KR20140053138A - Surface-treated steel plate, fuel pipe, cell can - Google Patents

Surface-treated steel plate, fuel pipe, cell can Download PDF

Info

Publication number
KR20140053138A
KR20140053138A KR1020147002295A KR20147002295A KR20140053138A KR 20140053138 A KR20140053138 A KR 20140053138A KR 1020147002295 A KR1020147002295 A KR 1020147002295A KR 20147002295 A KR20147002295 A KR 20147002295A KR 20140053138 A KR20140053138 A KR 20140053138A
Authority
KR
South Korea
Prior art keywords
steel sheet
treated steel
iron
alloy layer
present
Prior art date
Application number
KR1020147002295A
Other languages
Korean (ko)
Inventor
타츠오 토모모리
고 요시오카
Original Assignee
도요 고한 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요 고한 가부시키가이샤 filed Critical 도요 고한 가부시키가이샤
Publication of KR20140053138A publication Critical patent/KR20140053138A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/16Rigid pipes wound from sheets or strips, with or without reinforcement
    • F16L9/165Rigid pipes wound from sheets or strips, with or without reinforcement of metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/1245Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/145Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors for protecting against corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

최표면에 철-니켈 합금층이 형성되는 표면 처리 강판으로서, 상기 철-니켈 합금층의 표면에서의 오제 전자 분광 분석(Auger electron spectroscopy)에 의한 Fe/Ni치가 0.3 내지 2.0의 범위인 것을 특징으로 하는 표면 처리 강판을 제공한다. 본 발명에 의하면, 자동차용 연료유 등 각종 연료에 노출된 경우에 공식(Pitting corrosion)의 발생이 유효하게 억제되고, 또한, 뛰어난 내식성을 갖는 표면 처리 강판을 제공할 수 있다.A surface-treated steel sheet having an iron-nickel alloy layer formed on an outermost surface thereof, characterized in that an Fe / Ni value by Auger electron spectroscopy on the surface of the iron-nickel alloy layer is in the range of 0.3 to 2.0 Treated steel sheet. According to the present invention, it is possible to provide a surface-treated steel sheet in which the occurrence of pitting corrosion is effectively suppressed when exposed to various fuels such as automotive fuel oil, and also has excellent corrosion resistance.

Description

표면 처리 강판, 연료 파이프 및 전지캔{SURFACE-TREATED STEEL PLATE, FUEL PIPE, CELL CAN}[0001] SURFACE-TREATED STEEL PLATE, FUEL PIPE, CELL CAN [0002]

본 발명은 표면 처리 강판, 그 표면 처리 강판을 이용해 얻어지는 연료 파이프, 및 전지캔에 관한 것이다.The present invention relates to a surface treated steel sheet, a fuel pipe obtained by using the surface treated steel sheet, and a battery can.

종래부터, 자동차 등의 연료 파이프용 재료로는 Sn-Pb 합금 도금이 행해진 강판이나, 니켈 도금 및 Sn-Pb 합금 도금이 행해진 다층 도금 강판이 주로 이용되고 있다.Background Art [0002] Conventionally, as a fuel pipe material for automobiles and the like, a steel sheet plated with Sn-Pb alloy or a multilayer plated steel sheet plated with nickel plating and Sn-Pb alloy is mainly used.

그러나, Sn-Pb 합금은 물에 대한 내식성을 갖기 않고, 또한, 전위적으로도 Fe보다 높기 때문에 용융 도금을 행할 때 핀홀이 발생하고, 이 핀홀에 기인해, 가솔린 연료 중에 불가피하게 포함되어 있는 수분 등의 부식 물질에 의해 공식(Pitting corrosion)이 발생한다는 문제가 있다.However, since the Sn-Pb alloy does not have corrosion resistance to water and is also potentially higher than Fe, pinholes are generated in the case of performing the hot-dip coating, and the moisture which is inevitably contained in the gasoline fuel There is a problem that pitting corrosion occurs due to a corrosive substance such as copper or the like.

이에 대해, 예를 들어, 특허 문헌 1에는, 니켈 도금층 중에 불소 화합물 입자를 분산시킨 복합 도금층을 강판 표면에 전기 도금으로 형성한 후, 불소 화합물 입자의 융점 이상의 온도로 가열 처리함으로써 얻어지는 도금 강판이 개시되어 있다.On the other hand, for example, Patent Document 1 discloses a plated steel sheet obtained by forming a composite plating layer in which fluorine compound particles are dispersed in a nickel plating layer by electroplating on the surface of a steel sheet, and then heat- .

특허 문헌 1: 일본 특허공개 평8-232092호 공보Patent Document 1: JP-A-8-232092

그러나, 본 발명자들이 검토한 결과, 상기 특허 문헌 1에 개시되어 있는 도금 강판은 공식 발생의 억제 효과가 반드시 충분한 것은 아니라고 인정되었다. 또한, 상기 특허 문헌 1에서는, 불소 화합물 입자를 이용하는 것이기 때문에, 환경 안전성의 관점에서도 바람직하지 않았다.However, as a result of the inventors' study, it has been recognized that the coated steel sheet disclosed in Patent Document 1 does not necessarily have an effect of inhibiting the formation of formaldehyde. In addition, since the fluorine compound particles are used in the Patent Document 1, it is not preferable from the viewpoint of environmental safety.

본 발명의 목적은, 공식의 발생이 유효하게 억제되고, 또한, 뛰어난 내식성을 갖는 표면 처리 강판을 제공하는 것이다. 또한, 본 발명은 이와 같은 표면 처리 강판을 이용해 얻어지는 연료 파이프를 제공하는 것도 목적으로 한다.An object of the present invention is to provide a surface-treated steel sheet in which the occurrence of formulas is effectively inhibited and also has excellent corrosion resistance. It is also an object of the present invention to provide a fuel pipe obtained by using such a surface-treated steel sheet.

본 발명자들은, 상기 목적을 달성하기 위해 예의 검토한 결과, 최표면에, 그 표면에서의 오제 전자 분광 분석(Auger electron spectroscopy)에 의한 Fe/Ni치가 0.3 내지 2.0의 범위에 있는 철-니켈 합금층을 형성하는 표면 처리 강판에 의해, 상기 목적을 달성할 수 있다는 것을 알아내 본 발명의 완성에 이르렀다.The inventors of the present invention have conducted intensive studies in order to achieve the above object and as a result have found that an iron-nickel alloy layer having an Fe / Ni value of 0.3 to 2.0 by Auger electron spectroscopy on its surface, The present invention has been accomplished on the basis of this finding.

즉, 본 발명에 의하면, 최표면에 철-니켈 합금층이 형성되는 표면 처리 강판으로서, 상기 철-니켈 합금층의 표면에서의 오제 전자 분광 분석에 의한 Fe/Ni치가 0.3 내지 2.0의 범위인 것을 특징으로 하는 표면 처리 강판이 제공된다.That is, according to the present invention, there is provided a surface-treated steel sheet in which an iron-nickel alloy layer is formed on the outermost surface, wherein Fe / Ni value in the surface of the iron- Wherein the surface treated steel sheet is characterized in that

본 발명의 표면 처리 강판에 있어서, 바람직하게는, 상기 철-니켈 합금층의 염화 나트륨 수용액 중에서의 침지 전위가, 철 단체의 염화 나트륨 수용액 중에서의 침지 전위에 대해 +0.05 내지 +0.25 V 범위이다. 즉, '철-니켈 합금층의 침지 전위'-'철 단체의 침지 전위'=+0.05 내지 +0.25 V이다.In the surface-treated steel sheet of the present invention, preferably, the immersion potential of the iron-nickel alloy layer in an aqueous solution of sodium chloride is in the range of +0.05 to +0.25 V relative to the immersion potential in an aqueous solution of sodium chloride alone. That is, the 'immersion potential of the iron-nickel alloy layer' - 'immersion potential of the iron core' = +0.05 to +0.25 V.

또한, 본 발명에 의하면, 상기 어느 하나의 표면 처리 강판을 성형 가공해 이루어지는 연료 파이프가 제공된다.Further, according to the present invention, there is provided a fuel pipe formed by molding any one of the above-mentioned surface-treated steel sheets.

또한, 본 발명에 의하면, 상기 어느 하나의 표면 처리 강판을 성형 가공해 이루어지는 전지캔이 제공된다.Further, according to the present invention, there is provided a battery can made by molding any one of the above-mentioned surface-treated steel sheets.

본 발명에 따르면, 최표면에, 그 표면에서의 오제 전자 분광 분석에 의한 Fe/Ni치가 0.3 내지 2.0의 범위에 있는 철-니켈 합금층을 형성함으로써, 공식의 발생이 유효하게 억제되고, 또한 내식성이 뛰어난 표면 처리 강판, 이와 같은 표면 처리 강판을 이용해 얻어지는 연료 파이프 및 전지캔을 제공할 수 있다.According to the present invention, by forming an iron-nickel alloy layer having an Fe / Ni value in the range of 0.3 to 2.0 on the outermost surface by the Au-e electron spectroscopy analysis on the surface thereof, the formation of the formula is effectively inhibited, This excellent surface-treated steel sheet and the fuel pipe and the battery can obtained using such a surface-treated steel sheet can be provided.

도 1은 금속판의 부식 형태에 대해 설명하기 위한 도면이다.BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a view for explaining a corrosion mode of a metal plate. FIG.

이하, 본 발명의 표면 처리 강판에 대해 설명한다.Hereinafter, the surface treated steel sheet of the present invention will be described.

본 발명의 표면 처리 강판은, 최표면에 철-니켈 합금층이 형성되는 표면 처리 강판으로서, 상기 철-니켈 합금층의 표면에서의 오제 전자 분광 분석에 의한 Fe/Ni치가 0.3 내지 2.0의 범위인 것을 특징으로 한다.The surface-treated steel sheet of the present invention is a surface-treated steel sheet having an iron-nickel alloy layer formed on the outermost surface thereof. The surface-treated steel sheet has an Fe / Ni value of 0.3 to 2.0 .

<강판><Steel plate>

본 발명의 표면 처리 강판의 기판이 되는 강판으로는, 가공성이 뛰어난 것이면 되며 특별히 한정되지 않지만, 예를 들어, 저탄소 알루미늄킬드강(aluminum-killed steel)(탄소량 0.01 내지 0.15 중량%), 탄소량이 0.003 중량% 이하의 극저탄소강, 또는, 극저탄소강에 Ti나 Nb를 더 첨가한 비시효성 극저탄소강 등으로 이루어지는 것을 이용할 수 있다.The steel sheet to be the substrate of the surface-treated steel sheet of the present invention is not particularly limited as long as the steel sheet is excellent in workability. For example, aluminum-killed steel (carbon content: 0.01 to 0.15 wt%), An extremely low carbon steel of 0.003 wt% or less, or a non-crucible extremely low carbon steel to which Ti or Nb is further added to an extremely low carbon steel.

본 발명에서는, 이들 강의 열간 압연판을 산세(酸洗)해 표면의 스케일(산화막)을 제거한 후, 냉간 압연하고, 계속해서 압연유를 전해 세정한 다음, 소둔(annealing), 조질 압연(skin pass rolling)한 것을 기판으로 이용한다. 이 경우에서 소둔은 연속 소둔 혹은 상자형 소둔의 어느 것이라도 무방하며, 특별히 한정되지 않는다.In the present invention, hot rolled plates of these steels are pickled to remove scale (oxide film) on the surface, cold rolled, then electrolytically washed with rolling oil, and then subjected to annealing, skin pass rolling ) Is used as a substrate. In this case, the annealing may be either continuous annealing or box annealing, and is not particularly limited.

<철-니켈 합금층><Iron-Nickel Alloy Layer>

본 발명의 표면 처리 강판은, 최표면에 철-니켈 합금층이 형성된다. 철-니켈 합금층은, 그 표면에서의 오제 전자 분광 분석에 의한 Fe/Ni치(Fe/Ni의 몰비)가 0.3 내지 2.0의 범위이며, 바람직하게는 0.3 내지 1.5의 범위이다.In the surface-treated steel sheet of the present invention, an iron-nickel alloy layer is formed on the outermost surface. The Fe / Ni value (molar ratio of Fe / Ni) by the Auger electron spectroscopy analysis on the surface of the iron-nickel alloy layer is in the range of 0.3 to 2.0, preferably 0.3 to 1.5.

본 발명에서는, 철-니켈 합금층 표면의 오제 전자 분광 분석에 의한 Fe/Ni치를 상기 범위로 제어함으로써, 자동차용 연료유 등 각종 연료에 노출된 경우에 공식의 발생을 유효하게 억제할 수 있고, 이에 따라, 내식성이 뛰어난 것으로 할 수 있다.In the present invention, by controlling the Fe / Ni value of the surface of the iron-nickel alloy layer by the Auger electron spectroscopic analysis within the above range, the generation of the formula can be effectively suppressed when exposed to various fuels such as automotive fuel oil, As a result, it is possible to obtain excellent corrosion resistance.

여기에서, 종래에는, 니켈 도금 강판은 내식성이 높다는 점에서, 자동차용 연료유 등 각종 연료용 파이프나 전지캔 등 내식성이 요구되는 분야에서 이용되었지만, 한편으로, 니켈 도금층은 전기 도금으로 형성되기 때문에, 핀홀이 발생한다는 문제가 있었다. 그리고, 니켈 도금 강판에서는, 이와 같은 핀홀이나 결함에 기인한 공식이 발생하고, 공식에 의해 연료 등의 내용물의 누출이 발생한다는 문제가 있었다.Here, conventionally, nickel-plated steel sheets have been used in fields where corrosion resistance is required, such as pipes for various fuel such as fuel oil for automobile and battery cans because of high corrosion resistance, but on the other hand, nickel plating layers are formed by electroplating , Pinholes are generated. In the case of the nickel-plated steel sheet, there is a problem that a formula due to such pinholes or defects occurs, and leakage of contents such as fuel is caused by the formula.

이에 대해, 본 발명자들은 오제 전자 분광 분석에 의한 Fe/Ni치가 상기 범위로 제어된 철-니켈 합금층을 강판의 표면에 형성함으로써, 니켈 도금층이 갖는 뛰어난 내식성을 확보하면서, 공식의 발생을 유효하게 억제할 수 있다는 것을 알아내 본 발명의 완성에 이르렀다. 특히, 본 발명자들은, 내식성이 높은 니켈층 중에 철을 분산시킴으로써, 니켈 도금층이 뛰어난 내식성을 확보하면서, 공식의 발생을 유효하게 억제할 수 있다는 것을 알아냈다.On the other hand, the inventors of the present invention have found that by forming an iron-nickel alloy layer whose Fe / Ni value is controlled in the above range by Ouzer electron spectroscopy on the surface of a steel sheet, the generation of the formula is effectively ensured while securing excellent corrosion resistance of the nickel plating layer The present invention has been completed. Particularly, the inventors of the present invention have found that, by dispersing iron in a nickel layer having a high corrosion resistance, the occurrence of a formula can be effectively suppressed while ensuring excellent corrosion resistance of the nickel plating layer.

오제 전자 분광 분석에 의한 Fe/Ni치가 너무 낮으면, 공식 발생의 억제 효과를 얻을 수 없고, 한편, Fe/Ni치가 너무 높으면, 철-니켈 합금층의 내식성이 저하해, 합금층 전면에서의 부식 속도가 빨라진다. 여기에서, 도 1을 참조하여 강판 등의 금속판의 부식 형태에 대해 설명한다. 도 1의 (A)는 부식이 발생하기 전의 금속판을 나타내는 도면이고, (B)는 공식이 발생한 금속판을 나타내는 도면이고, (C)는 전면 부식이 발생한 금속판을 나타내는 도면이다. 한편, 도 1의 (A) 내지 (C)에서는, 금속판이 도면 상측에서 부식성 액체와 접촉하고 있는 것으로 한다. 이 경우에서, 부식성 액체가 액체 상태로 금속판에 직접 접촉하는 경우 외에, 부식성 액체가 기화해 기체 상태로 금속판에 접촉하는 경우, 나아가, 부식성 액체가 기화한 가스가 금속판 표면에서 액적으로서 석출되는 경우도 포함된다. 도 1의 (B)에 나타내는 바와 같이, 공식은 금속판의 두께 방향으로 국소적으로 발생하는 것인데 대해, 도 1의 (C)에 나타내는 바와 같이, 전면 부식은 금속판의 전면에서 발생하는 것으로, 전면 부식에 의해 금속판의 두께가 얇아지게 된다. 즉, 도 1의 (C)에서는, 금속판의 두께가 t0에서 t1로 감소한 예를 나타내고 있다. 그리고, 본 발명에 있어서는, Fe/Ni치가 너무 낮으면, 도 1의 (B)에 나타내는 바와 같이 공식이 발생하고, 한편, Fe/Ni치가 너무 높으면, 도 1의 (C)에 나타내는 전면 부식의 진행 속도가 빨라져, 결과적으로, 전체의 두께가 얇아진다는 문제가 발생한다.On the other hand, if the Fe / Ni value is too high, the corrosion resistance of the iron-nickel alloy layer is deteriorated and the corrosion on the entire surface of the alloy layer It speeds up. Here, with reference to Fig. 1, the corrosion mode of a metal plate such as a steel plate will be described. Fig. 1 (A) is a view showing a metal plate before corrosion occurs, Fig. 1 (B) is a view showing a metal plate on which a formula is formed, and Fig. 1 (A) to 1 (C), it is assumed that the metal plate is in contact with the corrosive liquid on the upper side of the drawing. In this case, in addition to the case where the corrosive liquid directly contacts the metal plate in a liquid state, in addition to the case where the corrosive liquid vaporizes and comes into contact with the metal plate in a gaseous state, and the gas vaporized by the corrosive liquid precipitates as a droplet on the metal plate surface . As shown in FIG. 1 (B), the formula is generated locally in the thickness direction of the metal plate. However, as shown in FIG. 1 (C), the front corrosion occurs at the front surface of the metal plate, The thickness of the metal plate is reduced. That is, FIG. 1C shows an example in which the thickness of the metal plate is decreased from t 0 to t 1 . In the present invention, when the Fe / Ni value is too low, a formula is generated as shown in FIG. 1 (B). On the other hand, if the Fe / Ni value is too high, The speed of progress is accelerated, and as a result, there arises a problem that the entire thickness is thinned.

한편, 본 발명에서, 오제 전자 분광 분석에 의한 Fe/Ni치는, 예를 들어 다음과 같은 방법에 의해 측정할 수 있다. 즉, 우선, 철-니켈 합금층의 표면에 대해 주사형 오제 전자 분광 분석 장치(AES)를 이용해 측정을 행하여 철-니켈 합금층 표면의 Ni 및 Fe의 원자%를 산출한다. 그리고, 철-니켈 합금층의 표면 중 5개소에 대해 주사형 오제 전자 분광 분석 장치에 의한 측정을 행하고, 얻어진 결과를 평균함으로써 Fe/Ni치(Fe의 원자%/Ni의 원자%)를 산출할 수 있다. 한편, 본 발명에서는, 주사형 오제 전자 분광 분석 장치를 이용한 측정에 의해 얻어진 피크 가운데 820 내지 850 eV의 피크를 Ni의 피크로 하고, 570 내지 600 eV의 피크를 Fe의 피크로 하고, 이들 Ni, Fe의 합계를 100 원자%로 하여 Ni 및 Fe의 원자%를 측정한다.On the other hand, in the present invention, the Fe / Ni value by Auger electron spectroscopy can be measured by, for example, the following method. That is, first, the surface of the iron-nickel alloy layer is measured using a scanning electrometric spectroscopic analyzer (AES) to calculate atomic% of Ni and Fe on the surface of the iron-nickel alloy layer. The Fe / Ni value (atomic% of Fe / atomic% of Ni) is calculated by measuring the results of the measurement with a scanning electron-ophthalmograph spectrometer on five of the surfaces of the iron-nickel alloy layer and averaging the obtained results . On the other hand, in the present invention, a peak of 820 to 850 eV is taken as a peak of Ni and a peak of 570 to 600 eV is taken as a peak of Fe among the peaks obtained by measurement using a scanning electron microscope, The total amount of Fe is set to 100 atomic%, and atomic% of Ni and Fe is measured.

또한, 본 발명의 표면 처리 강판에서 철-니켈 합금층은, 오제 전자 분광 분석에 의한 Fe/Ni치가 상기 범위에 있는 것 외에, 염화 나트륨 수용액 중에서의 침지 전위가, 철 단체의 염화 나트륨 수용액 중에서의 침지 전위에 대해 바람직하게는 +0.05 내지 +0.25 V의 범위, 보다 바람직하게는 +0.07 내지 +0.22 V의 범위에 있는 것이 바람직하다. 즉, 염화 나트륨 수용액 중에서의 철 단체의 침지 전위와의 차이가 상기 범위에 있는 것이 바람직하다.The Fe-Ni alloy layer of the surface-treated steel sheet of the present invention has an Fe / Ni value in the above range, and the immersion potential in an aqueous solution of sodium chloride is not higher than the Fe / It is preferably in the range of +0.05 to +0.25 V, more preferably +0.07 to +0.22 V, relative to the immersion potential. That is, it is preferable that the difference from the immersion potential of the iron group in the aqueous solution of sodium chloride is within the above range.

본 발명에서는, 오제 전자 분광 분석에 의한 Fe/Ni치 외에, 염화 나트륨 수용액 중에서의 침지 전위를 상기 범위로 함으로써, 공식 발생의 억제 효과를 한층 향상시킬 수 있다. 철-니켈 합금층의 침지 전위가 너무 낮으면(철 단체의 침지 전위와의 차이가 너무 작으면), 철-니켈 합금층의 내식성이 저하되어, 합금층 전면에서의 부식 속도가 빨라진다. 한편, 침지 전위가 너무 높으면(철 단체의 침지 전위와의 차이가 너무 크면), 공식 발생의 억제 효과가 저하된다.In the present invention, besides the Fe / Ni value obtained by the Auger electron spectroscopic analysis, the effect of inhibiting the formation of the formulas can be further improved by setting the immersion potential in the sodium chloride aqueous solution to the above range. When the immersion potential of the iron-nickel alloy layer is too low (the difference from the immersion potential of the iron itself is too small), the corrosion resistance of the iron-nickel alloy layer is lowered and the corrosion rate at the entire surface of the alloy layer is accelerated. On the other hand, if the immersion potential is too high (the difference from the immersion potential of the iron group is too large), the effect of inhibiting the formation of formaldehyde is lowered.

한편, 본 발명에서 철-니켈 합금층의 염화 나트륨 수용액 중에서의 침지 전위는, 예를 들어 5 중량%의 염화 나트륨 수용액 중에 철-니켈 합금층을 침지시킨 다음, 15분 후의 자연 전위를 측정해, 이것을 침지 전위로 할 수 있다. 여기에서, 염화 나트륨 수용액 중에 철-니켈 합금층을 침지하는 시간은, 침지 후에 자연 전위의 값이 안정될 때까지 필요로 하는 시간에 기초해 설정할 수 있고, 예를 들어 상기와 같이 15분으로 설정할 수 있다. 한편, 침지 전위의 구체적인 측정 방법으로는, 전해액을 5 중량%의 염화 나트륨 수용액으로 하고, 참조 전극: Ag/AgCl, 대극: Pt, 측정 온도 35℃의 조건으로 측정을 행함으로써 Ag/AgCl에 대한 자연 전위를 측정하고, 얻어진 자연 전위와 Fe 단체의 Ag/AgCl에 대한 자연 전위의 차이를 구함으로써 측정할 수 있다.In the present invention, the immersion potential of the iron-nickel alloy layer in the sodium chloride aqueous solution can be measured by, for example, immersing the iron-nickel alloy layer in an aqueous solution of 5% by weight sodium chloride and measuring the natural potential after 15 minutes, This can be used as an immersion potential. Here, the time for immersing the iron-nickel alloy layer in the sodium chloride aqueous solution can be set based on the time required until the value of the natural potential after stabilization is stabilized. For example, as described above, . As a specific measurement method of the immersion potential, measurement was carried out under the conditions of a reference electrode: Ag / AgCl, a counter electrode: Pt, and a measurement temperature of 35 ° C with an electrolytic solution containing 5% by weight of sodium chloride aqueous solution. It can be measured by measuring the natural potential and determining the difference between the obtained natural potential and the spontaneous potential for Ag / AgCl in Fe.

한편, 본 발명의 철-니켈 합금층에서, 염화 나트륨 수용액 중에서의 철-니켈 합금층의 침지 전위의 철 단체의 침지 전위에 대한 전위차는, '철-니켈 합금층의 침지 전위'-'철 단체의 침지 전위'로 산출되는 전위차이다.On the other hand, in the iron-nickel alloy layer of the present invention, the potential difference of the immersion potential of the iron-nickel alloy layer in an aqueous solution of sodium chloride with respect to the immersion potential of the iron itself is the difference between the immersion potential of the iron- Quot; immersion potential &quot;

본 발명에서 철-니켈 합금층을 형성하는 방법으로는, 특별히 한정되지 않지만, 예를 들어 다음 방법을 들 수 있다. 즉, 니켈 도금욕을 이용해, 강판의 표면에 니켈 도금층을 형성하고, 계속해서 이것에 열처리를 실시함으로써 열확산시키는 방법 등을 들 수 있다. 단, 본 발명에서 철-니켈 합금층을 형성하는 방법은, 이와 같은 방법으로 특별히 한정되는 것은 아니다.The method for forming the iron-nickel alloy layer in the present invention is not particularly limited, and for example, the following method can be used. That is, a method of forming a nickel plating layer on the surface of a steel sheet by using a nickel plating bath, and subsequently subjecting the surface to heat treatment, and the like. However, the method of forming the iron-nickel alloy layer in the present invention is not particularly limited by such a method.

구체적으로는, 우선, 니켈 도금욕으로서 니켈 도금에서 통상적으로 이용되는 도금욕, 즉, 와트욕이나, 술팜산욕, 시트르산욕, 붕불화물욕, 염화물욕 등을 이용해 두께 0.3 내지 5㎛, 바람직하게는 0.3 내지 2㎛의 니켈 도금층을 형성한다. 예를 들어, 니켈 도금층은, 와트욕으로서 황산 니켈 200 내지 350 g/L, 염화 니켈 20 내지 50 g/L, 붕산 20 내지 50 g/L의 욕 조성을 이용해, pH 3 내지 4.8, 욕온 40 내지 70℃, 전류 밀도 5 내지 30 A/d㎡의 조건으로 형성할 수 있다. 니켈 도금층의 두께가 너무 얇으면, 후속 공정에서 형성하는 합금층이 얇아지기 때문에 합금층 전면에서의 내식성이 저하될 우려가 있고, 한편, 너무 두꺼우면, 후속 공정의 열처리에서 충분히 철이 확산되지 않아 합금을 형성할 수 없게 될 우려가 있으며, 비용 증대로 이어진다.Specifically, first, as a nickel plating bath, a plating bath commonly used in nickel plating, that is, a plating bath using a watt bath, a sulfamate bath, a citric acid bath, a fluorinated water bath, a chloride bath, A nickel plating layer of 0.3 to 2 탆 is formed. For example, the nickel plating layer may be formed to have a pH of 3 to 4.8, a bath temperature of 40 to 70 占 퐉, a bath temperature of 200 to 350 g / L, a nickel chloride of 20 to 50 g / Lt; 0 &gt; C and a current density of 5 to 30 A / dm &lt; 2 &gt;. If the thickness of the nickel plating layer is too thin, the alloy layer formed in the subsequent step becomes thinner, so that corrosion resistance on the entire alloy layer may be deteriorated. On the other hand, if it is too thick, iron is not sufficiently diffused in the subsequent heat treatment, There is a fear that it becomes impossible to form the magnetic recording medium, resulting in an increase in cost.

계속해서, 니켈 도금층을 형성한 강판에 대해 열처리를 실시함으로써 열확산시켜, 철-니켈 합금층(철-니켈 확산층)을 형성한다. 이 경우에서 열처리는, 연속 소둔, 또는 상자형 소둔의 어느 것으로 행해도 되고, 또한, 열처리 조건은 니켈 도금층의 두께에 따라 적절하게 선택하면 되는데, 예를 들어, 상자형 소둔에 의해 열처리를 행하는 경우에는, 아래와 같은 조건으로 하는 것이 바람직하다.Subsequently, the steel sheet on which the nickel plating layer is formed is heat-treated by thermal diffusion to form an iron-nickel alloy layer (iron-nickel diffusion layer). In this case, the heat treatment may be performed by any of continuous annealing and box annealing, and the heat treatment conditions may be suitably selected according to the thickness of the nickel plating layer. For example, when heat treatment is performed by box annealing The following conditions are preferably satisfied.

열처리 온도: 400 내지 800℃Heat treatment temperature: 400 to 800 DEG C

열처리 시간: 30분 내지 16시간Heat treatment time: 30 minutes to 16 hours

열처리 분위기: 비산화성 분위기 또는 환원성 보호 가스 분위기Heat treatment atmosphere: Non-oxidizing atmosphere or reducing protective gas atmosphere

또한, 연속 소둔으로 행하는 경우에는 하기 조건이 바람직하다.In the case of continuous annealing, the following conditions are preferable.

열처리 온도: 600 내지 900℃Heat treatment temperature: 600 to 900 占 폚

열처리 시간: 3초 내지 120초Heat treatment time: 3 seconds to 120 seconds

열처리 분위기: 비산화성 분위기 또는 환원성 보호 가스 분위기Heat treatment atmosphere: Non-oxidizing atmosphere or reducing protective gas atmosphere

한편, 상자형 소둔, 연속 소둔의 어느 경우에도, 상기의 조건에서 니켈 도금층의 두께가 비교적 얇은 경우에는, 열처리 온도를 비교적 낮게 하고, 또한, 열처리 시간을 비교적 짧게 하는 것이 바람직하다. 또한, 상기의 조건에서, 니켈 도금층의 두께가 비교적 두꺼운 경우에는, 열처리 온도를 비교적 높게 하고, 또한, 열처리 시간을 비교적 길게 하는 것이 바람직하다. 또한, 열처리 분위기를 환원성 보호 가스 분위기로 하는 경우에는, 보호 가스로서, 열전달이 좋은 수소 부화(富化) 소둔이라고 불리는 암모니아 크랙법에 의해 생성되는 75% 수소-25% 질소로 이루어지는 보호 가스를 이용하는 것이 바람직하다.On the other hand, in both of the box-type annealing and the continuous annealing, when the thickness of the nickel plating layer is relatively thin under the above-described conditions, it is preferable to relatively lower the heat treatment temperature and relatively shorten the heat treatment time. Further, under the above conditions, when the thickness of the nickel plated layer is relatively large, it is preferable that the heat treatment temperature is relatively high and the heat treatment time is relatively long. When the heat treatment atmosphere is a reducing protective gas atmosphere, a protective gas composed of 75% hydrogen-25% nitrogen produced by the ammonia cracking method called hydrogen enrichment annealing with good heat transfer is used as the protective gas .

열처리 온도가 너무 낮거나 혹은 열처리 시간이 너무 짧으면, 철-니켈 합금층 중에서의 열확산이 불충분하게 되어, 오제 전자 분광 분석에 의한 철-니켈 합금층 표면의 Fe/Ni치가 낮아져, 결과적으로, 공식 발생의 억제 효과가 얻어지지 않게 된다. 한편, 열처리 온도가 너무 높거나 혹은 열처리 시간이 너무 길면, 오제 전자 분광 분석에 의한 철-니켈 합금층 표면의 Fe/Ni치가 너무 높아져, 철-니켈 합금층의 내식성이 저하되어 합금층 전면에서의 부식 속도가 빨라진다.If the heat treatment temperature is too low or the heat treatment time is too short, the thermal diffusion in the iron-nickel alloy layer becomes insufficient, and the Fe / Ni value on the surface of the iron-nickel alloy layer is lowered by Auger electron spectroscopy, The suppression effect of the present invention can not be obtained. On the other hand, if the heat treatment temperature is too high or the heat treatment time is too long, the Fe / Ni value on the surface of the iron-nickel alloy layer due to the Auelectron spectroscopic analysis becomes too high and the corrosion resistance of the iron- Corrosion rate is accelerated.

이상과 같이, 강판상에 전술한 소정의 철-니켈 합금층을 형성함으로써, 본 발명의 표면 처리 강판을 얻을 수 있다. 본 발명의 표면 처리 강판은, 부식성의 액상 내용물이나 증기에 노출되었을 경우, 예를 들면 자동차용 연료유 등 각종 연료에 노출되는 경우나, 전지의 전해액에 노출되는 경우에 공식의 발생이 유효하게 억제되고, 또한 내식성이 뛰어나다. 그 때문에, 본 발명의 표면 처리 강판은 각종 연료 등의 액상 내용물에 노출된 상태로 이용되는 용도로 적합하게 이용할 수 있다. 구체적으로는, 연료 파이프, 연료 탱크, 전지캔 등의 각종 용도로 매우 적합하게 이용할 수 있다. 혹은, 본 발명의 표면 처리 강판은 음료캔이나 음식캔 용도로 이용하는 경우에도, 음료캔이나 음식캔 용도로서 종래 이용되는 재료와 비교해 뛰어난 내식성을 발휘할 수 있기 때문에, 음료캔이나 음식캔 용도로도 적합하게 이용할 수 있다. 특히, 본 발명의 표면 처리 강판을 구성하는 철-니켈 합금층은, 철과 니켈이 충분히 합금화한 것이기 때문에, 음료캔이나 음식캔 용도로 이용한 경우에도 철 혹은 니켈의 용출을 적절히 억제할 수 있다.As described above, the surface-treated steel sheet of the present invention can be obtained by forming the predetermined iron-nickel alloy layer on the steel sheet. The surface-treated steel sheet of the present invention effectively inhibits the generation of a formula when exposed to corrosive liquid contents or vapor, when exposed to various fuels such as automobile fuel oil, or when exposed to an electrolyte of a battery And is also excellent in corrosion resistance. Therefore, the surface-treated steel sheet of the present invention can be suitably used for use in a state exposed to liquid contents such as various fuels. Specifically, it can be suitably used for various purposes such as a fuel pipe, a fuel tank, and a battery can. Alternatively, the surface-treated steel sheet of the present invention can exhibit excellent corrosion resistance compared with materials conventionally used for beverage cans and food cans, even when used for beverage cans and food cans, Can be used to make. Particularly, since the iron-nickel alloy layer constituting the surface-treated steel sheet of the present invention is sufficiently alloyed with iron and nickel, the elution of iron or nickel can be suitably suppressed even when it is used for beverage cans and food cans.

<연료 파이프><Fuel pipe>

본 발명의 연료 파이프는, 전술한 본 발명의 표면 처리 강판을 성형 가공함으로써 얻을 수 있다. 구체적으로 본 발명의 연료 파이프는, 전술한 본 발명의 표면 처리 강판을 레벨러(leveller)에 의해 형상 수정하고, 슬리터(slitter)로 소정의 외경 치수로 절단한 후, 철-니켈 합금층이 내면측이 되도록 성형기에 의해 파이프 형상으로 만들어, 길이 방향의 단면끼리를 고주파 유도 용접에 의해 심 용접(seam welding)함으로써 얻어진다. 이와 같이 하여 얻어지는 본 발명의 연료 파이프는, 전술한 본 발명의 표면 처리 강판을 이용해 이루어지는 것이기 때문에, 자동차용 연료유 등 각종 연료에 노출되었을 경우에 공식의 발생이 유효하게 억제되고, 또한 내식성이 뛰어나다. 이 때문에, 본 발명의 연료 파이프는, 예를 들어, 연료를 탱크에 도입하는 급유 파이프나, 탱크로부터 엔진으로 연료를 도입하는 파이프나, 환기를 행하는 파이프 등 각종 용도에 적합하게 이용할 수 있다. 또한, 이 경우에서의 연료로는, 가솔린이나 경유, 바이오 에탄올 또는 바이오 디젤 연료 등 자동차용 각종 연료를 들 수 있다.The fuel pipe of the present invention can be obtained by molding the above-mentioned surface-treated steel sheet of the present invention. Specifically, in the fuel pipe of the present invention, the above-described surface-treated steel sheet of the present invention is modified in shape by a leveler, cut with a slitter to a predetermined outer diameter, and then the iron- And the end faces in the longitudinal direction are seam-welded by high frequency induction welding. Since the fuel pipe of the present invention thus obtained is made of the above-mentioned surface-treated steel sheet of the present invention, the occurrence of the formulas is effectively suppressed when exposed to various fuels such as automotive fuel oil, . Therefore, the fuel pipe of the present invention can be suitably used for various purposes such as, for example, an oil supply pipe for introducing fuel into a tank, a pipe for introducing fuel from a tank to an engine, and a pipe for ventilation. Examples of the fuel in this case include various fuels for automobiles such as gasoline, light oil, bioethanol, and biodiesel fuel.

<전지캔><Battery can>

본 발명의 전지캔은, 전술한 본 발명의 표면 처리 강판을 이용해 얻어진다. 구체적으로 본 발명의 전지캔은, 전술한 본 발명의 표면 처리 강판을 드로잉(drawing), 아이어닝(ironing), DI(drawing-ironing) 또는 DTR(Draw Thin Redraw) 성형으로 철-니켈 합금층이 전지캔 내면측이 되도록 성형함으로써 얻어진다. 이와 같이 하여 얻어지는 본 발명의 전지캔은, 전술한 본 발명의 표면 처리 강판을 이용한 것이기 때문에, 공식의 발생이 유효하게 억제되고, 또한 내식성이 뛰어나다. 특히, 전술한 본 발명의 표면 처리 강판은, 자동차용 연료유 등 각종 연료에 노출되었을 경우 뿐만이 아니라, 강알칼리성 전해액과 접촉해 이용되는 경우에도, 공식의 발생을 유효하게 억제할 수 있고, 또한 뛰어난 내식성을 실현할 수 있다. 이 때문에, 본 발명의 전지캔은 알칼리 전지, 니켈수소 전지 등 강알칼리성 전해액을 이용하는 전지의 전지 용기로서 적합하게 이용할 수 있다.The battery can of the present invention is obtained by using the above-mentioned surface-treated steel sheet of the present invention. Specifically, the battery can of the present invention can be manufactured by forming the surface-treated steel sheet of the present invention by iron-nickel alloy layer by drawing, ironing, DI (drawing-ironing) or DTR (Draw Thin Redraw) And then molding it so as to be on the inner surface side of the battery can. Since the battery can of the present invention thus obtained uses the above-described surface-treated steel sheet of the present invention, the occurrence of the formula is effectively suppressed and the corrosion resistance is excellent. Particularly, the above-mentioned surface-treated steel sheet of the present invention can effectively inhibit the occurrence of formulations not only when exposed to various fuels such as automobile fuel oil but also when used in contact with a strongly alkaline electrolytic solution, Corrosion resistance can be realized. Therefore, the battery can of the present invention can be suitably used as a battery container of a battery using a strong alkaline electrolyte such as an alkaline battery or a nickel-metal hydride battery.

실시예Example

이하, 실시예를 들어 본 발명에 대해 보다 구체적으로 설명하는데, 본 발명은 이들 실시예로 한정되지 않는다.Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

한편, 각 특성의 정의 및 평가 방법은 이하와 같다.The definition and evaluation method of each characteristic are as follows.

<Fe/Ni치><Fe / Ni value>

표면 처리 강판의 철-니켈 합금층의 최표층을 약 10㎚ 에칭하고, 에칭 후의 표면 처리 강판에 대해 주사형 오제 전자 분광 분석 장치(AES)를 이용해 5개소에 대해 Ni 및 Fe의 원자%를 측정함으로써, 오제 전자 분광 분석에 의한 Fe/Ni치를 구했다.The outermost layer of the iron-nickel alloy layer of the surface-treated steel sheet was etched to about 10 nm, and the surface-treated steel sheet after etching was measured for atomic% of Ni and Fe at five locations using a scanning electron microscope (AES) , And the Fe / Ni value was determined by the Auger electron spectroscopic analysis.

<침지 전위><Immersion potential>

φ5㎜의 영역을 남기고 마스킹한 표면 처리 강판을 5 중량%의 염화 나트륨 수용액에 침지시키고, 참조 전극: Ag/AgCl, 대극: Pt, 측정 온도 35℃의 조건에서, 철-니켈 합금층의 Ag/AgCl에 대한 자연 전위를 측정해, 얻어진 자연 전위와 Fe 단체의 Ag/AgCl에 대한 자연 전위의 차이를 구함으로써, 철-니켈 합금층의 염화 나트륨 수용액 중에서의 침지 전위를 측정했다.The surface-treated steel sheet masked with an area of? 5 mm was immersed in a 5 wt% aqueous solution of sodium chloride to prepare an Ag / AgCl alloy layer of the iron-nickel alloy layer under the conditions of reference electrode: Ag / AgCl, counter electrode: Pt, The spontaneous potential against AgCl was measured and the immersion potential in the aqueous sodium chloride solution of the iron-nickel alloy layer was measured by determining the difference between the obtained spontaneous potential and the spontaneous potential for Ag / AgCl in Fe.

<공식><Formal>

20×20㎜의 영역을 남기고 마스킹한 표면 처리 강판을 5 중량%의 염화 나트륨 수용액에 침지시키고, 참조 전극: Ag/AgCl, 대극: Pt, 측정 온도 35℃의 조건에서, 전위를 강제적으로 서서히 인가함으로써 애노드 분극을 행하고, 표면 처리 강판의 부식이 개시된 시점에서의 전위로 30분간 유지함으로써 부식을 촉진시켰다. 그리고, 부식을 촉진시킨 결과, 20×20㎜ 영역에서 표면 처리 강판에 공식이 발생했는지 여부를 육안으로 관찰했다.The surface-treated steel sheet masked with the area of 20 x 20 mm was immersed in a 5 wt% aqueous solution of sodium chloride, and the potential was forcefully and slowly applied at a reference electrode: Ag / AgCl, counter electrode: Pt, , And the corrosion was promoted by keeping the surface-treated steel sheet at a potential at the time when corrosion of the surface-treated steel sheet was started for 30 minutes. As a result of accelerating the corrosion, it was visually observed whether or not the formula occurred in the surface-treated steel sheet in the area of 20 × 20 mm.

《실시예 1》&Quot; Example 1 &

원판으로서 하기에 나타내는 화학 조성을 갖는 저탄소 알루미늄킬드강의 냉간 압연판(두께 0.25㎜)을 소둔해 얻어진 강판을 준비했다.A steel sheet obtained by annealing a cold rolled plate (thickness 0.25 mm) of a low-carbon aluminum-killed steel having the following chemical composition as a disk was prepared.

C: 0.045 중량%, Mn: 0.23 중량%, Si: 0.02 중량%, P: 0.012 중량%, S: 0.009 중량%, Al: 0.063 중량%, N: 0.0036 중량%, 잔부: Fe 및 불가피한 불순물C: 0.045% by weight, Mn: 0.23% by weight, Si: 0.02% by weight, P: 0.012% by weight, S: 0.009% by weight, Al: 0.063% by weight, N: 0.0036% by weight, balance: Fe and unavoidable impurities

그리고, 준비한 강판에 대해 알칼리 전해 탈지, 황산 침지의 산세를 행한 후, 하기 조건으로 니켈 도금을 행하여 두께 0.5㎛의 니켈 도금층을 형성했다.Then, the prepared steel sheet was subjected to alkali electrolytic degreasing and sulfuric acid soaking, and then nickel plating was performed under the following conditions to form a nickel plating layer having a thickness of 0.5 탆.

욕 조성: 황산 니켈 250 g/L, 염화 니켈 45 g/L, 붕산 30 g/LBath composition: 250 g / L of nickel sulfate, 45 g / L of nickel chloride, 30 g / L of boric acid

pH: 3 내지 4.8pH: 3 to 4.8

욕온: 60℃Bath temperature: 60 ℃

전류 밀도: 10 A/d㎡Current density: 10 A / dm 2

계속해서, 니켈 도금층을 형성한 강판에 대해, 상자형 소둔에 의해 온도 650℃, 2시간, 비산화성 분위기(진공 소둔)의 조건으로 열처리를 행하고, 니켈 도금층에 대해 열확산 처리를 행함으로써 철-니켈 합금층을 형성해 표면 처리 강판을 얻었다. 이와 같이 하여 얻어진 표면 처리 강판에 대해, 상기 방법에 따라 오제 전자 분광 분석에 의한 Fe/Ni치, 염화 나트륨 수용액 중에서의 침지 전위, 공식 발생 유무의 각 평가를 행했다. 결과를 표 1에 나타낸다.Subsequently, the steel sheet on which the nickel plating layer was formed was subjected to heat treatment under the conditions of a non-oxidizing atmosphere (vacuum annealing) at a temperature of 650 DEG C for 2 hours by box annealing, and the nickel plating layer was subjected to thermal diffusion treatment to obtain iron- Alloy layer was formed to obtain a surface-treated steel sheet. Each of the thus-obtained surface-treated steel sheets was evaluated for Fe / Ni value, immersion potential in an aqueous solution of sodium chloride, and occurrence of formulations by the above-mentioned method according to the above-mentioned Auelectronics Spectroscopy. The results are shown in Table 1.

《실시예 2》&Quot; Example 2 &quot;

열처리 시간을 4시간으로 변경한 것 외에는, 실시예 1과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface treated steel sheet was obtained in the same manner as in Example 1 except that the heat treatment time was changed to 4 hours, and the same evaluation was made. The results are shown in Table 1.

《실시예 3》&Quot; Example 3 &quot;

니켈 도금층의 두께를 1㎛로 한 것 외에는, 실시예 2와 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface-treated steel sheet was obtained in the same manner as in Example 2 except that the thickness of the nickel plating layer was 1 mu m, and the same evaluation was made. The results are shown in Table 1.

《실시예 4》&Quot; Example 4 &quot;

열처리 시간을 8시간으로 변경한 것 외에는, 실시예 1과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface treated steel sheet was obtained in the same manner as in Example 1 except that the heat treatment time was changed to 8 hours, and the same evaluation was made. The results are shown in Table 1.

《실시예 5》&Quot; Example 5 &quot;

열처리 시간을 8시간으로 변경한 것 외에는, 실시예 3과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface treated steel sheet was obtained in the same manner as in Example 3 except that the heat treatment time was changed to 8 hours, and the same evaluation was made. The results are shown in Table 1.

《실시예 6》&Quot; Example 6 &quot;

니켈 도금층의 두께를 2㎛로 하고, 열처리 시간을 12시간으로 변경한 것 외에는, 실시예 1과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface treated steel sheet was obtained in the same manner as in Example 1 except that the thickness of the nickel plating layer was changed to 2 탆 and the heat treatment time was changed to 12 hours. The results are shown in Table 1.

《실시예 7》&Quot; Example 7 &quot;

열처리를 온도 800℃, 1분, 비산화성 분위기(진공 소둔)의 연속 소둔으로 변경한 것 외에는, 실시예 1과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface-treated steel sheet was obtained in the same manner as in Example 1 except that the heat treatment was changed to continuous annealing at a temperature of 800 占 폚 for one minute in a non-oxidizing atmosphere (vacuum annealing). The results are shown in Table 1.

《실시예 8》&Quot; Example 8 &quot;

열처리 온도를 900℃로 변경한 것 외에는, 실시예 7과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface treated steel sheet was obtained in the same manner as in Example 7 except that the heat treatment temperature was changed to 900 캜, and the same evaluation was made. The results are shown in Table 1.

《비교예 1》&Quot; Comparative Example 1 &

열처리를 행하지 않은 것 외에는, 실시예 1과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface treated steel sheet was obtained in the same manner as in Example 1 except that the heat treatment was not performed, and the same evaluation was made. The results are shown in Table 1.

《비교예 2 내지 4》&Quot; Comparative Examples 2 to 4 &quot;

니켈 도금층의 두께를 각각 1㎛(비교예 2), 2㎛(비교예 3), 3㎛(비교예 4)로 한 것 외에는, 비교예 1과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface-treated steel sheet was obtained in the same manner as in Comparative Example 1 except that the thickness of the nickel plating layer was 1 占 퐉 (Comparative Example 2), 2 占 퐉 (Comparative Example 3), and 3 占 퐉 (Comparative Example 4). The results are shown in Table 1.

《비교예 5》&Quot; Comparative Example 5 &

니켈 도금층의 두께를 1㎛로 한 것 외에는, 실시예 1과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface-treated steel sheet was obtained in the same manner as in Example 1, except that the thickness of the nickel plating layer was 1 占 퐉. The results are shown in Table 1.

《비교예 6》&Quot; Comparative Example 6 &

니켈 도금층의 두께를 3㎛로 한 것 외에는, 실시예 1과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface-treated steel sheet was obtained in the same manner as in Example 1 except that the thickness of the nickel plating layer was 3 m, and the same evaluation was made. The results are shown in Table 1.

《비교예 7, 8》&Quot; Comparative Examples 7 and 8 &quot;

열처리 시간을 각각 4시간(비교예 7), 8시간(비교예 8)으로 한 것 외에는, 비교예 6과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface treated steel sheet was obtained in the same manner as in Comparative Example 6 except that the heat treatment time was 4 hours (Comparative Example 7) and 8 hours (Comparative Example 8). The results are shown in Table 1.

《비교예 9》&Quot; Comparative Example 9 &

열처리 온도를 720℃로 변경한 것 외에는, 실시예 7과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface-treated steel sheet was obtained in the same manner as in Example 7 except that the heat treatment temperature was changed to 720 占 폚. The results are shown in Table 1.

《비교예 10》&Quot; Comparative Example 10 &

열처리를 온도 720℃, 1분, 비산화성 분위기(진공 소둔)의 연속 소둔으로 변경한 것 외에는, 실시예 3과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface treated steel sheet was obtained in the same manner as in Example 3 except that the heat treatment was changed to continuous annealing at 720 占 폚 for 1 minute in a non-oxidizing atmosphere (vacuum annealing). The results are shown in Table 1.

《비교예 11》&Quot; Comparative Example 11 &

열처리 온도를 800℃로 변경한 것 외에는, 비교예 10과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface treated steel sheet was obtained in the same manner as in Comparative Example 10 except that the heat treatment temperature was changed to 800 캜, and the same evaluation was made. The results are shown in Table 1.

《비교예 12》&Quot; Comparative Example 12 &

열처리 온도를 900℃로 변경한 것 외에는, 비교예 10과 마찬가지로 하여 표면 처리 강판을 얻어 동일하게 평가했다. 결과를 표 1에 나타낸다.A surface-treated steel sheet was obtained in the same manner as in Comparative Example 10, except that the heat treatment temperature was changed to 900 캜. The results are shown in Table 1.

Figure pct00001
Figure pct00001

표 1에 나타내는 바와 같이, 철-니켈 합금층의 표면에서의 오제 전자 분광 분석에 의한 Fe/Ni치가 0.3 내지 2.0의 범위에 있는 실시예 1 내지 8에서는, 공식의 발생이 억제되고 있어 양호한 결과가 되었다. 또한, 실시예 1 내지 8에서는, 염화 나트륨 수용액 중에서의 철 단체에 대한 침지 전위도 +0.05 내지 +0.25 V의 범위 내였다.As shown in Table 1, in Examples 1 to 8 in which the Fe / Ni value by the Auger electron spectroscopy analysis on the surface of the iron-nickel alloy layer was in the range of 0.3 to 2.0, the occurrence of the formula was suppressed, . Further, in Examples 1 to 8, the immersion potential for the iron group in the aqueous solution of sodium chloride was also in the range of +0.05 to +0.25 V.

한편, 철-니켈 합금층 대신에 니켈 도금층을 최표면에 형성한 비교예 1 내지 4, 철-니켈 합금층의 표면에서의 오제 전자 분광 분석에 의한 Fe/Ni치가 0.3 미만인 비교예 5 내지 12에서는 공식이 발생하였다. 이 때문에 연료 파이프나 전지캔 용도 등 부식성의 액상 내용물에 노출된 상태로 이용되는 경우에는 공식을 통해 내용물이 외부로 누출될 우려가 있었다.On the other hand, in Comparative Examples 1 to 4 in which a nickel plating layer was formed on the outermost surface in place of the iron-nickel alloy layer, and in Comparative Examples 5 to 12 in which Fe / Ni value was less than 0.3 as determined by the Auger electron spectroscopic analysis on the surface of the iron- The formula occurred. Therefore, when the fuel cell is used in a state of being exposed to corrosive liquid contents such as a fuel pipe or a battery can, there is a fear that the contents leak out through the formula.

Claims (4)

최표면에 철-니켈 합금층이 형성되는 표면 처리 강판으로서, 상기 철-니켈 합금층의 표면에서의 오제 전자 분광 분석에 의한 Fe/Ni치가 0.3 내지 2.0의 범위인 것을 특징으로 하는 표면 처리 강판.A surface-treated steel sheet having an iron-nickel alloy layer formed on the outermost surface thereof, wherein the surface of the iron-nickel alloy layer has an Fe / Ni value of 0.3 to 2.0 as determined by Auger electron spectroscopy analysis. 제1항에 있어서,
상기 철-니켈 합금층의 염화 나트륨 수용액 중에서의 침지 전위가, 철 단체의 염화 나트륨 수용액 중에서의 침지 전위에 대해 +0.05 내지 +0.25 V의 범위인 것을 특징으로 하는 표면 처리 강판.
The method according to claim 1,
Characterized in that the immersion potential of the iron-nickel alloy layer in an aqueous solution of sodium chloride is in the range of +0.05 to +0.25 V with respect to the immersion potential in an aqueous solution of sodium chloride alone.
제1항 또는 제2항에 기재된 표면 처리 강판을 성형 가공해 이루어지는 연료 파이프.A fuel pipe formed by molding the surface-treated steel sheet according to claim 1 or 2. 제1항 또는 제2항에 기재된 표면 처리 강판을 성형 가공해 이루어지는 전지캔.A battery can made by molding the surface-treated steel sheet according to claim 1 or 2.
KR1020147002295A 2011-06-30 2012-06-29 Surface-treated steel plate, fuel pipe, cell can KR20140053138A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2011-145263 2011-06-30
JP2011145263 2011-06-30
PCT/JP2012/066641 WO2013002356A1 (en) 2011-06-30 2012-06-29 Surface-treated steel plate, fuel pipe, cell can

Publications (1)

Publication Number Publication Date
KR20140053138A true KR20140053138A (en) 2014-05-07

Family

ID=47424241

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147002295A KR20140053138A (en) 2011-06-30 2012-06-29 Surface-treated steel plate, fuel pipe, cell can

Country Status (5)

Country Link
JP (2) JP6162601B2 (en)
KR (1) KR20140053138A (en)
CN (1) CN107012488B (en)
IN (1) IN2014CN00464A (en)
WO (1) WO2013002356A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180083430A (en) * 2015-12-03 2018-07-20 도요 고한 가부시키가이샤 Nickel-plated heat-treated steel sheet for battery can

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945155B (en) * 2017-07-28 2022-06-07 杰富意钢铁株式会社 Steel sheet for battery outer can, and battery
US11946121B2 (en) 2017-07-28 2024-04-02 Jfe Steel Corporation Steel sheet for battery outer tube cans, battery outer tube can and battery
KR102045654B1 (en) 2017-12-26 2019-11-15 주식회사 포스코 Cold rolled steel sheet having excellent high temperature mechanical properties as well as room temperature workability and method of manufacturing the same
JP2022127529A (en) * 2021-02-19 2022-08-31 東洋鋼鈑株式会社 Steel foil for battery container, and pouch battery container manufactured with the same
US20240011596A1 (en) * 2022-07-06 2024-01-11 Indiana Tube Corporation Corrosion resistant tube and method of manufacture

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037483A (en) * 1983-08-09 1985-02-26 マルヤス工業株式会社 High-pressure fuel injecting pipe with surface cured layer
JPS61235594A (en) * 1985-04-11 1986-10-20 Nisshin Steel Co Ltd Ni plated steel sheet having superior workability and corrosion resistance and its manufacture
JP3045612B2 (en) * 1992-06-22 2000-05-29 東洋鋼鈑株式会社 High corrosion resistant nickel-plated steel strip and its manufacturing method
JPH06122993A (en) * 1992-10-09 1994-05-06 Toyota Autom Loom Works Ltd Method for plating amorphous alloy film
JPH08232092A (en) * 1995-02-24 1996-09-10 Nisshin Steel Co Ltd Production of composite electroplated steel sheet for fuel tank
JP3439912B2 (en) * 1996-03-26 2003-08-25 日新製鋼株式会社 Battery can material excellent in deep drawability and method for producing the same
JPH09306439A (en) * 1996-05-21 1997-11-28 Katayama Tokushu Kogyo Kk Battery can forming material, battery can forming method and battery can
JPH10212595A (en) * 1998-03-06 1998-08-11 Katayama Tokushu Kogyo Kk Manufacture of battery can forming material and battery can made of the same forming material
US6551721B1 (en) * 1999-05-27 2003-04-22 Toyo Kohan Co., Ltd. Surface-treated steel sheet for battery case, battery case comprising the same, methods for producing them, and battery
JP3745626B2 (en) * 2001-01-09 2006-02-15 新日本製鐵株式会社 Ni-plated steel plate for alkaline manganese battery positive electrode can
JP2004076118A (en) * 2002-08-20 2004-03-11 Toyo Kohan Co Ltd Surface treated steel sheet for battery case, manufacturing method therefor, battery case formed of the steel sheet, and battery using the battery case
JP4133701B2 (en) * 2003-09-04 2008-08-13 新日本製鐵株式会社 Ni-plated steel sheet for non-aqueous electrolyte battery case and battery case using this steel sheet
JP2005154793A (en) * 2003-11-20 2005-06-16 Toyo Kohan Co Ltd Surface-treated steel plate for stepping motor, method for manufacturing surface-treated steel plate for stepping motor, and stepping motor obtained by using the surface-treated steel plate
US7399533B2 (en) * 2005-01-21 2008-07-15 Arkema Inc. Polyvinylidene fluoride coating for metal substrates
JP4824961B2 (en) * 2005-07-22 2011-11-30 東洋鋼鈑株式会社 Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007051324A (en) * 2005-08-17 2007-03-01 Toyo Kohan Co Ltd Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP2007302935A (en) * 2006-05-10 2007-11-22 Nippon Steel Corp Ni plated steel sheet for positive electrode can of alkali battery and method of manufacturing the same
JP2007335205A (en) * 2006-06-14 2007-12-27 Jfe Steel Kk Steel sheet for forming battery can with superior leakage resistance and heavy-load discharge performance, its manufacturing method, battery can, and alkaline dry cell
JP2008041527A (en) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd Battery can, and battery using it
US8734961B2 (en) * 2009-06-09 2014-05-27 Toyo Kohan Co., Ltd. Nickel-plated steel sheet and process for producing battery can using the nickel-plated steel sheet
IN2012DN02851A (en) * 2009-09-18 2015-07-24 Toyo Kohan Co Ltd
MX2012003184A (en) * 2009-09-18 2012-07-03 Toyo Kohan Co Ltd Steel sheet used to manufacture pipe and having corrosion-resistant properties against fuel vapors, and pipe and fuel supply pipe that use same.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180083430A (en) * 2015-12-03 2018-07-20 도요 고한 가부시키가이샤 Nickel-plated heat-treated steel sheet for battery can

Also Published As

Publication number Publication date
JPWO2013002356A1 (en) 2015-02-23
JP6400140B2 (en) 2018-10-03
JP6162601B2 (en) 2017-07-12
IN2014CN00464A (en) 2015-04-03
CN107012488B (en) 2019-03-08
WO2013002356A1 (en) 2013-01-03
CN103649362A (en) 2014-03-19
CN107012488A (en) 2017-08-04
JP2017122281A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
US11001918B2 (en) High-strength hot-dip galvanized steel sheet having excellent plating surface quality and adhesion, and method of manufacturing the same
JP6400140B2 (en) Method for producing surface-treated steel sheet and method for producing battery can
US11248287B2 (en) Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance
KR102393825B1 (en) Method for producing surface-treated steel sheet for battery container and surface-treated steel sheet for battery container
WO2012046879A1 (en) Ferritic stainless steel having excellent corrosion resistance and electrical conductivity, method for producing same, solid polymer fuel cell separator, and solid polymer fuel cell
EP2479317B1 (en) Fuel supply pipe
EP3591098A1 (en) Surface-treated steel sheet
EP4242340A1 (en) Fe-based electroplated steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for manufacturing same
US20180371596A1 (en) High-strength hot-dip zinc plated steel material having excellent plating properties and method for preparing same
KR101692179B1 (en) High strength steel sheet and method for manufacturing the same
KR101538240B1 (en) High strength steel sheet and method for manufacturing the same
KR101640702B1 (en) Electroplating steel sheet, electroplated steel sheet, and manufacturing method thereof
KR20170122244A (en) Plated steel sheet and manufacturing method thereof
JP4980266B2 (en) High corrosion resistance plated steel material and method for producing the same
US9700928B2 (en) Steel plate for producing pipe highly resistant to fuel vapor corrosion, pipe using same and method for producing pipe
KR102604165B1 (en) Zinc plated steel sheet having excellent fatigue strength of electrical resistance spot welds and manufacturing method thereof
KR102326687B1 (en) High strength cold steel sheet with good phosphating property and method for manufacturing the same
KR101482301B1 (en) High strength galvanealed steel sheet with good wettability and adhesion and method for manufacturing the same
EP3625838A1 (en) Low interfacial contact resistance material, use thereof and method of producing said material
KR20230166132A (en) Material cold rolled steel sheet with Fe-based film, manufacturing method of material cold-rolled steel sheet with Fe-based film, manufacturing method of cold-rolled steel sheet with Fe-based film, manufacturing method of hot-dip galvanized steel sheet, and manufacturing method of alloyed hot-dip galvanized steel sheet.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application