KR20140042157A - Deposition method for die-bonding film - Google Patents

Deposition method for die-bonding film Download PDF

Info

Publication number
KR20140042157A
KR20140042157A KR1020120108521A KR20120108521A KR20140042157A KR 20140042157 A KR20140042157 A KR 20140042157A KR 1020120108521 A KR1020120108521 A KR 1020120108521A KR 20120108521 A KR20120108521 A KR 20120108521A KR 20140042157 A KR20140042157 A KR 20140042157A
Authority
KR
South Korea
Prior art keywords
deposition
substrate
film
die
bonding film
Prior art date
Application number
KR1020120108521A
Other languages
Korean (ko)
Other versions
KR101416558B1 (en
Inventor
김종욱
반원진
Original Assignee
주식회사 테스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 테스 filed Critical 주식회사 테스
Priority to KR1020120108521A priority Critical patent/KR101416558B1/en
Publication of KR20140042157A publication Critical patent/KR20140042157A/en
Application granted granted Critical
Publication of KR101416558B1 publication Critical patent/KR101416558B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to a method for depositing a die-bonding film capable of generating plasma in a process chamber having a substrate by applying an RF to a susceptor from RF power which is arranged on the lower part of the substrate and of assigning a direction for the lower part to the ion of a deposition response material. The present invention is provided to perform deposition by using PECVD of a reactive ion deposition (RID) type which applies the RF to the lower part of the substrate, thereby assigning the direction to the ion of the deposition response material and functioning as a shower head part as a ground electrode. The present invention is provided to uniformly form the plasma generated when the area of the shower head is larger than the area of the susceptor, thereby uniformly distributing the plasma formed in the process chamber and easily depositing a film having the same thickness. The present invention is provided to deposit the deposition response material before dissociation and form a thin film in which the hardening degree of the film is low without adding oxygen gas, thereby easily exfoliating the film in the final process and preventing the damage of a circuit pattern. [Reference numerals] (AA) Carry a substrate in which a circuit pattern is formed; (BB) Supply a deposition response material; (CC) Organic silicon precursor/O_2; (DD) Apply an RF from the lower part to the substrate; (EE) Generate plasma and assign a direction to the ion of the deposition response material; (FF) Complete the deposition of die-bonding film

Description

다이본딩 필름의 증착방법{DEPOSITION METHOD FOR DIE-BONDING FILM }[0001] DEPOSITION METHOD FOR DIE-BONDING FILM [0002]

본 발명은 반도체 패키징용 점착필름의 증착방법에 관한 것으로서, 더욱 상세하게는 반도체 패키징용 점착필름, 특히 다이본딩 필름의 증착방법으로서 막의 두께를 균일하게 제어할 수 있으며 점착필름에 의해 기판에 형성된 회로패턴이 손상을 입는 것을 방지할 수 있는 다이본딩 필름의 증착방법에 관한 것이다.
The present invention relates to a deposition method of a pressure-sensitive adhesive film for semiconductor packaging, and more particularly to a vapor deposition method for a pressure-sensitive adhesive film for semiconductor packaging, particularly a die bonding film, which can uniformly control the thickness of a film, To a method of depositing a die-bonding film which can prevent the pattern from being damaged.

일반적으로 다이본딩필름은 IC칩과 회로기판, 또는 IC칩과 IC칩을 접착하는 초박형 필름접착제로, 반도체 후공정에 사용되고 있다. In general, the die bonding film is an ultra-thin film adhesive that bonds an IC chip and a circuit substrate, or an IC chip and an IC chip, and is used in post-semiconductor processing.

한국특허 제816881호에는, 도 1에 나타낸 바와 같이, 지지기재층(10), 점·접착제층(21)과 점·접착제 보강층(22)으로 구성된 점·접착층(20), 웨이퍼본딩층(30) 및 웨이퍼본딩보호층(40)이 순차적으로 적층되어 구성된 다이싱 다이본드 필름이 개시되어 있다. Korean Patent No. 816881 discloses a point bonding layer 20 composed of a support base layer 10, a point / adhesive layer 21 and a point / adhesive reinforcing layer 22, a wafer bonding layer 30 ) And a wafer bonding protective layer 40 are sequentially laminated on the surface of the wafer.

한국특허 제816881호에 개시된 바와 같이, 다이본드 필름은 다이싱된 반도체 칩 프레임과 관련부재 들을 서로 고착시키기 위하여 반도체 칩화 공정의 전 단계인 반도체 웨이퍼 프레임에 필름형 점·접착제를 고정한 상태로 투입하고, 다이싱 공정 시, 이러한 다이싱 다이본드 필름(점·접착형 필름)에 의해 점착고정 기능이 부여된 상태에서 다이싱하여, 다이싱 후는, 반도체 칩은 웨이퍼본딩층이 하면에 점착된 상태로 고정되어 있는데, 이러한 웨이퍼본딩층을 포함하는 반도체 칩을 필요로 하는 접착될 부분과의 접합공정에 들어가면 그 부분과 완전 고착하게 된다.As disclosed in Korean Patent No. 816881, in order to fix the diced semiconductor chip frame and the related members to each other, the die-bonding film is put in a state in which the film-shaped dots and adhesive are fixed to the semiconductor wafer frame, , In the dicing step, dicing is performed in such a state that the adhesive fixing function is given by such a dicing die bonding film (point and adhesive film), and after the dicing, the semiconductor chip is bonded to the lower surface of the wafer bonding layer When a semiconductor chip including such a wafer bonding layer is required to be adhered to a portion to be adhered, it is completely adhered to the portion to be adhered.

한편, 다층의 적층구조를 갖는 반도체 웨이퍼 패키지의 제조공정에 있어서는, 도 2에 나타낸 바와 같이, 반도체 패키지의 두께를 얇게 하기 위하여 웨이퍼의 회로형성면(1a)의 이면측(1b)을 연삭하여 웨이퍼의 두께를 얇게 하는 박화공정을 거치고 있다. 이러한 박화공정을 위해서는, 반도체 웨이퍼의 패턴 면에 접착제(3)를 균일하게 도포하고 여기에 글래스 등의 경질 지지체를 접착 보강하고, 웨이퍼를 전도시켜 웨이퍼의 이면을 절삭한 후 다시 웨이퍼를 전도시켜 글래스(4) 등의 경질 지지체를 떼어내는 단계를 거치고 있다.
On the other hand, in the manufacturing process of the semiconductor wafer package having the multilayered laminated structure, as shown in Fig. 2, the back side 1b of the circuit formation surface 1a of the wafer is ground to reduce the thickness of the semiconductor package, A thinning step is carried out to reduce the thickness of the substrate. For this thinning process, the adhesive 3 is uniformly applied to the pattern surface of the semiconductor wafer, the hard support such as glass is adhered and reinforced thereto, the wafer is conveyed to cut the back surface of the wafer, (4) or the like is removed.

상기 경질 지지체를 박리할 때에는 경질 지지체의 박리에 의해 웨이퍼에 형성된 회로패턴이 손상을 입지 않아야 할 뿐만 아니라, 박리가 용이하게 이루어져야 한다. 이를 위해서는, 막의 경질도(hardness)가 낮아야 할 뿐만 아니라, 막의 두께가 전체 면적에 걸쳐서 균일하게 이루어져야 한다. When the hard support is peeled, the circuit pattern formed on the wafer must not be damaged by the peeling of the hard support, and peeling should be easy. For this purpose, not only the hardness of the film must be low but also the thickness of the film must be uniform over the entire area.

그러나 종래의 PECVD에 의한 다이본딩 필름의 증착 방법에 있어서는, 최종 공정에서 접착제를 떼어낼 때 이미 형성되어 있는 회로 패턴이 손상을 받는 등의 문제점이 지적되어 왔다.However, in the conventional method of depositing a die bonding film by PECVD, it has been pointed out that the circuit pattern already formed when the adhesive is removed in the final step is damaged.

종래의 PECVD 증착에 의한 다이본딩 필름의 증착방법은, 기판의 상부에 배치된 샤워헤드에 RF전원을 인가하고 하단의 서셉터를 접지시켜 플라즈마를 생성시키거나 하단의 접지가 작아서 플라즈마가 기판의 중앙부분에 몰려서 다이본딩 필름의 막두께가 두꺼워지게 되고, 이로 인하여 상술한 최종공정에서의 박리시에 박리가 어려워지며 회로패턴에 손상을 입힐 염려가 있었다. Conventionally, a method of depositing a die-bonding film by PECVD deposition is performed by applying an RF power to a showerhead disposed on an upper portion of a substrate and grounding a lower susceptor to generate a plasma, or a lower ground is small, So that the film thickness of the die bonding film becomes thick. As a result, peeling becomes difficult at the time of peeling in the above-mentioned final step, and the circuit pattern may be damaged.

또한, 종래의 PECVD에 의한 다이본딩 필름의 증착방법은 샤워헤드에 RF를 인가하여 플라즈마를 발생시키기 때문에 상기 플라즈마에 의해 다이본딩 필름의 증착에 사용되는 전구체(precursor)의 해리가 잘 이루어져서 막의 밀도가 치밀해져서 박리시 회로패턴에 손상을 입히는 문제점이 있었다.
Further, in the conventional method of depositing a die-bonding film by PECVD, RF is applied to a showerhead to generate plasma, so that the precursor used for deposition of the die-bonding film is well dissociated by the plasma, There is a problem that the circuit pattern is damaged when peeling off.

본 발명은 상술한 종래기술의 문제점을 해결하고자 하는 것으로서, 본 발명의 목적은 다이본딩 필름의 막의 두께를 균일하게 제어할 수 있어서 디본딩시에 점착필름에 의해 기판에 형성된 회로패턴이 손상을 입는 것을 방지할 수 있는 다이본딩 필름의 증착방법을 제공하는 것이다.  It is an object of the present invention to provide a method and apparatus for uniformly controlling the thickness of a film of a die bonding film so that a circuit pattern formed on a substrate by a pressure- And to provide a method of depositing a die-bonding film which can prevent the occurrence of the problem.

또한, 본 발명의 다른 목적은 다이본딩 필름의 증착에 의해 형성되는 막의 경질도를 낮추어서 디본딩시에 점착필름이 용이하게 박리될 수 있는 다이본딩 필름의 증착방법을 제공하는 것이다.
Another object of the present invention is to provide a method of depositing a die-bonding film in which an adhesive film can be easily peeled off at the time of debonding by lowering the hardness of a film formed by deposition of a die-bonding film.

상술한 목적을 달성하기 위하여 본 발명에 의한 다이본딩 필름의 증착방법은 기판의 표면에 증착반응물질을 공급하는 단계와, 기판의 하부에 배치된 RF전원으로부터 기판이 재치된 서셉터에 RF를 인가하여 기판이 안치된 공정챔버내에 플라즈마를 생성하고 상기 증착반응물질의 이온에 하부로 향하는 방향성을 부여하는 단계를 구비하는 것을 특징으로 한다. In order to achieve the above object, a method of depositing a die-bonding film according to the present invention includes supplying a deposition reaction material to a surface of a substrate, and applying RF to a susceptor on which the substrate is placed from an RF power source disposed below the substrate. Thereby generating a plasma in the process chamber in which the substrate is placed and imparting a downward direction to the ions of the deposition reactant.

여기서, 상기 서셉터는 RF전극이고 상기 서셉터와 상기 기판의 상부에 배치된 샤워헤드는 접지전극인 것을 특징으로 한다. Here, the susceptor is an RF electrode, and the showerhead disposed on the susceptor and the substrate is a ground electrode.

여기서, 상기 증착반응물질은 유기실리콘 전구체인 것을 특징으로 한다. Here, the deposition reaction material is an organic silicon precursor.

여기서, 상기 증착반응물질은 유기실리콘 전구체 및 산소가스인 것을 특징으로 한다. Here, the deposition reaction material is an organic silicon precursor and an oxygen gas.

여기서, 상기 유기실리콘 전구체에 대한 상기 산소가스의 유량 비율을 0% 내지 100%인 것을 특징으로 한다. Here, the flow rate ratio of the oxygen gas to the organic silicon precursor is 0% to 100%.

여기서, 상기 유기실리콘 전구체는 헥사메틸디실록산인 것을 특징으로 한다. Wherein the organic silicon precursor is hexamethyldisiloxane.

여기서, 상기 다이본딩 필름의 증착두께는 1,000 Å ~ 2,000Å인 것을 특징으로 한다.
The deposition thickness of the die-bonding film is in the range of 1,000 Å to 2,000 Å.

상술한 구성을 가지는 본 발명에 의한 다이본딩 필름의 증착방법에 의하면, 기판의 하부에 RF를 인가하는 RID(Reactive Ion Deposition) 타입의 PECVD에 의해 증착하기 때문에, 증착반응물질의 이온에 방향성을 부여할 수 있고, 샤워헤드부분이 접지전극으로서 기능하고 접지되는 샤워헤드의 면적이 RF전원이 인가되는 서셉터의 면적보다 크게 형성되어 생성되는 플라즈마가 균일하게 이루어지기 때문에 공정챔버 내에 형성된 플라즈마가 고르게 분포될 수 있고 이로 인해 균일한 두께를 갖는 막을 증착하기 용이하다. According to the method of depositing the die-bonding film of the present invention having the above-described structure, since the PECVD is performed by RID (Reactive Ion Deposition) type in which RF is applied to the lower portion of the substrate, The showerhead portion functions as a ground electrode and the area of the showerhead where the showerhead is grounded is formed to be larger than the area of the susceptor to which the RF power source is applied and the generated plasma is uniformly generated, And thus it is easy to deposit a film having a uniform thickness.

또한, 유기실리콘 전구체 등 증착반응물질이 해리되기 전에 증착되기 때문에 산소가스 등을 추가하지 않더라도 막의 경질도가 낮은 묽은 막을 형성할 수 있으므로 최종공정에서 막의 박리가 용이하게 되고, 이로써 회로패턴이 손상을 입는 것을 방지할 수 있다. In addition, since the deposition reaction material such as the organic silicon precursor is deposited before dissociation, it is possible to form a dilute film having a low hardness even without adding oxygen gas, thereby facilitating peeling of the film in the final process, It is possible to prevent wearing.

또한, 샤워헤드에 RF가 인가되는 종래의 PECVD 증착방법에 비하여 상대적으로 높은 압력에서 공정진행이 가능하므로 공정효율을 향상시켜 공정에 소요되는 비용과 시간을 절감할 수 있다. In addition, since the process can be performed at relatively high pressure as compared with the conventional PECVD deposition method in which RF is applied to the showerhead, it is possible to improve the process efficiency and reduce the cost and time required for the process.

또한, 유기실리콘 전구체와 산소가스의 유량비율을 적절하게 조정하여 더욱 낮은 경질도를 갖는 막의 증착이 가능하다.
Further, it is possible to deposit a film having a lower hardness by appropriately adjusting the flow rate ratio of the organic silicon precursor and the oxygen gas.

도 1 및 2는 종래기술에 의한 다이본딩 필름을 나타내는 도면이다.
도 3은 본 발명에 의한 RID타입의 PECVD에 의한 증착을 실행하기 위한 장치의 개략도이다.
도 4는 본 발명에 의한 다이본딩 필름 증착방법을 나타내는 흐름도이다.
도 5는 본 발명에 의한 다이본딩필름 증착방법에 의해 증착된 막의 SEM사진이다.
1 and 2 are views showing a die-bonding film according to the prior art.
3 is a schematic diagram of an apparatus for carrying out RID-type PECVD deposition according to the present invention.
4 is a flowchart illustrating a method of depositing a die-bonding film according to the present invention.
5 is a SEM photograph of a film deposited by the method of depositing a die-bonding film according to the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명에 의한 다이본딩 필름 증착방법을 실시예로써 상세하게 설명한다. 본 발명에 따른 실시예들을 설명하는데 있어, 동일한 구성요소에 대해서는 동일한 참조번호를 사용하며, 필요에 따라 그 설명은 생략할 수 있다.
Hereinafter, a method of depositing a die-bonding film according to the present invention will be described in detail with reference to the accompanying drawings. In describing the embodiments according to the present invention, the same reference numerals are used for the same components, and the description thereof may be omitted if necessary.

도 3 내지 도 5에 나타낸 바와 같이, 본 발명에 의한 다이본딩 필름의 증착방법은 우선 회로패턴이 형성된 기판을 준비하고, 상기 기판을 공정챔버 내로 반입한다. 그런 다음, 기판(1)의 표면에 증착반응물질을 공급한다. As shown in Figs. 3 to 5, in the method for depositing a die-bonding film according to the present invention, a substrate on which a circuit pattern is formed is first prepared, and the substrate is transferred into the process chamber. Then, a deposition reaction material is supplied to the surface of the substrate 1. [

그런 다음, 상기 기판(1)의 하부에 배치된 RF전원(100)으로부터 상기 기판이 재치된 서셉터(110)에 RF를 인가하여 기판이 안치된 공정챔버내에 플라즈마(130)를 생성한다. RF is then applied from the RF power source 100 disposed below the substrate 1 to the susceptor 110 on which the substrate is placed to generate the plasma 130 in the process chamber in which the substrate is placed.

이 때, 상기 증착반응물질은 기판의 하부에 RF를 인가하는 RID(Reactive Ion Deposition) 타입의 PECVD에 의해 증착되기 때문에, 상기 증착반응물질의 이온에 하부로 향하는 방향성을 부여될 수 있고, 플라즈마 벌크와 기판(또는 히터) 사이의 쉬스(plasma sheath) 양극단 간의 포텐셜의 차이를 크게 하여 기판으로 입사하는 이온의 에너지를 증가시킨다. At this time, since the deposition reaction material is deposited by RED (Reactive Ion Deposition) type PECVD which applies RF to the lower part of the substrate, it is possible to impart downward directionality to the ions of the deposition reaction material, The potential difference between the cathode ends of the plasma sheath and the substrate (or heater) is increased to increase the energy of ions incident on the substrate.

여기서, 상기 서셉터는 상기 기판(1)의 하부에 배치된 RF전원(100)에 연결된 RF전극이고, 상기 서셉터에 대향하여 배치되는 샤워헤드(120)는 접지전극으로서 기능하게 된다. Here, the susceptor is an RF electrode connected to the RF power source 100 disposed below the substrate 1, and the showerhead 120 disposed opposite to the susceptor functions as a ground electrode.

이로써, 기판의 하부에 RF를 인가하는 RID(Reactive Ion Deposition) 타입의 PECVD에 의해 증착하기 때문에, 증착반응물질의 이온에 방향성을 부여하고, 샤워헤드부분이 접지전극으로서 기능하고 접지되는 샤워헤드의 면적이 RF전원이 인가되는 서셉터의 면적보다 크게 형성되어 생성되는 플라즈마가 균일하게 이루어지기 때문에 공정챔버 내에 형성된 플라즈마가 고르게 분포될 수 있고 이로 인해 균일한 두께를 갖는 막을 증착하기 용이하다. As a result, since the deposition is performed by PECVD of RID (Reactive Ion Deposition) type in which RF is applied to the lower portion of the substrate, the ions of the deposition reaction material are oriented, and the showerhead portion functions as a ground electrode, The area is formed to be larger than the area of the susceptor to which the RF power is applied, so that the generated plasma is uniformly generated, so that the plasma formed in the process chamber can be evenly distributed, and thereby it is easy to deposit a film having a uniform thickness.

또한, 유기실리콘 전구체 등 증착반응물질이 해리되기 전에 증착되기 때문에 산소가스 등을 추가하지 않더라도 막의 경질도가 낮은 묽은 막을 형성할 수 있으므로 최종공정에서 막의 박리가 용이하게 되고, 이로써 회로패턴이 손상을 입는 것을 방지할 수 있다.
In addition, since the deposition reaction material such as the organic silicon precursor is deposited before dissociation, it is possible to form a dilute film having a low hardness even without adding oxygen gas, thereby facilitating peeling of the film in the final process, It is possible to prevent wearing.

한편, 상기 증착반응물질은 유기실리콘 전구체를 예로 한다. 상기 유기실리콘 전구체는 기체상태로 공정챔버내에 공급되어 기판과 접촉하여 약 25 ~ 40 ℃의 증착온도에서 증착된다.On the other hand, the deposition reaction material is exemplified by an organosilicon precursor. The organosilicon precursor is supplied into the process chamber in a gaseous state and is contacted with the substrate and deposited at a deposition temperature of about 25-40 < 0 > C.

상기 유기실리콘 전구체로는, 선형 실록산인 것이 바람직하다. 상기 선형 실록산의 예로서는 하기 화학식 1로 나타내어지는 헥사메틸디실록산(HMDSO)인 것을 예로 한다. The organic silicon precursor is preferably a linear siloxane. An example of the linear siloxane is hexamethyldisiloxane (HMDSO) represented by the following formula (1).

[화학식 1] [Chemical Formula 1]

Figure pat00001

Figure pat00001

상기한 바와 같이, 헥사메틸디실록산을 증착반응물질로 사용하여 증착시간에 따른 막두께와 박리의 용이성에 대하여 실험결과를 표 1에 나타낸다. As described above, the experimental results are shown in Table 1 for the film thickness and ease of peeling with the use of hexamethyldisiloxane as the deposition reaction material.

번호number HMDSO 유량HMDSO flow rate 두께()thickness() 박리성Peelability 1One 1010 500500 불량Bad 22 1010 10001000 양호Good 33 1010 20002000 양호Good

상기 표 1에 나타낸 바와 같이, 헥사메틸디실록산을 증착반응물질로 사용하여 500Å의 두께로 증착한 경우, 증착된 막의 경질도가 매우 높아 최종공정에서 디본딩(debonding)이 어렵고 회로패턴이 손상되는 것을 알 수 있었다. As shown in Table 1, when hexamethyldisiloxane was used as a deposition reaction material and the deposition was carried out to a thickness of 500 Å, the hardness of the deposited film was very high, so that debonding was difficult in the final process and the circuit pattern was damaged .

그러나, 막의 두께를 1,000Å ~ 2,000 Å의 두께로 증착할 경우, 막의 경질도가 낮아져서 최종공정에서 디본딩이 용이하고 회로패턴이 손상되는 것을 방지할 수 있었다.
However, when the thickness of the film was deposited to a thickness of 1,000 ANGSTROM to 2,000 ANGSTROM, the degree of hardness of the film was lowered, which facilitated debonding in the final process and prevented the circuit pattern from being damaged.

한편, 상기 증착반응물질은 유기실리콘 전구체에 반응가스로서 산소가스(O2)를 첨가할 수 있다. 증착반응물질로서 산소가스를 첨가함으로써 증착되는 다이본딩 필름의 막의 표면의 경질도를 낮출 수 있다.
On the other hand, the deposition reaction material may add oxygen gas (O 2) as a reactive gas to the organic silicon precursor. The hardness of the surface of the film of the die-bonding film deposited by adding oxygen gas as the deposition reaction material can be lowered.

도 5에 나타낸 바와 같이, 유기실리콘 전구체에 반응가스로서 산소가스(O2)를 첨가할 경우, 증착되는 막에 다공성(porous) 특성이 증가되어 막 자체의 거칠기(roughness)가 증가하고 막의 경질도가 낮아져서 이로 인하여 추후 막의 박리가 용이해지는 것을 알 수 있다. As shown in FIG. 5, when oxygen gas (O 2) is added as a reactive gas to the organosilicon precursor, the porous property of the deposited film is increased to increase the roughness of the film itself and the film hardness It is found that the peeling of the film is facilitated later.

상기 증착반응물질로서, 유기실리콘 전구체에 반응가스로서 산소가스(O2)를 각각의 비율로 첨가하여 종래의 PECVD 증착방법에 의해 증착한 결과를 표 2에, 본 발명에 의한 RID타입의 PECVD 증착방법에 의해 증착한 결과를 표 3에 각각 나타낸다. Table 2 shows the results obtained by adding oxygen gas (O2) as a reactive gas to the organosilicon precursor in the respective proportions by the conventional PECVD deposition method as the deposition reaction material. The results are shown in Table 2, and the RID type PECVD deposition method Are shown in Table 3, respectively.

여기서, 불균일도(non-uniformity)는 기판의 중앙부분과 가장자리 부분의 막두께의 차이의 비율을 측정한 것이다. Here, the non-uniformity is a ratio of the difference in film thickness between the center portion and the edge portion of the substrate.

번호number HMDSO유량HMDSO flow rate 산소유량Oxygen flow rate 두께(Å)Thickness (Å) 불균일도Non-uniformity 박리성Peelability 1One 1010 -- 3,9683,968 8.38.3 불량Bad 22 1010 1010 2,5412,541 17.117.1 보통usually

번호number HMDSO유량HMDSO flow rate 산소유량Oxygen flow rate 두께(Å)Thickness (Å) 불균일도Non-uniformity 박리성Peelability 1One 1010 -- 1,1091,109 3.473.47 양호Good 22 1010 1010 1,4841,484 16.616.6 우수Great

상기 표 2 및 표 3에서 알 수 있는 바와 같이, 종래의 PECVD 방식을 이용하여 다이본딩 필름을 증착한 경우 막의 두께가 균일하지 않았다. 본 발명자가 실험한 결과, 산소를 포함하지 않고, HMDSO 프리커서로 증착한 경우 막의 불균일도가 17%인데 비해, 본 발명에 의한 RID 타입의 PECVD 증착방법에 의하여 증착한 경우 막의 불균일도가 5%이하로, 대략 75% 이상 개선된 경향을 보였다.As can be seen from Tables 2 and 3, when the die-bonding film was deposited using the conventional PECVD method, the thickness of the film was not uniform. As a result of the experiment conducted by the present inventors, it was found that when the RVD type PECVD deposition method according to the present invention was used, the nonuniformity of the film was 5% when the film was deposited with HMDSO precursor without oxygen, Or more, and improved by about 75% or more.

또한, 종래의 PECVD 증착방법에 의해 증착한 경우, 하단의 접지가 작아서 플라즈마가 몰려 막의 밀도가 높아지고 이에 따라 막의 경질도가 증가하여 박리성이 불량해지는 것을 알 수 있었다. 또한, 종래의 PECVD 증착방법에 의해 증착한 경우 산소가스를 첨가한 경우에도 막의 경질도는 약간 양호해지지만 막두께의 균일도가 불량하게 되고, 산소가스의 첨가 및 그로 인한 경질도의 향상에는 한계가 있어서 박리성 향상에 한계가 있다.
In addition, when deposited by the conventional PECVD deposition method, it was found that the grounding at the lower end is small, plasma is crowded and the density of the film is increased, thereby increasing the hardness of the film and deteriorating the peelability. Further, in the case of deposition by the conventional PECVD deposition method, even when oxygen gas is added, the hardness of the film becomes slightly poor, but the uniformity of the film thickness becomes poor, and there is a limit to the improvement of the hardness due to the addition of oxygen gas There is a limit to improvement in peelability.

그러나, 이에 비하여, 본 발명에 의한 RID타입의 PECVD 증착방법에 의해 증착한 경우에는, 표 3 및 도 5에 나타낸 바와 같이, 샤워헤드부분이 접지전극으로서 기능하고 접지되는 샤워헤드의 면적이 RF전원이 인가되는 서셉터의 면적보다 크게 형성되어 플라즈마가 고르게 분포되어 균일도가 향상되고 막의 경질도가 낮은 묽은 형태로 증착되어, 박리성이 양호하게 되는 것을 알 수 있었다.
On the other hand, in the case of depositing by the RID type PECVD deposition method according to the present invention, as shown in Table 3 and FIG. 5, the showerhead portion functions as a ground electrode and the area of the showerhead, Is formed to be larger than the area of the susceptor to which the plasma is uniformly distributed, so that the uniformity is improved and the film is deposited in a dilute form with a low hardness, so that the peelability is improved.

본 실시예는 본 발명에 포함되는 기술적 사상의 일부를 명확하게 나타낸 것에 불과하며, 본 발명의 명세서에 포함된 기술적 사상의 범위내에서 당업자가 용이하게 유추할 수 있는 변형예와 구체적인 실시예는 모두 본 발명의 기술적 사상에 포함되는 것은 자명하다.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to be exemplary and explanatory only and are not to be construed as limiting the scope of the inventive concept. And it is obvious that it is included in the technical idea of the present invention.

1 : 기판
2 : 다이본딩 필름 증착막
3 : 접착제
4 : 글래스
100 : RF전원
110 : 서셉터
120 : 샤워헤드
1: substrate
2: die bonding film deposition film
3: Adhesive
4: Glass
100: RF power supply
110: susceptor
120: Shower head

Claims (7)

기판에 다이본딩 필름을 증착하는 방법에 있어서,
기판의 표면에 증착반응물질을 공급하는 단계와,
기판의 하부에 배치된 RF전원으로부터 기판이 재치된 서셉터에 RF를 인가하여 기판이 안치된 공정챔버내에 플라즈마를 생성하고 상기 증착반응물질의 이온에 하부로 향하는 방향성을 부여하는 단계를 구비하는 것을 특징으로 하는 다이본딩 필름의 증착방법.
A method of depositing a die bonding film on a substrate,
Supplying a deposition reactant to a surface of the substrate;
Applying RF to a susceptor on which the substrate is placed from an RF power source disposed at the bottom of the substrate to generate a plasma in a process chamber in which the substrate is placed and to impart downward directivity to the ions of the deposition reactant; A method of depositing a die bonding film, characterized in that.
제 1 항에 있어서,
상기 서셉터는 RF전극이고 상기 서셉터와 상기 기판의 상부에 배치된 샤워헤드는 접지전극인 것을 특징으로 하는 다이본딩 필름의 증착방법.
The method according to claim 1,
Wherein the susceptor is an RF electrode and the showerhead disposed on the susceptor and the substrate is a ground electrode.
제 1 항에 있어서,
상기 증착반응물질은 유기실리콘 전구체를 포함하는 것을 특징으로 하는 다이본딩 필름의 증착방법.
The method according to claim 1,
Lt; RTI ID = 0.0 > 1, < / RTI > wherein the deposition reactant comprises an organosilicon precursor.
제 1 항에 있어서,
상기 증착반응물질은 유기실리콘 전구체 및 산소가스를 포함하는 것을 특징으로 하는 다이본딩 필름의 증착방법.
The method according to claim 1,
And the deposition reaction material comprises an organosilicon precursor and oxygen gas.
제 3 항 또는 제 4 항에 있어서,
상기 유기실리콘 전구체는 헥사메틸디실록산인 것을 특징으로 하는 다이본딩 필름의 증착방법.
The method according to claim 3 or 4,
Wherein the organic silicon precursor is hexamethyldisiloxane. ≪ RTI ID = 0.0 > 11. < / RTI >
제 5 항에 있어서,
상기 다이본딩 필름의 증착두께는 1,000 Å ~ 2,000Å인 것을 특징으로 하는 다이본딩 필름의 증착방법.
6. The method of claim 5,
Wherein the deposition thickness of the die-bonding film is in the range of 1,000 A to 2,000 A.
제 2 항에 있어서,
상기 샤워헤드의 면적은 상기 서셉터의 면적보다 크게 형성되는 것을 특징으로 하는 다이본딩 필름의 증착방법.
3. The method of claim 2,
Wherein the area of the showerhead is larger than the area of the susceptor.
KR1020120108521A 2012-09-28 2012-09-28 Deposition method for die-bonding film KR101416558B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120108521A KR101416558B1 (en) 2012-09-28 2012-09-28 Deposition method for die-bonding film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120108521A KR101416558B1 (en) 2012-09-28 2012-09-28 Deposition method for die-bonding film

Publications (2)

Publication Number Publication Date
KR20140042157A true KR20140042157A (en) 2014-04-07
KR101416558B1 KR101416558B1 (en) 2014-07-10

Family

ID=50651399

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120108521A KR101416558B1 (en) 2012-09-28 2012-09-28 Deposition method for die-bonding film

Country Status (1)

Country Link
KR (1) KR101416558B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105105B2 (en) * 2008-12-02 2012-12-19 信越化学工業株式会社 Organosilane compound for forming Si-containing film by plasma CVD method and method for forming Si-containing film
KR100987183B1 (en) * 2010-01-20 2010-10-11 성균관대학교산학협력단 Plasma polymerized thin film and manufacturing method thereof
JP5437111B2 (en) * 2010-03-01 2014-03-12 日東電工株式会社 Die bond film, dicing die bond film and semiconductor device

Also Published As

Publication number Publication date
KR101416558B1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
EP2657363B1 (en) Method of depositing silicon dioxide films
CN102828164B (en) The improvement of encapsulating layer water-barrier performance
US9741966B2 (en) Method for hybrid encapsulation of an organic light emitting diode
KR101911469B1 (en) Silicon nitride passivation layer for covering high aspect ratio features
US9449809B2 (en) Interface adhesion improvement method
JP6431488B2 (en) Fluorine-containing plasma polymerized HMDSO for OLED thin film encapsulation
KR102503141B1 (en) Pulsed nitride encapsulation
KR20130129930A (en) Pecvd oxide-nitride and oxide-silicon stacks for 3d memory application
TW200830942A (en) Contamination reducing liner for inductively coupled chamber
KR20230142395A (en) Substrate processing method and method of manufacturing organic light emitting device using the same
KR20140087470A (en) Deposition method of passivation film for light emitting diode
KR102205227B1 (en) Boron-based film forming method and boron-based film apparatus
KR101416558B1 (en) Deposition method for die-bonding film
US20190078208A1 (en) Method For Depositing Protection Film Of Light-Emitting Element
KR101942819B1 (en) Method for forming thin film
KR20150004651U (en) Plasma process chamber with separated gas feed lines
US20080146040A1 (en) Local plasma processing
KR20190061872A (en) Method of fabricating amorphous silicon layer
CN109075263B (en) Deposition method of protective film of light-emitting diode
JP2012124229A (en) Method of forming antireflection film using parallel flat plate type plasma cvd apparatus
KR20200045872A (en) System For Processing Semiconductor substrate and Method of Depositing Thin Film Using The Same
CN110911586B (en) OLED panel, preparation method of OLED panel and display device
KR102155318B1 (en) Flexible substrate and manufacturing method thereof
US20200098562A1 (en) Dual frequency silane-based silicon dioxide deposition to minimize film instability
KR20070028705A (en) Apparatus for high density plasma chemical vapor deposition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 4