KR20140047451A - A method of manufacturing an exhaust valve spindle for a ship engine - Google Patents

A method of manufacturing an exhaust valve spindle for a ship engine Download PDF

Info

Publication number
KR20140047451A
KR20140047451A KR1020120113778A KR20120113778A KR20140047451A KR 20140047451 A KR20140047451 A KR 20140047451A KR 1020120113778 A KR1020120113778 A KR 1020120113778A KR 20120113778 A KR20120113778 A KR 20120113778A KR 20140047451 A KR20140047451 A KR 20140047451A
Authority
KR
South Korea
Prior art keywords
exhaust valve
nickel alloy
valve spindle
forming
manufacturing
Prior art date
Application number
KR1020120113778A
Other languages
Korean (ko)
Inventor
오중석
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020120113778A priority Critical patent/KR20140047451A/en
Publication of KR20140047451A publication Critical patent/KR20140047451A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/001Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/12Forming profiles on internal or external surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/042Built-up welding on planar surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/50Other automobile vehicle parts, i.e. manufactured in assembly lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lift Valve (AREA)

Abstract

The present invention relates to a method for manufacturing an exhaust valve spindle of a marine engine, which comprises: a step of molding a head unit and a stem unit by using stainless steel as a base material; a step of forming a ring-shaped groove along the surface edge of a sheet of the head unit; a step of forming a weld region on the groove; and a step of forming a coating unit through a thermal spray coating method which has a nickel alloy applied to the bottom of the head unit. The method for manufacturing an exhaust valve spindle of a marine engine according to the present invention is provided to replace a conventional base material, a nickel alloy used to manufacture an exhaust spindle of a marine engine, with stainless steel and to prevent the nickel alloy from being excessively used according to welding methods and defects from being generated during a welding process by using a thermal spray coating method which has the nickel alloy applied to the base material of the bottom of the head unit, thereby significantly lowering defect rate, reducing production costs, and improving the wear resistance, corrosion resistance and durability of a product. [Reference numerals] (AA) Start; (BB) End; (S10) Upset stainless steel as a base material, and mold a head unit and a stem unit to be separated from each other by die-forging the head unit; (S20) Form a ring-shaped groove along the surface edge of a sheet of the head unit; (S30) Form a weld region on the groove by overlay-welding circular beads to be arranged with multiple layers and by depositing Nickel alloy on the layers; (S40) Roll and process the weld region; (S50) Form a coating unit by coating a Nickel alloy on the bottom of the head unit after performing a spherical-processing and finishing

Description

선박엔진용 배기밸브 스핀들의 제조방법 {A method of manufacturing an exhaust valve spindle for a ship engine}A method of manufacturing an exhaust valve spindle for a ship engine}

본 발명은 선박엔진용 배기밸브 스핀들의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an exhaust valve spindle for a marine engine.

일반적으로, 대형선박에 사용되는 디젤엔진의 배기밸브 스핀들(exhaust valve spindle)은 엔진의 배기포트를 개폐시키는 헤드부와 헤드부의 직선 왕복이동을 가이드하는 스템부로 구성되어 있는데, 에어 실린더 내에서 혼합 연료가 폭발할 때는 상부로 이동하여 엔진에 고정되어 있는 부품인 바텀피스(bottom piece)와 접촉하여 압력이 빠져나가지 않도록 기밀을 유지하고, 폭발 후에는 하부로 이동하여 배기포트로 연소가스를 배출하는 역할을 하는 핵심부품이다.In general, an exhaust valve spindle of a diesel engine used for a large ship is composed of a head portion for opening and closing an engine exhaust port and a stem portion for guiding linear reciprocation of the head portion. Moves to the upper part when it explodes and keeps airtight so that pressure does not escape by contacting the bottom piece, which is a part fixed to the engine, and moves the lower part after the explosion to discharge the combustion gas to the exhaust port. It is a key part of doing this.

이러한 배기밸브 스핀들은 폭발, 연소 행정 중에서 700bar 이상의 압력과 600℃ 이상의 고온의 열악한 환경에 노출되어 있기 때문에, 엔진 부품 중 최악의 조건에서 작동됨으로써 심각한 손상이 자주 발생되고 있다.Since the exhaust valve spindle is exposed to a harsh environment at a pressure of 700 bar or more and a high temperature of 600 ° C. or more during an explosion and combustion stroke, serious damage is frequently caused by operating in the worst condition of the engine parts.

게다가, 최근 선박용 엔진의 효율 향상과 배기가스의 오염 저감을 위해 연소온도와 엔진 출력이 증가하게 됨으로써, 배기밸브 스핀들도 더 높은 압력과 온도에 노출되어 보다 가혹한 조건하에서 사용되고 있기 때문에 내열성 등의 우수한 고온특성이 요구된다.In addition, the combustion temperature and the output of the engine are increased in order to improve the efficiency of the marine engine and reduce the pollution of the exhaust gas, so that the exhaust valve spindle is also exposed to higher pressure and temperature and is used under more severe conditions, thereby providing excellent high temperature resistance such as heat resistance. Characteristics are required.

따라서, 이러한 요구를 충족시키기 위하여 배기밸브 스핀들의 재질로 고온특성이 우수한 니켈 합금인 Nimonic 80A를 사용해 왔으나, Nimonic 80A는 Ni을 70% 정도 함유하고 고함량의 Cr, Ti 등으로 구성되어 있어 가격이 매우 고가인 문제가 있다.Therefore, Nimonic 80A, a nickel alloy with excellent high temperature characteristics, has been used as the material of the exhaust valve spindle to meet these demands. However, Nimonic 80A contains about 70% of Ni and is composed of high content of Cr, Ti, etc. There is a very expensive problem.

이러한 문제를 해결하기 위해, 헤드부와 스템부를 비교적 가격이 저렴한 스테인리스강을 모재로 사용하여 제조하고, 바텀피스와 접촉되는 헤드부의 시트(seat)에 형성된 홈과 헤드부의 바닥면 각각에 니켈합금을 용접 방식으로 용착시켜 내열성을 확보한 배기밸브 스핀들이 사용되고 있다.
In order to solve this problem, the head part and stem part are manufactured using a relatively inexpensive stainless steel as a base material, and nickel alloy is applied to each of the grooves formed in the seat part of the head part in contact with the bottom piece and the bottom surface of the head part. An exhaust valve spindle that is welded by welding and secured heat resistance is used.

그런데, 종래의 배기밸브 스핀들은 헤드부의 바닥에 다층의 비드를 갖는 용접부를 형성함에 있어서, 내열성을 확보하고 용접 불량을 방지하기 위해 적어도 12mm 이상의 두꺼운 두께로 용접해야 하므로, 용접량 과다에 따른 니켈합금의 과다 사용으로 비용이 많이 소요되는 문제가 있고, 용접 과정상 결함이 발생될 수 있어, 품질 검사에 많은 시간과 비용이 소모되는 문제가 있다.By the way, in the conventional exhaust valve spindle to form a weld having a multi-layer bead at the bottom of the head portion, in order to ensure heat resistance and to prevent welding defects, at least 12 mm or more of the thickness of the weld valve, so the nickel alloy according to the excessive amount of welding There is a problem that the cost is excessive due to the excessive use of, and a defect may occur in the welding process, there is a problem that a lot of time and cost are required for quality inspection.

본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 창출된 것으로서, 본 발명의 목적은 헤드부의 바닥에 니켈합금의 용접량 과다로 제조 원가가 증대되는 것을 방지하면서 용접 과정상 발생되는 결함을 방지하여, 제조 원가를 대폭 절감시키는 동시에 내마모성 및 내부식성이 우수하고 내구성이 향상된 선박엔진용 배기밸브 스핀들의 제조방법을 제공하기 위한 것이다.The present invention was created to solve the problems of the prior art as described above, and an object of the present invention is to prevent defects generated during the welding process while preventing the increase in manufacturing cost due to excessive welding amount of nickel alloy on the bottom of the head portion. In addition, the present invention is to provide a method for manufacturing an exhaust valve spindle for a ship engine with excellent wear resistance, corrosion resistance, and durability while significantly reducing manufacturing costs.

본 발명의 일 실시예에 따른 선박엔진용 배기밸브 스핀들의 제조방법은, 스테인리스강을 모재로 헤드부와 스템부를 성형하는 단계; 상기 헤드부의 시트의 면 가장자리 부분을 따라 링 형상의 홈을 형성하는 단계; 상기 홈에 용접부를 형성하는 단계; 및 상기 헤드부의 바닥에 니켈합금을 이용한 열용사 코팅 방식으로 코팅부를 형성하는 단계를 포함하는 것을 특징으로 한다.Method for manufacturing an exhaust valve spindle for a ship engine according to an embodiment of the present invention, forming a head portion and a stem portion from a stainless steel base material; Forming a ring-shaped groove along a surface edge portion of the sheet of the head portion; Forming a weld in the groove; And forming a coating part on the bottom of the head part by a thermal spray coating method using a nickel alloy.

본 발명에 따른 선박엔진용 배기밸브 스핀들의 제조방법은, 니켈합금으로 제조되던 선박엔진용 배기밸브 스핀들 모재의 재질을 스테인리스강으로 대체하고, 모재의 헤드부 바닥면에 니켈합금을 이용한 열용사 코팅 방식으로 얇은 두께의 코팅부를 형성함으로써, 용접 방식에 따른 니켈합금의 과다 사용을 방지하면서 용접 과정상 발생되는 결함을 방지할 수 있어, 제품 불량률을 크게 감소시킬 수 있을 뿐만 아니라 제조 원가를 대폭 절감하는 동시에, 내마모성, 내부식성 및 내구성을 향상시킬 수 있는 효과가 있다.In the manufacturing method of the ship engine exhaust valve spindle according to the present invention, the material of the ship engine exhaust valve spindle base material made of nickel alloy is replaced by stainless steel, and the thermal spray coating using nickel alloy on the bottom surface of the head of the base material By forming a thin coating in a method, it is possible to prevent defects in the welding process while preventing excessive use of the nickel alloy according to the welding method, which can greatly reduce the product defect rate and greatly reduce the manufacturing cost. At the same time, there is an effect that can improve wear resistance, corrosion resistance and durability.

도 1은 본 발명의 일 실시예에 따른 선박엔진용 배기밸브 스핀들의 제조방법을 설명하기 위한 순서도이다.
도 2는 본 발명의 일 실시예에 따른 선박엔진용 배기밸브 스핀들의 제조방법을 설명하기 위한 정면도이다.
1 is a flowchart illustrating a method of manufacturing an exhaust valve spindle for a ship engine according to an embodiment of the present invention.
2 is a front view illustrating a method of manufacturing an exhaust valve spindle for a ship engine according to an embodiment of the present invention.

본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.BRIEF DESCRIPTION OF THE DRAWINGS The objects, particular advantages and novel features of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. It should be noted that, in the present specification, the reference numerals are added to the constituent elements of the drawings, and the same constituent elements are assigned the same number as much as possible even if they are displayed on different drawings. In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 따른 선박엔진용 배기밸브 스핀들의 제조방법을 설명하기 위한 순서도이고, 도 2는 본 발명의 일 실시예에 따른 선박엔진용 배기밸브 스핀들의 제조방법을 설명하기 위한 정면도이다.1 is a flowchart illustrating a method of manufacturing an exhaust valve spindle for a ship engine according to an embodiment of the present invention, Figure 2 illustrates a method of manufacturing an exhaust valve spindle for a ship engine according to an embodiment of the present invention It is a front view for.

도 1 및 도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 선박엔진용 배기밸브 스핀들(100)의 제조방법은, 스테인리스강을 모재(base metal)로 업셋팅(upsetting)하고, 헤드부(110)를 형단조하여, 헤드부(110)와 스템부(120)로 구분되도록 성형하는 단계(S10), 헤드부(110)의 시트(111)의 면 가장자리 부분을 따라 링 형상의 홈(112)을 형성하는 단계(S20), 홈(112)에 원 형상의 비드를 다층으로 육성용접(hardfacing)하여 니켈합금을 용착시켜 용접부(113)를 형성하는 단계(S30), 용접부(113)를 롤링(rolling) 및 가공하는 단계(S40), 헤드부(110)에 구면가공(S.R.) 및 정삭(Finishing)을 실시한 후, 헤드부(110)의 바닥에 니켈합금을 코팅하고 연마하여 코팅부(114)를 형성하는 단계(S50)를 포함한다.
As shown in Figure 1 and 2, the manufacturing method of the ship valve exhaust valve spindle 100 according to an embodiment of the present invention, upsetting the stainless steel to the base metal (base metal), the head Forging the part 110, and molding to be divided into the head portion 110 and the stem portion 120 (S10), the ring-shaped groove along the surface edge portion of the sheet 111 of the head portion 110 Step (S20) to form (112), the step of forming a weld portion 113 by welding a nickel alloy by hardfacing the circular bead in a multi-layered groove (112) (S30), the weld portion 113 Rolling (rolling) and processing step (S40), the head portion 110 after the spherical processing (SR) and finishing (Finishing), the nickel alloy is coated on the bottom of the head portion 110 and polished coating portion Forming step (114) (S50).

단계 S10에서는, 스테인리스강을 모재(base metal)로 업셋팅(upsetting)하고, 헤드부(110)를 형단조하여, 헤드부(110)와 스템부(120)로 구분되도록 성형한다.In step S10, the stainless steel is upset with a base metal, and the head part 110 is forged to be formed so as to be divided into the head part 110 and the stem part 120.

스테인리스강은 가격이 저렴하고 내열성과 내부식성이 우수한 SNCrW 합금소재를 사용할 수 있다.Stainless steel can be made of SNCrW alloy materials, which are inexpensive and have excellent heat and corrosion resistance.

여기서, SNCrW 합금소재는 중량%로, Ni(니켈): 8 ~ 10%, Cr(크롬): 18 ~ 20%, W(텅스텐): 1.6 ~ 2.5%, C(탄소): 0.2 ~ 0.3%, 잔부 Fe(철)로 조성되며, 이러한 조성을 갖는 SNCrW 합금소재는 항복강도가 350MPa이고, 인장강도가 700MPa이고, 시트의 경도가 HB190 ~ 240이고, 연신율이 26%이다. SNCrW 합금소재는, 상기한 조성물에서 기타 필요한 불순물을 더 포함하여 조성될 수 있다.Here, the SNCrW alloy material is in weight percent, Ni (nickel): 8 to 10%, Cr (chromium): 18 to 20%, W (tungsten): 1.6 to 2.5%, C (carbon): 0.2 to 0.3%, It is composed of the balance Fe (iron), the SNCrW alloy material having such a composition has a yield strength of 350MPa, a tensile strength of 700MPa, the hardness of the sheet is HB190 ~ 240, the elongation is 26%. The SNCrW alloy material may be formed by further including other necessary impurities in the above-described composition.

Ni(니켈)은, 고온강도 및 내식성을 개선시키므로 8중량% 이상 함유하는 것이 바람직하나, 그 함량이 10중량%를 초과하면 비용이 증가하고 첨가 효과가 포화되기 때문에, 그 함량을 8 ~ 10중량%로 한정한다.Since Ni (nickel) improves high temperature strength and corrosion resistance, it is preferable to contain at least 8% by weight, but if the content exceeds 10% by weight, the cost increases and the additive effect is saturated. It is limited to%.

Cr(크롬)은, 고온 내식성을 확보하기 위해 적어도 18중량% 이상 함유하는 것이 바람직하나, 그 함량이 20중량%를 초과하면 비용이 증가하고, 고온강도 및 인성의 저하를 초래하기 때문에, 그 함량을 18 ~ 20중량%로 한정한다.Cr (chromium) is preferably contained at least 18% by weight or more in order to ensure high temperature corrosion resistance, but if the content exceeds 20% by weight, the cost increases, causing high temperature strength and toughness, so the content It is limited to 18 to 20% by weight.

W(텅스텐)은, 고온강도를 향상시키기 때문에 1.6중량% 이상 함유하는 것이 바람직하나, 그 함량이 2.5중량%를 초과하면 인성이 저하되므로, 그 함량을 1.6 ~ 2.5중량%로 한정한다.W (tungsten) is preferably contained in an amount of 1.6% by weight or more because it improves high temperature strength, but when the content exceeds 2.5% by weight, toughness is lowered, so the content is limited to 1.6 to 2.5% by weight.

C(탄소)는, 탄화물을 형성하고 고온강도를 높이며 내마모성을 개선시키기 때문에 0.2중량%이상 함유하는 것이 바람직하나, 그 함량이 0.3중량%를 초과하면 인성 및 연성이 낮아지므로, 그 함량을 0.2 ~ 0.3중량%로 한정한다.
C (carbon) is preferably contained in an amount of 0.2% by weight or more because it forms carbides, increases high temperature strength, and improves wear resistance, but when the content exceeds 0.3% by weight, toughness and ductility are lowered. It is limited to 0.3 weight%.

단계 S20에서는, 헤드부(110)의 시트(111)의 면 가장자리 부분을 따라 링 형상의 홈(112)을 형성한다.In step S20, the ring-shaped groove 112 is formed along the surface edge portion of the sheet 111 of the head portion 110.

시트(111)는, 엔진의 바텀피스와 접촉되는 부분이다.The seat 111 is a part in contact with the bottom piece of the engine.

홈(112)은, 10 ~ 15mm의 깊이로 형성하는 것이 바람직한데, 홈(112)의 깊이가 10mm 미만이면, 니켈합금이 용착된 층 두께가 적어 엔진의 바텀피스와의 접촉시 후술할 용접부(113)가 마모 또는 부식되면서 배기밸프 스핀들(100)이 파손되고 연소가스가 누출되어 엔진 효율이 저하될 수 있으며, 홈(112)의 깊이가 15mm를 초과하면 불필요한 부분에까지 고가의 니켈합금이 사용되어 비용이 증가할 뿐만 아니라, 증가된 깊이만큼 비드를 다층으로 용접하여 니켈합금을 용착시켜야 하는 문제가 있기 때문이다.
Preferably, the groove 112 is formed to a depth of 10 to 15 mm. If the depth of the groove 112 is less than 10 mm, the thickness of the layer on which the nickel alloy is welded is small, so that the welded portion to be described later in contact with the bottom piece of the engine ( 113 is worn or corroded, the exhaust valve spindle 100 is damaged and combustion gas leaks may reduce the engine efficiency. If the depth of the groove 112 exceeds 15mm, expensive nickel alloys are used up to unnecessary parts. This is because not only the cost increases, but also the problem of having to weld the nickel alloy by welding the beads in multiple layers by the increased depth.

단계 S30에서는, 홈(112)에 원 형상의 비드를 다층으로 육성용접(hardfacing)하여 니켈합금을 용착시켜 용접부(113)를 형성한다.In step S30, the bead of circular shape is hard-welded to the groove 112 in multiple layers, and the nickel alloy is welded, and the welding part 113 is formed.

용접부(113)를 형성하는 니켈합금은 내마모성 및 내부식성이 우수한 인코넬(Inconel) 718을 사용할 수 있다.As the nickel alloy forming the weld 113, Inconel 718 having excellent wear resistance and corrosion resistance may be used.

용접부(113)는, 중량%로 Ni: 54%, Cr: 19%, Al: 0.5%, Mo: 3%, Ti: 0.9%, Nb: 5%, 잔부 Fe 및 기타 필요한 불순물로 조성된 인코넬 718 용접봉을 사용하여 원 형상의 비드를 다층으로 육성용접(hardfacing)하여 형성할 수 있다. 상기한 조성을 갖는 인코넬 718은, 항복강도가 960MPa이고, 인장강도가 1200MPa이고, 시트의 경도가 HV410이고, 연신율이 18%이다.
The weld portion 113 is inconel 718 composed of Ni: 54%, Cr: 19%, Al: 0.5%, Mo: 3%, Ti: 0.9%, Nb: 5%, balance Fe and other necessary impurities by weight. The electrodes can be formed by hardfacing circular beads in multiple layers. Inconel 718 having the above composition has a yield strength of 960 MPa, a tensile strength of 1200 MPa, a hardness of HV410, and an elongation of 18%.

단계 S40에서는, 용접부(113)를 롤링(rolling) 및 가공한다.In step S40, the welding part 113 is rolled and processed.

단계 S30에서 용접 방식으로 용접된 용접부(113)는 표면이 거칠기 때문에, 먼지 용접부(113)를 황삭하고, 시트의 면을 압연한 후에, 압연된 시트 부위를 고온 열처리하고, 가공하여 표면을 매끄럽게 해야 한다.
Since the welded portion 113 welded by the welding method in step S30 has a rough surface, after roughing the dust welded portion 113 and rolling the surface of the sheet, the rolled sheet portion should be heat-treated at high temperature and processed to smooth the surface. do.

단계 S50에서는, 헤드부(110)에 구면가공(S.R.) 및 정삭(Finishing)을 실시한 후, 헤드부(110)의 바닥에 니켈합금을 코팅하고 연마하여 코팅부(114)를 형성한다. 이로써, 배기포트를 개폐시키는 헤드부(110)와 헤드부(110)의 직선 왕복이동을 가이드하는 스템부(120)를 포함하여 구성되는 선박엔진용 배기밸브 스핀들(100)이 제조된다.In step S50, after the spherical processing (S.R.) and finishing (Finishing) to the head portion 110, the nickel alloy is coated on the bottom of the head portion 110 and polished to form a coating portion 114. As a result, a ship engine exhaust valve spindle 100 including a head part 110 for opening and closing the exhaust port and a stem part 120 for guiding linear reciprocation of the head part 110 is manufactured.

구면가공과 정삭은, 단계 S10 내지 단계 S40의 과정을 거치면서 배기밸브 스핀들(100)의 형상은 만들어 졌으나, 헤드부(110)가 엔진의 바텀피스와 접촉하여 압력이 빠져나가지 않도록 기밀을 유지해야 하므로, 헤드부(110)의 면을 매끄럽고 곱게 만들기 위해 실시해야 한다.In spherical processing and finishing, the shape of the exhaust valve spindle 100 has been made through the process of steps S10 to S40, but the head part 110 should be kept airtight so that the pressure does not escape due to contact with the bottom piece of the engine. Therefore, it should be carried out to make the surface of the head portion 110 smooth and fine.

코팅부(114)를 형성하는 니켈합금은, 내마모성 및 내부식성이 우수한 인코넬(Inconel) 625를 사용할 수 있다.As the nickel alloy forming the coating part 114, Inconel 625 having excellent wear resistance and corrosion resistance may be used.

여기서, 인코넬 625는, 중량%로 Ni: 62%, Cr: 22%, Mo: 9%, Nb: 3.5%, Fe: 최대 1.0% 및 기타 필요한 불순물 3.0%로 조성되며, 이러한 조성을 갖는 인코넬 625는, 항복강도가 450MPa이고, 인장강도가 790MPa이고, 시트의 경도가 HV220이고, 연신율이 42%이다.Here, Inconel 625 is composed by weight of Ni: 62%, Cr: 22%, Mo: 9%, Nb: 3.5%, Fe: up to 1.0% and other necessary impurities 3.0%, Inconel 625 having such a composition The yield strength is 450 MPa, the tensile strength is 790 MPa, the hardness of the sheet is HV220, and the elongation is 42%.

코팅부(114)는, 상기한 조성을 갖는 인코넬 625를 이용한 열용사 코팅 작업으로 적어도 2mm의 두께로 코팅하여 형성된다. 열용사 코팅 작업은, 표면 이물질 제거 및 모재와 코팅 간의 양호한 접착성을 얻기 위하여, 헤드부(110)의 바닥에 그릿 블라스팅 전처리를 실시하여 헤드부(110)의 바닥면을 일정한 거칠기를 가지는 표면으로 형성시킨 후에 실시할 수 있다.
The coating unit 114 is formed by coating at a thickness of at least 2 mm by a thermal spray coating operation using Inconel 625 having the above composition. The thermal spray coating operation is performed by performing grit blasting pretreatment on the bottom of the head portion 110 to remove the surface foreign matter and to obtain good adhesion between the base material and the coating to the surface having a constant roughness. It may be carried out after forming.

이와 같이 본 실시예는, 니켈합금으로 제조되던 선박엔진용 배기밸브 스핀들 모재의 재질을 스테인리스강으로 대체하고, 모재의 헤드부(110) 바닥면을 니켈합금을 이용한 열용사 코팅 방식으로 얇은 두께의 코팅부(114)를 형성함으로써, 용접 방식에 따른 니켈합금의 과다 사용을 방지하면서 용접 과정상 발생되는 결함을 방지할 수 있어, 제품 불량률을 크게 감소시킬 수 있을 뿐만 아니라, 제조 원가를 대폭 절감하는 동시에, 내마모성, 내부식성 및 내구성을 향상시킬 수 있다.
As described above, the present embodiment replaces the material of the ship engine exhaust valve spindle base material made of nickel alloy with stainless steel, and the bottom surface of the head portion 110 of the base material is heat-sprayed using nickel alloy in a thin thickness. By forming the coating part 114, it is possible to prevent the defects generated during the welding process while preventing excessive use of the nickel alloy according to the welding method, not only can significantly reduce the product defect rate, but also significantly reduce the manufacturing cost At the same time, wear resistance, corrosion resistance and durability can be improved.

따라서 본 실시예는, 헤드부의 바닥에 내열성을 확보하고 용접 불량을 방지하기 위해 적어도 12mm 이상의 두께로 용접부를 형성함으로써, 용접량 과다에 따른 니켈합금의 과다 사용으로 비용이 많이 소요되는 문제가 있고, 용접 과정상 결함이 발생될 수 있어, 품질 검사에 많은 시간과 비용이 소모되는 종래 문제를 모두 해결할 수 있다.
Therefore, the present embodiment has a problem that it is expensive to use the nickel alloy according to the excessive welding amount by forming a welded portion with a thickness of at least 12 mm or more in order to ensure heat resistance at the bottom of the head portion and prevent welding defects. Defects can be generated in the welding process, which solves all of the conventional problems that require a lot of time and cost to inspect quality.

이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the present invention. It is obvious that the modification and the modification are possible.

본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

1: 배기밸브 스핀들 110: 헤드부
111: 시트 112: 홈
113: 용접부 114: 코팅부
120: 스템부
1: exhaust valve spindle 110: head portion
111: sheet 112: groove
113: welding part 114: coating part
120: stem

Claims (7)

스테인리스강을 모재로 헤드부와 스템부를 성형하는 단계;
상기 헤드부의 시트의 면 가장자리 부분을 따라 링 형상의 홈을 형성하는 단계;
상기 홈에 용접부를 형성하는 단계; 및
상기 헤드부의 바닥에 니켈합금을 이용한 열용사 코팅 방식으로 코팅부를 형성하는 단계를 포함하는 것을 특징으로 하는 선박엔진용 배기밸브 스핀들의 제조방법.
Molding the head part and the stem part using a stainless steel base material;
Forming a ring-shaped groove along a surface edge portion of the sheet of the head portion;
Forming a weld in the groove; And
The method of manufacturing an exhaust valve spindle for ship engines comprising the step of forming a coating by a thermal spray coating method using a nickel alloy on the bottom of the head.
제 1 항에 있어서, 상기 스테인리스강은,
SNCrW 합금소재인 것을 특징으로 하는 선박엔진용 배기밸브 스핀들의 제조방법.
The method of claim 1, wherein the stainless steel,
Method for producing an exhaust valve spindle for ship engines, characterized in that the SNCrW alloy material.
제 2 항에 있어서, 상기 SNCrW 합금소재는,
중량%로, Ni(니켈): 8 ~ 10%, Cr(크롬): 18 ~ 20%, W(텅스텐): 1.6 ~ 2.5%, C(탄소): 0.2 ~ 0.3%, 잔부 Fe(철)를 포함하여 조성된 것을 특징으로 하는 선박엔진용 배기밸브 스핀들의 제조방법.
The method of claim 2, wherein the SNCrW alloy material,
In weight percent Ni (nickel): 8 to 10%, Cr (chromium): 18 to 20%, W (tungsten): 1.6 to 2.5%, C (carbon): 0.2 to 0.3%, balance Fe (iron) Method for producing an exhaust valve spindle for ship engines, characterized in that the composition.
제 1 항에 있어서, 상기 용접부를 형성하는 단계는,
상기 홈에 원 형상의 비드를 다층으로 육성용접하여 니켈합금을 용착시켜 상기 용접부를 형성하는 단계; 및
상기 용접부를 롤링 및 가공하는 단계를 포함하여 형성되는 것을 특징으로 하는 선박엔진용 배기밸브 스핀들의 제조방법.
The method of claim 1, wherein the forming of the weld part comprises:
Forming a welded portion by fusing and welding a plurality of circular beads to the grooves in a multi-layered nickel alloy; And
Rolling and processing the welding portion manufacturing method of a ship engine exhaust valve spindle characterized in that it is formed.
제 4 항에 있어서, 상기 니켈합금은,
중량%로 Ni: 54%, Cr: 19%, Al: 0.5%, Mo: 3%, Ti: 0.9%, Nb: 5%, 잔부 Fe를 포함하여 조성되는 것을 특징으로 하는 선박엔진용 배기밸브 스핀들의 제조방법.
The method of claim 4, wherein the nickel alloy,
Exhaust valve spindle for ship engine, characterized in that it comprises Ni: 54%, Cr: 19%, Al: 0.5%, Mo: 3%, Ti: 0.9%, Nb: 5%, balance Fe Manufacturing method.
제 1 항에 있어서, 상기 코팅부를 형성하는 단계는,
상기 헤드부에 구면가공 및 정삭을 실시하는 단계;
상기 헤드부의 바닥에 그릿 블라스팅 전처리를 실시하여 일정한 거칠기를 가지는 표면을 형성시키는 단계; 및
상기 헤드부의 바닥에 열용사 코팅 및 연마를 실시하는 단계를 포함하여 형성되는 것을 특징으로 하는 선박엔진용 배기밸브 스핀들의 제조방법.
The method of claim 1, wherein the forming of the coating part comprises:
Performing spherical machining and finishing on the head portion;
Performing a grit blasting pretreatment on the bottom of the head to form a surface having a constant roughness; And
A method of manufacturing an exhaust valve spindle for a ship engine, characterized in that formed, including the step of performing a thermal spray coating and polishing on the bottom of the head portion.
제 1 항에 있어서, 상기 코팅부를 형성하는 상기 니켈합금은,
중량%로 Ni: 62%, Cr: 22%, Mo: 9%, Nb: 3.5%, Fe: 최대 1.0% 를 포함하여 조성되는 것을 특징으로 하는 선박엔진용 배기밸브 스핀들의 제조방법.
According to claim 1, The nickel alloy forming the coating portion,
Ni: 62%, Cr: 22%, Mo: 9%, Nb: 3.5%, Fe: The manufacturing method of the exhaust valve spindle for ship engines, characterized in that it comprises a 1.0%.
KR1020120113778A 2012-10-12 2012-10-12 A method of manufacturing an exhaust valve spindle for a ship engine KR20140047451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120113778A KR20140047451A (en) 2012-10-12 2012-10-12 A method of manufacturing an exhaust valve spindle for a ship engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120113778A KR20140047451A (en) 2012-10-12 2012-10-12 A method of manufacturing an exhaust valve spindle for a ship engine

Publications (1)

Publication Number Publication Date
KR20140047451A true KR20140047451A (en) 2014-04-22

Family

ID=50654041

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120113778A KR20140047451A (en) 2012-10-12 2012-10-12 A method of manufacturing an exhaust valve spindle for a ship engine

Country Status (1)

Country Link
KR (1) KR20140047451A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160017747A (en) * 2014-08-04 2016-02-17 현대중공업 주식회사 Method for forming sheet face of exhaust valve for engine
KR20160053112A (en) * 2014-10-30 2016-05-13 현대중공업 주식회사 Manufacturing method of intake and exhaust valve spindle for engine
KR101644132B1 (en) * 2016-02-02 2016-07-29 정원금속 주식회사 Poppet valve for exhaust gas recirculation and manufacturing process of the same
CN110935827A (en) * 2019-12-02 2020-03-31 抚顺特殊钢股份有限公司 Forging method of large-specification fine-grain austenitic gas valve steel SNCrW
CN111155030A (en) * 2019-12-31 2020-05-15 江苏新华合金有限公司 Marine air valve steel and preparation process thereof
CN112589399A (en) * 2021-01-25 2021-04-02 湖南理工学院 Processing technology of faucet valve rod
CN116254457A (en) * 2021-12-09 2023-06-13 江苏新华合金有限公司 Bar for air valve steel and manufacturing process thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160017747A (en) * 2014-08-04 2016-02-17 현대중공업 주식회사 Method for forming sheet face of exhaust valve for engine
KR20160053112A (en) * 2014-10-30 2016-05-13 현대중공업 주식회사 Manufacturing method of intake and exhaust valve spindle for engine
KR101644132B1 (en) * 2016-02-02 2016-07-29 정원금속 주식회사 Poppet valve for exhaust gas recirculation and manufacturing process of the same
CN110935827A (en) * 2019-12-02 2020-03-31 抚顺特殊钢股份有限公司 Forging method of large-specification fine-grain austenitic gas valve steel SNCrW
CN110935827B (en) * 2019-12-02 2021-06-08 抚顺特殊钢股份有限公司 Forging method of large-specification fine-grain austenitic stainless steel SNCrW bar
CN111155030A (en) * 2019-12-31 2020-05-15 江苏新华合金有限公司 Marine air valve steel and preparation process thereof
CN112589399A (en) * 2021-01-25 2021-04-02 湖南理工学院 Processing technology of faucet valve rod
CN116254457A (en) * 2021-12-09 2023-06-13 江苏新华合金有限公司 Bar for air valve steel and manufacturing process thereof

Similar Documents

Publication Publication Date Title
KR20140047451A (en) A method of manufacturing an exhaust valve spindle for a ship engine
Hawryluk Review of selected methods of increasing the life of forging tools in hot die forging processes
KR101663494B1 (en) An exhaust valve for an internal combustion engine
CN102189316B (en) Submerged-arc welding overlaying repairing method for stainless steel hot rolled delivery roll
JP6011098B2 (en) Manufacturing method of engine exhaust valve for large ship
CN110257826A (en) Grain roll bearing position laser cladding method and laser melting coating alloy powder
CN101970811B (en) A movable wall member in form of an exhaust valve spindle or a piston for an internal combustion engine, and a method of manufacturing such a member
CN110640288A (en) Surfacing method for surfacing high-chromium alloy on Q235 steel plate
CN113308662B (en) Spraying repair method for short-edge copper plate side face of continuous casting crystallizer
CN113084457A (en) Metallographic strengthening manufacturing method of piston
SG175121A1 (en) Method for repairing worn valve spindles
CN104400252A (en) Flux-cored wire
US11680499B2 (en) Sliding member
KR101211461B1 (en) Manufacturing method of exhaust valve spindle of marine engine
JP3175033U (en) Cr-Mo steel piston head for diesel engines, etc.
CN114147333A (en) Resistance spot welding method for high-strength galvanized steel workpiece
CN114807926A (en) Method for carrying out laser cladding on surface of valve seat of vermicular cast iron engine
KR101642074B1 (en) Method for manufacturing exhaust valve spindle
CN115961206A (en) Laser cladding rolling mill sliding plate and machining method thereof
CN109277724B (en) Gas-shielded welding wire for local repair of core rod and welding process
CN104233002A (en) Nickel base alloy powder for laser repair of supercharger air outlet housing of internal combustion engine
KR20110096362A (en) High heat-resistance exhaust valve spindle of marine engine having excellent wear resistance and corrosion resistance
CN103286426A (en) Novel alloy welding process
CN114346521B (en) Metal type flux-cored wire and preparation method of stainless steel bearing ring
CN202827830U (en) Thrust wheel end cap

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid