KR20140038328A - Metal film forming method - Google Patents
Metal film forming method Download PDFInfo
- Publication number
- KR20140038328A KR20140038328A KR1020130111699A KR20130111699A KR20140038328A KR 20140038328 A KR20140038328 A KR 20140038328A KR 1020130111699 A KR1020130111699 A KR 1020130111699A KR 20130111699 A KR20130111699 A KR 20130111699A KR 20140038328 A KR20140038328 A KR 20140038328A
- Authority
- KR
- South Korea
- Prior art keywords
- film
- metal
- gas
- metal film
- forming
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 82
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 68
- 239000002184 metal Substances 0.000 title claims abstract description 68
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 205
- 239000007789 gas Substances 0.000 claims abstract description 118
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 62
- 230000008569 process Effects 0.000 claims abstract description 47
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 28
- 239000003446 ligand Substances 0.000 claims abstract description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 23
- 239000001257 hydrogen Substances 0.000 claims abstract description 22
- 150000001875 compounds Chemical class 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 21
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 15
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 7
- 238000000151 deposition Methods 0.000 claims abstract description 4
- 229940059260 amidate Drugs 0.000 claims description 49
- 239000002994 raw material Substances 0.000 claims description 45
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 claims description 41
- 238000012545 processing Methods 0.000 claims description 12
- -1 amidate compound Chemical class 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 abstract description 39
- 239000012535 impurity Substances 0.000 abstract description 27
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 14
- 238000010926 purge Methods 0.000 abstract description 8
- 230000002829 reductive effect Effects 0.000 abstract description 6
- 230000008021 deposition Effects 0.000 abstract 2
- 239000000463 material Substances 0.000 abstract 2
- 230000005587 bubbling Effects 0.000 description 12
- 238000000137 annealing Methods 0.000 description 8
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 229910021334 nickel silicide Inorganic materials 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000002429 hydrazines Chemical class 0.000 description 3
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- PEUPIGGLJVUNEU-UHFFFAOYSA-N nickel silicon Chemical compound [Si].[Ni] PEUPIGGLJVUNEU-UHFFFAOYSA-N 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4411—Cooling of the reaction chamber walls
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4486—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/511—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
본 발명은, 화학 증착법(CVD)에 의해 금속막을 성막하는 금속막의 성막 방법에 관한 것이다.TECHNICAL FIELD This invention relates to the metal film-forming method which forms a metal film by chemical vapor deposition (CVD).
최근, 반도체 디바이스에는, 진보된 동작의 고속화와 저소비 전력화가 요구되고 있고, 예를 들면 MOS형 반도체의 소스 및 드레인의 콘택트부 또는 게이트 전극의 저저항화를 실현하기 위하여, 살리사이드 프로세스에 의해 실리사이드를 형성하고 있다. 이러한 실리사이드로서, 실리콘의 소비량이 적고, 저저항화가 가능한 니켈 실리사이드(NiSi)가 주목받고 있다.In recent years, semiconductor devices have been required to achieve high speeds and low power consumption. For example, in order to realize lower resistance of contact portions or gate electrodes of sources and drains of MOS semiconductors, silicides are employed by salicide processes. To form. As such silicides, attention has been paid to nickel silicides (NiSi) which consume less silicon and are capable of lowering resistance.
NiSi막의 형성에는, Si 기판 또는 폴리 실리콘막 상에 스퍼터링 등의 물리 증착(PVD)법에 의해 니켈(Ni)막을 성막한 후, 불활성 가스 중에서 어닐하여 반응시키는 방법이 많이 이용되고 있다(예를 들면, 특허 문헌 1).In the formation of the NiSi film, a method of forming a nickel (Ni) film on a Si substrate or a polysilicon film by physical vapor deposition (PVD) method such as sputtering and then annealing and reacting in an inert gas is widely used (for example, , Patent Document 1).
또한, Ni막 자체를 DRAM의 커패시터 전극에 사용하고자 하는 시도도 이루어지고 있다.In addition, attempts have been made to use the Ni film itself as a capacitor electrode of a DRAM.
그러나, 반도체 디바이스의 미세화에 수반하여 PVD로는 충분한 스텝 커버리지가 얻어지지 않고 있다. 이 때문에, 니켈막을 스텝 커버리지가 양호한 화학 증착(CVD)법에 의해 성막하는 방법이 검토되고 있고, 특허 문헌 2에는, 성막 원료(프리커서)로서 니켈 아미디네이트를 이용하고, 환원 가스로서 암모니아(NH3)를 이용하여 CVD법에 의해 니켈막을 성막하는 것이 개시되어 있다.However, with the miniaturization of semiconductor devices, sufficient step coverage is not obtained with PVD. For this reason, the method of forming a nickel film into a film by chemical vapor deposition (CVD) method with a good step coverage is examined, and
그런데, 이들을 이용하여 Ni막을 성막할 경우에는, 처리 가스 중에 N가 포함되어 있기 때문에, N가 막 중에 유입되어 Ni막 성막 시에 동시에 니켈 나이트라이드(NixN)가 형성되고, 얻어지는 막은 불순물인 N를 함유한 Ni막이 되어, 막의 저항은 높은 것이 된다.By the way, when forming a Ni film by using these, since N is contained in a process gas, N flows into a film and Ni nitride (Ni x N) is formed simultaneously at the time of Ni film formation, and the film obtained is an impurity. It becomes Ni film | membrane containing N, and the film | membrane resistance becomes high.
이러한 점을 개선하기 위하여, 특허 문헌 3에는, 니켈 아미디네이트와 NH3를 이용하여 N를 포함하는 Ni막을 형성한 후, 막을 수소 분위기에서 개질 처리함으로써, 막 중의 N를 제거하는 것이 개시되어 있다.In order to improve this point, Patent Document 3 discloses removing N in a film by forming a Ni film containing N using nickel amidate and NH 3 and then modifying the film in a hydrogen atmosphere. .
그러나, 이와 같이 성막 후에 포스트 프로세스를 부가함으로써 처리 시간이 길어지기 때문에, 스루풋이 저하된다. 또한 상기 특허 문헌 3에서는, Ni막의 순도를 높이기 위하여, 성막과 개질 처리를 복수회 반복할 필요가 있어, 처리 시간이 더 길어진다. 이러한 문제점은, 아미디네이트계 원료를 이용하여 Ni를 성막할 경우에 한정되지 않고, 분자 구조 중에 질소 - 탄소 결합을 가지는 배위자를 가지고, 배위자 중의 질소가 금속에 배위한 구조를 가지는 금속 함유 화합물을 이용하여 금속막을 성막할 경우에는, 마찬가지로 존재한다.However, since the processing time becomes longer by adding the post process after film formation in this manner, throughput decreases. Moreover, in the said patent document 3, in order to improve the purity of Ni film | membrane, it is necessary to repeat film-forming and a modification process multiple times, and processing time becomes longer. This problem is not limited to the case of forming Ni by using an amidate-based raw material, and a metal-containing compound having a ligand having a nitrogen-carbon bond in its molecular structure and having a structure in which nitrogen in the ligand is coordinated to the metal. In the case of forming a metal film by use of the same, the same exists.
본 발명은 이러한 사정을 감안하여 이루어진 것으로, CVD에 의해 불순물이 적은 금속막을 고스루풋으로 성막할 수 있는 금속막의 성막 방법을 제공하는 것을 과제로 한다.This invention is made | formed in view of such a situation, Comprising: It aims at providing the metal film film formation method which can form a metal film with few impurities by CVD at high throughput.
상기 과제를 해결하기 위하여, 본원 출원인은 먼저, 니켈 아미디네이트로 대표되는, 분자 구조 중에 질소 - 탄소 결합을 가지는 배위자를 가지고, 배위자 중의 질소가 니켈에 배위한 구조를 가지는 니켈 함유 화합물과, 암모니아, 히드라진 및 이들의 유도체로부터 선택된 적어도 1 종의 환원 가스를 이용한 CVD에 의해 초기 니켈막을 성막한 후, 상기 니켈 함유 화합물과, 환원 가스로서의 수소 가스를 이용한 CVD에 의해 주 니켈막을 성막하는 니켈막의 성막 방법을 제안했다(일본특허출원 2011- 191917). 이에 의해, 주 니켈막을 니켈 나이트라이드(Ni - N) 또는 니켈 카바이드(Ni - C) 등의 불순물이 적은 상태로 성막할 수 있고, 또한 주 니켈막 때에 이용하는 수소 가스에 의해, 초기 니켈막 중의 질소 등을 제거할 수 있다고 하고 있다.In order to solve the above problems, the present applicant firstly has a ligand having a nitrogen-carbon bond in a molecular structure represented by nickel amidate, and a nickel-containing compound having a structure in which nitrogen in the ligand is coordinated with nickel, and ammonia Film formation of an initial nickel film by CVD using at least one reducing gas selected from hydrazine and derivatives thereof, and then a nickel film forming a main nickel film by CVD using a hydrogen gas as the reducing gas. The method was proposed (Japanese Patent Application No. 2011-191917). As a result, the main nickel film can be formed in a state in which impurities such as nickel nitride (Ni-N) or nickel carbide (Ni-C) are low, and the nitrogen in the initial nickel film can be formed by hydrogen gas used in the main nickel film. Can be removed.
그러나, 그 후의 검토 결과에 따르면, 초기 니켈막의 성막 시에 유입된 Ni - N 또는 Ni - C의 불순물은, 주 니켈막을 성막할 시의 수소로는 충분히 제거할 수 없는 경우가 있으며, 이러한 불순물이, Ni막의 비저항을 악화시키고, 니켈 실리사이드의 형성 불량의 원인이 되는 것이 판명되었다. 본 발명은, 이러한 새로운 문제점도 해결하는 것이다.However, according to the subsequent examination results, the impurities of Ni-N or Ni-C introduced during the initial nickel film formation may not be sufficiently removed by hydrogen at the time of forming the main nickel film. It has been found that the specific resistance of the Ni film is deteriorated and that the cause of the nickel silicide formation defect is caused. The present invention also solves this new problem.
즉, 본 발명은, 처리 용기 내에 피처리 기판을 배치하고, 피처리 기판 상에, 분자 구조 중에 질소 - 탄소 결합을 가지는 배위자를 가지고, 배위자 중의 질소가 금속에 배위한 구조를 가지는 금속 함유 화합물로 이루어지는 성막 원료와, 암모니아, 히드라진 및 이들의 유도체로부터 선택된 적어도 1 종으로 이루어지는 환원 가스를 공급하여, CVD에 의해 초기 금속막을 성막하는 제 1 공정과, 이 후, 상기 처리 용기 내로 수소 가스를 공급하여 피처리 기판에 대하여 수소 처리를 행하는 제 2 공정과, 피처리 기판에 형성된 초기 금속막 상에, 분자 구조 중에 질소 - 탄소 결합을 가지는 배위자를 가지고, 배위자 중의 질소가 금속에 배위한 구조를 가지는 금속 함유 화합물로 이루어지는 성막 원료와, 수소 가스로 이루어지는 환원 가스를 공급하여, CVD에 의해 주 금속막을 성막하는 제 3 공정을 가지는 것을 특징으로 하는 금속막의 성막 방법을 제공한다.That is, the present invention provides a metal-containing compound in which a substrate to be processed is disposed in a processing container, and on the substrate to be treated, a ligand having a nitrogen-carbon bond in its molecular structure and a structure in which nitrogen in the ligand is coordinated to the metal. Supplying a film forming raw material, and a reducing gas comprising at least one selected from ammonia, hydrazine, and derivatives thereof, and forming a initial metal film by CVD; and then supplying hydrogen gas into the processing container. A second step of performing hydrogen treatment on the substrate to be processed, and a metal having a structure having a nitrogen-carbon bond in the molecular structure on the initial metal film formed on the substrate, and a structure in which nitrogen in the ligand is bound to the metal; The film-forming raw material composed of the containing compound and the reducing gas composed of hydrogen gas are supplied, and are mainly subjected to CVD. Providing a metal film formation method which is characterized by having a third step for film formation in the film.
본 발명에 있어서, 상기 금속 함유 화합물로서 금속 아미디네이트계 화합물을 이용할 수 있다.In the present invention, a metal amidate-based compound can be used as the metal-containing compound.
상기 금속 아미디네이트계 화합물로서 니켈 아미디네이트를 이용하고, 상기 금속막으로서 니켈막을 성막할 수 있다. 이 경우, 상기 제 2 공정은 160 ~ 500℃에서 행할 수 있고, 상기 제 2 공정을 실시할 시의 압력은 333.3 ~ 13330 Pa로 할 수 있고, 상기 제 2 공정을 실시할 시의 수소 가스 유량은 25 ~ 5000 mL/min(sccm)으로 할 수 있다.Nickel amidate can be used as the metal amidate compound, and a nickel film can be formed as the metal film. In this case, the second step may be performed at 160 to 500 ° C., the pressure at the time of performing the second step may be 333.3 to 13330 Pa, and the flow rate of hydrogen gas at the time of performing the second step is 25 to 5000 mL / min (sccm).
또한, 상기 제 1 공정 및 상기 제 3 공정은 200 ~ 350℃에서 행할 수 있고, 상기 제 1 공정 및 상기 제 3 공정을 실시할 시의 압력은 133.3 ~ 2000 Pa로 할 수 있다. 이 경우, 상기 제 2 공정은, 상기 제 1 공정 및 상기 제 3 공정과 동일 온도 및 동일 압력에서 행할 수 있다.In addition, the said 1st process and the said 3rd process can be performed at 200-350 degreeC, and the pressure at the time of performing the said 1st process and the said 3rd process can be 133.3-2000 Pa. In this case, the said 2nd process can be performed at the same temperature and the same pressure as the said 1st process and the said 3rd process.
또한 본 발명은, 컴퓨터 상에서 동작하고, 성막 장치를 제어하기 위한 프로그램이 기억된 기억 매체로서, 상기 프로그램은, 실행 시에, 상기 금속막의 성막 방법이 행해지도록, 컴퓨터에 상기 성막 장치를 제어시키는 것을 특징으로 하는 기억 매체를 제공한다.In addition, the present invention is a storage medium storing a program for operating a computer and controlling a film forming apparatus, wherein the program controls the computer to form the film forming apparatus so that the film forming method of the metal film is performed when executed. A storage medium is featured.
본 발명에 따르면, 기판 상에서 성막 가능한, 분자 구조 중에 질소 - 탄소 결합을 가지는 배위자를 가지고, 배위자 중의 질소가 금속에 배위한 구조를 가지는 금속 함유 화합물과 암모니아 등을 이용하여 초기 금속막의 성막을 행한 후, 처리 용기 내로 수소 가스를 공급하여 피처리 기판에 대하여 수소 처리를 행하고, 이 후 그 위에 동일한 금속 함유 화합물과 수소 가스를 이용한 주 금속막의 성막을 행하므로, 수소 처리에 의해 초기 금속막 중의 불순물을 확실히 제거할 수 있고, 그 이후의 주 금속막의 성막 시에는, 환원 가스로서 수소 가스를 이용하여 불순물이 매우 적은 막으로서 성막된다. 이 때문에, 얻어지는 금속막은 전체적으로 고순도가 된다. 또한 수소 처리는, 얇은 초기 금속막의 불순물을 제거할 뿐이며, 단시간의 처리로 충분하고, 또한 환원 가스로서 H2 가스를 이용한 주 성막에서는, NH3 가스를 이용한 경우보다 성막 레이트가 높기 때문에, 환원 가스로서 NH3를 이용하여 성막하고, 성막 후에 어닐하는 종래의 방법보다 스루풋을 현저하게 높일 수 있다.According to the present invention, after forming an initial metal film using a metal-containing compound, ammonia, or the like, which has a ligand having a nitrogen-carbon bond in a molecular structure capable of film formation on a substrate, and a structure in which nitrogen in the ligand is coordinated to the metal, Hydrogen gas is supplied into the processing container to perform hydrogen treatment on the substrate to be treated, and then a film of the main metal film using the same metal-containing compound and hydrogen gas is formed thereon. The film can be reliably removed, and when the main metal film is subsequently formed, it is formed as a film containing very few impurities using hydrogen gas as the reducing gas. For this reason, the metal film obtained becomes high purity as a whole. Hydrogen treatment only removes impurities in the thin initial metal film, and a short time treatment is sufficient, and in the main film forming using H 2 gas as the reducing gas, the film forming rate is higher than that in the case of using NH 3 gas, thus reducing gas. As a result, the throughput can be remarkably increased compared to the conventional method of forming a film by using NH 3 and annealing after film formation.
도 1은 본 발명의 일실시예에 따른 금속막의 성막 방법을 실시하기 위한 성막 장치의 일례를 도시한 모식도이다.
도 2는 본 발명의 일실시예에 따른 금속막의 성막 방법의 시퀀스를 나타낸 타이밍 차트이다.
도 3a 및 도 3b는 수소 처리에 의해 초기 Ni막으로부터 불순물이 제거되는 메커니즘을 설명하기 위한 도이다.
도 4는 성막 원료로서 Ni(II)(tBu - AMD)2를 이용하고, 환원 가스로서 NH3를 이용하여, Si 웨이퍼 상에 Ni막을 성막한 샘플의 X 선 광전자 분광(XPS)에 의한 막 두께 방향의 원소 분석 결과를 나타낸 도이다.
도 5는 성막 원료로서 Ni(II)(tBu - AMD)2를 이용하고, 환원 가스로서 NH3를 이용하여, Si 웨이퍼 상에 Ni막을 성막한 후, H2 가스를 공급하여 수소 처리를 행한 샘플의 X 선 광전자 분광(XPS)에 의한 막 두께 방향의 원소 분석 결과를 나타낸 도이다.1 is a schematic diagram showing an example of a film forming apparatus for performing a metal film forming method according to an embodiment of the present invention.
2 is a timing chart showing a sequence of a metal film deposition method according to an embodiment of the present invention.
3A and 3B are diagrams for explaining a mechanism in which impurities are removed from an initial Ni film by hydrogen treatment.
Fig. 4 shows the film thickness by X-ray photoelectron spectroscopy (XPS) of a sample in which a Ni film was formed on a Si wafer by using Ni (II) (tBu-AMD) 2 as a raw material for forming a film and NH 3 as a reducing gas. It is a figure which shows the result of elemental analysis of the direction.
Fig. 5 shows a sample in which a Ni film is formed on a Si wafer using Ni (II) (tBu-AMD) 2 as a raw material for film formation and NH 3 as a reducing gas, and then subjected to hydrogen treatment by supplying H 2 gas. Fig. 1 shows the results of elemental analysis in the film thickness direction by X-ray photoelectron spectroscopy (XPS).
이하에, 첨부 도면을 참조하여, 본 발명의 실시예에 대하여 설명한다. EMBODIMENT OF THE INVENTION Below, the Example of this invention is described with reference to an accompanying drawing.
본 실시예에서는, 금속막으로서 니켈막을 형성할 경우에 대하여 설명한다. 도 1은, 본 발명의 일실시예에 따른 금속막의 성막 방법을 실시하기 위한 성막 장치의 일례를 도시한 모식도이다.In this embodiment, a case where a nickel film is formed as a metal film will be described. 1 is a schematic diagram showing an example of a film forming apparatus for performing a metal film forming method according to an embodiment of the present invention.
이 성막 장치(100)는, 기밀하게 구성된 대략 원통 형상의 챔버(1)를 가지고 있고, 그 내에는 피처리 기판인 웨이퍼(W)를 수평하게 지지하기 위한 서셉터(2)가, 후술하는 배기실의 저부(底部)로부터 그 중앙 하부에 달하는 원통 형상의 지지 부재(3)에 의해 지지된 상태로 배치되어 있다. 이 서셉터(2)는 AlN 등의 세라믹스로 이루어져 있다. 또한, 서셉터(2)에는 히터(5)가 매립되어 있고, 이 히터(5)에는 히터 전원(6)이 접속되어 있다. 한편, 서셉터(2)의 상면 근방에는 열전대(7)가 설치되어 있고, 열전대(7)의 신호는 히터 컨트롤러(8)로 전송되도록 되어 있다. 그리고, 히터 컨트롤러(8)는 열전대(7)의 신호에 따라 히터 전원(6)에 지령을 송신하고, 히터(5)의 가열을 제어하여 웨이퍼(W)를 소정의 온도로 제어하도록 되어 있다. 서셉터(2)의 내부의 히터(5)의 상방에는, 고주파 전력 인가용의 전극(27)이 매설되어 있다. 이 전극(27)에는 정합기(28)를 개재하여 고주파 전원(29)이 접속되어 있고, 필요에 따라 전극(27)에 고주파 전력을 인가하여 플라즈마를 생성하고, 플라즈마 CVD를 실시하는 것도 가능하게 되어 있다. 또한, 서셉터(2)에는 3 개의 웨이퍼 승강 핀(도시하지 않음)이 서셉터(2)의 표면에 대하여 돌출 및 함몰 가능하게 설치되어 있고, 웨이퍼(W)를 반송할 시, 서셉터(2)의 표면으로부터 돌출한 상태가 된다.The
챔버(1)의 천장 벽(1a)에는 원형의 홀(1b)이 형성되어 있고, 그로부터 챔버(1) 내로 돌출하도록 샤워 헤드(10)가 감입되어 있다. 샤워 헤드(10)는, 후술하는 가스 공급 기구(30)로부터 공급된 성막용의 가스를 챔버(1) 내로 토출하기 위한 것이며, 그 상부에는, 성막 원료 가스를 도입하는 제 1 도입로(11)와, 반응 가스(환원 가스)로서의 NH3 가스 및 H2 가스를 도입하는 제 2 도입로(12)를 가지고 있다.A
성막 원료 가스로서 이용되는 니켈 함유 화합물은, 분자 구조 중에 질소 - 탄소 결합을 가지는 배위자를 가지고, 배위자 중의 질소가 니켈에 배위한 구조를 가지는 것이며, 예를 들면 도 1 중에 도시한 Ni(II)N, N´ - 디터셔리 부틸 아미디네이트(Ni(II)(tBu - AMD)2)를 들 수 있다. 니켈 아미디네이트로서는, 이 외에 Ni(II)N, N´ - 디이소프로필 아미디네이트(Ni(II)(iPr - AMD)2), Ni(II)N, N´ - 디에틸 아미디네이트(Ni(II)(Et - AMD)2), Ni(II)N, N´ - 디메틸 아미디네이트(Ni(II)(Me - AMD)2) 등을 들 수 있다.The nickel-containing compound used as the film forming raw material gas has a ligand having a nitrogen-carbon bond in its molecular structure, and has a structure in which nitrogen in the ligand is coordinated with nickel, for example, Ni (II) N shown in FIG. 1. , N'-dibutyl butyl amidate (Ni (II) (tBu-AMD) 2 ). Examples of the nickel amidate include, but are not limited to, Ni (II) N, N'-diisopropyl amidate (Ni (II) (iPr-AMD) 2 ), Ni (II) N, N'-diethyl amidate (Ni (II) (Et-AMD) 2 ), Ni (II) N, N'-dimethyl amidate (Ni (II) (Me-AMD) 2 ), and the like.
샤워 헤드(10)의 내부에는 상하 2 단으로 공간(13, 14)이 형성되어 있다. 상측의 공간(13)에는 제 1 도입로(11)가 연결되어 있고, 이 공간(13)으로부터 제 1 가스 토출로(15)가 샤워 헤드(10)의 저면까지 연장되어 있다. 하측의 공간(14)에는 제 2 도입로(12)가 연결되어 있고, 이 공간(14)으로부터 제 2 가스 토출로(16)가 샤워 헤드(10)의 저면까지 연장되어 있다. 즉, 샤워 헤드(10)는 성막 원료 가스로서의 니켈 아미디네이트와 NH3 가스 및 H2 가스가 각각 독립하여 토출로(15 및 16)로부터 토출하도록 되어 있다.Inside the
챔버(1)의 저벽에는, 하방을 향해 돌출되는 배기실(21)이 설치되어 있다. 배기실(21)의 측면에는 배기관(22)이 접속되어 있고, 이 배기관(22)에는 진공 펌프 또는 압력 제어 밸브 등을 가지는 배기 장치(23)가 접속되어 있다. 그리고, 이 배기 장치(23)를 작동시킴으로써 챔버(1) 내를 소정의 감압 상태로 하는 것이 가능하게 되어 있다.The
챔버(1)의 측벽에는, 웨이퍼(W)의 반입출을 행하기 위한 반입출구(24)와, 이 반입출구(24)를 개폐하는 게이트 밸브(25)가 설치되어 있다. 또한, 챔버(1)의 벽부에는 히터(26)가 설치되어 있고, 성막 처리 시에 챔버(1)의 내벽의 온도를 제어 가능하게 되어 있다.The sidewall of the chamber 1 is provided with a carry-in / out
가스 공급 기구(30)는, 성막 원료로서, 분자 구조 중에 질소 - 탄소 결합을 가지는 배위자를 가지고, 배위자 중의 질소가 니켈에 배위한 구조를 가지는 니켈 함유 화합물인 니켈 아미디네이트(Ni - AMD), 예를 들면 Ni(II)N, N´ - 디터셔리 부틸 아미디네이트(Ni(II)(tBu - AMD)2)를 용매에 녹인 상태로 저류하는 성막 원료 탱크(31)를 가지고 있다. 성막 원료 탱크(31)의 주위에는 히터(31a)가 설치되어 있고, 성막 원료 탱크(31) 내의 성막 원료를 적절한 온도로 가열할 수 있도록 되어 있다. 또한, 니켈 함유 화합물로서 상온에서 액체인 것을 이용할 때는 용매에 녹이지 않고 그대로 저류할 수 있다.The
성막 원료 탱크(31)에는, 상방으로부터 버블링 가스인 Ar 가스를 공급하기 위한 버블링 배관(32)이 성막 원료에 침지되도록 하여 삽입되어 있다. 버블링 배관(32)에는 Ar 가스 공급원(33)이 접속되어 있고, 또한 유량 제어기로서의 매스 플로우 컨트롤러(34) 및 그 전후의 밸브(35)가 개재되어 있다. 또한, 성막 원료 탱크(31) 내에는 원료 가스 송출 배관(36)이 상방으로부터 삽입되어 있고, 이 원료 가스 송출 배관(36)의 타단은 샤워 헤드(10)의 제 1 도입로(11)에 접속되어 있다. 원료 가스 송출 배관(36)에는 밸브(37)가 개재되어 있다. 또한, 원료 가스 송출 배관(36)에는 성막 원료 가스의 응축 방지를 위한 히터(38)가 설치되어 있다. 그리고, 버블링 가스인 Ar 가스가 성막 원료에 공급됨으로써 성막 원료 탱크(31) 내에서 성막 원료가 버블링에 의해 기화되고, 생성된 성막 원료 가스가, 원료 가스 송출 배관(36) 및 제 1 도입로(11)를 거쳐 샤워 헤드(10) 내로 공급된다.The bubbling
또한, 버블링 배관(32)과 원료 가스 송출 배관(36)의 사이는 바이패스 배관(48)에 의해 접속되어 있고, 이 바이패스 배관(48)에는 밸브(49)가 개재되어 있다. 버블링 배관(32) 및 원료 가스 송출 배관(36)에서의 바이패스 배관(48) 접속 부분의 하류측에는 각각 밸브(35a, 37a)가 개재되어 있다. 그리고, 밸브(35a, 37a)를 닫고 밸브(49)를 엶으로써, Ar 가스 공급원(33)으로부터의 아르곤 가스를, 버블링 배관(32), 바이패스 배관(48), 원료 가스 송출 배관(36)을 거쳐, 퍼지 가스 등으로서 챔버(1) 내로 공급하는 것이 가능하게 되어 있다.The bubbling
샤워 헤드(10)의 제 2 도입로(12)에는 배관(40)이 접속되어 있고, 배관(40)에는 밸브(41)가 설치되어 있다. 이 배관(40)은 분기 배관(40a, 40b)으로 분기하고 있고, 분기 배관(40a)에는 NH3 가스 공급원(42)이 접속되고, 분기 배관(40b)에는 H2 가스 공급원(43)이 접속되어 있다. 또한, 분기 배관(40a)에는 유량 제어기로서의 매스 플로우 컨트롤러(44) 및 그 전후의 밸브(45)가 개재되어 있고, 분기 배관(40b)에는 유량 제어기로서의 매스 플로우 컨트롤러(46) 및 그 전후의 밸브(47)가 개재되어 있다. 또한, NH3 대신에 히드라진 또는 NH3 유도체, 히드라진 유도체를 이용할 수 있다.A
또한 필요에 따라, 전극(27)에 고주파 전력을 인가하여 플라즈마 CVD를 실시할 경우에는, 도시되어 있지 않지만, 배관(40)에는 분기 배관이 더 증설되고, 이 분기 배관에 매스 플로우 컨트롤러 및 그 전후의 밸브를 개재 설치하여, 플라즈마 착화용의 Ar 가스 공급원을 설치하는 것이 바람직하다.In addition, when plasma CVD is performed by applying a high frequency power to the
이 성막 장치는 각 구성부, 구체적으로는 밸브, 전원, 히터, 펌프 등을 제어하는 제어부(50)를 가지고 있다. 이 제어부(50)는, 마이크로 프로세서(컴퓨터)를 구비한 프로세스 컨트롤러(51)와, 유저 인터페이스(52)와, 기억부(53)를 가지고 있다. 프로세스 컨트롤러(51)에는 성막 장치(100)의 각 구성부가 전기적으로 접속되어 제어되는 구성으로 되어 있다. 유저 인터페이스(52)는 프로세스 컨트롤러(51)에 접속되어 있고, 오퍼레이터가 성막 장치의 각 구성부를 관리하기 위하여 커멘드의 입력 조작 등을 행하는 키보드, 및 성막 장치의 각 구성부의 가동 상황을 가시화하여 표시하는 디스플레이 등으로 이루어져 있다. 기억부(53)도 프로세스 컨트롤러(51)에 접속되어 있고, 이 기억부(53)에는, 성막 장치(100)에서 실행되는 각종 처리를 프로세스 컨트롤러(51)의 제어로 실현시키기 위한 제어 프로그램, 또는 처리 조건에 따라 성막 장치(100)의 각 구성부에 소정의 처리를 실행시키기 위한 제어 프로그램, 즉 처리 레시피, 또는 각종 데이터 베이스 등이 저장되어 있다. 처리 레시피는 기억부(53) 내의 기억 매체(도시하지 않음)에 기억되어 있다. 기억 매체는 하드 디스크 등의 고정적으로 설치되어 있는 것이어도 되고, CD - ROM, DVD, 플래쉬 메모리 등의 가반성의 것이어도 된다. 또한 다른 장치로부터, 예를 들면 전용 회선을 통하여 레시피를 적절히 전송시키도록 해도 된다.This film-forming apparatus has the
그리고 필요에 따라, 유저 인터페이스(52)로부터의 지시 등으로 소정의 처리 레시피를 기억부(53)로부터 호출하여 프로세스 컨트롤러(51)에 실행시킴으로써, 프로세스 컨트롤러(51)의 제어하에서 성막 장치(100)에서의 원하는 처리가 행해진다.If necessary, the
이어서, 성막 장치(100)에 의해 실시되는 본 발명의 일실시예에 따른 금속막의 성막 방법에 대하여 설명한다. Next, a method of forming a metal film according to an embodiment of the present invention performed by the
우선, 게이트 밸브(25)를 열어, 도시하지 않은 반송 장치에 의해 웨이퍼(W)를 반입출구(24)를 거쳐 챔버(1) 내로 반입하고, 서셉터(2) 상에 재치(載置)한다. 이어서, 챔버(1) 내를 배기 장치(23)에 의해 배기하여 챔버(1) 내를 소정의 압력으로 하고, 서셉터(2)를 소정 온도로 가열한다.First, the
그 상태에서 도 2의 타이밍 차트에 나타낸 바와 같이, 성막 원료인 니켈 아미디네이트(분자 구조 중에 질소 - 탄소 결합을 가지는 배위자를 가지고, 배위자 중의 질소가 니켈에 배위한 구조를 가지는 니켈 함유 화합물)와 환원 가스인 NH3 가스를 공급하여 초기 Ni막을 성막하는 초기 성막 공정(단계 1)과, 이들 가스를 정지시키고, 챔버(1) 내로 H2 가스를 도입하여 웨이퍼(W)에 수소 처리를 실시하는 수소 처리 공정(단계 2)과, H2 가스의 도입을 계속한 채로, 성막 원료 가스인 니켈 아미디네이트를 도입하여 주 Ni막을 성막하는 주 성막 공정(단계 3)과, 챔버(1) 내를 퍼지하는 퍼지 공정(단계 4)을 순차적으로 행한다.In that state, as shown in the timing chart of FIG. 2, nickel amidate (a nickel-containing compound having a ligand having a nitrogen-carbon bond in its molecular structure and having a structure in which nitrogen in the ligand is coordinated to nickel) as a film forming raw material; An initial film forming step (step 1) of supplying NH 3 gas, which is a reducing gas, to form an initial Ni film, and stopping these gases, introducing H 2 gas into the chamber 1 to perform hydrogen treatment on the wafer W; The main film forming step (step 3) of introducing a nickel amidate, which is a film forming raw material gas, and forming a main Ni film while continuing the hydrogen treatment step (step 2) and introduction of the H 2 gas, and the inside of the chamber 1 The purge process (step 4) to purge is performed sequentially.
웨이퍼(W)의 표면(전형적으로는 Si 기판 또는 폴리 실리콘막의 표면)에 성막 원료로서 니켈 아미디네이트를 이용하여 Ni막을 성막할 시에는, 환원 가스로서 H2를 이용해도 핵이 생성되지 않고, Ni가 퇴적되지 않기 때문에, 단계 1의 초기 성막 공정에서는, 환원 가스로서 NH3 등을 이용한다. 즉, 단계 1의 초기 성막 공정에서는, 성막 원료 탱크(31) 내에 저류된 성막 원료로서의 니켈 아미디네이트, 예를 들면 Ni(II)N, N´ - 디터셔리 부틸 아미디네이트(Ni(II)(tBu - AMD)2)에 버블링 가스로서의 Ar 가스를 공급하여, 그 성막 원료로서의 니켈 아미디네이트를 버블링에 의해 기화시키고, 원료 가스 송출 배관(36), 제 1 도입로(11), 샤워 헤드(10)를 거쳐 챔버(1) 내로 공급하고, 환원 가스로서의 NH3 가스를 NH3 가스 공급원(42)으로부터 분기 배관(40a), 배관(40), 제 2 도입로(12), 샤워 헤드(10)를 거쳐 챔버(1) 내로 공급한다. 또한, 환원 가스인 NH3 대신에 히드라진, NH3 유도체, 히드라진 유도체를 이용할 수 있다. 즉 환원 가스로서는, NH3, 히드라진 및 이들의 유도체로부터 선택된 적어도 1 종을 이용할 수 있다. 암모니아 유도체로서는 예를 들면 모노메틸 암모늄을 이용할 수 있고, 히드라진 유도체로서는 예를 들면 모노메틸 히드라진, 디메틸 히드라진을 이용할 수 있다. 이들 중에서는 암모니아가 바람직하다. 이들은 비공유 전자쌍을 가지는 환원제이며, 니켈 아미디네이트와의 반응성이 높고, 비교적 저온에서도 용이하게 웨이퍼(W) 표면에 초기 Ni막을 얻을 수 있다. 이러한 초기 성막 공정에서 성막되는 초기 Ni막의 막 두께는 3 ~ 15 nm인 것이 바람직하다.When the Ni film is formed on the surface of the wafer W (typically, the surface of the Si substrate or the polysilicon film) using nickel amidate as the film forming raw material, no nucleus is generated even when H 2 is used as the reducing gas. Since Ni is not deposited, NH 3 or the like is used in the initial film forming step of Step 1 as the reducing gas. That is, in the initial film forming step of step 1, nickel amidate as the film forming raw material stored in the film forming
성막 원료로서 이용하는 니켈 아미디네이트는, Ni(II)N, N´ - 디터셔리 부틸 아미디네이트(Ni(II)(tBu - AMD)2)를 예로 들면, 이하의 (1) 식에 나타낸 구조를 가지고 있다.As a nickel amidate used as a film-forming raw material, the structure shown in following formula (1) takes Ni (II) N and N'-dibutyl butyl amidate (Ni (II) (tBu- AMD) 2 ) as an example. Have
즉, 핵이 되는 Ni에 아미디네이트 배위자가 결합하고 있고, Ni는 실질적으로 Ni2+로서 존재하고 있다.That is, an amidate ligand is bonded to Ni which becomes a nucleus, and Ni exists substantially as Ni2 + .
비공유 전자쌍을 가지는 환원 가스, 예를 들면 NH3는, 상기 구조의 니켈 아미디네이트의 Ni2 +로서 존재하고 있는 Ni핵과 결합되고, 아미디네이트 배위자는 분해된다. 이에 의해, 초기 Ni막은, 니켈 아미디네이트 또는 NH3 유래의 N에 의해 니켈 나이트라이드(Ni - N)가 불순물로서 막 중에 형성된다. 또한, 불순물로서 Ni - C도 생성된다. 따라서, 생성되는 초기 Ni막은 불순물이 많은 것이 된다., For the reduction gas, for example, has a lone pair NH 3 is coupled with Ni nucleus and is present as Ni + 2 in the structure of the nickel carbonate amidinyl, amidinyl ligand carbonate is decomposed. As a result, in the initial Ni film, nickel nitride (Ni-N) is formed in the film as an impurity by nickel amidate or N derived from NH 3 . In addition, Ni-C is also produced as an impurity. Therefore, the initial Ni film produced will have many impurities.
단계 2의 수소 처리 공정에서는, 니켈 아미디네이트 및 NH3 가스의 공급을 정지하고, H2 가스를 챔버(1) 내로 공급하여, 초기 Ni막 성막 후의 웨이퍼(W)에 수소 처리를 실시한다. 이 때 H2 가스는, H2 가스 공급원(43)으로부터 분기 배관(40b), 배관(40), 제 2 도입로(12), 샤워 헤드(10)를 거쳐 챔버(1) 내로 공급된다. 이 단계 2에서는, 먼저 H2 가스를 공급하고, 또한 챔버(1) 내를 진공 배기함으로써 그 내에 잔류하고 있는 니켈 아미디네이트 가스 및 NH3 가스를 퍼지하고, 이어서 H2 가스의 공급을 계속하면서 챔버(1) 내의 압력을 소정압으로 제어한다. 이와 같이 챔버(1) 내로 H2 가스를 공급하여 웨이퍼(W)에 수소 처리를 실시함으로써, 도 3a 및 도 3b에 나타낸 바와 같이, 니켈 아미디네이트 또는 NH3에 의해 성막된 Ni막 중의 불순물인 Ni - N 또는 Ni - C가 H2 가스와 반응하여, NH3 또는 CH4가 되어 막 중으로부터 제거된다. 이에 의해, 불순물이 적은 초기 Ni막이 형성된다.The hydrotreating process of the
단계 3의 주 성막 공정에서는, H2 가스를 공급한 채로 그 유량을 조정하고, 또한 정지하고 있던 니켈 아미디네이트를 단계 1과 동일하게 하여 재차 공급한다. 이에 의해, 니켈 아미디네이트가 H2 가스에 의해 환원되어 초기 Ni막 상에 Ni가 더 퇴적되어 주 Ni막이 형성된다. 이 때, 단계 2의 수소 처리에 의해 초기 Ni막 중의 불순물은 제거되어 있고, 또한 니켈 아미디네이트가 H2 가스로 환원됨으로써, 주 Ni막은 불순물이 적은 막으로서 성막되므로, 얻어지는 Ni막은 전체적으로 불순물이 적은 것이 된다.In the main film forming step of step 3, the flow rate is adjusted while H 2 gas is supplied, and the suspended nickel amidate is supplied in the same manner as in step 1. As a result, the nickel amidate is reduced by the H 2 gas to further deposit Ni on the initial Ni film to form a main Ni film. At this time, impurities in the initial Ni film are removed by the hydrogen treatment in
단계 3의 주 성막 공정에서의 막 두께는, 성막하고자 하는 Ni막의 토탈의 막 두께와 초기 성막 시의 막 두께에 따라 적절히 결정된다. 또한 성막 시간은, 막 두께와 성막 레이트로부터 미리 결정하는 것이 바람직하다.The film thickness in the main film-forming process of step 3 is suitably determined according to the film thickness of the total of the Ni film to be formed, and the film thickness at the time of initial film-forming. The film formation time is preferably determined in advance from the film thickness and the film formation rate.
단계 4의 퍼지 공정에서는, 니켈 아미디네이트 및 H2 가스의 공급을 정지하고, 챔버(1) 내를 진공 배기함으로써 행한다. 이 때, 필요에 따라 Ar 가스 공급원(33)으로부터의 Ar 가스를, 버블링 배관(32), 바이패스 배관(48), 원료 가스 송출 배관(36)을 거쳐 퍼지 가스로서 챔버(1) 내로 공급해도 된다.In the purge step of step 4, the supply of nickel amidate and H 2 gas is stopped, and the inside of the chamber 1 is evacuated. At this time, Ar gas from the Ar gas supply source 33 is supplied into the chamber 1 as a purge gas through the bubbling
퍼지 공정이 종료된 후, 게이트 밸브를 열어 성막 후의 웨이퍼(W)를 반송 장치(도시하지 않음)에 의해 반입출구(24)를 거쳐 반출한다.After the purge process is completed, the gate valve is opened, and the wafer W after film formation is carried out through the carry-out
종래는, 상기 특허 문헌 3에 나타낸 바와 같이, 성막 원료로서 니켈 아미디네이트를 이용하고, 환원 가스로서 NH3를 이용하여 전체의 Ni막의 성막을 행한 후, Ni막의 불순물을 제거하기 위하여, 수소 분위기 중에서 어닐을 행하여 Ni막 중의 N를 제거하지만, 성막 후에 이러한 어닐 처리를 행하면, 그만큼 스루풋이 저하된다. 보다 고순도의 Ni막을 얻기 위하여, 성막과 어닐 처리를 복수회 반복하면, 스루풋이 더 저하된다. 따라서 상기 일본특허출원 2011-191917의 실시예에서는, 본 실시예와 마찬가지로 하여 초기 성막을 행한 후, 환원 가스를 H2 가스로 변경하여 주 성막을 행하고 있다.Conventionally, as shown in Patent Document 3, after forming the entire Ni film using nickel amidate as the film forming raw material and NH 3 as the reducing gas, in order to remove impurities in the Ni film, a hydrogen atmosphere is used. Annealing is performed to remove N in the Ni film. However, when such annealing is performed after film formation, throughput decreases by that amount. In order to obtain a higher purity Ni film, the throughput is further reduced when the film formation and the annealing treatment are repeated a plurality of times. Therefore, in the embodiment of Japanese Patent Application No. 2011-191917, after the initial film formation in the same manner as in the present embodiment, the main film is formed by changing the reducing gas to H 2 gas.
이와 같이, 초기 성막 후에 주 성막을 행하는 것은, 이하의 지견에 기초하고 있다. Thus, performing main film formation after initial film formation is based on the following knowledge.
(1) 성막 원료인 니켈 아미디네이트와 비공유 전자쌍을 가지는 환원 가스인 NH3로 초기 성막을 행하여 초기 Ni막을 성막한 후에는, 환원 가스로서 H2 가스를 이용해도 그 위에 Ni막을 성막하는 것이 가능하다. (1) After forming an initial Ni film by performing initial film formation with nickel amidate as a raw material and NH 3 as a reducing gas having a non-covalent electron pair, the Ni film can be formed thereon even if H 2 gas is used as the reducing gas. Do.
(2) 환원 가스로서 H2를 이용한 경우에는, 막 중에 N가 유입되지 않기 때문에, NixN가 형성되지 않아 순도가 높은 Ni막을 형성할 수 있다. (2) When H 2 is used as the reducing gas, since N does not flow into the film, Ni x N is not formed and a high purity Ni film can be formed.
(3) 환원 가스인 H2 가스의 존재에 의해, 초기 Ni막에 포함되는 N를 제거할 수 있다. (3) By the presence of H 2 gas, which is a reducing gas, N contained in the initial Ni film can be removed.
(4) 성막 원료로서 니켈 아미디네이트를 이용하고, 환원 가스로서 H2를 이용하여 초기 Ni막 상에 Ni막을 성막할 경우에는, 니켈 아미디네이트와 NH3를 이용하여 성막하는 것보다 성막 레이트가 높다.(4) When the Ni film is formed on the initial Ni film by using nickel amidate as the raw material and H 2 as the reducing gas, the film formation rate is higher than that of using nickel amidate and NH 3 . Is high.
그러나 더 검토한 결과, 상기 일본특허출원 2011-191917에 기재되어 있는 방법을 채용할 경우, 주 성막 공정에서, 순도가 높은 주 Ni막은 얻어지지만, 초기 Ni막에 포함되어 있는 Ni - N 또는 Ni - C 등의 불순물이 충분히 제거되지 않는 경우가 있으며, 이러한 불순물이, Ni막의 비저항을 악화시켜, 니켈 실리사이드의 형성 불량의 원인이 되는 것이 판명되었다.As a result of further examination, however, when the method described in Japanese Patent Application No. 2011-191917 is adopted, in the main film forming step, a high-purity main Ni film is obtained, but Ni-N or Ni- included in the initial Ni film. Impurities, such as C, may not be removed sufficiently, and it turned out that such an impurity worsens the specific resistance of a Ni film | membrane and becomes a cause of the nickel silicide formation defect.
따라서 본 실시예에서는, 상술한 바와 같이, 단계 1로서 성막 원료인 니켈 아미디네이트와 비공유 전자쌍을 가지는 환원 가스인 NH3로 초기 성막을 행하여 핵생성(초기 Ni막을 형성)한 후, 단계 2에서 니켈 아미디네이트 및 NH3 가스의 공급을 정지하고 H2 가스에 의해 수소 처리를 행하여 초기 Ni막의 불순물을 제거한 후, 단계 3으로서 니켈 아미디네이트와 H2 가스로 주 성막을 행하는 것이다. 이에 의해, 단계 2의 수소 처리에 의해 초기 Ni막 중의 불순물은 제거되고, 또한 주 Ni막은 니켈 아미디네이트가 H2 가스로 환원됨으로써 불순물이 매우 적은 막으로서 성막되므로, 얻어지는 Ni막은 전체적으로 불순물이 적은 고순도가 된다. 또한 단계 2의 수소 처리는, 핵으로서 형성된 매우 얇은 초기 Ni막의 불순물을 제거할 뿐이며, 단시간의 처리로 충분하고, 또한 환원 가스로서 H2 가스를 이용한 주 성막에서는, NH3 가스를 이용한 경우보다 성막 레이트가 높기 때문에, 니켈 아미디네이트와 NH3를 이용하여 성막하고, 성막 후에 어닐하는 종래의 방법보다 스루풋을 현저하게 높일 수 있다.Therefore, in the present embodiment, as described above, the initial film formation is performed by using nickel amidate as the film forming raw material and NH 3 as the reducing gas having a non-covalent electron pair as step 1, followed by nucleation (forming an initial Ni film). The supply of nickel amidate and NH 3 gas is stopped and hydrogen treatment is carried out by H 2 gas to remove impurities of the initial Ni film, and then in step 3, the main film is formed using nickel amidate and H 2 gas. As a result, impurities in the initial Ni film are removed by the hydrogen treatment in
상기 단계 2의 수소 처리 공정은, 챔버(1) 내의 압력 : 333.3 ~ 13330 Pa(2.5 ~ 100 Torr), 서셉터(2)에 의한 웨이퍼(W)의 가열 온도 : 160 ~ 500℃, H2 가스 유량 : 25 ~ 5000 mL/min(sccm)의 조건으로 행하는 것이 바람직하다. 또한 처리 시간은, 이들 조건에 의해 좌우되지만, 수십 초에서 수 분으로 충분하다. 또한 압력, 온도 및 H2 가스 유량은, 상기 범위 내에서 값이 클수록 스루풋이 높아지므로 바람직하다.The hydrogen treatment process of
상기 단계 1의 초기 성막 공정에서는, 챔버(1) 내의 압력 : 133.3 ~ 2000 Pa(1 ~ 15 Torr), 서셉터(2)에 의한 웨이퍼(W)의 가열 온도(성막 온도) : 200 ~ 350℃, 캐리어 Ar 가스 유량 : 50 ~ 500 mL/min(sccm), NH3 가스 유량 : 10 ~ 2000 mL/min(sccm)가 바람직하다.In the initial film formation step of step 1, the pressure in the chamber 1: 133.3 to 2000 Pa (1 to 15 Torr), the heating temperature (film formation temperature) of the wafer W by the susceptor 2: 200 to 350 ° C. Carrier Ar gas flow rate: 50-500 mL / min (sccm), NH 3 gas flow rate: 10-2000 mL / min (sccm) is preferable.
또한 상기 단계 3의 주 성막 공정에서는, 챔버(1) 내의 압력 : 133.3 ~ 2000 Pa(1 ~ 15 Torr), 서셉터(2)에 의한 웨이퍼(W)의 가열 온도(성막 온도) : 200 ~ 350℃, 캐리어 Ar 가스 유량 : 50 ~ 500 mL/min(sccm), H2 가스 유량 : 50 ~ 500 mL/min(sccm)가 바람직하다.In addition, in the main film forming step of Step 3, the pressure in the chamber 1: 133.3 to 2000 Pa (1 to 15 Torr) and the heating temperature (film formation temperature) of the wafer W by the susceptor 2: 200 to 350 C, carrier Ar gas flow rate: 50-500 mL / min (sccm), H 2 gas flow rate: 50-500 mL / min (sccm) are preferable.
또한, 본 실시예와 같이 단계 1 ~ 3을 동일 챔버에서 행할 경우에는, 스루풋을 높이는 관점으로부터, 이들 단계를 동일한 온도 및 압력에서 행하는 것이 바람직하다. 또한, 이들 단계 1 ~ 3 중 적어도 하나를 다른 챔버에서 행해도 되고, 그 경우에는 각 단계에서 개별적으로 조건을 설정할 수도 있다.In addition, when performing steps 1-3 in the same chamber as in the present embodiment, it is preferable to perform these steps at the same temperature and pressure from the viewpoint of increasing the throughput. In addition, at least one of these steps 1-3 may be performed in another chamber, and in that case, conditions may be set individually at each step.
실리콘 기판 또는 폴리 실리콘 상에 본 실시예에 따라 Ni막을 성막한 경우에는, 성막 후에 Ar 가스 등의 불활성 가스 분위기에서 어닐을 행함으로써 니켈 실리사이드(NiSi)를 얻을 수 있다. 이 경우에, 본 실시예에서는 불순물이 적은 Ni막이 얻어지므로, 니켈 실리사이드의 형성 불량이 발생하지 않고, 또한 실리사이드화를 위한 어닐 처리를 단시간에 행할 수 있다.In the case where the Ni film is formed on the silicon substrate or the polysilicon according to this embodiment, nickel silicide (NiSi) can be obtained by annealing in an inert gas atmosphere such as Ar gas after the film formation. In this case, in this embodiment, since a Ni film containing few impurities is obtained, no defective formation of nickel silicide occurs, and annealing for silicide formation can be performed in a short time.
이어서, 상기 단계 2에 의한 불순물의 제거 효과를 확인한 실험에 대하여 설명한다. Next, the experiment which confirmed the removal effect of the impurity by said
여기서는, 성막 원료로서 Ni(II)(tBu - AMD)2를 이용하고, 환원 가스로서 NH3를 이용하여, Si 웨이퍼 상에 약 30 nm의 Ni막(초기 Ni막에 상당)을 성막한 샘플과, 마찬가지로 하여 Ni막을 성막한 후, H2 가스를 공급하여 수소 처리를 행한 샘플에 대하여 X 선 광전자 분광(XPS)에 의해 막 두께 방향의 조성 분석을 행했다. 그 결과를 도 4, 5에 나타낸다. 이들 도에서, 횡축은 두께 방향의 에칭 사이클을 나타내고, 1 회의 에칭으로 약 1.7 nm 에칭하고 있다. 또한 수소 처리는, 웨이퍼 온도 : 250℃, 압력 : 1333 Pa(10 Torr), H2 가스 유량 : 500 mL/min(sccm), 처리 시간 : 180 sec의 조건으로 행했다.Here, a sample formed by forming a Ni film (corresponding to an initial Ni film) of about 30 nm on a Si wafer using Ni (II) (tBu-AMD) 2 as a film forming raw material and NH 3 as a reducing gas; After forming the Ni film in the same manner, the composition in the film thickness direction was analyzed by X-ray photoelectron spectroscopy (XPS) on the sample subjected to hydrogen treatment by supplying H 2 gas. The results are shown in FIGS. 4 and 5. In these figures, the horizontal axis represents the etching cycle in the thickness direction and is about 1.7 nm etched in one etching. The hydrogen treatment was carried out under the conditions of a wafer temperature of 250 ° C., a pressure of 1333 Pa (10 Torr), a H 2 gas flow rate of 500 mL / min (sccm) and a processing time of 180 sec.
그 결과, 도 4에 나타낸 바와 같이, Ni막을 성막한 상태에서는 막 중에 불순물로서 N 또는 C가 토탈로 10 원자% 이상 포함되어 있는데 반해, 도 5에 나타낸 바와 같이, 수소 처리를 행함으로써 N 및 C가 대부분 제거되는 것이 확인되었다.As a result, as shown in FIG. 4, in the state where the Ni film is formed, N or C is contained as a total of 10 atomic% or more as impurities in the film, whereas as shown in FIG. 5, N and C are treated by performing hydrogen treatment. Was found to be mostly removed.
또한 본 발명은, 상기 실시예에 한정되지 않고 각종 변형이 가능하다. 예를 들면 상기 실시예에서는, 성막 원료를 구성하는, 분자 구조 중에 질소 - 탄소 결합을 가지는 배위자를 가지고, 배위자 중의 질소가 금속에 배위한 구조를 가지는 금속 함유 화합물로서, Ni(II)(tBu - AMD)2를 이용하여 Ni막을 성막할 경우를 예시했지만, 동일한 금속 화합물을 이용하여 다른 금속, 예를 들면 Ti(티탄), Co(코발트), Cu(구리), Ru(루테늄), Ta(탄탈) 등의 금속막을 형성할 경우에도 적용 가능하다. 특히, 코발트 아미디네이트는 니켈 아미디네이트와 동일한 구조를 가지고 있어, 코발트 아미디네이트를 이용하여 Co막을 성막할 경우에는, 상기 니켈 아미디네이트를 이용하여 Ni막을 성막할 경우와 대략 동등한 효과가 얻어진다고 상정된다. 또한, 성막 원료로서도, Ni막을 성막할 경우, 다른 니켈 아미디네이트를 이용할 수도 있고, 다른 금속을 성막할 경우에도, 다양한 아미디네이트계 화합물을 이용할 수 있다. 또한, 분자 구조 중에 질소 - 탄소 결합을 가지는 배위자를 가지고, 배위자 중의 질소가 금속에 배위한 구조를 가지는 금속 함유 화합물이면 아미디네이트계 화합물 이외여도 된다.In addition, this invention is not limited to the said Example, A various deformation | transformation is possible. For example, in the above embodiment, Ni (II) (tBu−) is a metal-containing compound which has a ligand having a nitrogen-carbon bond in its molecular structure and a structure in which nitrogen in the ligand is coordinated to the metal. Although the case of forming a Ni film using AMD) 2 is illustrated, other metals, such as Ti (titanium), Co (cobalt), Cu (copper), Ru (ruthenium), and Ta (tantalum), are formed using the same metal compound. It is also applicable to forming a metal film such as). In particular, cobalt amidate has the same structure as nickel amidate, and when a Co film is formed using cobalt amidate, the effect is approximately the same as that of forming a Ni film using the nickel amidate. It is assumed to be obtained. In addition, as a film-forming raw material, when forming a Ni film, another nickel amidate can also be used, and also when forming another metal, various amidate-type compounds can be used. Moreover, as long as it is a metal containing compound which has a ligand which has a nitrogen-carbon bond in molecular structure, and nitrogen in a ligand has a structure which coordinated to a metal, it may be other than an amidate type compound.
또한, 성막 장치의 구조도 상기 실시예에 한정되지 않고, 성막 원료의 공급 방법에 대해서도 상기 실시예와 같은 버블링으로 한정할 필요는 없고, 다양한 방법을 적용할 수 있다.In addition, the structure of the film-forming apparatus is not limited to the said Example, The supply method of the film-forming raw material does not need to be limited to the bubbling same as the said Example, Various methods can be applied.
또한, 피처리 기판으로서 반도체 웨이퍼를 이용한 경우를 설명했지만, 이에 한정되지 않고, 플랫 패널 디스플레이(FPD) 기판 등의 다른 기판이어도 된다.In addition, although the case where a semiconductor wafer is used as a to-be-processed substrate was demonstrated, it is not limited to this, Other board | substrates, such as a flat panel display (FPD) substrate, may be sufficient.
1 : 챔버
2 : 서셉터
5 : 히터
10 : 샤워 헤드
30 : 가스 공급 기구
31 : 성막 원료 탱크
42 : NH3 가스 공급원
43 : H2 가스 공급원
50 : 제어부
51 : 프로세스 컨트롤러
53 : 기억부
W : 반도체 웨이퍼1: chamber
2: susceptor
5: heater
10: shower head
30: gas supply mechanism
31: film forming raw material tank
42: NH 3 gas source
43: H 2 gas source
50:
51: Process controller
53: memory
W: Semiconductor wafer
Claims (11)
이 후, 상기 처리 용기 내로 수소 가스를 공급하여 피처리 기판에 대하여 수소 처리를 행하는 제 2 공정과,
피처리 기판에 형성된 초기 금속막 상에, 분자 구조 중에 질소 - 탄소 결합을 가지는 배위자를 가지고, 배위자 중의 질소가 금속에 배위한 구조를 가지는 금속 함유 화합물로 이루어지는 성막 원료와, 수소 가스로 이루어지는 환원 가스를 공급하여, CVD에 의해 주 금속막을 성막하는 제 3 공정을 가지는 것을 특징으로 하는 금속막의 성막 방법.The film-forming raw material which consists of a metal-containing compound which arrange | positions a to-be-processed board | substrate in a process container, has a ligand which has a nitrogen-carbon bond in a molecular structure, and has a structure which nitrogen in a ligand coordinated to a metal on a to-be-processed substrate, and ammonia A first step of supplying a reducing gas comprising at least one selected from hydrazine and derivatives thereof, and forming an initial metal film by CVD;
Thereafter, a second step of supplying hydrogen gas into the processing container to perform hydrogen treatment on the substrate to be processed;
On the initial metal film formed on the substrate to be treated, a film forming raw material comprising a metal-containing compound having a ligand having a nitrogen-carbon bond in its molecular structure and having a structure in which nitrogen in the ligand is bound to the metal, and a reducing gas composed of hydrogen gas And a third step of forming a main metal film by CVD.
상기 금속 함유 화합물은 금속 아미디네이트계 화합물인 것을 특징으로 하는 금속막의 성막 방법.The method according to claim 1,
The metal-containing compound is a metal amidate-based compound, characterized in that the metal film deposition method.
상기 금속 아미디네이트계 화합물은 니켈 아미디네이트이며, 상기 금속막은 니켈막인 것을 특징으로 하는 금속막의 성막 방법.3. The method of claim 2,
The metal amidate compound is nickel amidate, and the metal film is a nickel film.
상기 제 2 공정은 160 ~ 500℃에서 행해지는 것을 특징으로 하는 금속막의 성막 방법.The method of claim 3,
The said 2nd process is performed at 160-500 degreeC, The film-forming method of the metal film characterized by the above-mentioned.
상기 제 2 공정을 실시할 시의 압력은 333.3 ~ 13330 Pa인 것을 특징으로 하는 금속막의 성막 방법.The method of claim 3,
The pressure at the time of performing said 2nd process is 333.3-13330 Pa, The metal film-forming method characterized by the above-mentioned.
상기 제 2 공정을 실시할 시의 수소 가스 유량은 25 ~ 5000 mL/min(sccm)인 것을 특징으로 하는 금속막의 성막 방법.6. The method according to any one of claims 3 to 5,
The hydrogen gas flow rate at the time of performing the said 2nd process is 25-5000 mL / min (sccm), The metal film film-forming method characterized by the above-mentioned.
상기 제 1 공정 및 상기 제 3 공정은 200 ~ 350℃에서 행해지는 것을 특징으로 하는 금속막의 성막 방법.6. The method according to any one of claims 3 to 5,
The said 1st process and the said 3rd process are performed at 200-350 degreeC, The metal film-forming method characterized by the above-mentioned.
상기 제 1 공정 및 상기 제 3 공정을 실시할 시의 압력은 133.3 ~ 2000 Pa인 것을 특징으로 하는 금속막의 성막 방법.6. The method according to any one of claims 3 to 5,
The pressure at the time of performing the said 1st process and the said 3rd process is 133.3-2000 Pa, The metal film-forming method characterized by the above-mentioned.
상기 제 2 공정은, 상기 제 1 공정 및 상기 제 3 공정과 동일 온도에서 행해지는 것을 특징으로 하는 금속막의 성막 방법.8. The method of claim 7,
The said 2nd process is performed at the same temperature as the said 1st process and the said 3rd process, The metal film film-forming method characterized by the above-mentioned.
상기 제 2 공정은, 상기 제 1 공정 및 상기 제 3 공정과 동일 압력에서 행해지는 것을 특징으로 하는 금속막의 성막 방법.9. The method of claim 8,
The said 2nd process is performed at the same pressure as the said 1st process and the said 3rd process, The metal film film-forming method characterized by the above-mentioned.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012206920A JP5917351B2 (en) | 2012-09-20 | 2012-09-20 | Method for forming metal film |
JPJP-P-2012-206920 | 2012-09-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140038328A true KR20140038328A (en) | 2014-03-28 |
KR101697076B1 KR101697076B1 (en) | 2017-01-17 |
Family
ID=50617781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130111699A KR101697076B1 (en) | 2012-09-20 | 2013-09-17 | Metal film forming method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5917351B2 (en) |
KR (1) | KR101697076B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6220649B2 (en) * | 2013-11-25 | 2017-10-25 | 東京エレクトロン株式会社 | Method for forming metal film |
JP6723128B2 (en) | 2016-09-27 | 2020-07-15 | 東京エレクトロン株式会社 | Nickel wiring manufacturing method |
CN109260053B (en) * | 2018-11-20 | 2021-06-18 | 天津科技大学 | Preparation method of water-based wash-free antibacterial emulsion with zero skin internal permeability |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900004602B1 (en) * | 1984-05-17 | 1990-06-30 | 배리안 어소시에이츠, 인코포레이티드 | Vacuum sputtering apparatus |
KR927002438A (en) * | 1990-08-28 | 1992-09-04 | 사도미 유다까 | Chromate treatment method of galvanized steel sheet |
JPH09153616A (en) | 1995-09-28 | 1997-06-10 | Toshiba Corp | Semiconductor device and manufacture thereof |
JP2011066060A (en) | 2009-09-15 | 2011-03-31 | Tokyo Electron Ltd | Forming method of metal silicide film |
WO2011040385A1 (en) | 2009-09-29 | 2011-04-07 | 東京エレクトロン株式会社 | PROCESS FOR PRODUCTION OF Ni FILM |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2182088B1 (en) * | 2002-11-15 | 2013-07-17 | President and Fellows of Harvard College | Atomic layer deposition using metal amidinates |
CN102119238B (en) * | 2008-07-24 | 2014-05-28 | 乔治洛德方法研究和开发液化空气有限公司 | Heteroleptic cyclopentadienyl transition metal precursors for deposition of transition metal-containing films |
JP5593320B2 (en) * | 2009-09-02 | 2014-09-24 | 株式会社アルバック | Method for forming Co film |
JP5225957B2 (en) * | 2009-09-17 | 2013-07-03 | 東京エレクトロン株式会社 | Film formation method and storage medium |
JP5680892B2 (en) * | 2010-07-13 | 2015-03-04 | 株式会社アルバック | Co film forming method |
JP5661006B2 (en) * | 2011-09-02 | 2015-01-28 | 東京エレクトロン株式会社 | Method for forming nickel film |
-
2012
- 2012-09-20 JP JP2012206920A patent/JP5917351B2/en active Active
-
2013
- 2013-09-17 KR KR1020130111699A patent/KR101697076B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900004602B1 (en) * | 1984-05-17 | 1990-06-30 | 배리안 어소시에이츠, 인코포레이티드 | Vacuum sputtering apparatus |
KR927002438A (en) * | 1990-08-28 | 1992-09-04 | 사도미 유다까 | Chromate treatment method of galvanized steel sheet |
JPH09153616A (en) | 1995-09-28 | 1997-06-10 | Toshiba Corp | Semiconductor device and manufacture thereof |
JP2011066060A (en) | 2009-09-15 | 2011-03-31 | Tokyo Electron Ltd | Forming method of metal silicide film |
WO2011040385A1 (en) | 2009-09-29 | 2011-04-07 | 東京エレクトロン株式会社 | PROCESS FOR PRODUCTION OF Ni FILM |
KR20120062915A (en) * | 2009-09-29 | 2012-06-14 | 도쿄엘렉트론가부시키가이샤 | Process for production of ni film |
Also Published As
Publication number | Publication date |
---|---|
JP2014062281A (en) | 2014-04-10 |
JP5917351B2 (en) | 2016-05-11 |
KR101697076B1 (en) | 2017-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101334946B1 (en) | Method for formation of metal silicide film | |
US8435905B2 (en) | Manufacturing method of semiconductor device, and substrate processing apparatus | |
JP4803578B2 (en) | Deposition method | |
WO2011040385A1 (en) | PROCESS FOR PRODUCTION OF Ni FILM | |
TWI404822B (en) | Film forming method and memory media (2) | |
JP4651955B2 (en) | Deposition method | |
KR20100129236A (en) | A method of manufacturing a semiconductor device and substrate processing apparatus | |
JP6391355B2 (en) | Method for forming tungsten film | |
WO2011033918A1 (en) | Film forming device, film forming method and storage medium | |
KR20140038328A (en) | Metal film forming method | |
WO2004008513A1 (en) | Method for manufacturing semiconductor device and substrate processing apparatus | |
JP5661006B2 (en) | Method for forming nickel film | |
JP6220649B2 (en) | Method for forming metal film | |
US20080199601A1 (en) | Method for Forming Tantalum Nitride Film | |
JP2013209701A (en) | Method of forming metal film | |
KR20110131273A (en) | Method for forming cu film, and storage medium | |
JP2013199673A (en) | Method for forming ruthenium oxide film and method for cleaning treatment container for forming ruthenium oxide film | |
JP5659041B2 (en) | Film formation method and storage medium | |
JP2012172250A (en) | Film forming method and storage medium | |
JP2020172688A (en) | Deposition method, method for producing semiconductor device, deposition device, and system for producing semiconductor device | |
JP2012172252A (en) | Film forming method and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20200106 Year of fee payment: 4 |