JPH06122993A - Method for plating amorphous alloy film - Google Patents

Method for plating amorphous alloy film

Info

Publication number
JPH06122993A
JPH06122993A JP27158292A JP27158292A JPH06122993A JP H06122993 A JPH06122993 A JP H06122993A JP 27158292 A JP27158292 A JP 27158292A JP 27158292 A JP27158292 A JP 27158292A JP H06122993 A JPH06122993 A JP H06122993A
Authority
JP
Japan
Prior art keywords
soft magnetic
film
magnetic film
amorphous
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27158292A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kato
祥文 加藤
Hisashi Shiraki
久史 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP27158292A priority Critical patent/JPH06122993A/en
Publication of JPH06122993A publication Critical patent/JPH06122993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To provide a plating method capable of controlling the composition of an amorphous alloy film contg. plural kinds of metals and metalloid elements, formed from an electroless plating bath. CONSTITUTION:A shaft is dipped in an electroless plating bath contg. plural kinds of metal ions, a reducing agent and metalloid elements and plated. In this case, as the amt. of metalloid elements to be added is increased, the metalloid element content of the film to be formed increases, the film is further made amorphous, and the contents of the plural metals are significantly changed. Accordingly, a current is applied with a base material as the cathode in electroless plating to change the contents of plural metals in the amorphous alloy film, and hence the contents of metals are not fluctuated when the metalloid elements are increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アモルファス合金膜の
メッキ方法に関する。本発明のアモルファス合金膜は磁
気ヘッド、トランス、センサなどに用いる軟磁性膜とし
て好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for plating an amorphous alloy film. The amorphous alloy film of the present invention is suitable as a soft magnetic film used for magnetic heads, transformers, sensors and the like.

【0002】[0002]

【従来技術】結晶質又はアモルファスの軟磁性膜をシャ
フトに被着し、この軟磁性膜に磁気異方性を与え、シャ
フトの捩れによる軟磁性膜の磁気特性の変化を磁気的に
検出する磁歪式トルクセンサが知られている。このよう
な磁歪式トルクセンサに採用される軟磁性膜の製造方法
として、例えば以下の方法が提案されている。
2. Description of the Related Art Magnetostriction in which a crystalline or amorphous soft magnetic film is adhered to a shaft, magnetic anisotropy is given to the soft magnetic film, and a change in magnetic characteristics of the soft magnetic film due to twisting of the shaft is magnetically detected. Type torque sensors are known. For example, the following method has been proposed as a method for manufacturing a soft magnetic film used in such a magnetostrictive torque sensor.

【0003】特開昭59−164931号公報は、ニッ
ケルの電解めっきにより結晶質の軟磁性膜を形成するこ
とを提案しており、その他、例えば次亜リン酸ナトリウ
ムを還元剤として用い、Feイオン及びNiイオンを含
むアンモニアアルカリ性酒石酸浴に前処理を施した基材
を数時間浸漬することにより結晶質のFe−Ni−P軟
磁性膜を形成する無電解めっき法が公知となっている。
上記結晶質の軟磁性膜に対して、スパッタリング法や真
空急冷法などで形成したアモルファス軟磁性膜は磁壁移
動の障害となる結晶欠陥などが無いので磁歪式トルクセ
ンサの軟磁性膜としてより優れていることが知られてい
る。
Japanese Unexamined Patent Publication No. 59-164931 proposes to form a crystalline soft magnetic film by nickel electroplating. In addition, for example, sodium hypophosphite is used as a reducing agent and Fe ions are used. An electroless plating method is known in which a crystalline Fe—Ni—P soft magnetic film is formed by immersing a pretreated substrate in an ammonia alkaline tartaric acid bath containing nickel ions for several hours.
Compared to the crystalline soft magnetic film, the amorphous soft magnetic film formed by the sputtering method or the vacuum quenching method has no crystal defects that hinder the domain wall movement, and thus is more excellent as the soft magnetic film of the magnetostrictive torque sensor. Is known to exist.

【0004】更に、無電解めっき浴中のボロン(又はメ
タロイド元素)濃度を増加することにより、ボロン原子
が結晶成長を阻害して膜の結晶構造の微細化、アモルフ
ァス化を実現できることが知られている。
Further, it is known that by increasing the concentration of boron (or metalloid element) in the electroless plating bath, boron atoms inhibit crystal growth, and the crystal structure of the film can be made finer and amorphous. There is.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記した
従来の無電界めっき法により軟磁性膜を形成する際にボ
ロンを添加して結晶を微細化することが考えられるが、
この方法により軟磁性膜として好適なFe−Ni−Bア
モルファス軟磁性膜が実際に作製できるかどうかは知ら
れていなかった。
However, it is conceivable to add boron when the soft magnetic film is formed by the above-mentioned conventional electroless plating method to make the crystal fine.
It was not known whether an Fe-Ni-B amorphous soft magnetic film suitable as a soft magnetic film could be actually manufactured by this method.

【0006】本発明者の実験によれば、無電解めっき浴
にボロンを添加してアモルファス軟磁性膜(例えばボロ
ン3wt%含有)を形成する場合、得られたアモルファ
ス膜中の鉄含有率が大体20wt%以下と小さいため、
飽和磁束密度が低く、磁歪式トルクセンサ用の軟磁性膜
として結晶質の軟磁性膜に比べ出力感度の低下を招く欠
点があった。
According to experiments conducted by the present inventor, when boron is added to an electroless plating bath to form an amorphous soft magnetic film (for example, containing 3 wt% of boron), the iron content in the obtained amorphous film is roughly the same. Since it is as small as 20 wt% or less,
It has a low saturation magnetic flux density and has a drawback that it causes a decrease in output sensitivity as a soft magnetic film for a magnetostrictive torque sensor as compared with a crystalline soft magnetic film.

【0007】また、めっき浴中のボロン添加量を減少す
るとアモルファス軟磁性膜(例えばボロン0.5wt%
含有)中の鉄含有率(約35%)を増加でき、飽和磁束
密度の向上、出力感度の向上を実現できるが、軟磁性膜
中のボロン量が少ないので軟磁性膜が結晶化してしまう
欠点があった。本発明は上記問題に鑑みなされたもので
あり、無電解めっき浴から形成される複数種類の金属と
メタロイド元素とを含む微結晶構造又はアモルファス構
造の合金膜における組成制御が可能なメッキ方法を提供
することを、その解決すべき課題としている。
Further, if the amount of boron added in the plating bath is reduced, an amorphous soft magnetic film (for example, 0.5 wt% boron) is formed.
Iron content (about 35%) can be increased, saturation magnetic flux density can be improved, and output sensitivity can be improved, but the soft magnetic film is crystallized because the amount of boron in the soft magnetic film is small. was there. The present invention has been made in view of the above problems, and provides a plating method capable of composition control in an alloy film having a microcrystalline structure or an amorphous structure containing a plurality of types of metals and metalloid elements formed from an electroless plating bath. The task to be solved is to do.

【0008】[0008]

【課題を解決するための手段】本発明のメッキ方法は、
複数種類の金属イオンと、メタロイド元素を含む還元剤
とを含む無電解めっき浴中に基材を浸漬して、上記基材
表面に上記複数の金属及びメタロイド元素を含むアモル
ファス合金膜をめっきする方法において、上記基材を陰
極として通電することにより上記合金膜の組成を調節す
ることを特徴としている。
The plating method of the present invention comprises:
A method of immersing a base material in an electroless plating bath containing a plurality of types of metal ions and a reducing agent containing a metalloid element, and plating an amorphous alloy film containing the plurality of metals and the metalloid element on the surface of the base material. In the above, the composition of the alloy film is adjusted by energizing the base material as a cathode.

【0009】好適な態様において、上記通電により、上
記メタロイド元素との親和力がより小さい方の上記金属
が富化される。還元剤として、水素化ホウ素ナトリウ
ム、ジメチルアミンボラン、次亜リン酸ナトリウムなど
を用いることができる。アモルファス軟磁性膜における
上記金属イオンの一種類として、鉄が好適である。
In a preferred embodiment, the energization enriches the metal having a smaller affinity with the metalloid element. As the reducing agent, sodium borohydride, dimethylamine borane, sodium hypophosphite and the like can be used. Iron is suitable as one type of the metal ions in the amorphous soft magnetic film.

【0010】アモルファス軟磁性膜における上記金属イ
オンの他種類として、ニッケル又はコバルトが好適であ
る。
Nickel or cobalt is suitable as another type of the above metal ions in the amorphous soft magnetic film.

【0011】[0011]

【作用】実験によれば、複数種類の金属のイオン、還元
剤及びメタロイド元素を含む無電解めっき浴中にシャフ
トを浸漬して無電界めっきを行う際、メタロイド元素を
含む物質(メタロイド化合物という)の添加量を増大し
ていくと、形成される膜中のメタロイド元素の組成比率
が増加し、それとともに結晶構造の微細化、アモルファ
ス化が進む。これは同種原子間の親和力より、他種原子
間(特にメタロイド元素との)親和力が大きいために結
晶成長が阻害されるためと考えられる。特に、ボロンの
ように原子量が比較的小さいメタロイド元素は原子量が
大きい金属原子との間で作るユニットセルの歪みが大き
く、結晶成長を阻害する。しかしながら、このようなメ
タロイド化合物の添加量の増大は、無電界めっきされる
上記複数種類の金属の組成比率を顕著に変化させること
がわかった。
[Operation] According to the experiment, when electroless plating is performed by immersing the shaft in an electroless plating bath containing a plurality of kinds of metal ions, a reducing agent and a metalloid element, a substance containing a metalloid element (called a metalloid compound) As the addition amount of is increased, the composition ratio of the metalloid element in the formed film increases, and along with that, the crystal structure becomes finer and amorphous. It is considered that this is because the crystal growth is hindered because the affinity between atoms of other species (particularly with the metalloid element) is larger than the affinity between atoms of the same species. In particular, a metalloid element having a relatively small atomic weight such as boron has a large strain in a unit cell formed between a metal atom having a large atomic weight and inhibits crystal growth. However, it has been found that such an increase in the amount of the metalloid compound added remarkably changes the composition ratio of the above-described plurality of kinds of metals to be electroless plated.

【0012】これは、メタロイド元素と上記複数種類の
金属との間の親和力に差があり、そのために、例えば膜
表面などにおけるメタロイド元素の増加によりそれと親
和力の強い金属原子が多量に堆積(吸着)されるため、
形成された合金膜の組成が変化するためと考えられる。
例えば、Fe−Ni−Bアモルファス軟磁性膜の無電界
めっきを行った場合、Bの添加量を増加すると、アモル
ファス膜中のNiが顕著に増加し、Feが顕著に減少す
る。そこで、アモルファス膜を形成すべきシャフトを陰
極として通電すなわち電解反応を行うと、メタロイド元
素と親和力が比較的小さい方の金属イオンも電界により
加速されるためか、このメタロイド元素と親和力が比較
的小さい方の金属の組成比率が向上することが判明し
た。すなわち、微結晶構造又はアモルファス構造形成の
ためのメタロイド元素によるアモルファス軟磁性膜の組
成を通電により好適な比率に変化させることができるこ
とがわかった。
This is because there is a difference in affinity between the metalloid element and the above-mentioned plurality of kinds of metals, and for this reason, for example, due to an increase in the metalloid element on the film surface or the like, a large number of metal atoms having a strong affinity with it are deposited (adsorption). Because
It is considered that the composition of the formed alloy film changes.
For example, when electroless plating of an Fe-Ni-B amorphous soft magnetic film is performed, when the amount of B added is increased, Ni in the amorphous film is remarkably increased and Fe is remarkably decreased. Therefore, when electricity is applied, that is, when an electrolytic reaction is performed with the shaft on which the amorphous film is to be formed as a cathode, the metal ion having a relatively low affinity with the metalloid element is also accelerated by the electric field, and the affinity with the metalloid element is relatively low. It was found that the composition ratio of the other metal was improved. That is, it has been found that the composition of the amorphous soft magnetic film formed of the metalloid element for forming the microcrystalline structure or the amorphous structure can be changed to a suitable ratio by energization.

【0013】[0013]

【発明の効果】実験によれば、複数種類の金属のイオ
ン、還元剤及びメタロイド元素を含む無電解めっき浴中
にシャフトを浸漬して、シャフト表面に上記複数の金属
及びメタロイド元素を含むアモルファス軟磁性膜を形成
する際に、シャフトを陰極として通電することによりア
モルファス軟磁性膜の組成を調節できることがわかっ
た。
According to the experiment, the shaft is immersed in an electroless plating bath containing ions of a plurality of kinds of metals, a reducing agent and a metalloid element, and the surface of the shaft is made of an amorphous soft metal containing the plurality of metals and the metalloid element. It has been found that the composition of the amorphous soft magnetic film can be adjusted by energizing the shaft with the shaft as a cathode when forming the magnetic film.

【0014】[0014]

【実施例】以下、実施例により具体的に説明する。図1
及び図2に示すように、材質がS45Cで直径が20m
m、長さが150mmのシャフト(シャフト)1の表面
に予めヘリカルスプライン溝(図2参照)2を形成し、
アルカリ性脱脂液などで脱脂後、希塩酸にて活性化し
た。なお、ヘリカルスプライン溝2のリード角は互いに
逆向きとなっている。
EXAMPLES The present invention will be specifically described below with reference to examples. Figure 1
And as shown in FIG. 2, the material is S45C and the diameter is 20 m.
m, a helical spline groove (see FIG. 2) 2 is previously formed on the surface of a shaft 1 having a length of 150 mm,
After degreasing with an alkaline degreasing liquid or the like, activation was performed with dilute hydrochloric acid. The lead angles of the helical spline grooves 2 are opposite to each other.

【0015】次に、水洗後、無電解めっきにより約2μ
mの厚さにアモルファスの下地ニッケル膜(Ni−P
膜、図示せず)を形成し、次に、通電、無電界めっきを
行うことにより鉄、ニッケル、ボロン(Fe−Ni−
B)からなる厚さ約20μmのアモルファス軟磁性膜3
を形成した。下地ニッケル膜はシャフト1の結晶構造が
電解めっきによるアモルファス軟磁性膜3に悪影響を与
えるのを防止するためになされる。なお、不要な部分の
膜はメッキ前にマスキング処理することによりシャフト
1表面への着膜を防止している。
Next, after washing with water, electroless plating is performed to obtain about 2 μm.
Amorphous underlayer nickel film (Ni-P
A film (not shown) is formed, and then electric current and electroless plating are performed to form iron, nickel and boron (Fe-Ni-
Amorphous soft magnetic film 3 of B) having a thickness of about 20 μm
Was formed. The underlying nickel film is provided to prevent the crystal structure of the shaft 1 from adversely affecting the amorphous soft magnetic film 3 formed by electrolytic plating. The film of the unnecessary portion is masked before plating to prevent the film from adhering to the surface of the shaft 1.

【0016】以下、めっきの条件を示す。下地ニッケル
膜形成のための無電解めっきは、浴温80℃、浸漬時間
15分、無電解めっき浴にはトップニコロンN−47−
1(奥野製薬KK製)を蒸留水で5倍希釈したものを用
いた。Fe−Ni−Bアモルファス軟磁性膜3形成のた
めの通電、無電界めっきは、浴温60℃、通電時間6時
間、浴PH9.2、シャフト1表面の成膜表面における
電流密度0.43A/dm2 、メッキ浴の組成は表1の
通りとして実施した。
The plating conditions are shown below. The electroless plating for forming the underlying nickel film is carried out at a bath temperature of 80 ° C., a dipping time of 15 minutes, and a top electroless plating bath N-47-
1 (manufactured by Okuno Seiyaku KK) was diluted 5 times with distilled water and used. The energization and electroless plating for forming the Fe-Ni-B amorphous soft magnetic film 3 are carried out at a bath temperature of 60 ° C., an energization time of 6 hours, a bath PH of 9.2, and a current density of 0.43 A / on the film forming surface of the shaft 1 surface. The composition of dm 2 and the plating bath was as shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】このようにして作製したアモルファス軟磁
性膜3の組成は、鉄、ニッケル、ボロンが重量比で3
0、68.5、0.5であった。なお、鉄、ニッケルの
含有率は蛍光X線法で、ボロンの含有率はICP法で測
定した。以下、図1の検出回路を用いてアモルファス軟
磁性膜3の磁歪特性を調べた。この検出回路は、一対の
アモルファス軟磁性膜3、3に微小間隙を隔ててコイル
4、4を巻装し、両コイル4、4の各一端を高位電源V
Hに接続し、各他端を所定周期で発振するマルチバイブ
レ−タの両コレクタに個別に接続して、エミッタ間の電
圧V0 を検出した。このエミッタ間の電圧V0 は両コイ
ル4、4のリアクタンスの差すなわちアモルファス軟磁
性膜3、3の比透磁率の差に比例する。なお、図1のマ
ルチバイブレ−タ型の検出回路自体は周知でありかつ本
発明の要部ではないので、その詳細説明は省略する。
The composition of the amorphous soft magnetic film 3 thus manufactured is iron, nickel, and boron in a weight ratio of 3.
It was 0, 68.5, 0.5. The contents of iron and nickel were measured by the fluorescent X-ray method, and the contents of boron were measured by the ICP method. Hereinafter, the magnetostrictive characteristic of the amorphous soft magnetic film 3 was examined using the detection circuit of FIG. In this detection circuit, coils 4 and 4 are wound around a pair of amorphous soft magnetic films 3 and 3 with a minute gap therebetween, and one end of each of the coils 4 and 4 is connected to a high power source V.
The voltage V 0 between the emitters was detected by connecting to H and connecting the other ends to both collectors of a multivibrator which oscillates at a predetermined cycle. The voltage V 0 between the emitters is proportional to the difference in reactance between the coils 4 and 4, that is, the difference in relative permeability between the amorphous soft magnetic films 3 and 3. Since the multivibrator type detection circuit itself of FIG. 1 is well known and is not an essential part of the present invention, its detailed description is omitted.

【0019】また、プラズマ溶射法で作製した厚さ70
0μmのアモルファス軟磁性膜(40Fe−56Ni−
4Cr)を用いて他の条件は同じとして比較例品1を用
意し、更に、鉄、ニッケル、シリコンが重量比で17、
81、2で厚さが20μmのアモルファスリボン(液体
急冷法による)からなるアモルファス軟磁性膜をシャフ
トに接着し他の条件は同じとして比較例品2を用意し、
同様にコイル両端の電圧を検出した。図3にその結果を
示す。
The thickness 70 produced by the plasma spraying method
0 μm amorphous soft magnetic film (40Fe-56Ni-
4Cr) and other conditions were the same, and Comparative Example product 1 was prepared. Further, iron, nickel, and silicon were added in a weight ratio of 17,
81 and 2, an amorphous soft magnetic film made of an amorphous ribbon (by a liquid quenching method) having a thickness of 20 μm was adhered to the shaft, and other conditions were the same, and comparative example product 2 was prepared.
Similarly, the voltage across the coil was detected. The results are shown in FIG.

【0020】図3から本実施例のアモルファス軟磁性膜
3は、比較例品1、2に比べて、優れた出力感度を有し
ていることがわかった。次に、本実施例のアモルファス
軟磁性膜3を用いた上記トルクセンサのトルク−出力電
圧特性のリニアリティを調べた。また比較例品3として
組成が40Fe−56Ni−4Crからなる同厚の結晶
質の軟磁性膜を用いたトルクセンサのそれも調べた。図
4にその結果を示す。
From FIG. 3, it was found that the amorphous soft magnetic film 3 of the present example has an excellent output sensitivity as compared with the comparative products 1 and 2. Next, the linearity of the torque-output voltage characteristic of the torque sensor using the amorphous soft magnetic film 3 of the present embodiment was examined. In addition, as a comparative example product 3, a torque sensor using a crystalline soft magnetic film of the same thickness composed of 40Fe-56Ni-4Cr was also examined. The results are shown in FIG.

【0021】図4から本実施例の軟磁性膜3は、比較例
品3に比べて、優れた出力感度を有していることがわか
った。以下、上記実施例のアモルファス軟磁性膜の特性
をテストピースを作製して調べた。まず、直流磁気特性
を調べた。そのために、80×20×2(mm)のアル
ミニウム板を基材として準備し、基材の片面に35×2
0(mm)だけ露出窓を設けて後はマスキングし、上記
と同様の方法でアモルファス軟磁性膜3をめっきしてテ
ストピースを作製した。また、比較例品2として用いた
アモルファス軟磁性膜を上記アルミニウム板に接着して
比較例品4を作製してその直流磁気特性も調べた。図5
にその結果を示す。
From FIG. 4, it was found that the soft magnetic film 3 of the present example has an excellent output sensitivity as compared with the comparative product 3. Hereinafter, the characteristics of the amorphous soft magnetic films of the above-described examples were examined by making test pieces. First, the direct current magnetic characteristics were examined. Therefore, an 80 × 20 × 2 (mm) aluminum plate is prepared as a base material, and 35 × 2 is provided on one side of the base material.
An exposure window was provided by 0 (mm), masking was performed thereafter, and the amorphous soft magnetic film 3 was plated by the same method as described above to prepare a test piece. Further, the amorphous soft magnetic film used as the comparative example product 2 was adhered to the aluminum plate to prepare a comparative example product 4, and its DC magnetic characteristics were also examined. Figure 5
The results are shown in.

【0022】図5から、本実施例の軟磁性膜の最大磁束
密度が大きく、出力向上に有効であることがわかった。
次に、上記めっき浴中のFecl2 添加量を変更した場
合に形成されるアモルファス軟磁性膜の組成変化を調べ
た。その結果を図6に示す。図6から、上記めっき浴中
のFe/Niモル比を増加してもアモルファス軟磁性膜
中のFe比率は40数wt%で飽和することがわかっ
た。そして、上記めっき浴中のFe/Niモル比の増加
によりアモルファス軟磁性膜中のボロン比率が直線的に
低下することがわかった。このようなアモルファス軟磁
性膜中のボロン比率の低下はボロンに対する親和力が相
対的に小さいFeが増加するためと推定される。
From FIG. 5, it was found that the maximum magnetic flux density of the soft magnetic film of this example was large and it was effective for improving the output.
Next, the composition change of the amorphous soft magnetic film formed when the amount of Fecl 2 added in the plating bath was changed was examined. The result is shown in FIG. From FIG. 6, it was found that even if the Fe / Ni molar ratio in the plating bath was increased, the Fe ratio in the amorphous soft magnetic film was saturated at 40 and several wt%. It was also found that the increase in the Fe / Ni molar ratio in the plating bath linearly decreases the boron ratio in the amorphous soft magnetic film. It is estimated that such a decrease in the boron ratio in the amorphous soft magnetic film is due to an increase in Fe, which has a relatively low affinity for boron.

【0023】次に、Fe比率を変化させた上記アモルフ
ァス軟磁性膜のX線回析を行った。なおこのX線回析は
リガクKK製の蛍光X線分析装置を用い、サンプリング
角度0.01°、スキャンスピード1°/min、管電
圧−管電流50kV−150mAの条件下で、軟磁性膜
3をシャフト1から剥離せずに行った。図7にその結果
を示す。この結果、本実施例のアモルファス軟磁性膜の
回析電流の分布は、比較例2品の軟磁性膜に比べ充分平
坦な特性を有し、アモルファス構造を有していることが
確認できた。
Next, X-ray diffraction was performed on the amorphous soft magnetic film with the Fe ratio changed. The X-ray diffraction was performed using a fluorescent X-ray analyzer manufactured by Rigaku KK under the conditions of a sampling angle of 0.01 °, a scan speed of 1 ° / min, a tube voltage-tube current of 50 kV-150 mA. Was carried out without peeling from the shaft 1. The result is shown in FIG. As a result, it was confirmed that the distribution of the diffraction current of the amorphous soft magnetic film of the present example has a sufficiently flat characteristic as compared with the soft magnetic film of the comparative example 2 product and that it has an amorphous structure.

【0024】更に、本実施例のアモルファス軟磁性膜の
X線回折により得られた回折ピークの積分幅をSher
rerの式に代入し、結晶子径を求めた。アモルファス
軟磁性膜のFe組成比と結晶子径との関係を図8に示
す。図8からFe組成比が20〜40wt%で良好なア
モルファス膜が得られることがわかった。なお、本明細
書では結晶子径20オングストローム以下の膜をアモル
ファス膜としている。
Further, the integrated width of the diffraction peak obtained by X-ray diffraction of the amorphous soft magnetic film of this embodiment is Sher.
The crystallite diameter was determined by substituting it into the Rerr equation. FIG. 8 shows the relationship between the Fe composition ratio and the crystallite diameter of the amorphous soft magnetic film. From FIG. 8, it was found that a good amorphous film can be obtained when the Fe composition ratio is 20 to 40 wt%. In this specification, a film having a crystallite diameter of 20 Å or less is an amorphous film.

【0025】次に、上記めっき浴を用い、通電電流量を
変更した場合のアモルファス軟磁性膜の組成変化を調べ
た。その結果、通電電流量が0.2A/dm2 以下であ
ると、アモルファス軟磁性膜皮膜中のFe比率を40w
t%以上とすることはできなかった。また、アモルファ
ス化のためにアモルファス軟磁性膜中に充分なボロン量
(好ましくは2wt%)を確保するためには、めっき浴
中のFe量を低下せざるを得ず、その結果、通電により
めっき浴中のFe量を増加することなく、アモルファス
軟磁性膜中のFe量を増大することが好ましい。
Next, using the above plating bath, the change in composition of the amorphous soft magnetic film when the amount of applied current was changed was examined. As a result, when the applied current amount is 0.2 A / dm 2 or less, the Fe ratio in the amorphous soft magnetic film coating is 40 w.
It could not be set to t% or more. Further, in order to secure a sufficient amount of boron (preferably 2 wt%) in the amorphous soft magnetic film for amorphization, the amount of Fe in the plating bath must be reduced, and as a result, plating is performed by energization. It is preferable to increase the Fe content in the amorphous soft magnetic film without increasing the Fe content in the bath.

【0026】以上の結果、次のことがわかった。すなわ
ち、アモルファス軟磁性膜の組成調節は、めっき浴中に
添加する鉄イオン、ニッケルイオン、ボロンの比を制御
するか、あるいは通電電流を調節することにより得られ
るが、特に、ボロンの増大はボロンとの親和力が相対的
に弱い鉄の含有率を低下させるためにシャフトを陰極と
して通電を行うことが有効である。
As a result of the above, the following was found out. That is, the composition of the amorphous soft magnetic film can be adjusted by controlling the ratio of iron ions, nickel ions, and boron added to the plating bath, or by adjusting the energizing current. It is effective to conduct electricity by using the shaft as a cathode in order to reduce the iron content having a relatively weak affinity with.

【0027】なお、上記実施例においてボロンは結晶成
長点に吸着し、結晶の成長を妨げ、それにより磁歪合金
としての鉄ニッケルがアモルファス化するものと思われ
る。したがって、磁歪金属としてのFeNiをアモルフ
ァス化できる範囲のボロンを添加すれば充分であり、そ
れ以上のボロンの添加は鉄含有率を減少させるので好ま
しくない。このことは鉄と同様にボロンとの親和力が相
対的に弱いコバルトなどでも同じである。
It is considered that in the above-mentioned examples, boron is adsorbed at the crystal growth points and hinders the crystal growth, which causes iron-nickel as a magnetostrictive alloy to become amorphous. Therefore, it is sufficient to add boron within the range in which FeNi as a magnetostrictive metal can be made amorphous, and addition of more boron is not preferable because it decreases the iron content. This is also the case with cobalt, which has a relatively weak affinity with boron as with iron.

【0028】結局、前記したような優れた磁気特性は、
膜中のFe量が10〜45wt%、B量が1.0〜5重
量%、残部をNi、より好ましくは膜中のFe量が20
〜40wt%、B量が1.5〜3.5重量%、残部をN
iとすることが好ましい。
After all, the excellent magnetic characteristics as described above are
The amount of Fe in the film is 10 to 45 wt%, the amount of B is 1.0 to 5 wt%, the balance is Ni, and more preferably the amount of Fe in the film is 20.
-40 wt%, B content 1.5-3.5 wt%, balance N
It is preferably i.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のアモルファス軟磁性膜を用
いたトルクセンサを示す模式図、
FIG. 1 is a schematic diagram showing a torque sensor using an amorphous soft magnetic film according to an embodiment of the present invention,

【図2】図1のシャフトの断面の拡大断面図、2 is an enlarged cross-sectional view of a cross section of the shaft of FIG. 1,

【図3】図1の軟磁性膜の周波数−出力電圧特性を示す
特性図、
3 is a characteristic diagram showing frequency-output voltage characteristics of the soft magnetic film of FIG.

【図4】図1の軟磁性膜のトルク−出力電圧特性を示す
特性図、
FIG. 4 is a characteristic diagram showing torque-output voltage characteristics of the soft magnetic film of FIG.

【図5】実施例2のアモルファス軟磁性膜の直流磁化特
性を示す特性図である。
FIG. 5 is a characteristic diagram showing a DC magnetization characteristic of the amorphous soft magnetic film of Example 2.

【図6】実施例2のアモルファス軟磁性膜のX線回折
図、
6 is an X-ray diffraction diagram of the amorphous soft magnetic film of Example 2, FIG.

【図7】実施例2のアモルファス軟磁性膜のFe組成比
と結晶子径と保持力との関係を示す特性図、
7 is a characteristic diagram showing the relationship between the Fe composition ratio, the crystallite size, and the coercive force of the amorphous soft magnetic film of Example 2, FIG.

【図8】実施例2のアモルファス軟磁性膜のFe/Ni
組成比とめっき浴中のFe/Ni組成比との関係を示す
特性図、
FIG. 8 Fe / Ni of the amorphous soft magnetic film of Example 2
A characteristic diagram showing the relationship between the composition ratio and the Fe / Ni composition ratio in the plating bath,

【符号の説明】[Explanation of symbols]

1はシャフト(シャフト)、3はアモルファス軟磁性
膜。
Reference numeral 1 is a shaft, and 3 is an amorphous soft magnetic film.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数種類の金属イオンと、メタロイド元素
を含む還元剤とを含む無電解めっき浴中に基材を浸漬し
て、上記基材表面に上記複数の金属及びメタロイド元素
を含むアモルファス合金膜をめっきする方法において、 上記基材を陰極として通電することにより上記合金膜の
組成を調節することを特徴とするアモルファス合金膜の
めっき方法
1. An amorphous alloy containing a plurality of metals and a metalloid element on the surface of the base material by immersing the base material in an electroless plating bath containing a plurality of types of metal ions and a reducing agent containing a metalloid element. In the method for plating a film, a method for plating an amorphous alloy film, characterized in that the composition of the alloy film is adjusted by energizing the base material as a cathode.
【請求項2】上記通電により、上記メタロイド元素との
親和力がより小さい方の上記金属が富化される請求項1
記載のアモルファス合金膜のめっき方法
2. The metal having a smaller affinity with the metalloid element is enriched by the energization.
Method for plating amorphous alloy film described
JP27158292A 1992-10-09 1992-10-09 Method for plating amorphous alloy film Pending JPH06122993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27158292A JPH06122993A (en) 1992-10-09 1992-10-09 Method for plating amorphous alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27158292A JPH06122993A (en) 1992-10-09 1992-10-09 Method for plating amorphous alloy film

Publications (1)

Publication Number Publication Date
JPH06122993A true JPH06122993A (en) 1994-05-06

Family

ID=17502091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27158292A Pending JPH06122993A (en) 1992-10-09 1992-10-09 Method for plating amorphous alloy film

Country Status (1)

Country Link
JP (1) JPH06122993A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988002699A1 (en) * 1986-10-07 1988-04-21 Dai Nippon Insatsu Kabushiki Kaisha Thermal transfer sheet
WO2013002356A1 (en) * 2011-06-30 2013-01-03 東洋鋼鈑株式会社 Surface-treated steel plate, fuel pipe, cell can

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988002699A1 (en) * 1986-10-07 1988-04-21 Dai Nippon Insatsu Kabushiki Kaisha Thermal transfer sheet
WO2013002356A1 (en) * 2011-06-30 2013-01-03 東洋鋼鈑株式会社 Surface-treated steel plate, fuel pipe, cell can
JPWO2013002356A1 (en) * 2011-06-30 2015-02-23 東洋鋼鈑株式会社 Surface-treated steel sheet, fuel pipe and battery can

Similar Documents

Publication Publication Date Title
EP0422760A1 (en) Amorphous alloy and process for preparation thereof
Rhen et al. Electrodeposited FePt films
US9793336B2 (en) High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors
JP3229718B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
JPH0283905A (en) Corrosion-resistant permanent magnet and manufacture thereof
JPH06122993A (en) Method for plating amorphous alloy film
JP4045530B2 (en) Electrolytic copper plating method for RTB-based magnets
JP3237219B2 (en) Method for manufacturing magnetostrictive film in magnetostrictive torque sensor
JPH0529172A (en) Manufacture of soft magnetic multilayer-plated film, said film and magnetic head
Kim et al. Electroless Ni-Fe-B alloy plating solution using DMAB as a reducing agent
JP3201763B2 (en) Soft magnetic thin film
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JP2617118B2 (en) Rare earth permanent magnet with excellent corrosion resistance and method of manufacturing the same
Rohan et al. Electroless thin film CoNiFe–B alloys for integrated magnetics on Si
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
JPH0547583A (en) Forming method of soft magnetic film
JP2007220777A (en) Soft magnetic thin film, its manufacturing method, and magnetic head
JPH0696949A (en) Manufacture of magnetic thin film
JPS61281850A (en) Permanent magnet material
JPS61185910A (en) Manufacture of permanent magnet with excellent corrosion-resisting property
JPH04287302A (en) Permanent magnet and its manufacture
Sulitanu A suitable method for obtaining Ni-W thin magnetic films
JPH08264310A (en) Manufacture of rare earth-iron-boron permanent magnet
JPH0636929A (en) Plated magnetic thin film and manufacture thereof
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet