KR20140044277A - 신호 처리 회로, 신호 처리 방법, 위치 검출 장치, 및 전자 기기 - Google Patents

신호 처리 회로, 신호 처리 방법, 위치 검출 장치, 및 전자 기기 Download PDF

Info

Publication number
KR20140044277A
KR20140044277A KR1020130118379A KR20130118379A KR20140044277A KR 20140044277 A KR20140044277 A KR 20140044277A KR 1020130118379 A KR1020130118379 A KR 1020130118379A KR 20130118379 A KR20130118379 A KR 20130118379A KR 20140044277 A KR20140044277 A KR 20140044277A
Authority
KR
South Korea
Prior art keywords
circuit
signal
conductor
signal processing
transmission
Prior art date
Application number
KR1020130118379A
Other languages
English (en)
Other versions
KR102107069B1 (ko
Inventor
야스오 오다
Original Assignee
가부시키가이샤 와코무
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 와코무 filed Critical 가부시키가이샤 와코무
Publication of KR20140044277A publication Critical patent/KR20140044277A/ko
Application granted granted Critical
Publication of KR102107069B1 publication Critical patent/KR102107069B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • H03K17/9622Capacitive touch switches using a plurality of detectors, e.g. keyboard
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/96071Capacitive touch switches characterised by the detection principle
    • H03K2217/960725Charge-transfer

Abstract

[과제] 정전 용량 방식의 위치 검출 센서의 신호 수신 도체에 접속되기 바람직한, 소비 전력이 적고, 회로 규모도 작고, 또, IV 변환을 위해서 사용되는 콘덴서의 정전 용량치를 작게 설정할 수 있는 신호 처리 회로를 실현한다.
[해결 수단] 클램프 회로(31a)에 의해서 수신 도체(11X)를 소정의 전위로 클램프한 후에, 이 소정의 전위로 클램프된 수신 도체(11X)를, 게이트 회로(31b)를 통하여 콘덴서 회로(31c)에 접속함으로써, 콘덴서 회로(31c)에 손가락 등의 지시체가 지시하는 위치에 대응하여 변화하는 전위를 발생시켜, 이 콘덴서 회로(31c)에 생긴 전압 신호가 디지털 신호로 변환되어 출력된다.

Description

신호 처리 회로, 신호 처리 방법, 위치 검출 장치, 및 전자 기기{SIGNAL PROCESSING CIRCUIT, SIGNAL PROCESSING METHOD, POSITION DETECTING DEVICE, AND ELECTRONIC APPARATUS}
본 발명은 손가락 등의 복수의 지시체에 의한 각각의 지시 위치의 검출(다점검출)을 가능하게 한 정전 용량 방식의 위치 검출 센서와 함께 사용하기 바람직한 신호 처리 회로, 신호 처리 방법, 및 이들을 구비한 위치 검출 장치, 전자 기기에 관한 것이다.
터치 패널 등의 위치 검출 장치가 넓게 이용되게 되어, 위치 검출 장치에 관련된 여러 가지의 발명이 이루어지고 있다. 예를 들면, 후에 기술하는 특허 문헌 1에는, 정전 용량 방식의 터치 패널 장치에 관련된 발명이 개시되어 있다. 특허 문헌 1에 개시된 발명에서는, 복수의 송신 전극(2)과 복수의 수신 도체(3)를 격자 모양으로 배치하여 패널 본체(4)를 형성하고, 송신 전극(2)에 소정의 신호를 공급한다. 지시체로서의 손가락에 의해서 지시된 위치에서는 손가락을 통하여 전류가 분류(分流)됨으로써 송신 전극(2)과 수신 도체(3)의 사이에 형성된 정전 용량이 변화하고, 이 정전 용량의 변화를 수신 도체(3)에 흐르는 전류의 변화로서 검출한다.
따라서 송신 전극(2)과 수신 도체(3)의 각각의 교점(交點)에 있어서의 전류의 변화를 검출함으로써, 지시체에 의해 지시받은 패널 본체(4) 상의 위치를 검출할 수 있다. 그러나 수신 도체(3)에서 변화하는 전류는 미약하다. 이 때문에, 미약 전류를 적절한 신호 레벨의 전압으로 변환하여 처리하는 것이 행해진다. 상술한 특허 문헌 1에 있어서도, 오피 앰프(OPA)를 사용한 IV 변환부(전류 전압 변환부)(31)를 이용하여, 수신 도체(3)에 흐르는 미약 전류를 전압으로 변환하여 처리하는 것이 설명되어 있다.
특허 문헌 1: 일본국 특개 2011-243081호 공보
그런데, 상술한 특허 문헌 1에 개시되어 있는 IV 변환부를 구비하는 터치 패널 장치는, 근년, 급속히 보급되어 가고 있는 스마트 폰 등으로 불리는 휴대 기기의 입력 장치로서는 적합하지 않다. 스마트 폰은, 예를 들면 4인치 정도의 표시 화면을 구비하고, 당해 표시 화면에 배설된 터치 패널 장치(위치 검출 장치)를 통해서 유저로부터 펜 혹은 손가락 등의 지시체에 의한 지시 위치를 검출하는 기능을 구비하고 있지만 휴대 기기로서, 소비 전력의 절력화, 소형화, 경량화가 바람직하다.
그렇지만, IV 변환부(전류 전압 변환부)는 상술한 특허 문헌 1의 도 5에도 도시되어 있는 것처럼, 오피 앰프(연산 증폭기)의 입출력단 사이에 콘덴서와 저항이 접속된 구성이 일반적이지만, 오피 앰프를 이용하여 전류 전압 변환을 행하기 때문에 소비 전력이 크다. 또, IV 변환부에는 비교적 용량치가 큰 콘덴서가 필요하게 되어, 집적 회로(IC)에 반도체 프로세스를 이용하여 콘덴서를 형성하는 경우에는, 콘덴서를 형성하는 반도체 면적은 다른 회로 소자에 비하면 매우 커서, IC화를 어렵게 하고 있다. 이 때문에, 특허 문헌 1에 기재된 터치 패널 장치에서는, 복수의 수신 도체가 1개의 IV 변환부(31)를 공용하는 구성을 가지고 있어, 복수의 수신 도체가 전환 회로(21)를 통해서 1개의 IV 변환부(31)에 접속되어 전류 전압 변환되고 있다.
그러나 복수의 수신 도체가 1개의 IV 변환부(31)를 공용하는 경우에는, 복수의 수신 도체를 순차 전환하여 1개의 IV 변환부(31)에 접속시켜 전류를 전압으로 변환하기 위한 처리 속도와 지시체의 터치 패널상에서의 이동 속도의 관계에 따라서는 지시 위치의 검출 처리가 적시에(timely) 행해지지 않는 일이 있고, 이 경우에는 적절한 타이밍에서의 지시체에 의한 지시 위치의 검출을 놓쳐져 버리는 일이 있다.
이상의 점을 감안하여, 본 발명은 소비 전력이 적고, 회로 규모도 작으며, 또, IV 변환을 위해서 사용되는 콘덴서의 정전 용량치를 작게 설정할 수 있는 신호 처리 회로, 신호 처리 방법을 제공함과 아울러, 이들을 이용한 위치 검출 장치 및 전자 기기를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 청구항 1에 기재된 발명의 신호 처리 회로는, 제1 방향으로 배설된 복수의 신호 송신 도체와, 상기 제1 방향에 대해서 교차하는 제2 방향으로 배설된 복수의 신호 수신 도체를 구비하고, 지시체에 의한 위치 지시에 대응한 정전 용량의 변화를 검출하는 정전 용량 방식의 위치 검출 센서의 상기 신호 수신 도체에 접속되는 신호 처리 회로로서, 클램프 회로와, 게이트 회로와, 콘덴서 회로와, 게이트 제어 회로를 구비하고 있고, 상기 클램프 회로의 일단에는 상기 신호 수신 도체가 접속됨과 아울러 상기 게이트 회로의 일단이 접속되어 있고, 상기 게이트 회로의 타단에는 상기 콘덴서 회로의 일단이 접속되어 있고, 상기 클램프 회로의 타단 및 상기 콘덴서 회로의 타단은 각각의 소정의 전위가 설정됨과 아울러, 상기 게이트 제어 회로에 의해서 상기 게이트 회로의 도통 제어를 행함으로써, 상기 클램프 회로를 통하여 소정의 전위로 설정된 상기 신호 수신 도체를 상기 게이트 회로를 통하여 상기 콘덴서 회로에 접속함으로써, 지시체에 의한 위치 지시에 대응한 정전 용량의 변화가 상기 콘덴서 회로로부터 전압 신호로서 출력되도록 한 것을 특징으로 한다.
이 청구항 1에 기재된 발명의 신호 처리 회로에 의하면, 클램프 회로에 의해서 수신 도체를 소정의 전위로 클램프한 후에, 이 소정의 전위로 클램프된 수신 도체를, 게이트 회로를 통하여 콘덴서 회로에 접속함으로써, 콘덴서 회로에 손가락 등의 지시체가 지시하는 위치에 대응하여 변화하는 전위를 발생시켜, 이 콘덴서 회로에 생긴 전위가 전압 신호로서 출력된다.
이것에 의해, 오피 앰프를 이용해 구성되는 종래의 IV 변환 회로(전류 전압 변환 회로)를 이용하는 경우에 비해 회로 구성을 간단하게 할 수 있고, 전력 절약화를 가능하게 한다. 또, 본 발명에서 이용되는 콘덴서의 용량치는, 오피 앰프를 이용한 IV 변환 회로에서 이용되는 콘덴서의 용량치와 비교해 작은 값으로 할 수 있기 때문에, 집적 회로 중에 콘덴서 회로를 형성했을 때의 회로 규모를 작게 할 수 있다. 따라서 본 발명에 의하면, 전력 절약, 소회로 규모를 실현할 수 있기 때문에, 복수의 수신 도체의 각각에 IV 변환 회로가 접속된 회로 구성을 구비한 위치 검출 장치 및 전자 기기를 실현할 수 있다.
본 발명에 의하면, 소비 전력이 적고, 회로 규모도 작기 때문에, 정전 용량 방식의 위치 검출 센서와 함께 사용하기 바람직한 신호 처리 회로, 신호 처리 방법, 및 이들을 구비함으로써 소형화, 경량화, 및 장시간의 사용을 가능하게 한 위치 검출 장치 및 전자 기기가 실현될 수 있다.
도 1은 본 발명이 적용된 전자 기기를 설명하기 위한 도면이다.
도 2는 본 발명이 적용된 위치 검출 장치의 구성예를 설명하기 위한 도면이다.
도 3은 본 발명의 제1 실시 형태의 신호 처리 회로의 구성예를 설명하기 위한 도면이다.
도 4는 본 발명과 함께 사용하기 바람직한 A/D 컨버터의 구성예를 설명하기 위한 도면이다.
도 5는 본 발명과 함께 사용하기 바람직한 A/D 컨버터의 동작을 개념적으로 설명하기 위한 도면이다.
도 6은 본 발명의 제1 실시 형태의 신호 처리 회로의 동작을 설명하기 위한 타이밍챠트이다.
도 7은 본 발명의 제2 실시 형태의 신호 처리 회로의 구성예를 설명하기 위한 도면이다.
도 8은 본 발명의 제2 실시 형태의 신호 처리 회로의 동작을 설명하기 위한 타이밍챠트이다.
이하, 도면을 참조하면서, 본 발명의 신호 처리 회로, 신호 처리 방법, 위치 검출 장치, 전자 기기의 실시 형태에 대해서 설명한다. 본 발명의 신호 처리 회로, 신호 처리 방법은, 정전 용량 방식의 위치 검출 센서에 적용되기 바람직한 것이다.
[제1 실시 형태]
[본 발명의 신호 처리 회로, 신호 처리 방법이 적용된 위치 검출 장치]
도 1은 본 발명의 신호 처리 회로, 신호 처리 방법의 일 실시 형태가 적용되어 구성된 위치 검출 장치(1)를 구비한 전자 기기의 일례를 나타내는 것이다. 도 1에 도시된 전자 기기(2)는, 예를 들면 LCD(Liquid Crystal Display) 등의 표시 장치의 표시 화면(2D)를 구비하는 스마트 폰 등으로 불리는 휴대 기기로서, 표시 화면(2D)의 전면부에는 정전 용량 방식의 위치 검출 장치(1)를 구성하는 터치 패널이 배설되어 있다. 또, 전자 기기(2)의 상부와 하부에는, 수화기(3) 및 송화기(4)가 각각 마련되어 있다. 이 위치 검출 장치(1)의 상세에 대해서는 후술한다.
그리고 전자 기기(2)의 표시 화면(2D)의 전면부에 배설된 터치 패널 상에서 손가락 등에 의해 위치 지시 조작이 행해지면, 위치 검출 장치(1)는 손가락 등으로 조작된 위치를 검출하여, 전자 기기(2)가 구비하는 마이크로 컴퓨터에 의해서 조작 위치에 따른 표시 처리를 실시할 수 있다.
[정전 용량 방식의 위치 검출 장치의 구성예]
다음으로, 도 1에 도시된 전자 기기(2) 등에서 이용되는 위치 검출 장치(1)의 구성예에 대해서 설명한다. 도 2는 이 실시 형태의 위치 검출 장치(1)의 구성예를 설명하기 위한 도면이다. 이 실시 형태의 위치 검출 장치(1)는 본 발명의 신호 처리 회로 및 신호 처리 방법의 일 실시 형태가 적용되어 구성된 것이다. 이 실시 형태의 위치 검출 장치(1)는 크로스포인트형 정전 용량 방식의 것이다. 또한, 크로스포인트형 정전 용량 방식의 위치 검출 장치의 원리 등에 대해서는, 이 출원의 발명자의 발명과 관련된 출원의 공개 공보인 특개 2011-3035호 공보, 특개 2011-3036호 공보, 특개 2012-123599호 공보 등에 상세하게 설명되어 있다.
그리고 이 실시 형태의 위치 검출 장치(1)는, 도 2에 도시된 바와 같이, 터치 패널(위치 검출 센서)을 구성하는 센서부(100)와, 송신부(200)와, 수신부(300)와, 제어 회로(400)와, 클럭 생성 회로(500)를 구비한다. 제어 회로(400)는, 이 실시 형태의 위치 검출 장치(1)의 각 부를 제어하기 위한 회로로서, 예를 들면 마이크로 컴퓨터를 탑재하여 구성된다. 클럭 생성 회로(500)는 소정의 클럭 신호를 생성하여 각 부에 공급하는 것으로, 경우에 따라서는 마이크로 컴퓨터 등에 포함되는 것도 있다.
센서부(100)는 하층측으로부터 차례로, 송신 도체군(12), 절연층, 수신 도체군(11)을 적층하여 형성된 것이다. 송신 도체군(12)은, 도 2에 있어서, X축 방향으로 연장(extend)된 복수의 송신 도체 12Y1, 12Y2, …, 12Y46를 서로 소정 간격 떨어뜨려 병렬 배치한 것이다. 또, 수신 도체군(11)은 송신 도체 12Y1, 12Y2, …, 12Y46에 대해서 교차하는 방향(도 2의 Y축 방향)으로 연장된 복수의 수신 도체 11X1, 11X2, …, 11X72를 서로 소정 간격 떨어뜨려 병렬 배치한 것이다.
이 실시 형태의 위치 검출 장치(1)에서는, 수신 도체군(11)을 구성하는 복수의 수신 도체 11X1, 11X2, …, 11X72가 제1 도체이며, 송신 도체군(12)을 구성하는 복수의 송신 도체 12Y1, 12Y2, …, 12Y46가 제2 도체이다. 이와 같이, 크로스포인트형 정전 용량 방식의 위치 검출 장치에서는, 송신 도체와 수신 도체를 교차시켜 형성되는 각각의 교점에 있어서의 정전 용량의 변화에 기초하여, 손가락 등의 지시체가 지시하는 위치를 검출하는 구성을 구비하고 있다.
그리고 이 실시 형태의 위치 검출 장치(1)는, 도 1을 이용하여 설명한 것처럼, 예를 들면 스마트 폰으로 불리는 휴대 기기에 탑재되어 사용된다. 이 때문에, 센서부(100)는 휴대 기기가 구비하는 표시 장치의 표시 화면의 크기에 대응하여, 화면 사이즈가 예를 들면 4인치 전후의 크기인 지시 입력면(100S)을, 광 투과성을 가지는 수신 도체군(11)과 송신 도체군(12)에 의해서 형성하고 있다. 또한, 휴대 기기의 표시 장치로서는, LCD(Liquid Crystal Display)나 유기 EL(Organic Electro-Luminescence) 디스플레이 등의 박형(薄型)의 것이 이용된다. 또, 수신 도체군(11)과 송신 도체군(12)은, 센서 기판의 동일면측에 각각이 배치되는 구성이어도 좋고, 센서 기판의 일면 측에 수신 도체군(11)을 배치하고, 타면측에 송신 도체군(12)을 배치하는 구성이라도 좋다.
이 실시 형태에 있어서, 센서부(100)의 송신 도체군(12)은, 도 2에 도시된 바와 같이, 46개의 송신 도체 12Y1 ~ 12Y46로 이루어진다. 송신부(200)의 송신 신호 생성 회로(21)는, 제어 회로(400)의 제어에 따라서, 클럭 생성 회로(500)로부터의 클럭 신호 CLK에 기초하여 형성되는 타이밍으로, 46개의 다른 송신 신호를 생성하여 송신 도체 12Y1, 12Y2, …, 12Y46의 각각에 소정의 송신 신호를 공급한다. 또한, 46개의 송신 도체 12Y1 ~ 12Y46의 각각에 공급되는 송신 신호의 구체적인 예로서는, 예를 들면, PN(pseudo random noise) 부호나 아다마르 부호(Hadamard code) 등의 직교 부호가 적용 가능하다.
송신부(200)의 신호 극성 반전 회로(22)는, 송신 신호의 부호열(符號列)에 기초하여, 필요에 따라서 송신 신호의 극성을 전환하는(반전시키는) 처리를 행한다. 이 실시 형태의 위치 검출 장치(1)는, 상술도 한 것처럼 크로스포인트형 정전 용량 방식의 것이며, 송신 도체 12Y1, 12Y2, …, 12Y46에 공급되는 송신 신호에 따라 수신 도체 11X1 ~ 11X72에 유기(誘起)되는 신호의 변화에 기초하여 지시체의 위치를 검출하는 것으로, 손가락 등의 지시체에 의한 위치 지시에 대응한 정전 용량의 변화에 기초한 위치 검출 방식이다.
이 때문에, 송신 신호 생성 회로(21)에 의해서 생성되는 송신 신호에 「0」이 연속되거나 반대로 「1」이 연속되는 경우에 대응하여, 신호 극성 반전 회로(22)에서는, 각 송신 도체 12Y1, 12Y2, …, 12Y46에 대해서 직전(直前)에 공급한 신호(부호)와 다음에 공급해야 할 신호(부호)가 동일한지 여부를 판정하고, 동일한 신호(부호)가 연속하는 경우에는, 송신 신호의 신호 레벨(하이 레벨/로우 레벨)이 전환된(혹은 반전된) 송신 신호(송신 부호)를 생성한다.
구체적으로는, 송신 신호가 「00」과 같이, 「0」이 연속되는 경우에는, 신호 레벨이 로우 레벨로 설정된 앞의 「0」을 송신한 후에 일시적으로 송신 신호의 신호 레벨을 하이 레벨로 설정하고, 그 후, 뒤의 「0」의 송신에 대응하여 신호 레벨을 로우 레벨로 설정한다. 반대로, 송신 신호가 「11」과 같이, 「1」이 연속되는 경우에는, 신호 레벨이 하이 레벨로 설정된 앞의 「1」을 송신한 후에 일시적으로 송신 신호의 신호 레벨을 로우 레벨로 설정하고, 그 후, 뒤의 「1」의 송신에 대응하여 신호 레벨을 하이 레벨로 설정한다.
이와 같이, 송신 신호의 신호 레벨을 신호 송신하기 이전에 하이 레벨로 하거나 로우 레벨로 함으로써, 송신 신호의 상승(rising), 하강(falling)을 적절히 마련하는 처리를, 이 명세서에서는 극성 반전 처리라고 칭한다. 또한, 송신 신호가 「01」이나 「10」과 같이, 다른 신호(부호)를 송신하는 경우에는, 적절히 송신 신호의 상승이나 하강이 마련되므로, 송신 신호의 극성 전환(극성 반전)을 행할 필요는 없다.
이와 같이, 이 실시 형태의 위치 검출 장치(1)에서는, 정전 용량의 변화에 기초하여 손가락 등의 지시체가 지시하는 위치를 검출하는 정전 용량 방식을 채용하고 있다. 따라서 신호 극성 반전 회로(22)에 의해, 송신 도체 12Y1, 12Y2, …, 12Y46에 공급되는 송신 신호의 신호 레벨을 제어함으로써, 송신 신호의 상승이나, 하강이 적절히 마련된다. 이것에 따라서, 수신 도체 11X1, 11X2, …, 11X72에 유기 되는 수신 신호의 신호 레벨도 적절히 변화하는 신호로 된다. 그리고 수신 도체 11X1, 11X2, …, 11X72에 유기되는 수신 신호를 감시하여, 어느 송신 도체에 공급된 송신 신호에 대응한 수신 신호가 변화했는지를 검출한다.
즉, 이 실시 형태의 위치 검출 장치(1)의 수신부(300)에 있어서, 송신 도체 12Y1, 12Y2, …, 12Y46의 각각과, 수신 도체 11X1, 11X2, …, 11X72의 각각의 교차점(크로스포인트)에 유기되는, 정전 용량의 변화에 대응한 신호의 변화를 각 크로스포인트에서 검출한다. 이것에 의해, 손가락 등의 지시체의 센서부(100)로의 접근 혹은 터치에 대응하여 정전 용량이 변화한 크로스포인트를 특정할 수 있다.
또한, 각 수신 도체 11X1 ~ 11X72로부터의 수신 신호는 신호 처리 회로(31)에 공급되고, 수신 도체 11X1 ~ 11X72로부터의 수신 신호의 각각이 동시에 A/D 변환되는 구성을 가진다. 그리고 자세한 것은 후술하지만, 신호 처리 회로(31)는 수신 도체 11X1 ~ 11X72의 각각으로부터의 신호를 전류의 형식으로 수신해 전압 신호로 변환하여, 이것을 다중 적분형 ADC(Analog Digital Converter)로 A/D(Analog/Digital) 변환한다. 다중 적분형 ADC는, 콘덴서에 충전된 전하를, 값이 다른 복수의 기준 전류를 이용하여 방전·충전을 차례로 행함으로써, 콘덴서에 충전된 전하에 대응한 디지털 신호로 변환하는 것이다.
그리고 위치 검출 회로(32)는 송신 신호 생성 회로(21)로부터 각 송신 도체 12Y1, 12Y2, …, 12Y46에 공급된 송신 신호(송신 부호)에 대응한 신호(부호)를 이용한 상관 연산을 행하여, 상관 연산치를 산출한다. 이를 위해, 상관 연산에 이용하는 신호(상관 연산 신호)가, 송신 신호 생성 회로(21)로부터 위치 검출 회로(32)에 공급되고 있다. 그리고 위치 검출 회로(32)는 제어 회로(400)의 제어에 따라 동작하고, 산출된 상관 연산치에 기초하여 손가락 등의 지시체가 센서부(100)에서 지시한 위치를 검출하고, 지시체의 지시 위치에 따른 출력 데이터는, 예를 들면, 도시하지 않은 휴대 기기에 마련된 표시 제어부 등에 공급됨으로써, 표시 화면상에 지시체의 지시 위치에 따른 표시가 행해진다.
이와 같은 구성을 가지는 이 실시 형태의 위치 검출 장치(1)는 46개의 송신 도체 12Y1 ~ 12Y46의 각각에 송신 신호를 동시에 공급하고, 72개의 수신 도체 11X1 ~ 11X72로부터의 수신 신호를 동시에 처리한다. 그리고 46개의 송신 도체 12Y1 ~ 12Y46와 72개의 수신 도체 11X1 ~ 11X72가 형성하는 3312개의 크로스포인트에 있어서의 지시체의 지시 상태에 기초하여, 지시 입력면(100S)상에서 지시체가 지시하는 위치를 검출한다.
또한, 이하에 있어서는, 특히 구별되어 나타내는 경우를 제외하고, 수신 도체 11X1 ~ 11X72의 각각을 총칭하여 수신 도체(11X)로 기재하고, 송신 도체 12Y1 ~ 12Y46의 각각을 총칭해 송신 도체(12Y)로 기재한다.
「제1 실시 형태의 신호 처리 회로(31)의 구체적인 구성예」
도 3은 제1 실시 형태의 위치 검출 장치(1)에서 이용되는 신호 처리 회로(31)의 구성예를 설명하기 위한 도면이다. 도 3에 도시된 바와 같이, 제1 실시 형태의 신호 처리 회로(31)는, 72개의 수신 도체 11X1 ~ 11X72의 각각에 대응하는 72개의 신호 처리 회로(31A(1) ~ 31A(72))를 구비한다. 그리고 72개의 신호 처리 회로(31A(1) ~ 31A(72))의 각각은 동일한 구성을 가진다. 이 때문에, 이하에 있어서는, 특히 구별하여 나타내는 경우를 제외하고, 신호 처리 회로(31A(1) ~ 31A(72))를 총칭하여 신호 처리 회로(31A)로 기재한다.
도 3에 도시된 신호 처리 회로(31A)는 저항 소자로 구성되는 클램프 회로(31a)의 일단이 수신 도체(11X)에 접속되어 있다. 또, 게이트 회로(31b)의 일단도 또한 수신 도체(11X)에 접속되어 있다. 콘덴서 회로(31c)의 일단은, 게이트 회로(31b)의 타단에 접속되어 있다. 클램프 회로(31a)의 타단과 콘덴서 회로(31c)의 타단은 소정의 전위로 설정된다. 도 3에 있어서는, 기준 전압 설정 회로(31Y)에 접속됨으로써 소정의 전위가 설정되어 있다. 콘덴서 회로(31c)의 일단에 생기는 전압은 ADC(31d)에 의해서 디지털 신호로 변환된다.
즉, 클램프 회로(31a)는, 이하에 설명한 것처럼, 각 수신 도체를 소정의 전위로 클램프한다. 게이트 회로(31b)는 클램프 회로(31a)에 의해서 소정의 전위로 클램프된 수신 도체를 콘덴서 회로(31c)에 접속한다. 콘덴서 회로(31c)는 수신 도체가 클램프 회로(31a)에 의해서 클램프되어 설정된 소정의 전위에 대응한 전하를, 게이트 회로(31b)를 통하여 축적한다. 콘덴서 회로(31c)에 축적된 전하에 대응하여 콘덴서 회로(31c)에 생긴 전압이 ADC(31d)에 의해서 디지털 신호로 변환된다.
또한, 도 3에 있어서는, 설명을 간단하게 하기 위해서, 신호 처리 회로(31) 내에 기준 전압 설정 회로(31Y)를 마련하고 있다. 그러나 기준 전압 설정 회로(31Y)는 신호 처리 회로(31) 내에 마련되어 있을 필요는 없다. 요점은, 클램프 회로(31a)의 타단과 콘덴서 회로(31c)의 타단이 소망하는 전위가 되도록 구성되어 있으면 된다.
따라서 이 실시 형태에 있어서는, 전원 전압 Vcc가 공급되는 단일 전원을 이용하기 때문에, 기준 전압 설정 회로(31Y)에 의해서 설정되는 기준 전압 Vref를 전원 전압 Vcc의 2분의 1(1/2·Vcc)로 하여, 수신 신호의 상승과 하강의 양쪽 모두를 확실히 검출 가능하게 하고 있다. 간단하게는, 송신 신호가 「1」인 경우에는, 콘덴서 회로(31c)에 생기는 전압은 기준 전압(1/2·Vcc)보다 커지고, 반대로 송신 신호가 「0」인 경우에는, 콘덴서 회로(31c)에 생기는 전압은 기준 전압(1/2·Vcc)보다 작아진다고 하는 것처럼, 송신 신호가 「1」, 「0」의 어느 경우에도, 콘덴서 회로(31c)에 있어서 적절한 신호 레벨로 전압 변화를 일으킬 수 있도록 구성되어 있다.
즉, 전원 전압±Vcc가 동시에 공급 가능한 전원에 의해서 구동되는 신호 처리 회로이면, 기준 전압 Vref는 제로 볼트로 설정할 수도 있기 때문에, 이 경우에는 기준 전압 설정 회로(31Y)는 불필요해지거나, 기준 전압 설정 회로(31Y)로서는 클램프 회로(31a)와 콘덴서 회로(31c)의 각각의 타단을 단지 접지함으로써 그 전위를 제로 볼트로 설정하는 배선 접속을 의미한다. 또한, 도 3에 도시된 신호 처리 회로(31)에서는, 클램프 회로(31a) 및 콘덴서 회로(31c) 뿐만 아니라, ADC(31d)도 또한 동일한 기준 전압(1/2·Vcc)이 설정되도록 구성되어 있지만, 각각을 동일한 전위로 설정하는 것은 반드시 필요한 것은 아니다.
단, 도 3에 도시된 바와 같이, 각각이 서로 전기 접속되어 동일한 전위로 설정되어 있으면, 기준 전압이 변동되었을 경우에, 클램프 회로(31a), 콘덴서 회로(31c), ADC(31d)의 각각이 동일한 전압 변동의 영향을 받게 되고, 따라서 클램프 회로(31a), 콘덴서 회로(31c), ADC(31d)의 사이에서는, 실질적으로 전압 변동의 영향이 배제된다고 하는 메리트가 있다.
그리고 제1 실시 형태의 신호 처리 회로(31A)에서 이용되는 ADC(31d)는, 다중 적분형 ADC이다. 도 4는 제1 실시 형태에서 이용되는 ADC(31d)의 구성예를 설명하기 위한 도면이다. 또, 도 5는 ADC(31d)의 동작을 개념적으로 설명하기 위한 도면이다. 제1 실시 형태의 ADC(31d)는, 도 4에 도시된 바와 같이, 콤퍼레이터(d1)와 A/D 제어 로직부(d2)와 전류 출력형 DAC(Digital/Analog Converter)(d3)를 구비하고 있다.
그리고 후술도 하지만, 신호 처리 회로(31A)의 콘덴서 회로(31c)에는, 기준 전압 Vref를 기준 전위로 하여, 수신 도체(11X)로부터 공급되는 수신 신호로서의 전하가 소정 시간 공급됨으로써 전하에 따른 전위로 되어 유지된다. 이 콘덴서 회로(31c)에 유지되는 전위는 ADC(31d)에 의해 디지털 신호로 변환된다. ADC(31d)에 있어서 행해지는 A/D 변환 처리의 개요를 나타내면 이하처럼 된다.
즉, ADC(31d)에 있어서는, 전류 출력형 DAC(d3)로부터의 참조 전류(도 4에 도시된 64IREF ~ 1IREF)를, 콘덴서 회로(31c)와 ADC(31d)를 구성하는 콤퍼레이터(d1)와의 사이에 공급한다. 당해 참조 전류는, 콘덴서 회로(31c)에 유지된 전하를 캔슬하도록 설정된다. 이것에 의해, 당해 참조 전류를 콘덴서 회로(31c)에 있어서 역적분(逆積分)하는 처리가 행해지고, 이 역적분 처리를 통해서, 콘덴서 회로(31c)에 유지된 전하에 대응한 디지털 신호를 생성한다.
이 경우, 참조 전류 IREF를 이용한 역적분 처리에 의해 변화하는 콘덴서 회로(31c)에 생기는 전위와 기준 전압 Vref를 콤퍼레이터(d1)로 비교하여, 이 비교 결과가 A/D 제어 로직부(d2)에 공급되어서, 콘덴서 회로(31c)에 생기는 전위의 극성이 전환되었는지 여부가 검출된다. 그리고 ADC(31d)에서는 역적분 → 비교 → 극성 반전 검출과 같은 일련의 처리를 반복함으로써, A/D 제어 로직부(d2)는 콘덴서 회로(31c)에 유지된 전하에 대응한 처리 시간을 계측한다. 또한, A/D 제어 로직부(d2)는, 도시하지 않았지만, 클럭 신호 CLK에 기초하여 동작하는 카운터나 당해 카운터의 리셋 타이밍이나 카운트치의 출력 타이밍 등을 제어하는 콘트롤러 등을 구비하고 있다.
다음으로, 도 4에 도시된 다중 적분형의 ADC(31d)에서 행해지는 A/D 변환 처리에 대해서 상세하게 설명한다. 도 4의 예에서는, 클램프 회로(31a)에 의해서 정전위로 된 수신 도체가 콘덴서 회로(31c)에 접속되고 콘덴서 회로(31c)에는 정전위가 생겨 있는 것으로 한다. 또, ADC(31d)는 4중 적분 처리를 행하는 것으로, 전류 출력형 DAC(d3)에는 A/D 제어 로직부(d2)의 제어에 기초하여 소정의 참조 전류가 설정된다.
전류 출력형 DAC(d3)에서는, 콘덴서 회로(31c)에 유지된 전하를 캔슬하도록, 즉, 콘덴서 회로(31c)에 생긴 전위가 역극성으로 되도록, 기준 전류 IREF의 -64배의 참조 전류를 출력하고, 콘덴서 회로(31c)에 생긴 전위의 극성이 반전될 때까지 역적분을 행하며, 그 사이의 시간이 A/D 제어 로직부(d2)에 의해서 계측되고, 이 계측 시간이 64배 된 시간 데이터가 메모리에 유지된다.
다음으로, A/D 제어 로직부(d2)에 의해서 콘덴서 회로(31c)에 생긴 전위의 극성이 반전된 것이 검출되면, 전류 출력형 DAC(d3)는, A/D 제어 로직부(d2)의 제어에 기초하여, 기준 전류의 +16배의 참조 전류를 출력하여 콘덴서 회로(31c)에 생긴 전위의 극성이 다시 반전될 때까지 역적분을 행하며, 그 사이의 시간이 A/D 제어 로직부(d2)에 의해서 계측되고, 이 계측 시간이 16배 된 시간 데이터가 이미 메모리에 유지된 시간 데이터에 가산되어 유지된다.
다음으로, A/D 제어 로직부(d2)에 의해서 콘덴서 회로(31c)에 생긴 전위의 극성이 반전된 것이 검출되면, 전류 출력형 DAC(d3)는 A/D 제어 로직부(d2)의 제어에 기초하여, 기준 전류의 -4배의 참조 전류를 출력하여 콘덴서 회로(31c)에 생긴 전위의 극성이 다시 반전될 때까지 역적분을 행하며, 그 사이의 시간이 A/D 제어 로직부(d2)에 의해서 계측되고, 이 계측 시간이 4배 된 시간 데이터가 이미 메모리에 유지된 시간 데이터에 가산되어 유지된다.
마지막으로, A/D 제어 로직부(d2)에 의해서 콘덴서 회로(31c)에 생긴 전위의 극성이 반전된 것이 검출되면, 전류 출력형 DAC(d3)는 A/D 제어 로직부(d2)의 제어에 기초하여, 기준 전류의 +1배의 참조 전류를 출력하여 콘덴서 회로(31c)에 생긴 전위의 극성이 다시 반전될 때까지 역적분을 행하며, 그 사이의 시간이 A/D 제어 로직부(d2)에 의해서 계측되고, 이 계측 시간이 이미 메모리에 유지된 시간 데이터에 가산되어 유지된다.
이와 같이, 일련의 적분 처리를 반복해 행하여, 처리가 완료된 시점에서 메모리에 유지된 시간 데이터를 판독함으로써, 클램프 회로(31a)에 의해서 소정의 전위로 된 수신 도체가 콘덴서 회로(31c)에 접속되어 콘덴서 회로(31c)에 생긴 소정의 전위가, 대응하는 디지털 신호로 변환된다. 또한, 수신 도체가 클램프 회로(31a)에 의해서 음전위로 되어 콘덴서 회로(31c)에 음전위가 생겨 있는 경우에는, 전류 출력형 DAC(d3)로부터는 당초의 기준 전류 IREF의 64배의 참조 전류를 출력하면 되는 것은 명백하다.
그리고 이 제1 실시 형태에 있어서는, 도 3에 도시된 바와 같이, 각 신호 처리 회로(31A)의 게이트 회로(31b)는, 제어 회로(400)로부터의 게이트 회로(31b)용 타이밍 신호 Tm에 의해 온/오프 제어(개폐 제어)된다. 게이트 회로(31b)용 타이밍 신호 Tm은, 클럭 생성 회로(500)로부터의 클럭 신호 CLK에 동기한 신호이다. 또, ADC(31d)는, 상술도 하고, 도 2에도 도시된 것처럼, 제어 회로(400)로부터의 ADC(31d)용 타이밍 신호 CT1에 의해 동작/비동작이 제어된다.
또한, 본 발명의 신호 처리 회로(31A)를 구성하는 콘덴서 회로(31c)에 생기는 전위를 디지털 신호로 변환하는 ADC로서는, 상술한 적분형 ADC로 한정되는 것은 아니지만, 상술된 신호 처리 회로(31A)와 적분형 ADC(31d)를 조합(組合)했을 경우에는, 적분형 ADC(31d)는 신호 처리 회로(31A)를 구성하는 콘덴서 회로(31c)에 유지된 전하를 소정의 참조 전류로 캔슬함으로써, 콘덴서 회로(31c)에 유지된 전하에 대응한 디지털 신호를 출력할 수 있다. 즉, 신호 처리 회로(31A)를 구성하는 콘덴서 회로(31c)는 적분형 ADC(31d)의 구성 요소로서도 기능하고 있어, 신호 처리 회로(31A)와 적분형 ADC(31d)를 집적 회로로 하여 일체적으로 구성하는 경우에 바람직한 조합이 된다.
[신호 처리 회로(31A)의 동작 개요]
다음으로, 신호 처리 회로(31)를 구성하는 각 신호 처리 회로(31A)의 동작의 개요에 대해서 설명한다. 도 6은 제1 실시 형태의 신호 처리 회로(31A)의 동작을 설명하기 위한 타이밍챠트이다. 도 6 A는 송신 신호 생성 회로(21)에서 생성되는 송신 신호(송신 부호)의 구체적인 예를 나타내고 있다. 또, 도 6 B는 송신 신호 생성 회로(21) 및 신호 극성 반전 회로(22)를 통해서 송신 도체(12Y)에 공급되는 신호 상태를 나타내고 있다. 또, 도 6 C는 클램프 회로(31a)가 접속된 수신 도체(11X)로부터 수신된 수신 신호가 신호 처리 회로(31A)를 구성하는 게이트 회로(31b)를 통하여 공급된 콘덴서 회로(31c)에 있어서의 신호 상태를 나타내고 있다.
도 6 A에 도시된 바와 같이, 이 예에 있어서는, 송신 도체(12Y)에 공급되는 신호(송신 부호)가 예를 들면 「0010」인 것으로 한다. 이 예의 송신 신호와 같이, 「0」이 연속하거나 반대로 「1」이 연속하는 경우에는, 송신 신호의 상승이나 하강을 적절히 마련하지 못하여, 콘덴서 회로(31c)에는 송신 신호의 신호 레벨의 변화에 대응한 정전 용량의 변화를 일으킬 수 없다. 이 때문에, 송신 도체(12Y)로의 신호 송신에 앞서 송신 신호의 극성(하이 레벨/로우 레벨)을 조정하기 위해서, 제어 회로(400)에 의해서 제어되는 신호 극성 반전 회로(22)가 마련되어 있다.
즉, 통상은, 도 6 A에 도시된 송신 신호(송신 부호)의 신호 레벨에 대응한 신호 레벨의 신호가 송신 도체(12Y)에 공급된다. 또한, 송신 신호의 신호 레벨이 변화할 수 있는 타이밍을 시점 Sd로 나타내고 있다. 예를 들면, 송신 신호가 「0」인 경우에 송신 도체(12Y)에 공급되는 신호의 신호 레벨이 로우 레벨이며, 송신 신호가 「1」인 경우에 송신 도체(12Y)에 공급되는 신호의 신호 레벨이 하이 레벨이라고 하면, 도 6 A에 있어서 송신 신호가 「0」에서 「1」로 변화하는 시점 Sd에 있어서, 도 6 B에 도시된 바와 같이, 송신 도체(12Y)에 공급되는 신호의 신호 레벨은 로우 레벨에서 하이 레벨로 전환된다. 마찬가지로 하여, 도 6 A에 있어서 송신 신호가 「1」에서 「0」으로 변화하는 시점 Sd에 있어서는, 도 6 B에 도시된 바와 같이, 송신 도체(12Y)에 공급되는 신호의 신호 레벨은 하이 레벨에서 로우 레벨로 전환된다.
그렇지만, 송신 신호가 「0」에 이어서 「0」이 연속하는 경우, 혹은 송신 신호가 「1」에 이어서 「1」이 연속하는 경우에는, 제어 회로(400)에 의해서 제어되는 신호 극성 반전 회로(22)에 의해서, 송신 도체(12Y)에 공급되는 신호의 신호 레벨이 일시적으로 반전되어진다.
즉, 도 6 A에 있어서, 시점 Sd에 있어서 송신 신호가 「0」에 이어서 「0」이 연속하는 경우에는, 도 6 B에 도시된 것처럼, 송신 도체(12Y)에 공급되는 신호의 신호 레벨은 일시적으로 하이 레벨로 전환되지만, 시점 Sj에 있어서는 신호 레벨을 다시 로우 레벨로 하는 처리가 행해진다. 이와 같이 하여, 송신 신호에 「0」이 연속하거나 반대로 「1」이 연속하는 경우에는, 송신 도체(12Y)에 공급되는 신호의 신호 레벨을 일시적으로 반전시킴으로써, 비록 송신 신호에 「0」이 연속했을 경우에도, 송신 신호에 「1」이 연속했을 경우에도, 콘덴서 회로(31c)에는 정전 용량의 변화가 생기도록 구성된다. 또한, 이 예에서는, 송신 신호 「0」에 대응하여 신호 레벨을 로우 레벨로 했지만, 신호 레벨 「0」에 대응하여 신호 레벨을 하이 레벨로 할 수도 있다는 것은 분명하다.
즉, 도 6 B에 도시된 바와 같이, 원칙적으로는, 송신 신호 상태가 변화할 수 있는 시점 Sd에서, 송신 신호 생성 회로(21)로부터의 송신 신호 상태, 즉 「0」혹은 「1」에 대응하도록, 송신 도체(12Y)에 공급되는 신호의 신호 레벨(혹은 극성)이 설정되지만, 송신 신호에 연속한 「0」혹은 연속한 「1」이 존재하는 경우에는, 신호 극성 반전 회로(22)에 의해서, 시점 Sd에 있어서 송신 도체(12Y)에 공급되는 신호의 신호 레벨을 전환함과 아울러, 시점 Sd로부터 소정의 시간 경과한 시점 Sj에서 송신 도체(12Y)에 공급되는 신호의 신호 레벨을 원래대로 되돌리도록 전환한다.
송신 도체(12Y)에 공급된 신호에 따라서, 수신 도체(11X)에 접속된 신호 처리 회로(31A)를 구성하는 콘덴서 회로(31c)에 생기는 전위는, 도 3을 이용하여 설명한 신호 처리 회로(31A)의 클램프 회로(31a), 게이트 회로(31b)에 의해, 대략 도 6 C에 도시된 것 같은 신호 레벨이 된다. 즉, 도 6 C에 있어서, 기호 cp에 의해 도시되는 직선 부분이 나타내는 것처럼, 송신 신호의 신호 레벨을 전환하는 시점 Sd에 앞서는 소정 기간에 있어서는, 클램프 회로(31a)에 의해, 수신 도체(11X)는 기준 전압 Vref(Vref=1/2·Vcc)로 클램프되어 있다.
그리고 도 6 C에 도시된 바와 같이, 송신 도체(12Y)에 공급되는 신호에 따른 수신 신호가 수신 도체(11X)에 접속된 신호 처리 회로(31A)에 공급된다. 즉, 클램프 회로(31a)에 의해 기준 전압 Vref로 클램프된 수신 도체(11X)가, 게이트 회로(31b)를 통하여 콘덴서 회로(31c)에 접속됨으로써, 콘덴서 회로(31c)에는 기준 전압 Vref를 중심 전위로 하여 신호 레벨이 변동하는, 수신 신호에 따른 전위가 생긴다. 그리고 상술한 ADC(31d)에 의해, 콘덴서 회로(31c)의 전위가 디지털 신호로 변환된다.
이 때문에, 제1 실시 형태의 각 신호 처리 회로(31A)에서는, 게이트 회로(31b)는 도 6 D에 도시된 게이트 회로(31b)용 타이밍 신호 Tm에 의해 제어된다. 또한, 제1 실시 형태에 있어서, 게이트 회로(31b)는 도 6 D에 도시된 바와 같이 A/D 변환 처리의 종료 후로서, 도 6 C에 도시된 바와 같이 수신 도체(11X)가 클램프 회로(31a)로 클램프되어 신호 레벨이 기준 전압 Vref로 설정된 상태에서 온으로 된다. 도 6 D의 예에서는, 시점 Sd에서 온으로 되어 있지만, 이 시점으로 한정하는 것이 아니고, 시점 t2에서부터 시점 Sd의 사이의 cp의 기간에서 전환하면 된다.
타이밍 신호 Tm에 의해 게이트 회로(31b)가 온(닫힘 상태)으로 되면, 클램프 회로(31a)로 클램프되어 신호 레벨이 기준 전압 Vref로 설정된 수신 도체(11X)는, 송신 도체(12Y)에 공급되는 신호의 신호 레벨에 대응한 신호를 수신하고 콘덴서 회로(31c)에 전하가 공급되어 콘덴서 회로(31c)의 전위가 변화한다.
그리고 타이밍 신호 Tm에 의해서, 시점 Sd에서 온으로 된 게이트 회로(31b)는, 송신 도체(12Y)에 공급되는 신호의 신호 레벨이 전환될 수 있는 시점 Sj에 동일한, 혹은 시점 Sj에 앞서는 시점 t5에서 오프(열림 상태)로 된다. 게이트 회로(31b)가 오프(열림 상태)로 됨으로써, 콘덴서 회로(31c)에는 수신 신호의 신호 레벨에 대응한 전위가 유지된다.
콘덴서 회로(31c)에 유지된 전위는, 시점 t5 이후의 시점 t6에서 ADC(31d)에 의해서 A/D 변환 처리가 개시되고 시점 t7에서 종료하여, 콘덴서 회로(31c)에 유지된 전위에 대응한 디지털 신호를 출력한다. 또한, ADC(31d)는 ADC(31d)용 타이밍 신호 CT1에 의해 도 6 E에 도시된 동작 타이밍으로 동작하도록 제어되고 있다. 또한, 시점 t2, t3, t4, t5, Sd, Sj의 각각은, 클럭 생성 회로(500)로 생성하는 클럭 신호 CLK에 기초하여 설정되어 있다.
[제2 실시 형태]
다음으로, 본 발명의 신호 처리 회로, 신호 처리 방법의 제2 실시 형태에 대해서 설명한다. 이 제2 실시 형태의 신호 처리 회로, 신호 처리 방법도 또한, 도 1을 이용하여 설명한 것처럼, 스마트 폰 등의 전자 기기의 위치 검출 장치(1)에 적용된다. 그리고 이 제2 실시 형태에 있어서는, 도 3에 구성예를 나타낸 위치 검출 장치(1)의 신호 처리 회로(31)의 구성이 제1 실시 형태와는 다른 것이 된다.
즉, 상술한 제1 실시 형태의 신호 처리 회로(31)의 각 신호 처리 회로(31A(1)) ~ 31A(72))에서는, 수신 도체를 소정의 기준 전압으로 하기 위한 클램프 회로(31a)로서, 저항 소자를 이용했다. 이 때문에, 수신 도체(11X)의 전압을 기준 전압으로 안정적으로 클램프 하기까지는 어느 정도의 시간이 필요하게 된다. 이에, 이 제2 실시 형태의 신호 처리 회로(31X)에서는, 클램프 회로(31a)로서 스위치 회로를 이용함으로써, 수신 도체(11X)를 소정의 기준 전압으로 클램프 하기까지 필요한 시간을 단축시키고 있다.
「제2 실시 형태의 신호 처리 회로(31X)의 구체적인 구성예」
도 7은 제2 실시 형태의 신호 처리 회로(31X)의 구성예를 설명하기 위한 도면이다. 도 7에 도시된 신호 처리 회로(31X)는, 도 3에 도시된 위치 검출 장치(1)의 신호 처리 회로(31)에 대응하는 것이다. 그리고 도 7에 도시된 제2 실시 형태의 신호 처리 회로(31X)는 72개의 수신 도체 11X1 ~ 11X72의 각각에 대응하는 72개의 신호 처리 회로(31B(1) ~ 31B(72))를 구비한다. 그리고 72개의 신호 처리 회로(31B(1) ~ 31B(72))의 각각은 동일한 구성을 가진다. 이 때문에, 이하에 있어서는, 특히 구별하여 나타내는 경우를 제외하고, 신호 처리 회로(31B(1) ~ 31B(72))를 총칭하여 신호 처리 회로(31b)로 기재한다.
그리고 도 3과 도 7을 비교하면 알 수는 것처럼, 제1 실시 형태의 신호 처리 회로(31A)와 제2 실시 형태의 신호 처리 회로(31b)는, 클램프 회로로서 스위치 회로(31e)가 이용되고 있는 점이 다르다. 그리고 클램프 회로로서의 스위치 회로(31e)는, 제어 회로(400X)로부터의 타이밍 신호 Tm1에 의해서 제어되는 구성으로 되어 있다. 이 제어 회로(400X)는, 도 2에 도시된 제어 회로(400)에 대응하는 것으로, 제1 실시 형태의 게이트 회로(31b)용 타이밍 신호 Tm에 대응하는 타이밍 신호 Tm2에 더하여, 스위치 회로(31e)에 공급하는 스위치 회로(31e)용 타이밍 신호 Tm1를 형성하는 점이, 제1 실시 형태의 제어 회로(400)와는 다르다.
이들 이외는, 제1 실시 형태의 경우와 마찬가지로 구성된다. 따라서 이 제2 실시 형태의 신호 처리 회로(31X), 및 그 주변 부분에 대해서, 제1 실시 형태의 경우와 마찬가지로 구성되는 부분에는 동일한 참조 부호를 부여하고, 그것들의 상세한 설명에 대해서는 생략한다.
구체적으로, 제2 실시 형태의 신호 처리 회로(31b)에서는, 도 7에 도시된 바와 같이, 수신 도체(11X)에 클램프 회로로서의 스위치 회로(31e)의 일단과, 게이트 회로(31b)의 일단이 접속되어 있다. 그리고 스위치 회로(31e)의 타단, 콘덴서 회로(31c)의 타단은, 제1 실시 형태와 마찬가지로, 기준 전압 설정 회로(31Y)에 접속되어 있다. 그리고 도 7에 도시된 바와 같이, 콘덴서 회로(31c)에서 생기는 전위를 디지털 신호로 변환하는 ADC(31d)를 구비한다.
즉, 도 7에 도시된 스위치 회로(31e)는, 이하에 설명한 것처럼, 타이밍 신호 Tm1에 의해서 온 오프 동작이 제어되고, 도 3에 도시된 클램프 회로(31a)를 구성하는 저항 소자와는 달리, 각 수신 도체를 기준 전압 Vref로 즉시 클램프 시킨다.
[제2 실시 형태의 신호 처리 회로(31b)의 동작 개요]
다음으로, 제2 실시 형태의 신호 처리 회로(31X)를 구성하는 각 신호 처리 회로(31b)의 동작의 개요에 대해서 설명한다. 도 8은 제2 실시 형태의 신호 처리 회로(31b)의 동작을 설명하기 위한 타이밍챠트이다. 도 8에 있어서, 도 8 A, 도 8 B, 도 8 C에 도시된 신호의 각각은, 도 6에 도시된 도 6 A, 도 6 B, 도 6 C에 도시된 신호의 각각과 같다. 단, 도 8 B에 도시된 것처럼, 제2 실시 형태에 있어서, 송신 신호의 극성을 반전시키는 타이밍을 나타내는 시점 Sj는, 도 6 B에 도시된 제1 실시 형태에 있어서의 시점 Sj보다도, 시간적으로 후의 시점으로 설정할 수 있다.
이것은, 제1 실시 형태에서는, 저항 소자의 구성으로 된 클램프 회로(31a)를 이용했기 때문에, 수신 도체(11X)의 전위를 안정하게 기준 전압 Vref로 클램프 할 때까지 시간이 걸렸다. 그러나 제2 실시 형태에서는, 스위치 회로(31e)의 구성으로 된 클램프 회로를 이용하기 때문에, 수신 도체(11X)의 전위를 신속히 기준 전압 Vref로 클램프 할 수 있으므로, 송신 신호의 극성을 반전시키는 타이밍을 나타내는 시점 Sj를 굳이 송신 신호의 송신 타이밍 Sd에 가까운 위치에 설정할 필요가 없기 때문이다. 또, 도 8에 있어서, 시점 t0는, 송신 신호의 극성을 반전시킬 필요가 있는 경우의 타이밍을 나타내는 시점 Sj에 대응하는 시점을 나타내고 있다.
그리고 이 제2 실시 형태에 있어서, 각 신호 처리 회로(31b)의 스위치 회로(31e)는, 도 7에 도시된 것처럼, 제어 회로(400X)로부터의 스위치 회로(31e)용 타이밍 신호 Tm1에 의해서 전환 제어가 행해진다. 스위치 회로(31e)는, 도 8 F에 도시된 바와 같이, A/D 변환 처리의 개시 후에 온으로 된다. 이것에 의해, 수신 도체(11X)가 기준 전압 설정 회로(31Y)에 접속되어, 도 8 C에 도시된 바와 같이, 수신 도체(11X)의 전위를 기준 전압 Vref로 신속히 클램프 할 수 있다. 또한, 도 8 F의 예에서는, 스위치 회로(31e)는 시점 t1에 있어서 온으로 되고 있지만, 이 시점으로 한정하는 것이 아니고, A/D 변환 개시 시점 t6에서부터 A/D 변환 종료 시점 t7까지의 기간에 있어서 온으로 전환되면 된다.
그리고 스위치 회로(31e)는, 도 8 F에 도시된 바와 같이, 다음의 송신 동작 타이밍의 시점 Sd의 전까지 오프로 된다. 이것에 의해, 수신 도체(11X)의 전위를 기준 전압 Vref로 클램프하는 처리가 완료된다. 또한, 도 8 F의 예에서는, 스위치 회로(31e)는, 시점 t3에 있어서 오프로 되어 있지만, 이 시점으로 한정하는 것이 아니고, 다음의 송신 동작 타이밍의 시점 Sd의 전까지의 시점에 있어서 오프로 되면 된다.
또, 제2 실시 형태의 각 신호 처리 회로(31b)의 게이트 회로(31b)는, 도 8 D에 도시된 게이트 회로(31b)용 타이밍 신호 Tm2에 의해 제어된다. 도 8 D에 도시된 게이트 회로(31b)용 타이밍 신호 Tm2는, 기본적으로는, 도 6 D에 도시된 제1 실시 형태의 각 신호 처리 회로(31A)의 게이트 회로(31b)용 타이밍 신호 Tm과 마찬가지의 타이밍을 제공한다. 그러나 제2 실시 형태에 있어서는, 스위치 회로의 구성으로 된 스위치 회로(31e)를 이용하고 있으므로, A/D 변환 처리 종료 후로서, 수신 도체(11X)의 전위가 기준 전압 Vref로 클램프된 후로서 전위가 안정된 시점 t2'에서부터 시점 Sd의 사이의 cp의 기간에 전환되면 된다. 즉, 제2 실시 형태에서 이용하는 게이트 회로(31b)용 타이밍 신호 Tm2(도 8 D)는, 제1 실시 형태에서 이용한 게이트 회로(31b)용 타이밍 신호 Tm(도 6 D)에 의하는 시점 t2보다도 빠른 시점 t2'에 있어서 게이트 회로(31b)를 온으로 할 수 있다.
또, 도 8 E에 도시된 바와 같이, ADC(31d)에 의한 A/D 변환 처리의 개시 타이밍 및 종료 타이밍은, 도 6 E에 도시된 제1 실시 형태의 ADC(31d)에 의한 A/D 변환 처리의 개시 타이밍 및 종료 타이밍과 같다. 또, 시점 t0, t1, t2', t3, t4, t5, t6, t7, Sd, Sj의 각각은, 클럭 생성 회로(500)로 생성하는 클럭 신호 CLK에 기초하여 설정되어 있다.
이와 같이 하여, 제2 실시 형태의 신호 처리 회로(31b)의 경우에는, 스위치 회로(31e)의 구성으로 된 클램프 회로를 이용함으로써, 각 수신 도체(11X)의 전위를 신속히 기준 전압 Vref로 클램프한 후, 수신 신호에 따라 콘덴서 회로(31c)에 유지된 전위를, 시점 t5 이후의 시점 t6에서 ADC(31d)에 의해서 A/D 변환 처리가 개시되고 시점 t7에서 A/D 변환 처리가 종료되어, 콘덴서 회로(31c)에 유지된 전위에 대응한 디지털 신호를 출력할 수 있다.
또한, 도 7에 도시된 제2 실시 형태의 신호 처리 회로(31b)에 있어서는, 도 8 F, D로부터도 알 수 있는 것처럼, 스위치 회로(31e)와 게이트 회로(31b)가 모두 온으로 되는 기간을 마련할 수 있다. 이와 같이, 스위치 회로(31e)와 게이트 회로(31b)가 모두 온으로 되는 기간을 마련했을 경우에는, 수신 도체(11X)의 전위를 기준 전압 Vref로 클램프함과 아울러, 콘덴서 회로(31c)의 전위(유지 전압)도 또한 동시에 기준 전압 Vref로 설정할 수 있다. 이와 같이, 콘덴서 회로(31c)의 전위를 항상 소정의 전위로 설정한 다음에 콘덴서 회로(31c)의 전위를 수신 신호에 따른 것으로 할 수 있다. 이 경우, 수신 도체(11X)로부터의 수신 신호를 콘덴서 회로(31c)에 사전에 설정된 기준 전압 Vref로부터의 차분 전압치로서 유지하여 이것을 A/D 변환하는 것이 가능해진다.
또, 이 제2 실시 형태에 있어서, 스위치 회로(31e)는 오프에서 온으로의 전환은 천천히 행하고, 온에서 오프로의 전환은 신속히 행하도록 제어하는 것이 바람직하다. 이와 같이, 스위치 회로(31e)를 천천히 온으로 하는 이유는, 도 8로부터도 알 수 있는 것처럼, 스위치 회로(31e)가 온으로 되는 타이밍에서는, 아직 A/D 변환 처리의 도중에 있을 가능성이 있다. 이 때문에, 스위치 회로(31e)의 온 시에 기준 전압 설정 회로(31Y)에 대전류가 흘러, 기준 전압 Vref이 변동해 버려서, ADC(31d)에서의 A/D 변환 처리에 지장을 초래하지 않도록 하기 위함이다. 또, 스위치 회로(31e)를 신속하게 오프로 하는 이유는, 송신 신호의 신호 레벨이 전환되는 극성 전환 타이밍 Sd까지 스위치 회로(31e)가 오프로 되지 않으면, 수신 도체(11X)에서의 클램프된 전압의 레벨(크램프 레벨)이 변동해 버릴 가능성이 있기 때문에 있다.
[실시 형태의 효과]
상술한 실시 형태의 위치 검출 장치(1)에 있어서는, 도 2에 도시된 것처럼, 각 수신 도체(11X)로부터의 수신 신호가 직접 신호 처리 회로(31)(31X)에 공급되는 구성으로 되어 있다. 이 때문에, 종래의 위치 검출 장치와 같이, 오피 앰프 등을 이용하여 구성되는 IV 변환 회로(전류 전압 변환 회로)를 이용하는 일도 없이, 소비 전력의 절력화를 도모할 수 있다.
또, 종래의 IV 변환 회로를 이용하는 일이 없기 때문에, 회로 규모를 작게 할 수 있어, IC화를 용이하게 해, 한층 더 소형화, 경량화가 가능해진다. 즉, IV 변환용으로 콘덴서를 이용했을 경우, 큰 정전 용량치로 되기 쉬웠지만, 클램프 회로에 의해 기준 전위로 클램프된 수신 도체가 게이트 회로를 통하여 접속되는 콘덴서는, 회로 구성의 차이로부터, 작은 정전 용량치로 할 수 있기 때문에, 회로 규모를 작게 하여, IC화를 용이하게 해, 한층 더 소형화, 경량화가 가능해진다.
또, 본 발명의 신호 처리 회로는 작은 회로 규모이기 때문에, 모든 수신 도체의 각각에 접속하여 A/D 변환 처리를 행하는 일도 가능해지기 때문에, 지시 위치의 검출 특성을 보다 양호한 것으로 할 수 있다.
[변형예]
또한, 상술한 실시 형태에 있어서는, 다중 적분형의 ADC(31d)를 이용하는 것으로서 설명했지만, 이것으로 한정하는 것은 아니다. ADC(31d)로서는, 적분형이나 축차(逐次) 비교형, 그 외 여러 가지의 방식의 것을 이용할 수 있다.
또, 상술한 실시 형태에 있어서는, 주 신호 처리 회로(31, 31X)와 제어 회로(400, 400X)가 그 주요부를 이루는 것이다. 그러나 예를 들면, 신호 처리 회로(31, 31X)만을 IC화하거나, 신호 처리 회로(31, 31X)와 제어 회로(400, 400X)로 이루어진 부분을 IC화할 수도 있다. 또, 신호 처리 회로(31, 31X)와 위치 검출 회로(32)로 이루어진 부분, 즉, 수신부(300)를 IC화할 수도 있다. 또, 수신부(300)와 제어 회로(400, 400X)로 이루어진 부분을 IC화할 수도 있다.
또, 송신부(200)와 신호 처리 회로(31, 31X)로 이루어진 부분을 IC화하거나, 송신부(200)와 수신부(300)로 이루어진 부분을 IC화하거나, 이들과 제어 회로(400, 400X)를 추가한 부분을 IC화하는 등도 가능하다. 즉, 도 2에 도시된 위치 검출 장치(1)에 있어서, 센서부(100)를 제외한 부분을 적당 조합하여 IC화하는 것이 가능하다.
또, 도 3을 이용하여 설명한 구성을 가지는 신호 처리 회로(31)에 있어서, 도 5를 이용하여 설명한 것처럼, 혹은, 도 7을 이용하여 설명한 구성을 가지는 신호 처리 회로(31X)에 있어서, 도 8을 이용하여 설명한 것처럼, 적어도 게이트 회로(31b)를 제어하면서 ADC(31d)를 제어하는 방법이, 본 발명의 방법에 대응하고 있다.
또, 상술한 실시 형태에 있어서는, 단일 전원을 이용하기 때문에, 기준 전압을 정전원 전압 Vcc의 2분의 1로 하는 경우를 바람직한 예로서 설명했지만, 이것으로 한정하는 것은 아니다. 양음 전원(플러스 전원과 마이너스 전원)을 이용하는 구성으로 했을 경우나, 기준 전압이 불필요한 단일 전원용 회로를 이용했을 경우에는, 기준 전압은 0(제로) V(볼트) 혹은 GND(그라운드)여도 좋다.
또, 상술한 실시 형태에 있어서, 시점 t5에서 행해지는 게이트 회로의 열림 동작과 시점 t6에서 행해지는 A/D 변환 개시 동작은 동시여도 되고, 또, 이것은, 극성 반전 타이밍 Sj와 동시에 행하도록 해도 된다. 또, 시점 t7에서 행해지는 A/D 변환 종료 동작에, 시점 t1에서 행해지는 게이트 회로의 닫힘 동작을 동기시키거나, 시점 t2, t2'에서 행해지는 클램프 개시 동작을 시점 t7에서 행해지는 A/D 변환 종료 동작에 동기시키는 것도 가능하다.
또, 상술한 실시 형태에서는, 송신 도체(12Y)는 46개, 수신 도체(11X)는 72개인 경우를 예로서 설명했지만, 이것으로 한정하는 것은 아니다. 송신 도체(12Y)나 수신 도체(11X)의 수는 적당한 수로 할 수 있다.
1: 위치 검출 장치, 100: 센서부,
100S: 지시 입력면, 11: 수신 도체군,
11X1 ~ 11X72: 수신 도체, 12: 송신 도체군,
12Y1 ~ 12Y46: 송신 도체, 200: 송신부,
21: 송신 신호 생성 회로, 22: 신호 극성 반전 회로,
300: 수신부, 31, 31X: 신호 처리 회로,
31A(1) ~ 31A(72): 신호 처리 회로, 31B(1) ~ 31B(72): 신호 처리 회로,
31a: 클램프 회로, 31b: 게이트 회로,
31c: 콘덴서 회로, 31d: ADC,
31e: 스위치 회로, d1: 콤퍼레이터,
d2: A/D제어 로직부, d3: 전류 출력형 DAC,
31Y: 기준 전압 설정 회로, 32: 위치 검출 회로,
400, 400X: 제어 회로, 500: 클럭 생성 회로,
2: 전자 기기, 2D: 표시 화면,
3: 수화기, 4: 송화기

Claims (17)

  1. 제1 방향으로 배설된 복수의 신호 송신 도체와, 상기 제1 방향에 대해서 교차하는 제2 방향으로 배설된 복수의 신호 수신 도체를 구비하고, 지시체에 의한 위치 지시에 대응한 정전 용량의 변화를 검출하는 정전 용량 방식의 위치 검출 센서의 상기 신호 수신 도체에 접속되는 신호 처리 회로로서, 클램프 회로와, 게이트 회로와, 콘덴서 회로와, 게이트 제어 회로를 구비하고 있고, 상기 클램프 회로의 일단에는 상기 신호 수신 도체가 접속됨과 아울러 상기 게이트 회로의 일단이 접속되어 있고, 상기 게이트 회로의 타단에는 상기 콘덴서 회로의 일단이 접속되어 있고, 상기 클램프 회로의 타단 및 상기 콘덴서 회로의 타단은 각각의 소정의 전위가 설정됨과 아울러, 상기 게이트 제어 회로에 의해서 상기 게이트 회로의 도통 제어를 행함으로써, 상기 클램프 회로를 통하여 소정의 전위로 설정된 상기 신호 수신 도체를 상기 게이트 회로를 통하여 상기 콘덴서 회로에 접속함으로써, 지시체에 의한 위치 지시에 대응한 정전 용량의 변화가 상기 콘덴서 회로로부터 전압 신호로서 출력되도록 한 것을 특징으로 하는 신호 처리 회로.
  2. 청구항 1에 있어서,
    상기 클램프 회로는 저항을 구비하고 있고, 상기 저항을 통하여 상기 신호 수신 도체가 소정의 전위로 클램프되도록 구성되어 있는 것을 특징으로 하는 신호 처리 회로.
  3. 청구항 1에 있어서,
    상기 클램프 회로는 스위치 회로를 구비하고 있고, 상기 스위치 회로를 통하여 상기 신호 수신 도체가 소정의 전위로 클램프되도록 구성되어 있는 것을 특징으로 하는 신호 처리 회로.
  4. 청구항 3에 있어서,
    상기 스위치 회로는 상기 게이트 회로의 도통 제어에 앞서 도통 제어됨으로써, 상기 신호 수신 도체를 소정의 시간 소정의 전위로 유지하도록 구성되어 있는 것을 특징으로 하는 신호 처리 회로.
  5. 청구항 4에 있어서,
    상기 스위치 회로는 상기 게이트 회로의 도통 제어에 앞서 도통 제어됨과 아울러, 상기 스위치 회로의 도통 제어와 상기 게이트 회로의 도통 제어가 각각 행해지고 있는 도통 제어의 중첩(重疊) 기간을 구비하도록 한 것을 특징으로 하는 신호 처리 회로.
  6. 청구항 1에 있어서,
    상기 클램프 회로의 타단 및 상기 콘덴서 회로의 타단은 각각 동일한 전위가 설정되어 있는 것을 특징으로 하는 신호 처리 회로.
  7. 청구항 1에 있어서,
    상기 신호 처리 회로에는 상기 콘덴서 회로의 일단에 접속된 다중 적분형 AD변환 회로를 구비하고 있음으로써, 지시체에 의한 위치 지시에 대응한 정전 용량의 변화가 디지털 신호의 형식으로 출력되도록 구성되어 있는 것을 특징으로 하는 신호 처리 회로.
  8. 청구항 1에 있어서,
    상기 신호 처리 회로에는, 상기 위치 검출 센서를 구성하는 복수의 신호 송신 도체의 각각에 송신 신호를 공급하기 위한 송신 신호 공급 회로를 구비하고 있는 것을 특징으로 하는 신호 처리 회로.
  9. 청구항 8에 있어서,
    상기 송신 신호 공급 회로에는, 상기 신호 송신 도체에 공급되는 송신 신호의 극성을 반전시키는 신호 극성 반전 회로를 구비하고 있는 것을 특징으로 하는 신호 처리 회로.
  10. 청구항 9에 있어서,
    상기 신호 극성 반전 회로는, 소정의 신호 송신 도체에 대해서 직전에 공급된 송신 신호와 다음에 공급해야 할 송신 신호가 동일한 극성의 신호인 경우에는, 상기 신호 송신 도체에 대해서 다음에 공급해야 할 송신 신호의 극성을 반전시키는 것을 특징으로 하는 신호 처리 회로.
  11. 청구항 10에 있어서,
    상기 신호 극성 반전 회로는, 상기 신호 송신 도체에 대해서 극성이 반전된 송신 신호를 소정 기간 송신한 후에는 당초의 극성의 송신 신호를 상기 신호 송신 도체에 대해서 송출하도록 한 것을 특징으로 하는 신호 처리 회로.
  12. 청구항 1에 있어서,
    소정의 전류원을 구비하고, 상기 콘덴서 회로에 축적된 전하가 상기 전류원에 의해 캔슬되도록 제어됨으로써, 상기 콘덴서 회로에 생긴 전위를 대응하는 디지털 신호로 변환하는 적분형 A/D 변환 회로를 구비하고 있는 것을 특징으로 하는 신호 처리 회로.
  13. 제1 방향으로 배설된 복수의 신호 송신 도체와, 상기 제1 방향에 대해서 교차하는 제2 방향으로 배설된 복수의 신호 수신 도체를 구비하고, 지시체에 의한 위치 지시에 대응한 정전 용량의 변화를 검출하기 위한 정전 용량 방식의 위치 검출 센서와,
    상기 위치 검출 센서를 구성하는 복수의 신호 송신 도체의 각각에 송신 신호를 공급하기 위한 송신 신호 공급 회로와,
    클램프 회로와, 게이트 회로와, 콘덴서 회로와, 게이트 제어 회로를 구비하고 있고, 상기 클램프 회로의 일단에는 상기 위치 검출 센서의 상기 신호 수신 도체가 접속됨과 아울러 상기 게이트 회로의 일단이 접속되어 있고, 상기 게이트 회로의 타단에는 상기 콘덴서 회로의 일단이 접속되어 있고, 상기 클램프 회로의 타단 및 상기 콘덴서 회로의 타단은 각각의 소정의 전위가 설정됨과 아울러, 상기 게이트 제어 회로에 의해서 상기 게이트 회로의 도통 제어를 행함으로써, 상기 클램프 회로를 통하여 소정의 전위로 설정된 상기 위치 검출 센서의 상기 신호 수신 도체를 상기 게이트 회로를 통하여 상기 콘덴서 회로에 접속함으로써, 지시체에 의한 위치 지시에 대응한 정전 용량의 변화를 상기 콘덴서 회로로부터 전압 신호로서 출력시키는 신호 처리 회로와,
    상기 신호 처리 회로로부터 출력되는 전압 신호에 기초하여, 상기 지시체에 의한 지시 위치를 검출하는 위치 검출 회로를 구비하고 있는 것을 특징으로 하는 위치 검출 장치.
  14. 표시 장치와, 상기 청구항 13에 기재된 위치 검출 장치를 구비하고 있고, 상기 위치 검출 장치를 구성하는 상기 위치 검출 센서는 상기 표시 장치의 표시 화면에 중첩 배치되어 있고, 상기 표시 장치의 표시 화면에는, 상기 위치 검출 장치를 구성하는 상기 위치 검출 회로에 의해서 검출된 지시체에 의한 지시 위치에 기초한 표시가 행해지는 것을 특징으로 하는 휴대 기기.
  15. 제1 방향으로 배설된 복수의 신호 송신 도체와, 상기 제1 방향에 대해서 교차하는 제2 방향으로 배설된 복수의 신호 수신 도체를 구비하고, 지시체에 의한 위치 지시에 대응한 정전 용량의 변화를 검출하는 정전 용량 방식의 위치 검출 센서의 상기 신호 수신 도체에 의해서 수신된 신호를 처리하는 신호 처리 방법으로서,
    상기 신호 수신 도체를 소정의 전위로 클램프하는 스텝과,
    상기 소정의 전위로 클램프된 상기 신호 수신 도체를 콘덴서 회로에 소정의 시간 접속하는 스텝과,
    상기 콘덴서 회로에 생긴 전위를 대응하는 디지털 신호로 변환하는 스텝을 구비하는 신호 처리 방법.
  16. 청구항 15에 있어서,
    상기 신호 수신 도체를 소정의 전위로 클램프하는 스텝은 클램프 개시 스텝과 클램프 종료 스텝으로 구성되어 있고,
    상기 신호 수신 도체를 콘덴서 회로에 소정의 시간 접속하는 스텝은 상기 클램프 개시 스텝이 실행된 이후에 행해지는 것을 특징으로 하는 신호 처리 방법.
  17. 청구항 16에 있어서,
    상기 클램프 종료 스텝은 상기 신호 수신 도체를 콘덴서 회로에 소정의 시간 접속하는 스텝의 실행 중에 행해지는 것을 특징으로 하는 신호 처리 방법.
KR1020130118379A 2012-10-04 2013-10-04 신호 처리 회로, 신호 처리 방법, 위치 검출 장치, 및 전자 기기 KR102107069B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012222472A JP6091833B2 (ja) 2012-10-04 2012-10-04 信号処理回路、信号処理方法、位置検出装置、及び電子機器
JPJP-P-2012-222472 2012-10-04

Publications (2)

Publication Number Publication Date
KR20140044277A true KR20140044277A (ko) 2014-04-14
KR102107069B1 KR102107069B1 (ko) 2020-05-06

Family

ID=49123690

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130118379A KR102107069B1 (ko) 2012-10-04 2013-10-04 신호 처리 회로, 신호 처리 방법, 위치 검출 장치, 및 전자 기기

Country Status (7)

Country Link
US (1) US9696857B2 (ko)
EP (1) EP2717131B1 (ko)
JP (1) JP6091833B2 (ko)
KR (1) KR102107069B1 (ko)
CN (1) CN103713787B (ko)
IL (1) IL227293B (ko)
TW (1) TWI606380B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6240530B2 (ja) 2014-02-21 2017-11-29 株式会社ワコム 信号処理回路、信号処理方法、位置検出装置及び電子機器
US9675368B2 (en) * 2014-05-07 2017-06-13 Stmicroelectronics Asia Pacific Pte Ltd. Touch panel scanning method, circuit and system
CN104092454A (zh) * 2014-06-23 2014-10-08 西安电子工程研究所 一种基于逻辑门电路的按键去抖方法
JP6284838B2 (ja) * 2014-06-26 2018-02-28 株式会社東海理化電機製作所 タッチ式入力装置
CN106527829A (zh) * 2015-09-15 2017-03-22 神盾股份有限公司 电容式感测装置及其信号处理方法
JP6532105B2 (ja) * 2015-12-17 2019-06-19 株式会社ワコム タッチパネル、信号処理装置及びグランドカップリング方法
JP6717071B2 (ja) * 2016-06-15 2020-07-01 セイコーエプソン株式会社 キャパシター回路、回路装置、物理量検出装置、電子機器及び移動体
CN109343731B (zh) * 2018-09-03 2020-07-10 深圳市华星光电技术有限公司 触控显示器及其触控检测方法
TWI779534B (zh) * 2020-03-25 2022-10-01 昇佳電子股份有限公司 電容感測電路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110120217A (ko) * 2010-04-28 2011-11-03 소니 주식회사 터치 검출 기능을 포함하는 표시 장치, 구동 방법 및 전자 기기
JP2011243081A (ja) 2010-05-20 2011-12-01 Panasonic Corp タッチパネル装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550310A (en) * 1981-10-29 1985-10-29 Fujitsu Limited Touch sensing device
JPS5875328A (ja) * 1981-10-29 1983-05-07 Fujitsu Ltd タツチ検出装置
TW413784B (en) 1998-11-20 2000-12-01 Kye Systems Corp A fetch method and device for fetching coordinates moving signal
US7075316B2 (en) * 2003-10-02 2006-07-11 Alps Electric Co., Ltd. Capacitance detector circuit, capacitance detection method, and fingerprint sensor using the same
US20080036473A1 (en) * 2006-08-09 2008-02-14 Jansson Hakan K Dual-slope charging relaxation oscillator for measuring capacitance
US8207944B2 (en) * 2006-12-19 2012-06-26 3M Innovative Properties Company Capacitance measuring circuit and method
US7830158B2 (en) * 2007-12-28 2010-11-09 3M Innovative Properties Company Time-sloped capacitance measuring circuits and methods
US9395850B2 (en) * 2008-10-06 2016-07-19 Japan Display Inc. Coordinate input device and display device with the same
US8427450B2 (en) * 2009-01-12 2013-04-23 Microchip Technology Incorporated Capacitive touch sensing and light emitting diode drive matrix
JP5396167B2 (ja) 2009-06-18 2014-01-22 株式会社ワコム 指示体検出装置及び指示体検出方法
JP5295008B2 (ja) 2009-06-18 2013-09-18 株式会社ワコム 指示体検出装置
US8310381B2 (en) * 2009-09-28 2012-11-13 Microchip Technology Incorporated Capacitive key touch sensing using analog inputs and digital outputs
JP2011166240A (ja) * 2010-02-04 2011-08-25 Tokai Rika Co Ltd 静電容量検出方式および静電容量検出装置
JP5517731B2 (ja) * 2010-05-07 2014-06-11 日本写真印刷株式会社 複数の検出機能を有する静電容量検出回路
JP5667824B2 (ja) * 2010-09-24 2015-02-12 株式会社ジャパンディスプレイ タッチ検出装置およびその駆動方法、タッチ検出機能付き表示装置、ならびに電子機器
JP5578566B2 (ja) 2010-12-08 2014-08-27 株式会社ワコム 指示体検出装置および指示体検出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110120217A (ko) * 2010-04-28 2011-11-03 소니 주식회사 터치 검출 기능을 포함하는 표시 장치, 구동 방법 및 전자 기기
JP2011243081A (ja) 2010-05-20 2011-12-01 Panasonic Corp タッチパネル装置

Also Published As

Publication number Publication date
CN103713787B (zh) 2018-07-31
JP6091833B2 (ja) 2017-03-08
US9696857B2 (en) 2017-07-04
KR102107069B1 (ko) 2020-05-06
TW201428587A (zh) 2014-07-16
US20140098039A1 (en) 2014-04-10
EP2717131B1 (en) 2017-10-25
IL227293B (en) 2018-10-31
TWI606380B (zh) 2017-11-21
JP2014075051A (ja) 2014-04-24
EP2717131A3 (en) 2014-06-25
CN103713787A (zh) 2014-04-09
EP2717131A2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
KR102107069B1 (ko) 신호 처리 회로, 신호 처리 방법, 위치 검출 장치, 및 전자 기기
JP6240530B2 (ja) 信号処理回路、信号処理方法、位置検出装置及び電子機器
US9874971B2 (en) Display device
CN101384981B (zh) 触摸面板的坐标位置检测装置
US20180173342A1 (en) Touch circuit, touch sensing device, and touch sensing method
CN102999210B (zh) 触摸控制器及其操作方法和具有该触摸控制器的设备
CN105183248B (zh) 电容检测电路、触摸检测电路和具备该电路的半导体集成电路
KR101915259B1 (ko) 터치 스크린 센서 집적 회로, 이의 동작 방법, 및 이를 포함하는 시스템
CN104965627A (zh) 触摸检测电路以及具备该触摸检测电路的半导体集成电路
CN104076996A (zh) 显示装置及电子设备
CN109976574B (zh) 积分器、触摸显示装置及其驱动方法
CN111801584B (zh) 电容检测电路、触控装置和终端设备
KR101879654B1 (ko) 대기모드에서 터치입력 감지장치의 소비전력을 감소시키는 방법 및 그 터치입력 감지장치
TWI493418B (zh) 電容式觸控系統及其驅動裝置
CN102999236A (zh) 触摸屏传感器集成电路、其操作方法以及系统
CN115167703A (zh) 触摸驱动装置、触控装置和触摸驱动方法
CN106354345A (zh) 触控单元、触控模组、内嵌式触控屏和显示装置
CN103558975A (zh) 输入系统
CN107591433B (zh) 一种显示面板及其压力检测电路的压力检测方法、显示装置
CN116884332A (zh) 一种传感器电路、显示装置及驱动方法
KR20200046577A (ko) 대기모드에서의 소비전력 및 회로의 크기를 감소시킨 터치입력 감지ic 및 터치입력 감지장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant