밸브(77)의 동작은 열교환기(10")로부터 배출되는 가스의 전부 또는 일부가 공기 터빈(26)(스트림(80))로 전송되거나 대기(스트림(78))로 배출될 수 있도록 허용한다. 밸브(62, 68, 74)에 의해 제공되는 흐름의 분할은 대기 조건에 따라 최고 효율을 달성하기 위해 연속적으로 조정될 수 있다.
일반적으로, 크로스 사이클 열교환기(10', 10")에서 냉각하기 전에 터빈(26)에서 연소 가스를 팽창시키면, 육상에 기반을 둔 응용예와 항공 응용예에서 해수면이나 낮은 고도에서, 향상된 성능을 제공하는 반면, 터빈에서 팽창시키기 전에 크로스 사이클 열교환기에서 연소 가스를 냉각시키면, 높은 고도에서 더 낳은 결과를 발생시킨다.
도 6은 도 4와 유사하지만 SCO2의 재가열을 포함하는 본 발명의 일 실시예를 도시하고 있다. 본 실시예에서는, SCO2 압축기(8)로부터 배출되는 압축된 SCO2의 스트림(5)이 열교환기(100, 101)로 전송되어 공기 터빈(26)으로부터 배출되는 연소 가스(104)로부터의 열전달에 의해 가열된 다음, 앞에서와 같이 SCO2 압축기 터빈(12')에서 팽창된다. 그러나, SCO2 압축기 터빈(12')에서 팽창된 후, 부분적으로 팽창된 SCO2의 스트림(102)이 다시 열교환기(100)로 전송되어 공기 터빈(26)으로부터 배출되는 연소 가스(104)로부터의 열전달에 의해 재가열됨으로써, SCO2를 재가열한다. 열교환기(100)로부터, 재가열된 SCO2의 스트림(106)은 앞에서와 같이 스플리터 밸브(38)로 전송됨으로써, 원하는 경우, 이 흐름은 동력 터빈(12")에서 팽창되는 제1 스트림(108)과 등엔탈피 팽창 노즐(34)에서 팽창되는 제2 스트림(110)으로 분할될 수 있다. 그리고, 팽창된 SCO2의 스트림(112, 114)들은 스트림(116)으로 조합되어 열교환기(18)로 전송되며, 이 열교환기에서 SCO2는 공기 압축기(20)로부터 배출되는 공기로의 열전달에 의해 냉각된다. 본 실시예에서는, SCO2 압축기 터빈(12')에서 팽창된 이후이기는 하지만 동력 터빈(12")에서 팽창되기 이전에 SCO2를 재가열함으로써, 시스템의 전체 열 효율을 약 2%의 예상량만큼 증대시키는 장점이 있다. 본 실시예에서, 동력 터빈 축(17)으로부터의 동력은 전기 발전기(90)를 구동시킨다. 그러나, 이 시스템과 아울러 후술하는 시스템은 축 동력을 사용할 필요가 있는 임의의 응용예에도 사용될 수 있음을 이해하여야 한다.
도 7에 도시된 실시예는 도 6의 실시예와 마찬가지로 연소기(24)로부터의 연소 가스(120)가 SCO2 압축기(8)로부터 압축된 SCO2를 가열하고 열교환기(100) 내의 SCO2 압축기 터빈(12')으로부터 배출되는 SCO2(124)를 재가열한다는 것을 제외하고, 도 3의 실시예와 유사하다.
연소 가스가 열교환기(100, 101)로 전송되기 전에 공기 터빈(26)에서 팽창되는 도 6의 동작에서, 연소 가스가 공기 터빈(26)에서 팽창되기 전에 열교환기(100, 101)로 전송되는 도 7의 동작으로 변경되도록, 도 5에 도시된 실시예와 관련하여 논의한 바와 같이, 도 6 또는 도 7에 도시된 실시예의 유로에 밸브가 통합될 수 있다. 대안적으로, 최상의 성능을 달성하기 위해 필요에 따라 두 가지 모드로의 분할이 변화되면서, 시스템이 두 가지 모드로 동시에 작동하도록 밸브가 동작할 수 있다.
도 6의 실시예와 유사성을 가진 도 8에 도시된 실시예에서는, SCO2 압축기(8)에 의해 배출되는 압축된 SCO2의 스트림(5)이 열교환기(150, 130)에서 순차적으로 가열되며, 그 후, 가열된 SCO2가 앞에서와 같이 SCO2 압축기 터빈(12')에서 팽창된다. 열교환기(130)에서는, 앞에서와 같이 공기 터빈(26)으로부터 배출되는 연소 가스(148)로부터 SCO2로 열이 전달된다. 그러나, 본 실시예에서는, 연료 제어기(142)가 동작하여 연소 가스에서 추가적인 연료를 연소시킴으로써, 열교환기(130)를 빠져나오는 부분적으로 냉각된 연소 가스(152)를 재가열 연소기(140)에서 재가열한다. 그리고, 재가열 연소기(140)로부터 재가열된 연소 가스(146)는 열교환기(144)로 전송되며, 상기 열교환기는 SCO2 압축기 터빈(12')으로부터 배출된 SCO2가 동력 터빈(12")에서 팽창되기 전에(또는 노즐(34)에서 팽창되기 전에) 가열한다. 열교환기(144)로부터 배출되는 연소 가스(154)는 열교환기(150)로 전송되어 SCO2 압축기 배출물(5)로 열을 전달한 다음, 연소 가스(156)가 대기로 배출된다. 이러한 구성 역시 재가열하지 않는 시스템의 전체 열 효율을 약 2%의 예상량만큼 증대시키는 장점이 있다.
도 7의 실시예와 유사성을 가진 도 9에 도시된 실시예에서는, SCO2 압축기(8)에 의해 배출되는 압축된 SCO2의 스트림(5)이 열교환기(150, 130)에서 순차적으로 가열되며, 그 후, 가열된 SCO2가 앞에서와 같이 SCO2 압축기 터빈(12')에서 팽창된다. 열교환기(130)에서는, 앞에서와 같이 연소기(24)로부터 배출되는 연소 가스(176)로부터 SCO2로 열이 전달된다. 그러나, 연료 제어기(142)가 동작하여 연소 가스에서 추가적인 연료를 연소시킴으로써, 열교환기(130)를 빠져나오는 부분적으로 냉각된 연소 가스(178)를 재가열 연소기(140)에서 재가열한다. 재가열 연소기(144)로부터 재가열된 연소 가스(180)는 열교환기(144)로 전송되며, 상기 열교환기는 SCO2 압축기 터빈(12')으로부터 배출된 SCO2가 동력 터빈(12")에서 팽창되기 전에(또는 노즐(34)에서 팽창되기 전에) 가열한다. 그리고, 연소 가스(182)는 열교환기(150)로 전송되어 SCO2 압축기 배출물(5)로 열을 전달한 다음, 연소 가스(184)가 공기 터빈(26)에서 팽창된 후, 연소 가스(186)가 대기로 배출된다. 이러한 구성 역시 재가열하지 않는 시스템의 전체 열 효율을 약 2%의 예상량만큼 증대시키는 장점이 있다.
도 8의 동작에서 도 9의 동작으로 변경되도록, 도 5에 도시된 실시예와 관련하여 논의한 바와 같이, 도 8 또는 도 9에 도시된 실시예의 유로에 밸브가 통합될 수 있다. 대안적으로, 최상의 성능을 달성하기 위해 필요에 따라 두 가지 모드로의 분할이 변화되면서, 시스템이 두 가지 모드로 동시에 작동하도록 밸브가 동작할 수 있다.
도 10에 도시된 실시예는 공기 터빈(26)에서 팽창된 연소 가스(202)가 대기로 배출되기 전에 물 보일러(200)로 전송되는 것을 제외하고, 도 9에 도시된 실시예와 유사하다. 물 보일러(200)는 연소 가스로부터 물(206)로 열을 전달함으로써, 증기(208)를 발생시킨다. 증기(208)는 열교환기(210)로 전송되어, 열교환기(18)로 도입되기 전에 동력 터빈(12")(또는 팽창 노즐(34))에 의해 팽창된 SCO2의 스트림(204)으로부터의 열전달에 의해 과열된다. 그리고, 과열된 증기(212)는 연료와 함께 연소기(24)로 주입됨으로써, 열교환기(130, 144, 150)와 공기 터빈(26)을 통해 전송되는 연소 가스(216)의 질량 유동을 증대시킨다. 연소기(24)로의 증기(212)의 주입이 주어진 연소기 출구 온도를 달성하기 위해 필요한 연료를 증대시키기는 하지만, 물 보일러(200)에 의해 공기 터빈 배기 가스(202)로부터 회수된 추가적인 열이 사이클로 반환되기 때문에, 효율이 증대된다. 연소기로의 증기 주입은 오염 물질인 NOx의 발생을 저감할 수도 있다.
도 11은, 예컨대, 지역 난방을 위해, 전력과 온수가 모두 발생되는 본 발명의 일 실시예를 도시하고 있다. 본 실시예에서는, 전술한 바와 같이 공기 압축기(20)로부터 배출되는 압축 공기(13')가 열교환기(18)로 도입되기 전에 그 온도를 더 낮추기 위해, 공기 측 냉각기(22)에 공급되는 주변 물(228)로 열이 전달된다. 그리고, 공기 측 냉각기(22)로부터 배출된 약간 가열된 물(230)이 직렬로 연결된 제1 및 제2 SCO2 압축기(8', 8") 사이에 배치된 SCO2 인터쿨러(220)로 전송된다. 부분적으로 압축된 SCO2(222)는 제1 압축기(8')로부터 SCO2 인터쿨러(220)로 전송되며, 상기 SCO2 인터쿨러에서 부분적으로 압축된 SCO2로부터 유입되는 물(230)로 열이 전달된다. 냉각된 후, 제1 압축기(8')로부터 배출되는 냉각된 SCO2(224)는 제2 압축기(8")로 전달되어, 원하는 값으로 압축된다. 본 실시예에서, SCO2 인터쿨러(220)로부터 배출되는 가열된 물(232)은 난방용으로 유리하게 사용될 수 있다.
압축기 배출시 원하는 압력비를 달성하기 위해 필요한 일량을 저감하는 것으로, 압축기 단계간 냉각의 장점이 공지되어 있다. 도 11에 도시된 실시예에서, SCO2 인터쿨러(220)는 단계간 SCO2(222)의 온도를 그 초임계 온도 이상으로 조절하기 위해 낮추도록 설계되며, 그 결과, 원하는 압력을 달성하기 위해 필요한 동력을 거의 25% 감소시키는 것으로 예상된다. 또한, SCO2의 특징적인 인터쿨러 입구 및 출구 온도는 열병합 동력 발생 구현예의 일부로서 난방수에 제공된다. 일 실시예에서, 예컨대, 공기 측 냉각기(22)에 전달되는 열은 SCO2 질량 유동(kg/s) 당 약 13KW에 불과하기 때문에, 공기 측 냉각기(22)에서의 물(228)의 가열은 물의 온도를 단지 약간 상승시킨다. SCO2 압축기(8', 8")에 의해 실시되는 일의 비율(즉, 압력비의 비율)을 변화시킴으로써, SCO2 인터쿨러(220)에서 추출되는 열량이, 예컨대, kg/s 당 20KW에서 kg/s 당 약 150KW로 변화될 수 있다. 따라서, 물로 전달되는 열의 크기가 동력을 발생시키는 열전달과 거의 동일할 수 있다. 종래의 열병합 동력 발생 시스템은 일반적으로 전기보다 대략 2배 더 많은 열을 발생시키기 때문에, 이는 종래의 시스템과 실질적으로 상이하다. 도 11에 도시된 시스템의 일 실시예에서, 공기 측 냉각기(22)로부터 배출된 물(230)은 SCO2 인터쿨러(220)로 흐르며, 상기 SCO2 인터쿨러에서 SCO2의 온도를 약 305 °K의 임계 온도로 낮추기 위해 최대 약 150KW가 추출된다. SCO2 인터쿨러(220)에서의 열전달은 냉각기(220) 내의 SCO2로부터 배출되는 물(232)의 온도를 가열 및 냉각(트라이제너레이션) 응용예에 매우 적합한 약 160℉로 상승시킨다.
SCO2 인터쿨러(220)는 압축기(8")에 의해 배출되는 SCO2의 스트림(226)의 온도를 낮추게 되며, 이로 인해, SCO2 터빈(12')에서 원하는 입구 온도를 달성하기 위해 압축기 배출물 스트림으로 입력되는 열량과, 함축적으로, 연소기(24)에서 연소되는 연료의 양을 증대시킬 필요가 있다. 그러나, 이 경우, SCO2의 열원은 연소기(24)로부터의 연소 가스의 흐름이므로, 감소된 SCO2 압축기 배출 온도는 공기 터빈(26)으로부터 대기로 배출되는 연소 가스의 온도 감소만을 초래하기 때문에, 연소기(24)로의 연료 흐름의 증가가 거의 또는 전혀 필요하지 않다. 도 11에 도시된 실시예는 난방용 고온수를 제공함과 동시에 고효율로 전기를 제공함으로써, 약 90%의 전체 열 효율이 예상된다.
도 11의 실시예는, 연소기(24)로부터의 연소 가스가 팽창을 위해 터빈(26)으로 먼저 전송된 다음 열교환기(130)로 전송되는 시스템에 도시되어 있으나, 본 발명은 연소기로부터 열교환기(130)로 연소 가스를 먼저 전송한 다음, 예컨대, 도 3에 도시된 실시예에 나타낸 바와 같이 연소 가스를 터빈(26)으로 전송함으로써, 실시될 수도 있다.
도 12은 진공 사이클을 사용하는 열병합 동력 발생 시스템에 적용된 본 발명의 다른 실시예를 도시하고 있다. 주변 공기(300)-즉, 주변 온도 및 압력의 공기가 크로스 사이클 열교환기(316)로 흡인되어, SCO2 동력 터빈(12")으로부터 배출되는 팽창된 SCO2(318)로부터 열을 흡수함으로써, SCO2 압축기(8)로 전송되는 SCO2(317)를 그 임계 온도에 가깝게 냉각시킨다. 그리고, 열교환기(316)로부터 가열된 공기(301)가 연소기(302)에서 화석 연료(미도시)를 연소시킴으로써 더 가열된다. 그리고, 생성된 연소 가스(303)는 대기압 이하로 터빈(304)에서 팽창되며, 팽창된 가스(305)는 크로스 사이클 열교환기(306, 308)로 전송되어, SCO2 압축기(8)로부터 배출되는 압축된 SCO2(322)로 열을 전달한다. 도 12에는 2개의 크로스 사이클 열교환기가 직렬로 도시되어 있으나, 본 발명은 단일의 열교환기 또는 직렬로 배치된 2개 초과의 열교환기를 사용하여 실시될 수도 있다. 그리고, 가열된 SCO2(320)는 SCO2 압축기(8)와, 예컨대, 전술한 바와 같이, 전기 발전기(90)를 구동하는 축 동력을 발생시키기 위해, 터빈(12', 12")에서 팽창된다. 본 실시예 뿐만 아니라 후술하는 도 13에 도시된 실시예는 압축기 입구로 반환되는 SCO2(317)를 냉각시키기 위해 압축기 배출 공기 대신 크로스 사이클 열교환기(316)에서 냉각 유체로서 주변 공기(300)를 사용하기 때문에, 크로스 사이클 열교환기로 전송되는 공기를 냉각시키기 위해 도 11에 도시된 냉각기(22)와 같은 냉각기를 사용할 필요가 없으므로, 사이클로부터 열 손실을 피할 수 있다.
열교환기(306, 308)로부터 냉각된 연소 가스(309)가 주변 온도일 수 있는 물(311)이 공급되는 물 히터(310)로 전송된다. 물 히터(310)에서, 연소 가스(309)로부터 열이 물(311)로 전달되어 가열된 물(315)을 배출시킨다. 가열된 물은 유리하게, 예컨대, 지역 난방이나 가열된 물을 사용하는 임의의 응용예를 위해 사용될 수 있다. 물 히터(310)로부터 배출되는 냉각된 연소 가스(312)는, 연소 가스(314)가 대기로 배출될 수 있도록, 연소 가스의 압력을 대기압 이상으로 높이는 압축기(313)로 전송된다.
도 13은 2개의 SCO2 사이클과 함께 진공 사이클을 사용하는 열병합 동력 발생 시스템에 적용된 본 발명의 다른 실시예를 도시하고 있다. 주변 공기(300)가 크로스 사이클 열교환기(316)로 흡인되어, SCO2 동력 터빈(12")으로부터 배출되는 팽창된 SCO2(318)로부터 열을 흡수함으로써, 앞에서와 같이, SCO2 압축기(8)로 전송되는 SCO2(317)를 그 임계 온도에 가깝게 냉각시킨다. 그리고, 열교환기(316)로부터 가열된 공기(301)가 앞에서와 같이 연소기(302)에서 화석 연료(미도시)를 연소시킴으로써 더 가열된다. 그리고, 생성된 연소 가스(303)는 도 12의 실시예에서와 같이 터빈 대신 크로스 사이클 열교환기(306, 308)로 전송된다. 크로스 사이클 열교환기(306, 308)에서는, 연소 가스(303)로부터의 열이 SCO2 압축기(8)로부터 배출되는 압축된 SCO2(322)로 전달된다. 그리고, 가열된 SCO2(320)는 SCO2 압축기(8)와, 예컨대, 전술한 바와 같이, 전기 발전기(90)를 구동하는 축 동력을 발생시키기 위해, 터빈(12', 12")에서 팽창된다.
크로스 사이클 열교환기(306, 308)로부터, 부분적으로 냉각된 연소 가스(341)는 SCO2의 제2 스트림이 흐르는 제2 SCO2 사이클로 열을 전달한다. 구체적으로, 연소 가스(341)는 보조 크로스 사이클 열교환기(336)로 전송되어, 보조 SCO2 압축기(334)로부터 배출되는 SCO2(335)로 열을 전달함으로써 더 냉각된다. 그리고, 더 냉각된 연소 가스(342)가 압축기(313)로 전송된다. 열교환기들을 통한 압력 강하로 인하여, 압축기 입구에서 연소 가스는 대기압 이하가 될 것이다. 압축기(313)는 연소 가스(314)가 대기로 배출될 수 있도록 연소 가스의 압력을 대기압 이상으로 증대시킨다.
보조 크로스 사이클 열교환기(336)로부터 배출되는 가열된 SCO2(337)는 보조 SCO2 터빈(330)에서 팽창되며, 상기 보조 SCO2 터빈은 보조 SCO2 압축기(334)를 구동하는 축 동력을 발생시킨다. 그리고, 터빈(330)으로부터 배출되는 팽창된 SCO2(331)는 물 히터(395)로 전송되어, 물(311)로 열을 전달함으로써, 보조 SCO2 압축기(334)로 반환되기 전에 SCO2(333)를 그 임계 온도에 가깝게 냉각시킨다. 가열된 물(315)은 유리하게, 전술한 바와 같이, 예컨대, 지역 난방을 위해 사용될 수 있다.
도 14는 2개의 SCO2 사이클과 함께 진공 사이클을 사용하는 열병합 동력 발생 시스템에 적용된 본 발명의 또 다른 실시예를 도시하고 있다. 주변 공기(300)가 압축기(370)로 흡인된 다음, 압축된 공기가 도 11의 실시예에서와 같이 물(미도시)로 열을 전달함으로써 냉각기(22)에서 냉각된다. 냉각된 압축 공기(373)는 크로스 사이클 열교환기(316)로 전송되며, 상기 열교환기에서 SCO2로부터 열이 상기 냉각된 압축 공기에 전달됨으로써, SCO2 압축기(8)로 전송되는 SCO2(317)를 그 임계 온도에 가깝게 냉각시킨다.
그리고, 열교환기(316)로부터 가열된 공기(301)가 앞에서와 같이 연소기(302)에서 화석 연료(미도시)를 연소시킴으로써 더 가열된다. 그리고, 생성된 연소 가스(303)는 도 13의 실시예에서와 같이 연소 가스(303)로부터의 열이 SCO2 압축기(8)로부터 배출되는 압축된 SCO2(322)로 전달되는 크로스 사이클 열교환기(306, 308)로 전송된다. 그리고, 가열된 SCO2(320)는 SCO2 압축기(8)와, 예컨대, 전술한 바와 같이, 전기 발전기(90)를 구동하는 축 동력을 발생시키기 위해, 터빈(12', 12")에서 팽창된다.
크로스 사이클 열교환기(306, 308)로부터, 부분적으로 냉각된 연소 가스(341)는 도 13의 실시예에서와 같이 제2 SCO2 사이클로 열을 전달한다. 구체적으로, 연소 가스(341)는 보조 크로스 사이클 열교환기(336)로 전송되어, 보조 SCO2 압축기(334)로부터 배출되는 SCO2(335)로 열을 전달함으로써 더 냉각된다. 그리고, 더 냉각된 연소 가스(342)가 대기로 배출된다.
보조 크로스 사이클 열교환기(336)로부터 배출되는 가열된 SCO2(337)는 보조 SCO2 터빈(330)에서 팽창되며, 상기 보조 SCO2 터빈은 보조 SCO2 압축기(334)와 아울러 공기 압축기(370)를 구동하는 축 동력을 발생시킨다. 그리고, 터빈(330)으로부터 배출되는 팽창된 SCO2(331)는 물 히터(395)로 전송되어, 물(311)로 열을 전달함으로써, 보조 SCO2 압축기(334)로 반환되기 전에 SCO2(333)를 그 임계 온도에 가깝게 냉각시킨다. 가열된 물(315)은 유리하게, 전술한 바와 같이, 예컨대, 지역 난방을 위해 사용될 수 있다.
도 13의 실시예에서는 공기 압축기(313)가 시스템을 통해 공기를 "끌어당기는" 반면, 도 14의 실시예에서는 공기 압축기(370)가 시스템을 통해 공기를 "밀어낸다"는 것을 알 수 있다. 또한, 도 13 및 도 14의 실시예 모두에서, 시스템의 공기 사이클 부분은 터빈이 아닌 압축기와 연소기를 포함한다는 것을 유의하여야 한다.
도 15에 도시된 바와 같이, 초임계 유체의 경우에는 전형적인 바와 같이, SCO2의 비열은 그 임계 온도 부근에서 급격하게 변한다. 따라서, 전술한 바와 같이, SCO2 압축기 입구에서 SCO2의 온도를 그 임계 온도에 최대한 가깝게 유지하는 것이 중요하다. 실제로, SCO2 압축기 입구에서 SCO2의 온도가 단지 수 °K 변화하는 것으로 인해, 본원에 기술된 화석 연료로 가열되는 듀얼 사이클 초임계 유체-공기 시스템의 열 효율이 대략 수 퍼센트 변할 수 있음이 밝혀졌다. 불행하게도, 가스 터빈 시스템에서 온도를 측정하기 위해 통상적으로 사용되는 열전대는 일반적으로 단지 수 °K까지 정확하다. 따라서, 본 발명의 일 양태에 따라, SCO2 압축기 입구에서 SCO2의 온도를 더 정확하게 측정하기 위한 방법이 제공된다.
도 16은 본 발명의 따라 SCO2 압축기 입구로 유입되는 SCO2의 온도를 측정하기 위한 장치의 일 실시예를 도시하고 있다. SCO2의 스트림(412)을 SCO2 압축기의 입구로 전송하는 주 도관(400)에 바이패스 도관(402)이 연결된다. SCO2의 바이패스 스트림(414)은 바이패스 도관(402)을 통해 흐른다. 압전식 또는 적절한 다른 압력 센서(404)가 바이패스 도관에서 SCO2의 정압을 측정하기 위해 바이패스 도관(402)에 통합된다. 각각 열전대 또는 다른 유형의 온도 센서일 수 있는 상류 및 하류 온도 센서(406, 408)가 열원(410)의 양측에 설치된다. 전기 코일 또는 세라믹 히터와 같은 열원(410)이 공지된 열량을 SCO2의 스트림(414)에 도입한다. 바람직하게, 온도 센서(406, 408)들은 약 ½m 간격으로 이격된다.
두 센서가 동일한 전체 온도를 측정하고 있도록, 열원(410)에 의해 열이 발생되지 않을 때, 두 온도 센서(406, 408)에서 SCO2의 온도를 동시에 측정함으로써, 두 센서들 간의 편차를 고려하여 온도 센서들을 보정할 수 있다. 그리고, 열원(410)에 의해 공지된 열량이 SCO2 스트림에 도입되고 있을 때, 온도 측정이 반복된다. 분석을 통해 추론할 수 있는 도관(402)을 통한 SCO2의 질량 유량을 고려하여, 온도 센서(406, 408)들 간의 온도 상승을 비교함으로써, SCO2의 비열을 결정할 수 있다. 그리고, 이 비열은 주 도관(400)에서 흐르는 SCO2의 온도를 정확하게 결정하기 위해 센서(404)에 의해 측정된 정압에서의 온도에 대한 비열의 데이터와 비교될 수 있다.
도 17에 도시된 바와 같이, SCO2에서 음속은 임계점 부근에서 극적으로 변한다. 그 결과, 유체에서의 음속을 계산하고, 측정된 음속을 압력과 음속의 함수로서 SCO2의 온도에 대해 상호 참조함으로써, SCO2의 온도를 결정할 수도 있다. 따라서, SCO2 압축기의 입구로 전송되는 SCO2의 온도를 측정하기 위한 다른 장치가 도 18에 도시되어 있다. 도관(500)은 SCO2 압축기의 입구로 전송되는 SCO2의 스트림(502)을 운반한다. 도 16에 도시된 압력 센서(404)와 같은 압력 센서가 도관(500) 내의 SCO2의 압력을 측정하기 위해 사용된다. 압전 트랜스듀서와 같은 2개의 트랜스듀서(504, 506)가 서로 대향하며 도관(500) 상에 장착된다. 트랜스듀서(504)는 송신 트랜스듀서이고, 트랜스듀서(506)는 수신 트랜스듀서이다. 본 발명에 따르면, 트랜스듀서(504)는 SCO2의 스트림(502)을 통해 송신되어 트랜스듀서(506)에 의해 수신되는 소닉 펄스(508)를 발생시킨다. 트랜스듀서(504)에 의한 소닉 펄스(508)의 송신과 트랜스듀서(506)에 의한 펄스의 수신 간의 시간 경과를 측정하고, 트랜스듀서들 간의 거리를 고려함으로써, SCO2의 음속을 결정할 수 있다. 또한, 음파가 이동하는 거리는 신호 간격 동안 흐름이 관을 따라 이동하여야 하는 거리와 관 직경의 제곱의 합과 동일하다는 것을 고려하여, 도관(500)을 통한 SCO2의 속도를 고려하도록 조정이 이루어질 수 있다. 구체적으로, 예컨대, 도 1에 도시된 유량계(32)를 사용하여, SCO2의 유량을 측정하고, 측정된 유량을 도관의 내경으로 나눔으로써, 유속을 측정할 수 있다. 측정된 SCO2의 압력과 계산된 음속을 도 17에 도시된 것과 같은 측정된 압력에서의 온도에 대한 음속의 데이터와 상호 참조하여, SCO2의 온도를 정확하게 결정할 수 있다.
사용되는 방법과는 상관없이, SCO2의 온도를 압축기(20)의 입구의 ½m 이내에서 측정하는 것이 바람직하다.
축 동력을 발생시키기 위해 화석 연료로 가열되는 듀얼 사이클 초임계 유체-공기 시스템과 관련하여 온도 측정 방법을 상술하였으나, 상기 방법은 핵이나 또는 태양 열원과 함께 사용되는 SCO2 시스템과 같은 다른 초임계 유체 시스템에도 동등하게 적용될 수 있음을 이해하여야 한다.
전술한 바와 같이, 초임계 조건을 달성하기 위해 필요한 매우 높은 압력(예컨대, 7.0㎫ 이상) 때문에, 임의의 SCO2 사이클을 구현하는데 있어서 어려움이 발생한다. SCO2 터빈에서 이러한 높은 압력은 터빈에서 구동 부하까지 연장하는 축의 밀봉을 어렵게 만든다. 전술한 바와 같이, 하나의 접근법은 구동 부하를 SCO2 터빈 압력 용기에 통합하는 것이다. 압력 용기 벽체를 통해 회전하는 축을 밀봉하기 위해 어렵게 연장할 필요가 없도록, 예컨대, 도 6의 실시예의 전기 발전기(90)가 SCO2 동력 터빈 압력 용기 내에 포함될 수 있다. 그러나, 전술한 바와 같이, 이러한 접근법은 터보프롭과 같이 구동 부하가 SCO2 압력 용기 내에 포함될 수 없는 상황에 적용될 수 없다. 또한, 전기 발전기의 경우에서와 같이, 상기 접근법이 적용될 수 있는 경우에도, 이 접근법은 단점이 있다.
본 발명의 일 양태에 따르면, 압력 용기를 관통하는 축을 밀봉할 필요없이 SCO2 터빈 압력 용기 경계를 가로질러 축 동력을 전달하기 위한 수단이 제공된다. 도 19 내지 도 23에 도시된 바와 같이, SCO2 동력 터빈(12")에 의해 구동되는 축(17)으로부터, 예컨대, 전기 발전기 또는 터보프롭을 구동하는 축(58)으로 동력을 전달하기 위해, 와전류 토크 커플링 또는 유도 커플링(36)이 사용된다. 토크 커플링(36)의 입력 축인 축(17)은 베어링(622)에 지지된 SCO2 동력 터빈 하우징(618) 내에서 회전한다. 유도 회전자(614)가 축(17)에 부착되어 함께 회전한다. 유도 회전자(614)는 구리 또는 알루미늄과 같은 자기 투과성 물질로 제조된다.
하우징(618)에 부착된 압력 멤브레인(612)은 하우징 내에 SCO2를 밀봉한다. 본 발명의 바람직한 실시예에서, 압력 멤브레인(612)은 구면 곡률을 가지며, 하우징(618) 내의 SCO2의 고압은 구면의 외부에 존재한다. 이에 따라 멤브레인(612)이 압축 상태가 되며, 이는 인장 강도보다 압축성이 상당히 더 큰 물질의 사용을 가능하게 함으로써, 멤브레인이 비교적 얇게 제조될 수 있도록 한다. 멤브레인(612)의 박화(thinness)는 전기자(624, 626)와 유도 회전자(614) 사이의 간극을 최소화하여, 더 큰 토크 전달을 가능하게 한다. 본 발명의 특히 바람직한 실시예에서, 압력 멤브레인(612)은, 예컨대, 우수한 압축 강도를 가진 실리콘 질화물과 같은, 세라믹 물질로 제조된다.
하우징(618)은 입구 매니폴드(604)와 유체 소통하는 입구 포트(602)와, 출구 매니폴드(608)와 유체 소통하는 출구 포트(610)를 갖는다. 입구 매니폴드(604)와 출구 매니폴드(608)를 통로(606)가 연결하고 있다.
토크 커플링(36)의 출력 축인 축(58)은 베어링(630, 632)에 의해 지지된 전기자 하우징(616) 내에서 회전한다. 축(58)에는 전기자 조립체가 커플링된다. 전기자 조립체는 남향 자극을 가진 제1 전기자(624)와 제1 전기자의 남향 전극과 인터리빙된(interleaved) 북향 자극을 가진 제2 전기자(626)를 지지하는 볼트(640)를 포함한다. 제1 및 제2 전기자(624, 626)는, 예컨대, 슈퍼멀로이와 같은 임의의 적당한 상자성 물질로 제조되는 것이 바람직하다. 네오디뮴 자석과 같은 영구 자석(628)이 전기자(624, 626)의 방사상 내측에서 볼트(640) 상에 지지된다. 자석(628)은 전기자(624, 626)의 교번하는 전극들 사이로 연장하는 자속을 생성한다.
출력 축(58)에 커플링된 영구 자석(628)과 입력 축(17)에 커플링된 유도 회전자(614)의 자기 투과성 재료 간의 상대 회전은 유도 회전자에 전류의 와류를 유발하는 자속 변화율을 초래한다. 이 전류는 자속의 변화를 반대하는 대향 자속을 생성함으로써, 압력 멤브레인(612)을 가로질러 전기자(624, 626)에 토크를 전달하는 역할을 한다. 그러나, 2개의 축들 사이에 미끄러짐이 존재하여, 출력 축(58)이 입력 축(17)보다 더 느리게 회전하게 된다. 압력 멤브레인을 가로질러 입력 축(17)으로부터 출력 축(56)으로 전달되는 토크는 약 80 내지 100 RPM의 회전자 속도차에서 피크에 도달한다.
대안적으로, 유도 회전자 고체 물질 대신 코일이 사용될 수 있으며, 그 경우, 고정자와 회전자가 모두 회전하게 될 것이다. 미끄러짐과 관련된 손실은 전류로서 포획될 수 있다. 이 접근법은 전류를 비회전 구조물로 전달하기 위해 브러시 시스템을 필요로 할 것이다. 또한, 코일을 사용하고 코일 회로에서 저항을 변화시킴으로써, 전달된 토크가 변화될 수 있으며, 이는 동적 제어에 유용할 수 있다.
유도 회전자(614)에서 발생되는 와전류는 열을 생성한다. 도 3에 도시된 실시예와 관련하여 전술한 바와 같이, 본 발명의 일 실시예에서, 밸브(51)는 냉각을 목적으로 SCO2 압축기 배출물(48)의 일부(52)를 와전류 커플링(36)으로 전송한다. 구체적으로, 도 19 내지 도 23에 도시된 바와 같이, 냉각 SCO2의 스트림(52)이 하우징(618)의 입구 포트(602)를 통해 전송되어, 환형 매니폴드(604)를 통해 흐른다. 상기 매니폴드(604)로부터, SCO2의 스트림(52)은 입구 매니폴드(604)를 출구 매니폴드(608)에 연결하는 하우징(618) 주위에 원주상으로 이격된 일련의 통로(606)를 통해 흐른다. 유도 회전자(614)로부터 SCO2의 스트림(52)으로의 열전달을 돕기 위해 통로(606) 주위에 일련의 베인(650)이 분포되어 있다. 냉각 SCO2의 스트림(52)은, 통로(606)를 통해 흐를 때, 열을 흡수함으로써 유도 회전자(614)를 냉각시킨다. 출구 매니폴드(608)를 빠져나온 후, 이제 가열된 냉각 SCO2의 스트림(54)은 출구 포트(610)를 통해 하우징(618)을 빠져나온다. 도 3에 도시된 바와 같이, 와전류 토크 커플링(36)으로부터 배출된 SCO2 스트림(54)은 열교환기(10')를 통과하면서, SCO2 동력 터빈(12')에서 팽창될 SCO2(56)로 열을 전달한다.
도 3에 도시된 와전류 토크 커플링(36)으로 전달되는 냉각 SCO2의 양을 제어하는 밸브(51)는, 열교환기(10")를 빠져나가는 SCO2의 스트림(53)의 온도와 제어 피드백을 위해 와전류 커플링(36)을 빠져나가는 가열된 냉각 SCO2의 스트림(54)의 온도를 측정하는 온도 프로브를 사용하여, 실시간으로 제어될 수 있다. 이 목적은 온도가 적당한 2개의 스트림을 생성함으로써, 이들이 합류되었을 때, 열교환기(10')의 적당한 동작을 가능하게 하는 적당히 "혼합된" 온도를 갖도록 하는 것이다.
따라서, 본 발명의 일 실시예에 따르면, 와전류 커플링(36)으로부터 제거되어야만 하는 와전류에 의해 생성된 열이 시스템으로부터 손실되지 않고, SCO2 동력 터빈(12')에서 팽창될 압축기 배출물인 SCO2의 일부를 예열하는데 사용된다. 동력 터빈(12')은 와전류 커플링(36)에서의 동력 손실을 고려하는 크기를 가져야만 하지만, 이러한 동력 손실은 시스템에 의해 완전히 회수되는 열을 발생시킨다.
축 동력을 발생시키기 위해 화석 연료로 가열되는 듀얼 사이클 초임계 유체-공기 시스템과 관련하여 토크 전달 방법을 상술하였으나, 상기 방법은 핵이나 또는 태양 열원과 함께 사용되는 SCO2 시스템과 같은 다른 초임계 유체 시스템에도 동등하게 적용될 수 있음을 이해하여야 한다.
따라서, 어떤 구체적인 실시예를 참조하여 본 발명을 도시하였으나, 이상의 설명으로 무장한 당업자들은 많은 변형들이 채용될 수 있음을 이해할 것이다. 따라서, 본 발명의 사상이나 본질적인 특성을 벗어나지 않고 다른 특수한 형태로 본 발명이 실시될 수 있음을 이해하여야 하며, 따라서, 본 발명의 범위를 나타내는 것으로서, 이상의 상세한 설명이 아니라 첨부된 특허청구범위를 참조하여야 한다.

Claims (90)

  1. 공기 사이클과 초임계 유체 사이클을 포함하는 시스템에서 축 동력을 발생시키는 방법이며,
    (a) 화석 연료를 공기 중에서 연소시켜 연소 가스를 생성하는 단계와,
    (b) 상기 연소 가스를 적어도 제1 터빈에서 팽창시켜 팽창된 연소 가스를 생성하는 단계로서, 상기 연소 가스의 팽창으로 인해 축 동력이 발생하는 단계와,
    (c) 제1 압축기에서 초임계 유체를 압축하는 단계와,
    (d) 상기 압축된 초임계 유체의 적어도 일부를 제1 크로스 사이클 열교환기를 통해 흐르게 하고, 상기 연소 가스를 상기 제1 크로스 사이클 열교환기를 통해 흐르게 하여, 상기 연소 가스로부터 상기 압축된 초임계 유체로 열을 전달함으로써 가열된 압축 초임계 유체를 생성하는 단계와,
    (e) 상기 가열된 압축 초임계 유체의 적어도 일부를 제2 터빈에서 팽창시켜 팽창된 초임계 유체를 생성하는 단계로서, 상기 초임계 유체의 팽창으로 인해 추가적인 축 동력이 발생하는 단계와,
    (f) 상기 화석 연료를 공기 중에서 연소시키기 전에, 상기 팽창된 초임계 유체의 적어도 일부를 제2 크로스 사이클 열교환기를 통해 흐르게 하고, 상기 공기를 상기 제2 크로스 사이클 열교환기를 통해 흐르게 하여, 상기 팽창된 초임계 유체로부터 공기로 열을 전달하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  2. 제1항에 있어서,
    상기 화석 연료를 공기 중에서 연소시키기 전에, 상기 공기를 제2 압축기에서 압축하여 압축된 공기를 생성하는 단계를 더 포함하며, 상기 화석 연료는 상기 압축된 공기 중에서 연소되고, 상기 제1 터빈에 의해 발생된 상기 축 동력의 적어도 일부는 상기 제2 압축기를 구동하기 위해 사용되며, 상기 공기를 상기 제2 크로스 사이클 열교환기를 통해 흐르게 하는 단계는 상기 압축된 공기를 상기 제2 크로스 사이클 열교환기를 통해 흐르게 하여 상기 팽창된 초임계 유체로부터 상기 압축된 공기로 열을 전달하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  3. 제1항에 있어서,
    상기 연소 가스를 상기 제1 크로스 사이클 열교환기를 통해 흐르게 하는 단계는 상기 연소 가스를 상기 제1 터빈에서 팽창시키는 단계 이후에 실시되는,
    축 동력을 발생시키는 방법.
  4. 제1항에 있어서,
    상기 연소 가스를 상기 제1 크로스 사이클 열교환기를 통해 흐르게 하는 단계는 상기 연소 가스를 상기 제1 터빈에서 팽창시키는 단계 이전에 실시되는,
    축 동력을 발생시키는 방법.
  5. 제1항에 있어서,
    상기 연소 가스의 제1 부분은 상기 연소 가스를 상기 제1 터빈에서 팽창시키는 단계 이전에 상기 제1 크로스 사이클 열교환기를 통해 흐르고, 상기 연소 가스의 제2 부분은 상기 연소 가스를 상기 제1 터빈에서 팽창시키는 단계 이후에 상기 제1 크로스 사이클 열교환기를 통해 흐르는,
    축 동력을 발생시키는 방법.
  6. 제1항에 있어서,
    상기 화석 연료를 공기 중에서 연소시키기 전에, 상기 공기를 제2 압축기에서 팽창시켜 압축된 공기를 생성하는 단계를 더 포함하며, 상기 제2 압축기는 약 2.0 이하의 압력비로 동작하는,
    축 동력을 발생시키는 방법.
  7. 제1항에 있어서,
    상기 초임계 유체는 초임계 이산화탄소를 포함하는,
    축 동력을 발생시키는 방법.
  8. 제1항에 있어서,
    상기 팽창된 초임계 유체를 상기 초임계 유체의 임계 온도에 가깝게 냉각시키기 위해 상기 팽창된 초임계 유체로부터 상기 제2 크로스 사이클 열교환기 내의 상기 공기로 충분한 열이 전달되는,
    축 동력을 발생시키는 방법.
  9. 제8항에 있어서,
    상기 공기는 상기 제2 크로스 사이클 열교환기를 통해 흐르기 전에 냉각되는,
    축 동력을 발생시키는 방법.
  10. 제9항에 있어서,
    상기 팽창된 초임계 유체를 상기 초임계 유체의 임계 온도에 가깝게 냉각시키기 위해 상기 팽창된 초임계 유체로부터 상기 제2 크로스 사이클 열교환기 내의 상기 공기로 전달되는 열량을 제어하기 위하여, 상기 공기가 상기 제2 크로스 사이클 열교환기를 통해 흐르기 전에 상기 공기의 냉각량을 조절하는,
    축 동력을 발생시키는 방법.
  11. 제1항에 있어서,
    상기 팽창된 초임계 유체의 적어도 제1 부분을 제3 터빈에서 더 팽창시켜 더 팽창된 초임계 유체를 생성하는 단계로서, 상기 초임계 유체가 더 팽창함으로 인해 추가적인 축 동력이 발생하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  12. 제11항에 있어서,
    상기 팽창된 초임계 유체의 적어도 제1 부분을 제3 터빈에서 더 팽창시키는 단계는 상기 초임계 유체가 상기 제2 크로스 사이클 열교환기를 통해 흐르기 전에 상기 초임계 유체에 대해 실시되는,
    축 동력을 발생시키는 방법.
  13. 제11항에 있어서,
    상기 팽창된 초임계 유체의 제2 부분을 노즐에서 팽창시키는 단계를 더 포함하며, 상기 팽창된 초임계 유체의 제2 부분은 상기 제3 터빈을 우회하는,
    축 동력을 발생시키는 방법.
  14. 제1항에 있어서,
    (ⅰ) 상기 팽창된 초임계 유체의 적어도 제1 부분을 제3 터빈에서 더 팽창시켜 더 팽창된 초임계 유체를 생성하는 단계와, (ⅱ) 상기 초임계 유체를 상기 제3 터빈에서 더 팽창시키기 전에 상기 초임계 유체의 적어도 일부를 재가열하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  15. 제14항에 있어서,
    상기 초임계 유체의 적어도 일부를 재가열하는 단계는, 상기 연소 가스로부터 상기 압축된 초임계 유체의 상기 부분으로 열을 전달함으로써 상기 초임계 유체를 재가열하기 위해, 상기 초임계 유체의 상기 부분을 상기 제1 크로스 사이클 열교환기를 통해 다시 흐르게 하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  16. 제1항에 있어서,
    상기 연소 가스를 상기 제1 터빈에서 팽창시킨 이후에 상기 연소 가스의 적어도 일부를 재가열하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  17. 제1항에 있어서,
    상기 연소 가스를 상기 제1 크로스 사이클 열교환기를 통해 흐르게 한 이후에 상기 연소 가스의 적어도 일부를 재가열하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  18. 제17항에 있어서,
    상기 연소 가스를 재가열하는 단계는 추가적인 화석 연료를 상기 연소 가스 내에서 연소시키는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  19. 제1항에 있어서,
    물을 공급하는 단계와, 상기 제1 터빈으로부터 나온 상기 팽창된 연소 가스로부터의 열을 상기 물로 전달하여 증기를 발생시키는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  20. 제19항에 있어서,
    상기 초임계 유체로부터 상기 증기로 열을 전달하여 상기 증기를 과열시키는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  21. 제19항에 있어서,
    상기 증기를 상기 연소 가스로 도입하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  22. 제1항에 있어서,
    상기 제1 압축기 내에서 상기 초임계 유체가 압축될 때 상기 초임계 유체를 인터쿨링하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  23. 제22항에 있어서,
    상기 제1 압축기 내에서 상기 초임계 유체가 압축될 때 상기 초임계 유체를 인터쿨링하는 단계는 상기 초임계 유체를 인터쿨러 열교환기를 통해 흐르게 하고 물을 상기 인터쿨러 열교환기를 통해 흐르게 하여 상기 초임계 유체로부터 상기 물로 열을 전달함으로써 상기 초임계 유체를 냉각시키고 상기 물을 가열하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  24. 제23항에 있어서,
    (ⅰ) 상기 화석 연료를 공기 중에서 연소시키기 전에, 상기 공기를 제2 압축기에서 압축하여 압축된 공기를 생성하는 단계로서, 상기 화석 연료가 상기 압축된 공기 중에서 연소되는 단계와, (ⅱ) 상기 인터쿨러 열교환기를 통해 상기 물을 흐르게 하기 전에, 상기 물에 열을 전달함으로써 상기 압축된 공기가 상기 제1 압축기에서 압축된 후에 상기 압축된 공기를 냉각시키는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  25. 제1항에 있어서,
    상기 (d) 단계에서의 유입 및 압축을 위해 상기 초임계 유체를 상기 제1 압축기로 흐르게 하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  26. 제25항에 있어서,
    상기 제1 압축기로 유입되는 상기 초임계 유체의 상기 온도를 제어하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  27. 제26항에 있어서,
    상기 제1 압축기로 유입되는 상기 초임계 유체의 상기 온도를 제어하는 단계는 상기 온도를 상기 제1 압축기로 유입되는 상기 초임계 유체의 임계 온도의 ±2 °K 이내로 제어하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  28. 제26항에 있어서,
    상기 제1 압축기로 유입되는 상기 초임계 유체의 상기 온도를 제어하는 단계는 상기 제2 크로스 사이클 열교환기로 흐르는 상기 공기의 온도를 제어하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  29. 제28항에 있어서,
    상기 제2 크로스 사이클 열교환기로 흐르는 상기 공기의 온도를 제어하는 단계는 상기 공기를 냉각기를 통해 흐르게 하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  30. 제25항에 있어서,
    상기 제1 압축기는 상기 초임계 유체를 수용하는 입구를 가지며, 상기 제1 압축기의 입구 부근에서 상기 초임계 유체의 흐름의 온도를 측정하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  31. 제30항에 있어서,
    상기 초임계 유체의 흐름의 온도를 측정하는 단계는 상기 초임계 유체의 음속을 결정하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  32. 제30항에 있어서,
    상기 초임계 유체의 흐름의 온도를 측정하는 단계는 상기 초임계 유체의 비열을 결정하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  33. 제1항에 있어서,
    상기 초임계 유체의 팽창으로 인해 발생하는 상기 축 동력의 적어도 일부는 상기 제1 압축기를 구동하기 위해 사용되는,
    축 동력을 발생시키는 방법.
  34. 제1항에 있어서,
    상기 제2 터빈은 제1 축을 구동하고, 상기 제1 축과 제2 축 간의 접촉 없이 상기 제1 축으로부터 상기 제2 축으로 토크를 전달하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  35. 제34항에 있어서,
    상기 제1 축으로부터 상기 제2 축으로 토크를 전달하는 단계는 와전류 커플링을 통해 상기 토크를 전달하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  36. 제35항에 있어서,
    상기 압축된 초임계 유체의 일부를 상기 와전류 커플링으로 흐르게 하여 상기 커플링을 냉각시키고 상기 압축된 초임계 유체의 상기 일부를 가열하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  37. 제36항에 있어서,
    상기 가열된 압축 초임계 유체의 상기 일부를 상기 와전류 커플링으로부터 상기 제1 크로스 사이클 열교환기로 흐르게 하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  38. 제1항에 있어서,
    상기 연소 가스를 상기 제1 터빈에서 팽창시키는 단계는 상기 연소 가스를 대기압 이하의 압력으로 팽창시키는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  39. 제38항에 있어서,
    상기 팽창된 연소 가스를 대기압 이상으로 압축하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  40. 제1항에 있어서,
    상기 연소 가스를 상기 제1 크로스 사이클 열교환기를 통해 흐르게 하여 상기 연소 가스로부터 상기 압축된 초임계 유체로 열을 전달하는 단계는 상기 연소 가스를 냉각하여 냉각된 연소 가스를 생성하고, 상기 냉각된 연소 가스로부터 물의 흐름으로 열을 전달하여 상기 물의 흐름을 가열하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  41. 제1항에 있어서,
    상기 공기를 상기 제2 크로스 사이클 열교환기를 통해 흐르게 하는 단계는 주변 온도 및 압력의 공기를 상기 제2 크로스 사이클 열교환기를 통해 흐르게 하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  42. 초임계 유체 사이클과 공기 사이클을 포함하는 시스템에서 축 동력을 발생시키는 방법이며,
    (a) 화석 연료를 공기 중에서 연소시켜 연소 가스를 생성하는 단계와,
    (b) 초임계 유체를 제1 압축기에서 압축하는 단계와,
    (c) 상기 연소 가스로부터 압축된 초임계 유체로 열을 전달하여 냉각된 연소 가스와 가열된 압축 초임계 유체를 생성하는 단계와,
    (d) 상기 가열된 압축 초임계 유체의 적어도 일부를 제1 터빈에서 팽창시켜 팽창된 초임계 유체를 생성하는 단계로서, 상기 초임계 유체의 팽창으로 인해 축 동력이 발생하는 단계와,
    (e) 상기 팽창된 초임계 유체를 상기 제1 압축기로 반환하는 단계와,
    (f) 상기 팽창된 초임계 유체로부터 공기로 열을 전달하여 초임계 유체를 그 임계 온도에 가깝게 냉각시키는 단계를 포함하며,
    상기 팽창된 초임계 유체로부터 공기로 열을 전달하는 단계는 상기 화석 연료를 공기 중에서 연소시키기 전에 그리고 상기 초임계 유체를 제1 압축기로 반환하기 전에 실시되는,
    축 동력을 발생시키는 방법.
  43. 제42항에 있어서,
    상기 팽창된 초임계 유체로부터 공기로 열을 전달하여 상기 초임계 유체를 냉각시키는 단계는 상기 초임계 유체를 그 임계 온도의 ±2 °K 이내로 냉각시키는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  44. 제42항에 있어서,
    상기 공기를 제2 압축기에서 압축하여 압축된 공기를 생성하는 단계를 더 포함하며, 상기 공기를 압축하는 단계는 상기 팽창된 초임계 유체로부터 공기로 열을 전달하기 전에 실시되고, 상기 팽창된 초임계 유체로부터의 열은 상기 압축된 공기로 전달되는,
    축 동력을 발생시키는 방법.
  45. 제44항에 있어서,
    상기 팽창된 초임계 유체로부터 상기 압축된 공기로 열을 전달하는 단계 이전에 상기 압축된 공기를 냉각시키는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  46. 제42항에 있어서,
    상기 냉각된 연소 가스로부터 물의 흐름으로 열을 전달하여 가열된 물의 흐름을 생성하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  47. 제42항에 있어서,
    상기 연소 가스를 제2 터빈에서 팽창시켜 추가적인 축 동력을 발생시키는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  48. 제47항에 있어서,
    상기 연소 가스를 제2 터빈에서 팽창시켜 추가적인 축 동력을 발생시키는 단계는 상기 연소 가스로부터 상기 압축된 초임계 유체로 열을 전달하는 단계 이전에 실시되는,
    축 동력을 발생시키는 방법.
  49. 제47항에 있어서,
    상기 연소 가스를 제2 터빈에서 팽창시켜 추가적인 축 동력을 발생시키는 단계는 상기 연소 가스로부터 상기 압축된 초임계 유체로 열을 전달하는 단계 이후에 실시되는,
    축 동력을 발생시키는 방법.
  50. 제42항에 있어서,
    상기 초임계 유체는 초임계 이산화탄소를 포함하는,
    축 동력을 발생시키는 방법.
  51. 제42항에 있어서,
    상기 제1 터빈은 제1 축을 구동하고, 상기 제1 축과 제2 축 간의 접촉 없이 상기 제1 축으로부터 상기 제2 축으로 토크를 전달하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  52. 제51항에 있어서,
    상기 제1 축으로부터 상기 제2 축으로 토크를 전달하는 단계는 와전류 커플링을 통해 상기 토크를 전달하는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  53. 제52항에 있어서,
    상기 초임계 유체의 제1 부분과 제2 부분은 상기 제1 압축기에서 압축되며, 상기 압축된 초임계 유체의 상기 제1 부분을 상기 와전류 커플링으로 흐르게 하여 상기 커플링을 냉각시키고 상기 압축된 초임계 유체의 상기 제1 부분을 가열하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  54. 제53항에 있어서,
    상기 와전류 커플링으로부터 나온 상기 압축된 초임계 유체의 상기 가열된 제1 부분으로부터의 열을 상기 압축된 초임계 유체의 상기 제2 부분으로 전달하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  55. 초임계 유체 사이클과 공기 사이클을 포함하는 시스템에서 축 동력을 발생시키는 방법이며,
    (a) 화석 연료를 공기 중에서 연소시켜 연소 가스를 생성하는 단계와,
    (b) 초임계 유체의 제1 흐름을 제1 압축기에서 압축하여 압축된 초임계 유체의 제1 흐름을 생성하는 단계와,
    (c) 상기 연소 가스로부터 상기 압축된 초임계 유체의 제1 흐름으로 열을 전달하여 냉각된 연소 가스와 가열된 압축 초임계 유체의 제1 흐름을 생성하는 단계와,
    (d) 상기 가열된 압축 초임계 유체의 제1 흐름의 적어도 일부를 제1 터빈에서 팽창시켜 팽창된 초임계 유체의 제1 흐름을 생성하는 단계로서, 상기 초임계 유체의 제1 흐름의 팽창으로 인해 축 동력이 발생하는 단계와,
    (e) 상기 팽창된 초임계 유체의 제1 흐름을 상기 제1 압축기로 반환하는 단계와,
    (f) 상기 초임계 유체의 제1 흐름을 상기 제1 압축기로 반환하기 전에 실시되는, 상기 팽창된 초임계 유체의 제1 흐름으로부터 공기로 열을 전달하는 단계와,
    (g) 초임계 유체의 제2 흐름을 제2 압축기에서 압축하여 압축된 초임계 유체의 제2 흐름을 생성하는 단계와,
    (h) 상기 냉각된 연소 가스로부터 상기 압축된 초임계 유체의 제2 흐름으로 열을 전달하여 가열된 압축 초임계 유체의 제2 흐름을 생성하는 단계와,
    (i) 상기 가열된 압축 초임계 유체의 제2 흐름을 제2 터빈에서 팽창시켜 팽창된 초임계 유체의 제2 흐름을 생성하고 추가적인 축 동력을 발생시키는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  56. 제55항에 있어서,
    상기 팽창된 초임계 유체의 제2 흐름으로부터 물의 흐름으로 열을 전달하여 가열된 물의 흐름과 냉각되고 팽창된 초임계 유체를 생성하는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  57. 제56항에 있어서,
    상기 팽창된 초임계 유체의 제2 흐름으로부터 물의 흐름으로 열을 전달하는 단계는 상기 팽창된 초임계 유체를 그 임계 온도에 가깝게 냉각시키는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  58. 제55항에 있어서,
    상기 공기를 제3 압축기에서 압축하여 압축된 공기를 생성하는 단계를 더 포함하며, 상기 공기를 압축하는 단계는 상기 팽창된 초임계 유체의 제1 흐름으로부터 공기로 열을 전달하기 전에 실시되고, 상기 팽창된 초임계 유체로부터의 열은 상기 압축된 공기로 전달되는,
    축 동력을 발생시키는 방법.
  59. 제58항에 있어서,
    상기 팽창된 초임계 유체의 제1 흐름으로부터 상기 압축된 공기로 열을 전달하는 단계 이전에, 상기 압축된 공기를 냉각시키는 단계를 더 포함하는,
    축 동력을 발생시키는 방법.
  60. 제55항에 있어서,
    상기 팽창된 초임계 유체의 제1 흐름으로부터 상기 공기로 열을 전달하는 단계는 상기 팽창된 초임계 유체의 제1 흐름을 그 임계 온도에 가깝게 냉각시키는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  61. 제60항에 있어서,
    상기 팽창된 초임계 유체의 제1 흐름으로부터 공기로 열을 전달하여 상기 초임계 유체를 냉각시키는 단계는 상기 초임계 유체를 그 임계 온도의 ±2 °K 이내로 냉각시키는 단계를 포함하는,
    축 동력을 발생시키는 방법.
  62. 제55항에 있어서,
    상기 초임계 유체는 초임계 이산화탄소를 포함하는,
    축 동력을 발생시키는 방법.
  63. 초임계 유체 사이클과 공기 사이클을 사용하여 축 동력을 발생시키는 시스템이며,
    a) 공기를 포함한 제1 유체의 흐름을 전송하는 제1 유로로서,
    (ⅰ) 상기 공기의 적어도 일부를 수용하기 위해 상기 제1 유로에 연결되는 연소기로서, 상기 연소기에는 상기 공기에서 연소되기 위한 화석 연료가 공급되고, 상기 화석 연료가 상기 공기에서 연소하여 가열된 연소 가스를 생성하는, 연소기와;
    (ⅱ) 상기 제1 유로에 연결된 제1 터빈을 포함하는,
    제1 유로와;
    b) 초임계 유체를 포함한 제2 유체의 흐름을 전송하는 제2 유로로서, 상기 제2 유로는 공기와 초임계 유체의 혼합을 방지하기 위해 상기 제1 유로로부터 분리되어 있고, 상기 제2 유로는
    (ⅰ) 상기 제2 유로에 연결되어 상기 초임계 유체를 수용하여 그 내부에서 압축하고 압축된 초임계 유체를 제2 유로로 배출하는 제1 압축기와,
    (ⅱ) 내부에서 상기 초임계 유체를 팽창시키기 위한 제2 터빈으로서, 상기 제2 유로에 연결되어 팽창된 초임계 유체를 제2 유로로 배출하는 제2 터빈을 포함하는,
    제2 유로와;
    c) 상기 제1 및 제2 유로에 연결된 제1 크로스 사이클 열교환기로서,
    (ⅰ) 상기 제1 유로에 연결되어 (1) 상기 공기의 적어도 일부가 상기 연소기에 의해 수용되기 전에, 상기 공기의 적어도 일부를 수용하여 그에 열을 전달함으로써 상기 공기의 상기 일부를 가열하고, (2) 상기 가열된 공기를 상기 제1 유로로 배출하며,
    (ⅱ) 상기 제2 유로에 연결되어 (1) 상기 제2 터빈으로부터 배출되는 팽창된 초임계 유체의 적어도 일부를 수용하여 그로부터 열을 전달함으로써 상기 팽창된 초임계 유체의 적어도 일부를 냉각시키고, (2) 냉각된 팽창 초임계 유체를 제2 유로로 배출하고, 상기 팽창된 초임계 유체는 공기로 열을 전달하는,
    상기 제1 크로스 사이클 열교환기와;
    d) 상기 제1 및 제2 유로에 연결된 제2 크로스 사이클 열교환기로서,
    (ⅰ) 상기 제1 유로에 연결되어 (1) 상기 연소기에 의해 생성된 연소 가스의 적어도 일부를 수용하여 그로부터 열을 전달함으로써 상기 연소 가스를 냉각시키고, (2) 상기 냉각된 연소 가스를 상기 제1 유로로 배출하며,
    (ⅱ) 상기 제2 유로에 연결되어 (1) 상기 제1 압축기로부터 압축된 초임계 유체의 적어도 일부를 수용하여 그에 열을 전달함으로써 상기 압축된 초임계 유체의 적어도 일부를 가열하고, (2) 가열된 초임계 유체를 제2 유로로 배출하고, 상기 연소 가스는 상기 압축된 초임계 유체로부터의 열을 전달하는,
    상기 제2 크로스 사이클 열교환기를 포함하며,
    e) 상기 제1 터빈은 상기 제1 유로에 연결되어 (1) 상기 연소기에 의해 생성된 연소 가스의 적어도 일부를 수용하여 그 내부에서 팽창시키고, (2) 팽창된 연소 가스를 제1 유로로 배출하며,
    f) 상기 제2 터빈은 상기 제2 유로에 연결되어 상기 제2 크로스 사이클 열교환기로부터 배출되는 가열된 초임계 유체를 수용하며, 상기 제2 터빈은 제2 축을 갖고, 상기 제2 터빈 내에서 압축된 초임계 유체가 팽창함으로써 상기 제2 축을 회전 구동시키는,
    축 동력을 발생시키는 시스템.
  64. 제63항에 있어서,
    상기 제1 유로는, 상기 제1 유로에 연결되어 상기 공기를 수용하여 그 내부에서 압축하고 압축된 공기를 상기 제1 유로로 배출하는 제2 압축기를 더 포함하며, 상기 제2 압축기는 상기 공기가 상기 연소기에 의해 수용되기 전에 상기 공기를 수용하여 압축하도록 연결되고, 상기 화석 연료는 상기 제2 압축기로부터 압축된 공기 중에서 연소되며, 상기 제1 크로스 사이클 열교환기에 의해 수용되는 상기 공기는 상기 제2 압축기로부터 압축된 공기인,
    축 동력을 발생시키는 시스템.
  65. 제63항에 있어서,
    상기 제2 크로스 사이클 열교환기는, 상기 제1 터빈에서 상기 연소 가스가 팽창된 후에, 상기 연소기에 의해 생성된 상기 연소 가스의 상기 적어도 일부를 수용하도록 상기 제1 유로에 연결되는,
    축 동력을 발생시키는 시스템.
  66. 제63항에 있어서,
    상기 제2 크로스 사이클 열교환기는, 상기 제1 터빈에서 상기 연소 가스가 팽창되기 전에, 상기 연소기에 의해 생성된 상기 연소 가스의 상기 적어도 일부를 수용하도록 상기 제1 유로에 연결되는,
    축 동력을 발생시키는 시스템.
  67. 제63항에 있어서,
    상기 제1 유로는, 상기 제1 유로에 연결되어 상기 공기를 수용하여 그 내부에서 압축하고 압축된 공기를 상기 제1 유로로 배출하는 제2 압축기를 더 포함하며, 상기 제2 압축기는 상기 공기가 상기 연소기에 의해 수용되기 전에 상기 공기를 수용하여 압축하도록 연결되고, 상기 제1 크로스 사이클 열교환기에 의해 수용되는 상기 공기는 상기 제2 압축기로부터 압축된 공기이며, 상기 제1 유로는, 상기 압축된 공기가 상기 제1 크로스 사이클 열교환기에 의해 수용되기 전에 상기 제1 압축기로부터 배출되는 상기 압축된 공기를 수용하여 그 내부에서 냉각시키기 위해 상기 제1 유로에 연결된 냉각기를 더 포함하는,
    축 동력을 발생시키는 시스템.
  68. 제63항에 있어서,
    상기 제2 유로는, 상기 제2 유로에 연결되어 (1) 상기 제2 터빈으로부터 배출되는 상기 팽창된 초임계 유체의 적어도 제1 부분을 수용하여, 상기 팽창된 초임계 유체가 상기 제1 크로스 사이클 열교환기에 의해 수용되기 전에, 그 내부에서 더 팽창시키고, (2) 상기 더 팽창된 초임계 유체를 상기 제1 크로스 사이클 열교환기로 배출하는, 제3 터빈을 더 포함하는,
    축 동력을 발생시키는 시스템.
  69. 제68항에 있어서,
    상기 제2 유로는, 상기 제2 유로에 연결되어 (1) 상기 제2 터빈으로부터 배출되는 상기 팽창된 초임계 유체의 제2 부분을 수용하여 그 내부에서 더 팽창시킴으로써 상기 팽창된 초임계 유체의 제2 부분이 상기 제3 터빈을 우회하도록 하고, (2) 상기 더 팽창된 초임계 유체의 제2 부분을 상기 제2 유로로 배출하는, 팽창 노즐을 더 포함하며, 상기 노즐로부터 나온 상기 더 팽창된 초임계 유체는 상기 제1 크로스 사이클 열교환기에 의해 수용되는,
    축 동력을 발생시키는 시스템.
  70. 제68항에 있어서,
    상기 제2 크로스 사이클 열교환기는 상기 제2 유로에 연결되어 상기 제2 터빈으로부터 배출되는 팽창된 초임계 유체의 적어도 제1 부분을 수용하여, 상기 팽창된 초임계 유체의 상기 부분이 상기 제3 터빈에서 더 팽창되기 전에, 상기 부분에 열을 전달하는,
    축 동력을 발생시키는 시스템.
  71. 제63항에 있어서,
    상기 제2 유로는, 상기 제2 유로에 연결되어 (1) 상기 제2 크로스 사이클 열교환기로부터 배출되는 상기 가열된 초임계 유체의 적어도 일부를 수용하여 그 내부에서 팽창시키고, (2) 상기 팽창된 초임계 유체를 상기 제2 유로로 배출하는, 팽창 노즐을 더 포함하며, 상기 팽창된 초임계 유체의 상기 부분은 상기 제1 크로스 사이클 열교환기에 의해 수용되는,
    축 동력을 발생시키는 시스템.
  72. 제63항에 있어서,
    상기 제2 축은 상기 제1 압축기에 커플링되며, 이에 의해 상기 제2 터빈 내에서 초임계 유체가 팽창함으로써 상기 제1 압축기를 구동시키는,
    축 동력을 발생시키는 시스템.
  73. 제63항에 있어서,
    상기 제1 유로는, 상기 제1 유로에 연결되어 상기 제2 크로스 사이클 열교환기로부터 배출되는 상기 냉각된 연소 가스의 적어도 일부를 수용하는 제2 연소기를 더 포함하며, 상기 제2 연소기에는 상기 냉각된 연소 가스 내에서 연소하기 위해 추가적인 화석 연료가 공급되고, 상기 화석 연료가 상기 냉각된 연소 가스 내에서 연소되어 재가열된 연소 가스를 생성하는,
    축 동력을 발생시키는 시스템.
  74. 제63항에 있어서,
    상기 제2 유로는, 상기 제2 유로에 연결되어 (1) 상기 제2 터빈으로부터 배출되는 상기 팽창된 초임계 유체의 적어도 일부를 수용하여, 상기 팽창된 초임계 유체가 상기 제1 크로스 사이클 열교환기에 의해 수용되기 전에, 그 내부에서 더 팽창시키고, (2) 상기 더 팽창된 초임계 유체를 상기 제1 크로스 사이클 열교환기로 배출하는, 제3 터빈을 더 포함하고,
    상기 제1 유로는, 상기 제1 유로에 연결되어 상기 제2 크로스 사이클 열교환기로부터 배출되는 상기 냉각된 연소 가스의 적어도 일부를 수용하는 제2 연소기를 더 포함하며, 상기 제2 연소기에는 상기 냉각된 연소 가스 내에서 연소하기 위해 추가적인 화석 연료가 공급되고, 상기 추가적인 화석 연료가 상기 냉각된 연소 가스 내에서 연소되어 재가열된 연소 가스를 생성하며,
    상기 제1 및 제2 유로에 연결된 제3 크로스 사이클 열교환기를 더 포함하고,
    a) 상기 제3 크로스 사이클 열교환기는 상기 제1 유로에 연결되어 상기 제2 연소기로부터 상기 재가열된 연소 가스를 수용하여 상기 재가열된 연소 가스로부터 열을 전달함으로써 상기 재가열된 연소 가스를 냉각시키고,
    b) 상기 제3 크로스 사이클 열교환기는 상기 제2 유로에 연결되어 상기 제2 터빈으로부터 배출되는 상기 초임계 유체의 적어도 일부를 수용하여, 상기 제3 터빈에서 팽창되기 전에, 상기 초임계 유체의 적어도 일부에 열을 전달하는,
    축 동력을 발생시키는 시스템.
  75. 제63항에 있어서,
    물이 공급되는 보일러를 더 포함하며, 상기 보일러는 상기 제1 유로에 연결되어 상기 제1 터빈으로부터 배출되는 상기 팽창된 연소 가스를 수용하고, 상기 팽창된 연소 가스로부터 상기 물로 열을 전달하여 증기를 발생시키는,
    축 동력을 발생시키는 시스템.
  76. 제75항에 있어서,
    상기 보일러는 상기 연소기에 연결되어 상기 보일러에서 생성된 상기 증기를 상기 연소기로 전송하는,
    축 동력을 발생시키는 시스템.
  77. 제76항에 있어서,
    상기 제2 유로에 연결되어 상기 제2 터빈으로부터 배출되는 상기 초임계 유체의 적어도 일부를 수용하는 과열기를 더 포함하는,
    축 동력을 발생시키는 시스템.
  78. 제63항에 있어서,
    상기 제1 터빈으로부터 상기 제1 유로로 배출되는 상기 팽창된 연소 가스의 적어도 일부는 상기 제1 유로로부터 대기로 배출되는,
    축 동력을 발생시키는 시스템.
  79. 제63항에 있어서,
    상기 초임계 유체는 초임계 이산화탄소를 포함하는,
    축 동력을 발생시키는 시스템.
  80. 제63항에 있어서,
    상기 제2 축에 의해 구동되는 제3 축을 더 포함하며, 상기 제2 축은 상기 제3 축과 접촉하지 않는,
    축 동력을 발생시키는 시스템.
  81. 제80항에 있어서,
    상기 제2 축은 와류 커플링에 의해 상기 제3 축에 커플링되는,
    축 동력을 발생시키는 시스템.
  82. 제81항에 있어서,
    상기 와전류 커플링은 상기 제2 유로에 연결되어, (1) 상기 압축된 초임계 유체의 일부를 수용하여, 상기 압축된 초임계 유체가 상기 와전류 커플링으로부터 열을 흡수하여 상기 압축된 초임계 유체를 가열하고 상기 와전류 커플링을 냉각시키도록 하며, (2) 상기 와전류 커플링에서 압축된 초임계 유체가 가열된 후에, 상기 압축된 초임계 유체를 상기 제2 유로로 반환하는,
    축 동력을 발생시키는 시스템.
  83. 제63항에 있어서,
    상기 제2 압축기에 의해 수용되는 상기 초임계 유체의 온도를 측정하는 장치를 더 포함하는,
    축 동력을 발생시키는 시스템.
  84. 제83항에 있어서,
    상기 온도 측정 장치는 제1 위치에서 상기 초임계 유체에 열을 도입하기 위한 열원과, 상기 제1 위치의 상류와 하류 각각에서 상기 초임계 유체의 온도를 측정하기 위한 제1 및 제2 온도 측정 수단을 포함하는,
    축 동력을 발생시키는 시스템.
  85. 제83항에 있어서,
    상기 초임계 유체 내에서 음파를 발생시키기 위한 수단과, 상기 음파를 검출하기 위한 수단을 더 포함하는,
    축 동력을 발생시키는 시스템.
  86. 초임계 유체 사이클과 공기 사이클을 사용하여 축 동력을 발생시키는 시스템이며,
    (a) 화석 연료를 공기 중에서 연소시켜 연소 가스를 생성하는 연소기와,
    (b) 초임계 유체를 압축하여 압축된 초임계 유체를 생성하는 제1 압축기와,
    (c) 상기 연소 가스로부터 상기 압축된 초임계 유체로 열을 전달하여 냉각된 연소 가스와 가열된 압축 초임계 유체를 생성하는 제1 크로스 사이클 열교환기와,
    (d) 상기 가열된 압축 초임계 유체의 적어도 일부를 팽창시켜 팽창된 초임계 유체를 생성하는 제1 터빈으로서, 상기 초임계 유체의 팽창으로 인해 축 동력이 발생하게 하는, 제1 터빈과,
    (e) 상기 팽창된 초임계 유체를 상기 제1 압축기로 반환하는 제1 유로와,
    (f) 상기 연소기 내의 공기 중에서 화석 연료를 연소시키기 전에 그리고 초임계 유체를 제1 압축기로 반환하기 전에, 상기 팽창된 초임계 유체로부터 공기로 열을 전달하여 초임계 유체를 그 임계 온도에 가깝게 냉각시키는 제2 크로스 사이클 열교환기를 포함하는,
    축 동력을 발생시키는 시스템.
  87. 제86항에 있어서,
    상기 제2 크로스 사이클 열교환기는 상기 팽창된 초임계 유체를 그 임계 온도의 ±2 °K 이내로 냉각시킬 수 있는,
    축 동력을 발생시키는 시스템.
  88. 초임계 유체 사이클과 공기 사이클을 사용하여 축 동력을 발생시키는 시스템이며,
    (a) 화석 연료를 공기 중에서 연소시켜 연소 가스를 생성하는 연소기와,
    (b) 초임계 유체의 제1 흐름을 압축하여 압축된 초임계 유체의 제1 흐름을 생성하는 제1 압축기와,
    (c) 상기 연소 가스로부터 상기 압축된 초임계 유체의 제1 흐름으로 열을 전달하여 냉각된 연소 가스와 가열된 압축 초임계 유체의 제1 흐름을 생성하는 제1 열교환기와,
    (d) 상기 가열된 압축 초임계 유체의 제1 흐름의 적어도 일부를 팽창시켜 팽창된 초임계 유체의 제1 흐름을 생성하는 제1 터빈으로서, 상기 초임계 유체의 제1 흐름의 팽창으로 인해 축 동력이 발생하게 하는, 제1 터빈과,
    (e) 상기 팽창된 초임계 유체의 제1 흐름을 상기 제1 압축기로 반환하는 유로와,
    (f) 상기 초임계 유체의 제1 흐름을 상기 제1 압축기로 반환하기 전에, 상기 팽창된 초임계 유체의 제1 흐름으로부터 공기로 열을 전달하는 제2 열교환기와,
    (g) 초임계 유체의 제2 흐름을 압축하여 압축된 초임계 유체의 제2 흐름을 생성하는 제2 압축기와,
    (h) 상기 냉각된 연소 가스로부터 상기 압축된 초임계 유체의 제2 흐름으로 열을 전달하여 가열된 압축 초임계 유체의 제2 흐름을 생성하는 제3 열교환기와,
    (i) 상기 가열된 압축 초임계 유체의 제2 흐름을 팽창시켜 팽창된 초임계 유체의 제2 흐름을 생성하고 추가적인 축 동력을 발생시키는 제2 터빈을 포함하는,
    축 동력을 발생시키는 시스템.
  89. 축을 가진 터빈에서 초임계 유체를 팽창시킴으로써 축 동력을 발생시키는 시스템에서, 상기 터빈 축으로부터 구동 축으로 토크를 전달하기 위한 커플링이며,
    (a) 상기 터빈 축에 연결되어 상기 터빈 축과 함께 회전하도록 구성된 유도 회전자와,
    (b) 상기 구동 축에 연결되어 상기 구동 축과 함께 회전하도록 구성된 제1 및 제2 전기자와,
    (c) 당해 커플링 내에 자속을 생성하는 자석으로서, 상기 제1 및 제2 전기자에 연결되어 함께 회전함으로써, 상기 유도 회전자의 회전이 제1 및 제2 전기자에 토크를 부여하여 상기 구동 축의 회전을 발생시키도록 하는, 자석과,
    (d) 상기 초임계 유체의 일부를 상기 유도 회전자에 전송하여 상기 유도 회전자를 냉각시킴으로써, 상기 초임계 유체의 일부가 가열되는, 제1 유로와,
    (e) 상기 가열된 초임계 유체를 상기 터빈에 전송하여 그 내부에서 팽창하도록 하는, 제2 유로를 포함하는,
    커플링.
  90. 제89항에 있어서,
    상기 유도 회전자와 제1 및 제2 전기자 사이에 배치된 압력 멤브레인을 더 포함하며, 상기 압력 멤브레인은 대략 구형상의 표면을 갖는,
    커플링.
KR1020147022820A 2012-01-17 2013-01-16 초임계 유체를 사용한 동력 발생 시스템 및 방법 KR102038166B1 (ko)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201261632030P 2012-01-17 2012-01-17
US61/632,030 2012-01-17
US201261686043P 2012-03-29 2012-03-29
US61/686,043 2012-03-29
US201261688310P 2012-05-11 2012-05-11
US61/688,310 2012-05-11
US201261741303P 2012-07-17 2012-07-17
US61/741,303 2012-07-17
US13/679,856 2012-11-16
US13/679,856 US9540999B2 (en) 2012-01-17 2012-11-16 System and method for generating power using a supercritical fluid
PCT/US2013/021721 WO2013109616A1 (en) 2012-01-17 2013-01-16 System and method for generating power using a supercritical fluid

Publications (2)

Publication Number Publication Date
KR20140116504A true KR20140116504A (ko) 2014-10-02
KR102038166B1 KR102038166B1 (ko) 2019-11-26

Family

ID=48779026

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147022820A KR102038166B1 (ko) 2012-01-17 2013-01-16 초임계 유체를 사용한 동력 발생 시스템 및 방법

Country Status (5)

Country Link
US (3) US9540999B2 (ko)
EP (1) EP2807348B1 (ko)
JP (2) JP6162147B2 (ko)
KR (1) KR102038166B1 (ko)
WO (1) WO2013109616A1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628616B1 (ko) * 2015-04-20 2016-06-08 두산중공업 주식회사 초임계 이산화탄소 발전 시스템
KR101638287B1 (ko) * 2015-04-22 2016-07-11 두산중공업 주식회사 초임계 이산화탄소 발전 시스템
KR101638286B1 (ko) * 2015-04-22 2016-07-11 두산중공업 주식회사 초임계 이산화탄소 발전 시스템 및 그 시스템의 출력 제어 방법
KR20160125764A (ko) * 2015-04-22 2016-11-01 두산중공업 주식회사 초임계 이산화탄소 발전 시스템
WO2017217585A1 (ko) * 2016-06-15 2017-12-21 두산중공업 주식회사 직접 연소 타입의 초임계 이산화탄소 발전 시스템
KR20170141515A (ko) * 2016-06-15 2017-12-26 두산중공업 주식회사 직접 연소 타입의 초임계 이산화탄소 발전 시스템
KR20170141514A (ko) * 2016-06-15 2017-12-26 두산중공업 주식회사 직접 연소 타입의 초임계 이산화탄소 발전 시스템
WO2018097450A1 (ko) * 2016-11-24 2018-05-31 두산중공업 주식회사 병렬 복열 방식의 초임계 이산화탄소 발전 시스템
WO2018105841A1 (ko) * 2016-12-06 2018-06-14 두산중공업 주식회사 직렬 복열 방식의 초임계 이산화탄소 발전 시스템
KR20190051987A (ko) * 2016-09-22 2019-05-15 가스 테크놀로지 인스티튜트 발전 사이클 시스템 및 방법

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105765924B (zh) 2013-09-11 2019-06-07 飞比特网络股份有限公司 应用状态变化通知方法以及存储介质
US9657599B2 (en) 2014-02-26 2017-05-23 Peregrine Turbine Technologies, Llc Power generation system and method with partially recuperated flow path
US9885283B2 (en) * 2014-06-05 2018-02-06 Rolls-Royce Corporation Gas turbine engine driven by supercritical power generation system
EP3183433B1 (en) * 2014-08-22 2019-10-09 Peregrine Turbine Technologies, LLC Power generation system and method for generating power
ES2575352B1 (es) * 2014-11-28 2017-04-11 Abengoa Solar New Technologies, S.A. Planta híbrida solar-fósil de alto rendimiento
KR101629657B1 (ko) 2015-02-06 2016-06-13 한국과학기술원 초소형 발전 모듈
US9644502B2 (en) * 2015-04-09 2017-05-09 General Electric Company Regenerative thermodynamic power generation cycle systems, and methods for operating thereof
KR101784553B1 (ko) * 2015-04-16 2017-11-06 두산중공업 주식회사 초임계 이산화탄소 사이클을 이용한 하이브리드 발전 시스템
US10443544B2 (en) * 2015-06-15 2019-10-15 Rolls-Royce Corporation Gas turbine engine driven by sCO2 cycle with advanced heat rejection
EP3109433B1 (en) * 2015-06-19 2018-08-15 Rolls-Royce Corporation Engine driven by sc02 cycle with independent shafts for combustion cycle elements and propulsion elements
EP3121409B1 (en) 2015-07-20 2020-03-18 Rolls-Royce Corporation Sectioned gas turbine engine driven by sco2 cycle
CN108026459B (zh) 2015-08-06 2020-12-18 沃姆泽能源解决方案股份有限公司 带有碳捕集的全蒸汽气化
US10458364B2 (en) * 2015-09-23 2019-10-29 Rolls-Royce Corporation Propulsion system using supercritical CO2 power transfer
CN108138060B (zh) 2015-10-06 2021-09-07 沃姆泽能源解决方案股份有限公司 绝热钙循环的方法和设备
EP3153690A1 (en) 2015-10-08 2017-04-12 Rolls-Royce Corporation All co2 aircraft
KR20160097157A (ko) 2016-03-30 2016-08-17 한국과학기술원 초소형 발전 모듈
US10364744B2 (en) * 2016-06-08 2019-07-30 Rolls-Royce Corporation Deep heat recovery gas turbine engine
CN106089435A (zh) * 2016-07-28 2016-11-09 中国核动力研究设计院 一种以超临界二氧化碳为工质的压气机系统
EP3568452A4 (en) 2017-01-15 2021-01-27 Wormser Energy Solutions, Inc. ALL-STEAM CARBONIFICATION FOR SUPERCRITICAL CO2 POWER CYCLE SYSTEMS
GB2563818A (en) * 2017-05-05 2019-01-02 Ceox Ltd Mechanical/electrical power generation system
JP2019163761A (ja) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 ガスタービンシステム
US11073169B2 (en) * 2018-06-26 2021-07-27 Energy Recovery, Inc. Power generation system with rotary liquid piston compressor for transcritical and supercritical compression of fluids
WO2020014084A1 (en) * 2018-07-09 2020-01-16 Siemens Energy, Inc. Supercritical co2 cooled electrical machine
US11230948B2 (en) 2019-01-16 2022-01-25 Raytheon Technologies Corporation Work recovery system for a gas turbine engine utilizing an overexpanded, recuperated supercritical CO2 bottoming cycle
WO2021108395A1 (en) 2019-11-25 2021-06-03 Wormser Energy Solutions, Inc. Char preparation system and gasifier for all-steam gasification with carbon capture
US11047265B1 (en) 2019-12-31 2021-06-29 General Electric Company Systems and methods for operating a turbocharged gas turbine engine
US11794591B2 (en) * 2020-06-19 2023-10-24 Brian Hewitt Statorless electrical generator system driven by a flowing fluid
US11485504B2 (en) 2020-10-27 2022-11-01 Pratt & Whitney Canada Corp. Aircraft power plant with supercritical CO2 heat engine
CN113137624B (zh) * 2021-04-02 2023-06-20 武瑞香 一种火电厂风烟系统节能利用装置
CN114320603A (zh) * 2022-01-11 2022-04-12 永旭腾风新能源动力科技(北京)有限公司 超临界流体与燃气轮机联合循环系统
US11788474B2 (en) 2022-03-07 2023-10-17 General Electric Company Pericritical fluid systems for turbine engines
EP4253743A1 (en) 2022-03-29 2023-10-04 Raytheon Technologies Corporation Adjustable primary and supplemental power units
US11946378B2 (en) 2022-04-13 2024-04-02 General Electric Company Transient control of a thermal transport bus
US20230349321A1 (en) * 2022-04-27 2023-11-02 Raytheon Technologies Corporation Bottoming cycle with isolated turbo-generators
US11927142B2 (en) 2022-07-25 2024-03-12 General Electric Company Systems and methods for controlling fuel coke formation
CN115288813A (zh) * 2022-08-24 2022-11-04 哈电发电设备国家工程研究中心有限公司 一种双回路闭式布雷顿循环发电装置及其运行方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267692A (en) * 1979-05-07 1981-05-19 Hydragon Corporation Combined gas turbine-rankine turbine power plant
US20060225428A1 (en) * 2005-04-07 2006-10-12 Joseph Brostmeyer Dual fuel combined cycle power plant
US20110232292A1 (en) * 2010-03-29 2011-09-29 Gas Technology Institute Combined fuel and air staged power generation system

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810349A (en) * 1954-07-19 1957-10-22 Tormag Transmissions Ltd Direct coupled magnetic drive centrifugal pumps
US2838702A (en) * 1954-08-20 1958-06-10 Eaton Mfg Co Electromagnetic coupling device
US3007306A (en) * 1958-06-17 1961-11-07 Thompson Ramo Wooldridge Inc Vapor cycle engine
US3058018A (en) 1959-05-14 1962-10-09 Stearns Roger Mfg Company Electro-mechanical drive
US3051859A (en) * 1960-02-18 1962-08-28 Gen Electric Interdigitated pole assembly
US3184626A (en) * 1961-01-09 1965-05-18 Emerson Electric Co Eddy current clutch and power supply therefor
US3240969A (en) * 1962-10-16 1966-03-15 Eaton Mfg Co Coupling mechanism
US3372292A (en) * 1964-10-27 1968-03-05 Reliance Electric & Eng Co Liquid-cooled eddy current device
US3365121A (en) * 1965-10-20 1968-01-23 Garrett Corp Pipeline flow boosting system
FR1492184A (fr) * 1966-06-27 1967-08-18 Eurotechni Office Dispositif de ventilation destiné au refroidissement d'un moteur thermique
CH488103A (de) 1968-04-24 1970-03-31 Siemens Ag Gasturbinenkraftwerk zur Ausnutzung der durch Kernspaltung bzw. Verbrennung fossiler Brennstoffe erzeugten Wärme
DE2407617A1 (de) * 1974-02-16 1975-08-21 Linde Ag Verfahren zur energierueckgewinnung aus verfluessigten gasen
US3971211A (en) 1974-04-02 1976-07-27 Mcdonnell Douglas Corporation Thermodynamic cycles with supercritical CO2 cycle topping
US4166362A (en) 1974-06-18 1979-09-04 Electricite De France (Service National) Methods of and thermodynamic apparatuses for power production
US4138618A (en) 1977-05-02 1979-02-06 Eaton Corporation Spread pole eddy current coupling
US4375745A (en) 1979-01-22 1983-03-08 The Garrett Corporation Air blast fuel nozzle system
US4347711A (en) * 1980-07-25 1982-09-07 The Garrett Corporation Heat-actuated space conditioning unit with bottoming cycle
US4423344A (en) * 1981-02-23 1983-12-27 Litton Industrial Products, Inc. Liquid cooled eddy current coupling having rotor extension ring
US4683392A (en) 1982-04-26 1987-07-28 Magnetek, Inc. Eddy current coupling having stepped rotor and coil support
US4498289A (en) 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
US4520284A (en) 1983-08-12 1985-05-28 Eaton Corporation Rolled housing for eddy current coupling
US4476410A (en) * 1983-08-12 1984-10-09 Wolcott John H Eddy current coupling with slip ring cleaning mechanism
US4780637A (en) 1985-12-20 1988-10-25 Eaton Corporation Brushless eddy current coupling - stationary field
US4765143A (en) * 1987-02-04 1988-08-23 Cbi Research Corporation Power plant using CO2 as a working fluid
JP3222127B2 (ja) * 1990-03-12 2001-10-22 株式会社日立製作所 一軸型加圧流動床コンバインドプラント及びその運転方法
US5080214A (en) * 1990-06-29 1992-01-14 Inertia Dynamics, Inc. Electromagnetic clutch
US5105617A (en) 1990-11-09 1992-04-21 Tiernay Turbines Cogeneration system with recuperated gas turbine engine
US5113669A (en) * 1990-11-19 1992-05-19 General Electric Company Self-powered heat exchange system
US5544479A (en) * 1994-02-10 1996-08-13 Longmark Power International, Inc. Dual brayton-cycle gas turbine power plant utilizing a circulating pressurized fluidized bed combustor
WO1995024822A2 (en) 1994-03-14 1995-09-21 Ramesh Chander Nayar Multi fluid, reversible regeneration heating, combined cycle
US5442904A (en) * 1994-03-21 1995-08-22 Shnaid; Isaac Gas turbine with bottoming air turbine cycle
US5624188A (en) * 1994-10-20 1997-04-29 West; David A. Acoustic thermometer
JPH1198814A (ja) * 1997-09-22 1999-04-09 Ckd Corp 磁気カップリング
US6191561B1 (en) 1998-01-16 2001-02-20 Dresser Industries, Inc. Variable output rotary power generator
DE69931548T2 (de) 1998-04-07 2007-05-10 Mitsubishi Heavy Industries, Ltd. Turbinenanlage
JPH11294113A (ja) * 1998-04-07 1999-10-26 Mitsubishi Heavy Ind Ltd タービンプラント
JP3897914B2 (ja) * 1998-09-04 2007-03-28 山洋電気株式会社 電動アクチュエータ
US6318066B1 (en) 1998-12-11 2001-11-20 Mark J. Skowronski Heat exchanger
JP3458891B2 (ja) 1999-05-19 2003-10-20 ウシオ電機株式会社 エキシマレーザ装置の磁気カップリング機構
US6651421B2 (en) 2000-10-02 2003-11-25 Richard R. Coleman Coleman regenerative engine with exhaust gas water extraction
US6606864B2 (en) 2001-02-13 2003-08-19 Robin Mackay Advanced multi pressure mode gas turbine
EP1432889B1 (de) 2001-10-01 2006-07-12 Alstom Technology Ltd Verfahren und vorrichtung zum anfahren von emissionsfreien gasturbinenkraftwerken
US7037430B2 (en) 2002-04-10 2006-05-02 Efficient Production Technologies, Inc. System and method for desalination of brackish water from an underground water supply
US6841909B2 (en) * 2002-08-01 2005-01-11 Albert Six Magnetic drive system
US7678119B2 (en) * 2003-01-15 2010-03-16 Scimed Life Systems, Inc. Medical retrieval device with frangible basket
US6991026B2 (en) 2004-06-21 2006-01-31 Ingersoll-Rand Energy Systems Heat exchanger with header tubes
JP2006211837A (ja) * 2005-01-28 2006-08-10 Hitachi Ltd プラント設備
US7726114B2 (en) 2005-12-07 2010-06-01 General Electric Company Integrated combustor-heat exchanger and systems for power generation using the same
JP4850536B2 (ja) * 2006-02-27 2012-01-11 日立Geニュークリア・エナジー株式会社 自然循環型原子炉の出力制御装置及び自然循環型原子炉の出力制御方法
US20070256424A1 (en) * 2006-05-05 2007-11-08 Siemens Power Generation, Inc. Heat recovery gas turbine in combined brayton cycle power generation
DE102006035273B4 (de) 2006-07-31 2010-03-04 Siegfried Dr. Westmeier Verfahren zum effektiven und emissionsarmen Betrieb von Kraftwerken, sowie zur Energiespeicherung und Energiewandlung
JP4389918B2 (ja) * 2006-09-28 2009-12-24 株式会社日立製作所 回転電機及び交流発電機
US7880355B2 (en) 2006-12-06 2011-02-01 General Electric Company Electromagnetic variable transmission
US7685820B2 (en) 2006-12-08 2010-03-30 United Technologies Corporation Supercritical CO2 turbine for use in solar power plants
US7669423B2 (en) 2007-01-25 2010-03-02 Michael Nakhamkin Operating method for CAES plant using humidified air in a bottoming cycle expander
US7966868B1 (en) 2008-02-14 2011-06-28 Test Devices, Inc. System and method for imposing thermal gradients on thin walled test objects and components
CA2750004A1 (en) * 2009-01-19 2010-07-22 Yeda Research And Development Co. Ltd. Solar combined cycle power systems
US8596075B2 (en) 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US20100242429A1 (en) 2009-03-25 2010-09-30 General Electric Company Split flow regenerative power cycle
BRPI1011938B1 (pt) * 2009-06-22 2020-12-01 Echogen Power Systems, Inc sistema e método para gerenciar problemas térmicos em um ou mais processos industriais.
US8490397B2 (en) * 2009-11-16 2013-07-23 General Electric Company Compound closed-loop heat cycle system for recovering waste heat and method thereof
JP2011112003A (ja) 2009-11-27 2011-06-09 Institute Of Applied Energy Co2加熱器
JP6001457B2 (ja) 2010-02-22 2016-10-05 アドバンスト・リアクター・コンセプツ・エルエルシー 長い燃料交換間隔を有する小型の高速中性子スペクトル原子力発電所の高速中性子スペクトル原子炉システム、原子力を提供する方法、及び、炉心の締め付けのためのシステム
US20120174558A1 (en) * 2010-12-23 2012-07-12 Michael Gurin Top cycle power generation with high radiant and emissivity exhaust
US20120216536A1 (en) 2011-02-25 2012-08-30 Alliance For Sustainable Energy, Llc Supercritical carbon dioxide power cycle configuration for use in concentrating solar power systems
EP2594746A1 (de) * 2011-11-17 2013-05-22 Siemens Aktiengesellschaft Gasturbinenkraftwerk mit einer Gasturbinenanlage und Verfahren zum Betreiben eines Gasturbinenkraftwerks
JP5917324B2 (ja) * 2012-07-20 2016-05-11 株式会社東芝 タービンおよびタービン運転方法
US10260415B2 (en) * 2012-08-22 2019-04-16 Hi Eff Utility Rescue LLC High efficiency power generation system and system upgrades
KR101485020B1 (ko) * 2013-12-12 2015-01-29 연세대학교 산학협력단 초임계유체 냉각 가스터빈 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267692A (en) * 1979-05-07 1981-05-19 Hydragon Corporation Combined gas turbine-rankine turbine power plant
US20060225428A1 (en) * 2005-04-07 2006-10-12 Joseph Brostmeyer Dual fuel combined cycle power plant
US20110232292A1 (en) * 2010-03-29 2011-09-29 Gas Technology Institute Combined fuel and air staged power generation system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628616B1 (ko) * 2015-04-20 2016-06-08 두산중공업 주식회사 초임계 이산화탄소 발전 시스템
KR101638287B1 (ko) * 2015-04-22 2016-07-11 두산중공업 주식회사 초임계 이산화탄소 발전 시스템
KR101638286B1 (ko) * 2015-04-22 2016-07-11 두산중공업 주식회사 초임계 이산화탄소 발전 시스템 및 그 시스템의 출력 제어 방법
KR20160125764A (ko) * 2015-04-22 2016-11-01 두산중공업 주식회사 초임계 이산화탄소 발전 시스템
WO2017217585A1 (ko) * 2016-06-15 2017-12-21 두산중공업 주식회사 직접 연소 타입의 초임계 이산화탄소 발전 시스템
KR20170141515A (ko) * 2016-06-15 2017-12-26 두산중공업 주식회사 직접 연소 타입의 초임계 이산화탄소 발전 시스템
KR20170141514A (ko) * 2016-06-15 2017-12-26 두산중공업 주식회사 직접 연소 타입의 초임계 이산화탄소 발전 시스템
US10309259B2 (en) 2016-06-15 2019-06-04 DOOSAN Heavy Industries Construction Co., LTD CO2 power generation system
KR20190051987A (ko) * 2016-09-22 2019-05-15 가스 테크놀로지 인스티튜트 발전 사이클 시스템 및 방법
WO2018097450A1 (ko) * 2016-11-24 2018-05-31 두산중공업 주식회사 병렬 복열 방식의 초임계 이산화탄소 발전 시스템
US10371015B2 (en) 2016-11-24 2019-08-06 DOOSAN Heavy Industries Construction Co., LTD Supercritical CO2 generation system for parallel recuperative type
WO2018105841A1 (ko) * 2016-12-06 2018-06-14 두산중공업 주식회사 직렬 복열 방식의 초임계 이산화탄소 발전 시스템

Also Published As

Publication number Publication date
JP2015510067A (ja) 2015-04-02
EP2807348A1 (en) 2014-12-03
KR102038166B1 (ko) 2019-11-26
US9540999B2 (en) 2017-01-10
EP2807348B1 (en) 2019-04-10
US20190003386A1 (en) 2019-01-03
US20170122203A1 (en) 2017-05-04
US20230203988A1 (en) 2023-06-29
EP2807348A4 (en) 2016-03-02
JP6446168B2 (ja) 2018-12-26
JP2017207065A (ja) 2017-11-24
JP6162147B2 (ja) 2017-07-12
WO2013109616A1 (en) 2013-07-25
US10072574B2 (en) 2018-09-11
US20130180259A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP6446168B2 (ja) 超臨界流体を使用して出力を生成するためのシステムおよび方法
US11047264B2 (en) Power generation system and method with partially recuperated flow path
US10101092B2 (en) Power generation system including multiple cores
US8631639B2 (en) System and method of cooling turbine airfoils with sequestered carbon dioxide
US9410451B2 (en) Gas turbine engine with integrated bottoming cycle system
US5678401A (en) Energy supply system utilizing gas and steam turbines
US20090193787A1 (en) Apparatus and Method for Start-Up of a Power Plant
GB2469043A (en) A reheated gas turbine system having a fuel cell
US12006867B2 (en) Acoustic system for determining the temperature of a supercritical fluid in a conduit
EP3845742B1 (en) Systems and methods for operating a turbocharged gas turbine engine
Cerza et al. Implementation of a Waste Heat Recovery Combined Cycle System Employing the Organic Rankine Cycle for a Gas Turbine
US11635023B1 (en) Multi-spool CO2 aircraft power system for operating multiple generators
RU2529296C2 (ru) Двухроторный воздушный компрессор для парогазовых установок
WO2023196553A1 (en) Hydrogen turbine power assisted condensation
CN116291872A (zh) 一种全电爆震燃气轮机系统

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant