KR20140075017A - 용광로 플랜트에서 축열식 히터들을 작동시키는 방법 - Google Patents

용광로 플랜트에서 축열식 히터들을 작동시키는 방법 Download PDF

Info

Publication number
KR20140075017A
KR20140075017A KR1020147013239A KR20147013239A KR20140075017A KR 20140075017 A KR20140075017 A KR 20140075017A KR 1020147013239 A KR1020147013239 A KR 1020147013239A KR 20147013239 A KR20147013239 A KR 20147013239A KR 20140075017 A KR20140075017 A KR 20140075017A
Authority
KR
South Korea
Prior art keywords
gas
regenerative
blast
furnace
heaters
Prior art date
Application number
KR1020147013239A
Other languages
English (en)
Other versions
KR101534589B1 (ko
Inventor
프리드리히 슈만
랄프 알만스도르퍼
요하네스 뮌처
실비아 헬리헤커
장-풀 시모에스
Original Assignee
풀 부르스 에스.에이.
풀 부르스 리프랙토리 앤드 엔지니어링 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 풀 부르스 에스.에이., 풀 부르스 리프랙토리 앤드 엔지니어링 게엠베하 filed Critical 풀 부르스 에스.에이.
Publication of KR20140075017A publication Critical patent/KR20140075017A/ko
Application granted granted Critical
Publication of KR101534589B1 publication Critical patent/KR101534589B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/14Preheating the combustion air
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

용광로(12)에서 적어도 세 개의 축열식 히터들(14.1, 14.2, 14.3)은 주기적으로 블라스트 및 가스로 주기적으로 작동된다. 축열식 히터는 가스로 작동되고, 고온 연도 가스는 생성되며, 열저장 요소들(46)를 가열하기 위해 상기 축열식 히터를 통한 흐름을 야기하고; 축열식 히터는 블라스트로 작동되는 동안, 공정 가스(32), 즉, CO가 풍부한 노정 가스(16)의 일부는 축열식 히터를 통해 흡입되어, 공정 가스가 열저장 요소들로부터 가열되도록 한다. 온-블라스트에서 온-가스 작동까지 축열식 히터가 전환되는 동안, 축열식 히터는 적어도 하나의 축열식 히터들을 통해 흐르게 한 후, 회수되는 연도 가스를 이용하여 공정 가스로부터 정화된다.

Description

용광로 플랜트에서 축열식 히터들을 작동시키는 방법{METHOD OF OPERATING REGENERATIVE HEATERS IN BLAST FURNACE PLANT}
본 발명은 축열식 히터(regenerative heater)들에 관한 것으로, 보다 상세하게, 용광로 플랜트의 열풍로(hot-blast stove)에 관한 것이다.
일반적으로 세 개의 열풍로들(소위 “쿠퍼스(Cowpers)”라 불림)인 축열식 히터들의 세트 중 하나에 의해 가열된 블라스트로 용광로가 작동한다는 것은 잘 알려져 있다. 각 열풍로(hot-blast stove)는 가열 단계(“온-가스(on gas)” 또는 “오프-블라스트(off-blast)” 단계) 및 블로잉 단계(“오프-블라스트”단계) 사이의 전환에 의해 주기적으로 작동한다. 상기 효과를 위해, 열풍로는 내부 열저장 요소들, 일반적으로 체커 벽돌들(checker bricks) 및 체커 벽돌들을 가열하도록 고온의 연도 가스를 생성하기 위해 연관된 버너를 가진다. 버너는 내부 또는 외부에 형성될 수 있다. 가열 단계 동안 고온의 가스가 전달되는 것이 가능하도록, 열풍로는 가열 가스 주입구 및 연도 가스 배출구를 포함한다. 상기 가열 가스 주입구 및 연도 가스 배출구는 열풍로 및 열저장 요소들(체커 벽돌들)을 통한 버너로부터 연도 가스 배출구를 통해 연도 가스 스택(stack) 또는 굴뚝까지 가열 가스가 흐르는 것을 가능하도록 한다. 내부 버너와 함께, 가열 가스는 열풍로 내부의 연소에 의해 생성된다. 고압력 블라스트 공기의 가열을 위해, 종래의 열풍로는 용광로 중에서 주로 냉풍과 연결된 냉풍 주입구 및 주로 열풍과 연결된 열풍 배출구를 포함한다. 블로잉 단계 동안, 공기(air)는 열저장 요소들에 의해 가열되는 축열식 히터를 통해 냉풍 주입구로부터 흡입되며, 열풍 배출구를 통해 용광로로 공급된다. 축열식 히터들은 1100°C 내지 1250°C의 온도에서 블라스트를 가열하도록 사용된다.
최근 몇 년 동안, 주목할만한 이산화탄소(CO2) 배출의 감소를 가능하게 하므로, 블라스트에서 노정 가스의 재사용에 대한 관심은 증가하였다. 해당 설치들은 용광로에 다시 주입하기 전, 재활용 공정을 위해 보통 종래의 노정 가스를 정화한 후, 용광로 노정 가스를 복구한다. 재활용 공정은 공정으로부터 이산화탄소(CO2)를 회수하기 위한 이산화탄소 분리(separation)를 포함한다. 이 효과를 위해, 가스 분리 유닛은 노정 가스를 이산화탄소(CO2, carbon dioxide)가 풍부한 테일 가스 및 일산화탄소(CO, carbon monoxide)가 풍부한 고발열량 공정 가스로 분리한다. 적합한 가스 분리 유닛은 압력 순환 흡착(PSA, pressure swing adsorption) 또는 진공 압력 순환 흡착(VPSA, vacuum pressure swing adsorption) 유닛을 사용하도록 제안되며, 대안으로 이산화탄소 집진 유닛(scrubber unit)이 사용된다. 테일 가스는 순수 이산화탄소를 분리하기 위해 극저온(cryogenic) 유닛을 통해 공급될 수 있다. 또한, 테일 가스는 또 다른 처리 과정을 실행할 수 있으며, 바람직하게는 이산화탄소 포집 및 저장을 야기할 수 있다. 그러나, 다른 가스 스트림, 즉, 일산화탄소(CO)가 강화된 공정 가스는 전체적으로 낮은 이산화탄소 생산이 달성되도록 환원가스로써 용광로로 다시 공급된다.
일산화탄소(CO)가 풍부한 공정 가스의 요구되는 가열은 축열식 히터들에서 수행될 수 있다. 그러나, 일산화탄소(CO)가 풍부한 공정 가스, 즉, 환원 가스와 함께 냉풍으로 외기(ambient air)가 교체되는 것은 상당한 의미를 가진다. 특히, 특별한 방법들 및 조치들은 가열 및 블로잉 단계 사이에서 전환 순서에 대하여 필요하며, 반대로도 마찬가지다.
그 중에서도, 가열 단계동안 축열식 히터로 공급되는 가스는 일반적으로 산화되고, 블로잉 주기동안 공급되는 고발열 가스와 폭발적으로 반응되기 쉽다. PAUL WURTH가 제안한 PCT 공보 WO20110/133476에서, 산화하는 가스의 위험량이 블로잉 단계로 전환하는 동안 축열식 히터에서 발생되는 것을 방지하기 위하여, 버너를 작동시키는 방법은 산소가 축열식 히터에서 소비되도록 하는 것이다. 블로잉 단계에서 가열단계까지 변환되는 것에 대해서, WO2010/133476는 버너의 연도 가스와 함께 축열식 히터 안에서 밖으로 함유한 공정 가스를 함유한 잔여 CO를 밀어 내는 것을 제안한다.
그러나, WO2010/133476는 블로잉 단계에서 가열 단계까지 전환에 관련된 특정 조치에 관하여 나타나 있지 않다. 블로잉 단계(온-블라스트 압력)은 일반적으로 가열 단계(온-가스 압력) 동안의 압력보다 높다는 점에서, 버너(들)이 점화되기 전에 특정한 조치들을 취해야 한다.
상기 관점에서, 축열식 히터들을 작동시키기 위한 향상된 방법, 특히, 블로잉 단계에서 가열 단계까지 전환에 관하여 향상된 방법을 제공하는데 본 발명의 목적이 있다. 상기 목적은 청구항 1에 따른 방법에 의해 이루어진다.
이를 위하여 본 발명은
용광로(12);
상기 용광로에서 CO가 농축된 공정 가스(process gas)(32)의 스트림(stream) 및 CO가 고갈된 테일 가스(tail gas)의 스트림으로 노정 가스(top gas)를 분리하기 위해 구성된 가스 분리 유닛(28);
열저장 요소들(46), 상기 가스 분리 유닛(28)으로부터 CO가 농축된 공정 가스(32)를 받기 위한 냉풍 주입구(cold blast inlet)(50) 및 상기 용광로(12)로 CO가 농축된 공정 가스를 공급하기 위한 열풍 배출구(hot blast outlet)(52)를 각각 구비하는 적어도 세 개의 축열식 히터들(14.1, 14.2, 14.3)을 포함하는 용광로 플랜트(10), 특히, 열풍로들에서 상기 축열식 히터(14.1, 14.2, 14.3)를 작동시키기 위한 방법에 있어서,
상기 방법은,
블라스트(blast) 및 가스로 상기 축열식 히터들(14.1, 14.2, 14.3)을 주기적으로 작동시키는 단계를 포함하고,
상기 주기적인 작동은,
가스로 상기 축열식 히터(14.1, 14.2, 14.3)을 작동시키면서, 버너(burner)(38)로 고온 연도 가스(hot flue gas)를 생성하고, 상기 열저장 요소들(46)을 가열하기 위해 상기 축열식 히터를 통해 흐르는 상기 고온 연도 가스를 생성하는 단계; 및
블라스트로 축열식 히터들(14.1, 14.2, 14.3)들 작동시키면서, 상기 열저장 요소들(46)로부터 CO가 농축된 공정 가스를 계속 가열하기 위한 상기 축열식 히터를 통해 CO가 농축된 공정 가스를 블로잉(blowing)하는 단계를 포함하고,
상기 방법은,
온-블라스트에서 온-가스 작동까지 축열식 히터(14.1, 14.2, 14.3)의 전환(changeover)이 이루어지는 동안, 상기 적어도 하나의 축열식 히터(14.1, 14.2, 14.3)를 관통한 후, 회수된 연도 가스로 CO가 농축된 공정 가스로부터 상기 축열식 히터를 정화하는 (purging) 단계를 더 포함하는 것을 특징으로 하는 용광로 플랜트에서 축열식 히터들을 작동시키는 방법을 제공한다.
본 발명은 용광로 플랜트에서 축열식 히터의 향상된 작동 방법을 제공함으로써, 블로잉 단계에서 가열 단계로의 전환에 관련된 조치를 제공할 수 있다.
도 1은 본 발명의 바람직한 실시예에 따른 방법을 실행하기 위해 구성된 용광로 플랜트의 개략도이다.
본 발명에 따른 축열식 히터들을 작동시키는 방법은 용광로, 가스 분리 유닛 즉, 압력 순환 흡착(PSA, pressure swing adsorption) 장치 및/또는 진공 압력 순환 흡착(VPSA, vacuum pressure swing adsorption)을 포함하는 용광로 플랜트에서 이용될 수 있다. 또한, 본 발명에 따른 축열식 히터들을 작동시키는 방법은 내부의 열저장 요소들을 각각 가지는 적어도 세 개의 축열식 히터들, 가스 분리 유닛로부터 공정 가스를 받기 위한 냉풍 주입구 및 용광로로 공정 가스를 공급하기 위한 열풍 배출구를 포함하여, 공정 가스(또한, 하기 CO가 농축된 공정 가스를 참조)라 불리는 CO가 농축된 스트림 및 테일 가스(또한, 하기 CO가 고갈된 테일 가스를 참조)리 불리는 CO가 고갈된 스트림으로 용광로로부터 노정 가스를 분리하기 위해 구성된다.
○축열식 히터는 가스로 작동되는 동안, 고온의 연도가스는 버너를 이용하여 생성되며, 고온의 연도 가스는 열 저장 요소들을 가열하기 위해 축열식 히터를 통해 흐르도록 야기된다; 그리고
○축열식 히터가 블라스트로 작동되는 동안, 공정 가스는 축열식 히터를 통해 흡입되어 공정 가스는 열저장 요소들로부터 가열되게 한다.
온-블라스트 (on-blast)에서 온-가스(on-gas) 작동으로 축열식 히터가 전환되는 동안, 축열식 히터는 축열식 히터들 중 적어도 하나를 통해 유입된 후 회수된 연도 가스를 이용하여 공정 가스로부터 정화된다.
바람직하게, 축열식 히터들의 주기적인 작동들은 서로간에 디페이즈되고(dephased), 이 때에, 축열식 히터들의 적어도 하나가 블라스트로 작동되고, 상기 축열식 히터들의 적어도 다른 하나는 가스로 작동된다. 그리고, 전환이 이루어지는 축열식 히터를 전화하는 단계는 전환이 이루어지는 시간에 가스로 작동되는 축열식 히터들 중 다른 하나로부터 연도 가스로 실행된다. 정화하기 위한 연도 가스는 전환이 이루어지는 축열식 히터에 대해 가스로 작동되는 적어도 다른 하나의 축열식 히터로부터 직접 공급될 수 있다.
바람직하게 또는 추가적으로, 전환이 이루어지는 축열식 히터를 정화하는 단계는 가스 저장소, 예를 들어 CO2 포집 및 저장(CO2 capture and storage: CCS)유닛에서 미리 저장된 연도 가스로 실행된다.
일반적으로, 축열식 히터는 온-블라스트 압력(on-blast pressure)(일반적으로 5 내지 7 bar(절대치) 범위의 압력 )에서 블라스트로 작동되고, 상기 축열식 히터는 온-블라스트 압력보다 낮은 온-가스 압력(on-gas pressure)(0.9 내지 1.3 bar(절대치) 범위의 압력)에서 가스로 작동된다. 그러므로, 바람직하게, 온-블라스트에서 온-가스 작동으로 축열식 히터가 전환하는 동안, 잔여 공정 가스는 연도 가스로 정화하기 전에 감압하기 위해 전환이 이루어지는 축열식 히터로부터 방출된다.
본 발명의 바람직한 실시예에 따르면, 공정 가스의 상기 방출은 용광로에서 가스 분리 유닛까지 노정 가스를 안내하기 위해 제공되는 노정 가스 회수 장치에 의해 적어도 일부 영향을 받는다. 노정 가스 회수 장치는 용광로의 하류 및 가스 분리 유닛의 상류에 배치된 가스 도관(예를 들어, 노정 가스 하강관), 가스 세정 장치(예를 들어, 습식 세정 집진장치와 건식 집진기를 포함함)를 포함한다. 가스 분리 유닛 상류의 노정 가스 압력은 일반적으로 3 내지 5 bar(절대치)으로 구성되기 때문에 노정 가스 회수 장치에서 감압한 후, 축열식 히터를 더욱 감압하는 것이 필수적일 수 있다. 더욱 감압하는 것은 테일 가스를 저장하기 위해 제공된 가스 홀더로 공정 가스를 방출함으로써 얻을 수 있는 효과일 수 있다. 바람직하게, 상기 가스 홀더는 대기압(예를 들어, 1 내지 1.5 bar)보다 다소 높은 압력에서 유지될 수 있다.
우선적으로 노정 가스 회수 장치에서 감압하고, 테일 가스 홀더에서 감압하는 것 대신에, 상기 감압이 테일 가스 홀더에서 전체적으로 수행될 수 있도록 하는 것이 대안일 수 있다. 또한, 4개의 스토브 플랜트(4-stoves plant)경우에, 감압은 제 4 스토브에서 잔류하는 처리 가스를 보존함으로써 가능할 수 있다.
바람직하게, 감압한 후, 전환이 이루어지는 축열식 히터에서 남아있는 공정 가스는 연도 가스에 의해 (강제로) 배출되며, 연소된다. 또한, 상기 축열식 히터에서 남아있는 공정 가스는 테일 가스 홀더에서 연도 가스에 의해 배출된다. 바람직하게는, 테일 가스 홀더에 저장된 가스의 CO 농도를 일정 수준 이하로 낮춰지는 것을 방지하기 위해서, (점차적으로 연도 가스로 오염되는) 배출된 공정 가스에서 CO 농도가 테일 가스에서 CO 농도의 (관련 플랜트 파라미터(relevant plant parameter)를 기초로 결정되는) 기설정된 백분율에 도달하면, 공정 가스는 최대로 가스 홀더쪽으로 전달된다. 바람직하게, 가스 홀더로 전달되지 않은 어떤 배출된 공정가스는 연소되어 제거된다.
본 발명의 목적은 상기 방법을 실행하기 위해 구성되고 배치된 용광로 플랜트에 관한 것이다.
본 발명의 더 상세한 설명 및 이점들은 첨부된 도면을 기초로 제한된 실시예에 따른 상세한 설명으로 나타낼 것이다:
도 1은 본 발명의 바람직한 실시예에 따른 방법을 실행하기 위해 구성된 용광로 플랜트의 개략도이다.
도 1은 본발명의 바람직한 실시예에 따른 방법을 실행하기 위해 구성된 용광로 플랜트(10)의 개략도를 보여주고 있다.
용광로 플랜트(10)는 용광로(12) 및 적어도 세 개인 복수의 축열식 히터들(14.1, 14.2, 14.3)을 포함한다. 더욱이, 용광로 플랜트는 용광로(12)의 노정으로부터 노정 가스(16)를 회수(recover)하고, 용광로에서 다시 주입되기 전에 재생 공정(recycling process)을 통해 회수된 노정 가스의 일부를 공급하는 노정 가스 재순환 장치를 구비하고 있다. 노정 가스 재순환 장치는 노정 가스 회수 장치(18)을 포함하며, 노정 가스 회수 장치(18)는 용광로(12)의 노정에서 노정 가스(16)를 수집하고, 예를 들어, 먼지 입자들을 제거하기 위해 노정가스를 초기 세척한다. 도 1에 도시된 바와 같이, 노정 가스 회수 장치(18)는 흡수부(20), 하강관(22), 건식 집진기(24) 및 가스 세척기(26)(예를 들어, 분사 세척기 및 전기 집진기를 포함함)으로 구성된다. 가스 세척기의 하류에서, 세정된 노정 가스는 가스 분리 유닛(28)(예를 들면 PSA장치)에서 CO2가 제거된다. CO2 제거 유닛은 두 개의 가스 스트림들을 생성한다. 상기 두 개의 가스는 CO2가 풍부한 테일 가스(10내지 15% 체적의 CO를 여전히 포함함)(30) 및 CO가 풍부한 공정 가스(32)일 수 있다. CO2가 풍푸한 테일 가스(30)는 CO2가 풍푸한 테일 가스에서 순수CO2를 분리하기 위해 극저온 장치(미도시)를 통해 추가적으로 공급될 수 있다. 이후, 순수 CO2는 저장을 위해 지상으로 퍼낸다. CO가 풍푸한 공정 가스(32)는 가열되고, 환원가스로써 용광로(12)로 다시 공급된다.
CO가 풍부한 공정 가스의 가열은 축열식 히터들(14.1, 14.2, 14.3)에서 수행된다. 축열식 히터들(14.1, 14.2, 14.3)의 각각은 제 1 챔버(34)("연소 챔버") 및 제 2 챔버(36)("체커 챔버(checker chamber)")를 포함한다. 축열식 히터들(14.1, 14.2, 14.3)은 주기적으로 블라스트(블로잉 단계) 및 가스(가열 단계)로 작동된다.
가열 단계 동안, 연도 가스 및 산화 가스는 가스 주입구들(40, 42) 각각을 통해 버너(38)로 공급된다. 연도 가스 및 산화 가스는 점화되고, 상기 가스들의 연소는 고온의 연도 가스를 형성한다. 형성된 고온의 연도 가스들은 제 1 챔버(34)를 통해 돔(44)으로 올라간다. 고온의 연도 가스들은 돔(44)을 벗어나, 일반적으로 체커 벽돌들(16)의 형태로 열저장 연소들을 포함하는 제 2 챔버(36)로 공급된다. 열저장 요소들은 고온의 연도 가스들이 제 2 챔버(36)의 하부에서 연도 가스 배출구(48)통해 축열식 히터(14.1, 14.2 또는 14.3)을 떠나도록 아래 방향으로 통과하는 것을 통해 다수의 좁은 통로들을 정의한다. 결국, 연도 가스는 굴뚝(82)을 통해 처리된다. 그러나, 더 바람직하게는, 연도 가스가 지하의 CO2 저장소(84)에서 건조되고 저장된다.
이후의 블로잉 단계 동안, 공정 가스(32)는 제 2 챔버(36)의 하부의 냉풍 주입구(50)을 통해 제 2 챔버(36)로 흡입된다. 공정 가스는 열저장 요소들 사이의 통로들을 통해 흐르며, 열은 체커 벽돌들(46)에서 공정 가스까지 전달된다. 제 2 챔버(36)의 상부에서, 고온의 공정 가스는 돔(44)을 통해 제 1챔버(34)로 공급된다. 고온의 공정 가스는 제 1 챔버를 통해 아래 방향으로 흐르며, 열풍 배출구(52)를 통해 축열식 히터(14.1, 14.2 또는 14.3)에서 방출된다. 이 때, 상기 열풍 배출구(52)는 열풍선(54)과 연결된다. 열풍선(54)은 용광로(12)로 고온의 공정 가스를 공급한다.
가스 분리 유닛(28)은 특히, 테일 가스 홀더(56)를 포함하는 테일 가스 네트워크(network)와 연결된다. 테일 가스(30)의 일부는 축열식 히터들(14.1, 14.2 및 14.3)의 버너들에 연료를 공급하기 위해 사용된다. 이를 위해, (저-발열의) 테일 가스는 도관(31)을 통해 연결되며, 고-발열 가스(58)(예를 들면 코크스로가스(coke oven gas)와 혼합된다. 혼합물은 버너(38)로 공급되며, 가연성 역할을 한다. 버너(38)는 테일 가스 및 고-발열 가스의 혼합물을 연소시키기 위해 공기가 공급될 수 있다. 도 1은 축열식 히터들(14.1, 14.2, 14.3)로부터 연도 가스가 산화 가스를 형성하기 위해 순수(pure) 산소(60)와 혼합되는 것에 관한 더 바람직한 해결책을 보여주고 있다. 바람직하게, 산화 가스의 부피는 약 80%의 CO2 및 20%의 O2 조성으로 이루어진다. 상기 산화 가스 혼합물의 이점은 공기로도 작동하는 버너를 사용할 수 있다는 것이다. 가연성 가스의 혼합물은 순수 산소로 연소될 수 있으며, 적합한 버너들이 사용되어 제공된다.
축열식 히터들(14.1, 14.2, 14.3)의 주기적인 작동은 서로 간에 디페이즈되어(dephase), 용광로 플랜트(10)가 일반적으로 작동하는 어떤 시간 동안에, 축열식 히터들(14.1, 14.2, 14.3) 중 두 개의 축열식 히터들이 가스로 작동되는 동안, 축열식 히터들(14.1, 14.2, 14.3) 중 하나는 블라스트로 작동된다. 가열단계와 블로잉 단계 사이의 상호 변환은 동기화되어, 축열식 히터가 블라스트 작동에서 가스 작동으로 변하는 경우, 축열식 히터들 중 하나는 가스 작동으로 블로잉 단계를 실행한다.
(축열식 히터(14.1)이라고 가정하여 설명할 경우에) 블로잉 단계에서 가열 단계로 축열식 히터의 작동 변환에서, 우선, 열풍 밸브(62) 및 냉풍 밸브(64)는 닫힌다. 동시에, 축열식 히터(14.1) 내부의 잔여 공정 가스는 6bar(절대치)의 온-블라스트의 압력을 유지한다. 전환이 이루어지는 축열식 히터의 감압은 한 단계 또는 두 단계들로 수행될 수 있다. 한 단계로 감압이 수행되는 경우에, 공정 가스는 축열식 히터(14.1)로부터 테일 가스 네트워크, 특히, 테일 가스 홀더(56)에서 도관(68)을 통해 가스가 배출되거나, 4개의 스토브 플랜트를 가지는 경우에는 제 4 열풍 스토브(미도시)에서 가스가 배출된다. 두 단계로 감압이 수행되는 경우에는, 제 1 감압은 축열식 히터(14.1)로부터 노정 가스 회수 장치(18)로 감압 도관(66)을 통해 공정 가스를 방출함으로써 수행된다. 노정 가스 회수 장치(18)에서 가스 압력은 일반적으로 3 내지 5 bar(절대치)로 형성된다. 압력의 균등화(equalization) 후, 감압 도관(66)은 닫힌다. 그리고, 제 2 감압은 테일 가스 네트워크, 특히 테일 가스 홀더(56)에서 도관(68)을 통해 실행된다. 테일 가스 네트워크에서 가스 압력은 일반적으로 약 1.1bar(절대치)이기에, 축열식 히터는 제 2 감압 단계동안 압력이 감압되도록 할 수 있다. 압력의 균등화 후, 축열식 히터는 여전히 공정 가스로 채워진다.
전환이 이루어지게 하는 축열식 히터(14.1)는 전환(설명을 위해서, 축열식 히터(14.3)로 가정함)되는 시간에 가스로 작동되는 축열식 히터로부터 연도 가스를 이용하여 전화된다. 연도 가스는 축열식 히터의 연도 가스 배출구로부터 축열식 히터(14.1)의 연도 가스 재순환 도관(70)으로 공급된다. 동시에, 산소 공급 밸브(72), 고-발열 가스 공급 밸브(74) 및 테일 가스 공급 밸브(76)은 닫히며, 버너(38)는 비작동한다. 펌프 또는 압축기(78)는 축열식 히터(14.1)로 연도 가스를 넣기 위해 필요한 압력 차이를 형성한다. 연도 가스는 축열식 히터(14.1)로 안내되고, 잔여 공정 가스는 도관(68)을 통해 테일 가스 네트워크로 방출된다. 공정가스가 방출될수록 주입된 연도 가스가 더 포함될 수 있다. 어떤 시점에서, 테일 가스의 질이 너무 약화되어, 테일 가스로 방출된 공정 가스를 안내하기 하는 것은 더 이상 가능하지 않을 것이다. 바람직하게, 도관(68)은 방출된 공정 가스에서 CO 농도가 테일 가스 네트워크에서 일반적인 CO농도의 부피 백분율로 감소되는 경우, 폐쇄된다. 정화 단계가 계속적으로 유지되는 경우, 공정 가스 및 연도 가스의 혼합물은 플레어(flare)(80) 또는 잔여CO량을 제거하는 가스 분리 유닛(미도시)로 공급될 수 있다. 정화단계는 축열식 버너(14.1)에서 CO의 농도가 버너(38)를 작동시키기 위한 안전한 값으로 내려가는 경우에 멈추게 된다.
예외적인 상황으로 인하여, 다른 출열식 히터 중 하나의 연도 가스 배출구에서 축열식 히터를 정화하기 위한 (충분한) 연도 가스를 수집하는 것이 가능하지 않는다면, CO2저장소(34)에 이미 저장된 연도 가스는 사용될 수 있다. 이를 위해, 도관(86)은 열린다.
가열 단계에서 블로잉 단계까지 전환에 관해서는, 냉풍 밸브(64)가 열리며, CO가 풍부한 공정 가스는 제 2 챔버로 들어갈 경우, 축열식 히터에서 산화 가스의 무조건적인(uncritical) 양만이 있거나 없어 야 한다. 그렇지 않으면, CO가 풍푸한 공정 가스 및 산화 가스는 축열식 히터가 발화되고 손상될 수 있는 위험한 혼합물을 형성할 수 있다. 산화 가스가 블로잉 단계의 시작에서 존재하지 않도록 하기 위해서, 가열 단계의 마지막에서 다른 조치들을 취할 수 있다. 제 1 선택에 따르면, 제 1 산화 공급은 산소 공급 밸브(72)를 닫아 멈추게 할 수 있다. 결과적으로, 산소가 더 이상 시스템으로 공급되지 않는다. 어떠한 잔여 산소를 소비하기 위해서, 연도 가스 혼합물을 버너(38)로 계속 공급된다. 모든 산화 가스가 사라졌을 때, 연소는 스스로 멈춘다. 이제부터, 연도 가스 혼합물 및 연도 가스의 공급들은 중단된다. 블로잉 단계는 축열식 히터가 온-블라스트 압력으로 주어지는 냉풍 밸브(64)를 개방하고, 열풍 밸브(62)를 개방함으로써 안전하게 시작될 수 있다. 블로잉 시작 단계에서 짧은 시간 동안, 연도 가스는 용광로(12)로 공급될 것이다. 그럼에도 불구하고, 연도 가스의 양은 용광로의 작동을 방해하는데 충분하지 않다. 산화 가스가 블로잉 시작 단계에서 축열식 히터에 존재하는 것을 방지하기 위한 제 2 선택에 따르면, 연소는 종래의 방법(예를들면, 우선적으로 연도 가스 혼합물의 도착을 중지함)으로 멈추고, 축열식 히터에서 잔여 산소로 유도한다. 상기 산소는 또 다른 축열식 히터로부터 폐기 가스와 함께 추가적인 정화 단계에 의해 축열식 히터로부터 제거된다.
특정 실시예가 상세하게 설명되었지만, 당업자는 상술된 설명들이 개시된 모든 기술들의 관점으로 발전될 수 있도록 다양한 변형 및 대안을 애해할 것이다. 따라서, 개시된 특정 방식은 단지 예시일 수 있으며, 본 발명의 범위로 제한되지 않으며, 첨부된 청구항 및 부분적으로 대응하고, 전체적으로 대응하는 모든 것의 전체 범위를 부여한다.
특히, 축열식 히터들의 버너들이 다른 연도 가스 또는 연도 가스의 다른 혼합물로 공급될 수 있다는 것에 주목할만한 가치가 있다. 그러나, 실시예로 개시된 바와 같이, 두 가지의 가스 종류는 노정 가스 재순환으로 작동하는 용광로 플랜트에서 일반적으로 이용가능하기 때문에, 테일 가스 및 코크스로 가스의 혼합물은 바람직한 선택이다. 산화 가스에 관해서는, 산소 및 재순환 연도 가스의 혼합물의 예를 들어, 주입 가스(연소된 테일 가스, 기본적으로 CO2) 및 산소의 원하는 혼합물을 생성하기 위한 대안책은 예비 연소 챔버(pre-combustion chamber)에 과량의 산소와 함께 테일 가스의 일부가 연소되도록 하는 것이다.
10: 용광로 플랜트(Blast furnace plant)
12: 용광로(Blast furnace)
14.1, 14.2, 14.3: 축열식 히터들(Regenerative heaters)
16: 노정 가스(Top gas)
18: 노정가스 회수 장치(Top gas recovery installation)
20: 흡수부(Uptake)
22: 하강관(Downcomer)
24: 건식 집진기(Dry dust-catcher)
26: 가스 세척기(Gas washer)
28: 가스 분리 유닛
30: (CO가 고갈된) 테일 가스(tail gas)
31: 도관
32: (CO가 농축된) 공정 가스
34: 제 1 챔버
36: 제 2챔버
38: 외부형 또는 내부형 버너
40: 가스를 산화시키기 위한 가스 주입구(Gas inlet for oxidizing gas)
42: 연료 가스를 위한 가스 주입구(Gas inlet for fuel gas)
44: 돔(Dome)
46: 체커 벽돌(Checker bricks)
48: 연도 가스 배출구(Flue gas outlet)
50: 냉풍 주입구(Cold blast inlet)
52: 열풍 배출구(Hot blast outlet)
54: 열풍선(Hot blast line)
56: 테일 가스 홀더(Tail gas holder)
58: 고발열 가스(High-calorific gas)
60: 산소
62: 열풍밸브
64: 냉풍 밸브
66: 감압 도관(Depressurization conduit)
68: 도관
70: 연료 가스 재순환 도관
72: 산소 공급 밸브
74: 고-발열 가스 공급 밸브
76: 테일 가스 공급 밸브
78: 압축기
80: 플레어(Flare)
82: 굴뚝(Chimney)
84: CO2 저장소(CO2 storage)
86: 도관

Claims (11)

  1. 용광로(12);
    상기 용광로에서 CO가 농축된 공정 가스(process gas)(32)의 스트림(stream) 및 CO가 고갈된 테일 가스(tail gas)의 스트림으로 노정 가스(top gas)를 분리하기 위해 구성된 가스 분리 유닛(28);
    열저장 요소들(46), 상기 가스 분리 유닛(28)으로부터 CO가 농축된 공정 가스(32)를 받기 위한 냉풍 주입구(cold blast inlet)(50) 및 상기 용광로(12)로 CO가 농축된 공정 가스를 공급하기 위한 열풍 배출구(hot blast outlet)(52)를 각각 구비하는 적어도 세 개의 축열식 히터들(14.1, 14.2, 14.3)을 포함하는 용광로 플랜트(10), 특히, 열풍로들에서 상기 축열식 히터(14.1, 14.2, 14.3)를 작동시키기 위한 방법에 있어서,

    상기 방법은,
    블라스트(blast) 및 가스로 상기 축열식 히터들(14.1, 14.2, 14.3)을 주기적으로 작동시키는 단계를 포함하고,

    상기 주기적인 작동은,
    가스로 상기 축열식 히터(14.1, 14.2, 14.3)을 작동시키면서, 버너(burner)(38)로 고온 연도 가스(hot flue gas)를 생성하고, 상기 열저장 요소들(46)을 가열하기 위해 상기 축열식 히터를 통해 흐르는 상기 고온 연도 가스를 생성하는 단계; 및
    블라스트로 축열식 히터들(14.1, 14.2, 14.3)들 작동시키면서, 상기 열저장 요소들(46)로부터 CO가 농축된 공정 가스를 계속 가열하기 위한 상기 축열식 히터를 통해 CO가 농축된 공정 가스를 블로잉(blowing)하는 단계를 포함하고,

    상기 방법은,
    온-블라스트에서 온-가스 작동까지 축열식 히터(14.1, 14.2, 14.3)의 전환(changeover)이 이루어지는 동안, 상기 적어도 하나의 축열식 히터(14.1, 14.2, 14.3)를 관통한 후, 회수된 연도 가스로 CO가 농축된 공정 가스로부터 상기 축열식 히터를 정화하는 (purging) 단계를 더 포함하는 것을 특징으로 하는 용광로 플랜트에서 축열식 히터들을 작동시키는 방법.
  2. 제 1항에 있어서,
    상기 축열식 히터들(14.1, 14.2, 14.3)의 상기 주기적인 작동들은 서로간에 디페이즈되고(dephased), 이 때, 상기 축열식 히터들(14.1, 14.2, 14.3)의 적어도 하나가 블라스트로 작동되고, 상기 축열식 히터들(14.1, 14.2, 14.3)의 적어도 다른 하나는 가스로 작동되며,
    상기 전환이 이루어지는 상기 축열식 히터를 정화하는 단계는, 상기 전환이 이루어지는 시점에, 가스로 작동되는 상기 축열식 히터들 중 다른 하나로부터 연도 가스로 실행되는 것을 특징으로 하는 용광로 플랜트에서 축열식 히터들을 작동시키는 방법.
  3. 제 1항에 있어서,
    상기 전환이 이루어지는 상기 축열식 히터를 정화하는 단계는, 가스 저장소(84)에 미리 저장된 연도 가스로 실행되는 것을 특징으로 하는 용광로 플랜트에서 축열식 히터들을 작동시키는 방법.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    블라스트로 작동되는 축열식 히터(14.1, 14.2, 14.3)는 온-블라스트 압력하에 있고, 가스로 작동되는 축열식 히터(14.1, 14.2, 14.3)는 상기 온-블라스트 압력보다 낮은 온-가스압력하에 있으며, 온-블라스트에서 온-가스 작동까지 축열식 히터가 전환되는 동안, CO가 농축된 공정 가스는 연도 가스로 정화하기 이전에 감압하기 위하여, 상기 전환이 이루어지는 상기 축열식 히터로부터 방출되는 것을 특징으로 하는 용광로 플랜트에서 축열식 히터들을 작동시키는 방법.
  5. 제 4항에 있어서,
    상기 CO가 농축된 공정 가스의 방출은 상기 용광로(12)에서 상기 가스 분리 유닛(28)까지 노정 가스를 안내하기 위해 제공되는 노정 가스 회수 장치(18)에 적어도 일부 영향을 받는 것을 특징으로 하는 용광로 플랜트에서 축열식 히터들을 작동시키는 방법.
  6. 제 4항 또는 제 5항에 있어서,
    상기 CO가 농축된 공정 가스의 상기 방출은 CO가 고갈된 테일 가스(30)을 저장하기 위해 제공된 가스 홀더(56)에 적어도 일부 영향을 받는 것을 특징으로 하는 용광로 플랜트에서 축열식 히터들을 작동시키는 방법.
  7. 제 4항 내지 제 6항 중 어느 한 항에 있어서,
    상기 감압 후, 상기 전환이 이루어지는 상기 축열식 히터에 남아 있는 상기 CO가 농축된 공정 가스는 상기 연도 가스에 의해 배출되어 연소되는 것을 특징으로 하는 용광로 플랜트에서 축열식 히터들을 작동시키는 방법.
  8. 제 6항에 있어서,
    상기 감압 후, 상기 전환이 이루어지는 상기 축열식 히터에 남아 있는 상기 CO가 농축된 공정 가스는 상기 연도 가스에 의해 상기 가스 홀더(56)로 배출되는 것을 특징으로 하는 용광로 플랜트에서 축열식 히터들을 작동시키는 방법.
  9. 제 6항 또는 제 8항에 있어서,
    상기 방출된 CO가 농축된 공정 가스가 상기 CO가 고갈된 테일 가스(30)에서 CO 농도의 기설정된 백분율(percentage)에 도달하면, 상기 CO가 농축된 공정 가스는 가스 홀더(56)로 최대로 전달되는 것을 특징으로 하는 용광로 플랜트에서 축열식 히터들을 작동시키는 방법.
  10. 제 9항에 있어서,
    상기 가스 홀더(56)로 전달되지 않은 방출된 CO가 농축된 공정 가스는 연소되는 것을 특징으로 하는 용광로 플랜트에서 축열식 히터들을 작동시키는 방법.
  11. 제 1항 내지 제 10항 중 어느 한 항의 방법으로 실행하기 위해 구성되고 배열된 용광로.
KR1020147013239A 2011-10-19 2012-08-13 용광로 플랜트에서 축열식 히터들을 작동시키는 방법 KR101534589B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11185842.9 2011-10-19
EP11185842.9A EP2584052A1 (en) 2011-10-19 2011-10-19 Method of operating regenerative heaters in blast furnace plant
PCT/EP2012/065830 WO2013056870A1 (en) 2011-10-19 2012-08-13 Method of operating regenerative heaters in blast furnace plant

Publications (2)

Publication Number Publication Date
KR20140075017A true KR20140075017A (ko) 2014-06-18
KR101534589B1 KR101534589B1 (ko) 2015-07-07

Family

ID=46724392

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147013239A KR101534589B1 (ko) 2011-10-19 2012-08-13 용광로 플랜트에서 축열식 히터들을 작동시키는 방법

Country Status (14)

Country Link
US (1) US8992823B2 (ko)
EP (2) EP2584052A1 (ko)
JP (1) JP5735182B2 (ko)
KR (1) KR101534589B1 (ko)
CN (1) CN103890197A (ko)
AU (1) AU2012325251B2 (ko)
BR (1) BR112014009462B1 (ko)
CA (1) CA2851749C (ko)
EA (1) EA026320B1 (ko)
ES (1) ES2537508T3 (ko)
MX (1) MX2014004741A (ko)
TW (1) TWI542831B (ko)
WO (1) WO2013056870A1 (ko)
ZA (1) ZA201402559B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220002667A (ko) * 2019-05-21 2022-01-06 풀 부르스 에스.에이. 고로 작동 방법

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2509121B (en) * 2012-12-21 2015-03-18 Siemens Plc Apparatus for supplying blast to a blast furnace
EP2876170A1 (de) * 2013-11-20 2015-05-27 Siemens VAI Metals Technologies GmbH Verfahren und Vorrichtung zur Bereitstellung von Reduktionsgas unter konstanten Bedingungen
ES2694753T3 (es) 2013-12-20 2018-12-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Método de operación de una instalación de alto horno de reciclaje de gas superior
CN103940248B (zh) * 2014-04-10 2016-04-20 上海宝钢节能环保技术有限公司 一种蓄热式电炉烟气余热回收系统
CN106288830A (zh) * 2016-08-27 2017-01-04 安徽海螺川崎节能设备制造有限公司 一种冶炼炉余热锅炉
EP3425070B1 (en) * 2017-07-03 2022-01-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for operating an iron-or steelmaking-plant
CN107917411A (zh) * 2017-11-28 2018-04-17 湖南长宏南雁锅炉修理安装有限公司 可收集三废热量的余热锅炉
KR102348070B1 (ko) * 2019-12-23 2022-01-06 재단법인 포항산업과학연구원 열풍로 재순환 설비 및 운전방법
CN111850200A (zh) * 2020-07-29 2020-10-30 中冶华天南京工程技术有限公司 一种高炉环保休送风方法
CN115094173B (zh) * 2022-06-27 2024-01-12 新疆八一钢铁股份有限公司 一种富氢碳循环高炉加热煤气的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB378259A (en) * 1930-10-17 1932-08-11 Naamlooze Vennootschap Nieuwe Improvements in hot blast stove systems
DE1110672B (de) * 1959-07-16 1961-07-13 Zimmermann & Jansen Gmbh Verfahren und Schaltanlage zum Betrieb der zu einem Hochofen gehoerenden regenerativ beheizten Cowper
JPS5319908A (en) * 1976-08-09 1978-02-23 Kubota Ltd Controller for feeding and exhausting pressure of air heating furnace
JPS57158308A (en) * 1981-03-27 1982-09-30 Nippon Steel Corp Operating method for hot stove for blast furnace
JPH01164715A (ja) * 1987-12-18 1989-06-28 Nkk Corp 炭酸ガス製造方法
NL1007581C2 (nl) * 1997-11-19 1999-05-20 Hoogovens Tech Services Keramische brander voor gassen en regeneratieve warmtegenerator voorzien daarvan.
JP2004309067A (ja) * 2003-04-09 2004-11-04 Nippon Steel Corp 高炉ガスの利用方法
MX2011009350A (es) * 2009-03-17 2011-09-27 Arcelormittal Investigacion Y Desarrollo Sl Procedimiento de reciclaje de gas de alto horno y dispositivo asociado.
JP5131597B2 (ja) * 2009-03-31 2013-01-30 新東工業株式会社 蓄熱燃焼式排ガス浄化装置の運転制御方法
LU91572B1 (en) 2009-05-20 2010-11-22 Wurth Paul Sa Method for operating a regenerative heater.
JP2011195939A (ja) * 2010-03-24 2011-10-06 Jfe Steel Corp 熱風炉設備の操業方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220002667A (ko) * 2019-05-21 2022-01-06 풀 부르스 에스.에이. 고로 작동 방법
KR20230035696A (ko) * 2019-05-21 2023-03-14 풀 부르스 에스.에이. 고로 작동 방법

Also Published As

Publication number Publication date
EA026320B1 (ru) 2017-03-31
US8992823B2 (en) 2015-03-31
AU2012325251B2 (en) 2017-05-04
WO2013056870A1 (en) 2013-04-25
EP2584052A1 (en) 2013-04-24
ES2537508T3 (es) 2015-06-09
EP2751293B1 (en) 2015-03-11
CN103890197A (zh) 2014-06-25
BR112014009462A2 (pt) 2017-04-18
CA2851749C (en) 2019-03-26
TW201319472A (zh) 2013-05-16
JP5735182B2 (ja) 2015-06-17
AU2012325251A1 (en) 2014-05-01
TWI542831B (zh) 2016-07-21
MX2014004741A (es) 2014-07-28
ZA201402559B (en) 2015-03-25
EA201400477A1 (ru) 2014-08-29
US20140252696A1 (en) 2014-09-11
EP2751293A1 (en) 2014-07-09
BR112014009462B1 (pt) 2019-04-02
KR101534589B1 (ko) 2015-07-07
JP2014535004A (ja) 2014-12-25
CA2851749A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
KR101534589B1 (ko) 용광로 플랜트에서 축열식 히터들을 작동시키는 방법
CA2761852C (en) Method for operating a regenerative heater
RU125879U1 (ru) Устройство для удаления co2 из отходящих газов устройств для производства чугуна
US9222042B2 (en) Process for regulating joule value of offgases from plants for pig iron production or of synthesis gas
JP2016505717A (ja) ブラスト炉に送風を供給するための方法及び装置
CN101879397B (zh) 用于从高炉气中分离氮气的氧气浓缩器的使用
JP7412809B2 (ja) 非触媒転化炉付きのガラス窯炉の燃焼プロセス
TWI412596B (zh) 整合功率生產的鼓風爐鐵生產方法
JP2008174407A (ja) Co2回収方法及びco2回収装置
BRPI1010662B1 (pt) Method of operation of regenerative heater

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180626

Year of fee payment: 4