KR900004602B1 - Vacuum sputtering apparatus - Google Patents

Vacuum sputtering apparatus Download PDF

Info

Publication number
KR900004602B1
KR900004602B1 KR1019900004030A KR900004030A KR900004602B1 KR 900004602 B1 KR900004602 B1 KR 900004602B1 KR 1019900004030 A KR1019900004030 A KR 1019900004030A KR 900004030 A KR900004030 A KR 900004030A KR 900004602 B1 KR900004602 B1 KR 900004602B1
Authority
KR
South Korea
Prior art keywords
target
magnetic
pole piece
source
sputtering apparatus
Prior art date
Application number
KR1019900004030A
Other languages
Korean (ko)
Inventor
엠.민츠 도날드
Original Assignee
배리안 어소시에이츠, 인코포레이티드
스탠리 지.코올
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/611,435 external-priority patent/US4595482A/en
Application filed by 배리안 어소시에이츠, 인코포레이티드, 스탠리 지.코올 filed Critical 배리안 어소시에이츠, 인코포레이티드
Priority to KR1019900004030A priority Critical patent/KR900004602B1/en
Application granted granted Critical
Publication of KR900004602B1 publication Critical patent/KR900004602B1/en

Links

Images

Abstract

Appts. for controlling a cathode sputter magnetron device to provide uniformity of material supplied to a workpiece (14) over the linves of geometrically spaced targets (22,23) each subjected to a separate plasma discharge confined to the target by a separate magnetic field. Control appts. senses target erosion condition and in response to this controls the relative powers of the separate discharges so that the powers change as a function of the erosion condition. The impedances of the discharges are pref. controlled by varying the magnetic field. Pref. each field is derived by an electromagnet (29,30) and the impedance is sensed and compared with a set value to derive an error signal to control current applied to the electromagnet.

Description

진공 스퍼터링 장치Vacuum sputtering device

제1도는 본 발명의 양호한 실시예에 따라 제어기와 함께 한쌍의 타깃 소자를 포함하고 있는 스퍼터링 장치에대한 개략도.1 is a schematic diagram of a sputtering apparatus including a pair of target elements with a controller in accordance with a preferred embodiment of the present invention.

제2도는 제2a도 및 제2b도의 타깃 조립체의 결합 배치도.2 is a combined layout of the target assembly of FIGS. 2a and 2b.

제2a도 및 제2b도는 제1도에 예증된 타깃 조립체를 제3도의 라인 2-2을 따라 절취한 부분적 단면도.2A and 2B are partial cross-sectional views taken along line 2-2 of FIG. 3 of the target assembly illustrated in FIG.

제3도 및 제4도는 제2도에 예증된 조립체에 대한 상하측도.3 and 4 are top and bottom views of the assembly illustrated in FIG.

제5도는 제1도에 예증된 제어기의 상세도.5 is a detail of the controller illustrated in FIG.

제6도는 제5도에 예증된 제어기의 상세도.6 is a detail of the controller illustrated in FIG.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

11 : 마그네트론 스퍼터링 기구 12 : 진공실11: magnetron sputtering mechanism 12: vacuum chamber

13 : 침착실 14 : 기판13: deposition chamber 14: substrate

15 : 캐소드 초립체 16 : 하우징15: cathode granules 16: housing

18 : DC 전원 19 : 불활성 기체원18: DC power source 19: inert gas source

20 : 진공 펌프 22, 23 : 타깃 소자20: vacuum pump 22, 23: target element

24 : 원자 방출면 26, 32 : 베이스24: atomic emission surface 26, 32: base

29, 30 : 코일 33 : 중심 스터드29, 30: coil 33: center stud

34, 35 : 링 36 : 플랜지34, 35: ring 36: flange

37, 38 : DC 전원 39 : 제어기37, 38: DC power source 39: controller

본 발명은 마그네트론 스퍼터 장치에 관한 것으로, 특히 개별적인 자기 회로에 의해 한정되는 다수의 방전에 응답하여 다수의 타깃을 갖는 마그네트론 스프터 장치에 관한 것이며, 여기에서 방전 임피던스 및 전력은 타깃이 부식함에 따라 제어된다.The present invention relates to a magnetron sputter device, and more particularly to a magnetron sputter device having a plurality of targets in response to a plurality of discharges defined by individual magnetic circuits, wherein discharge impedance and power are controlled as the target corrodes. do.

마그네트론 스퍼터 장치는 아르곤과 같은 불활성, 이온화 가능한 기체가 인입되는 진공실에서 교차된 전계 및 자계에 의해 특징지어진다. 상기 기체는 전계에 의해 가속화된 전자에 의해 이온화된다. 자계는 이온화된 기체를 한정하고, 타깃 구조에 근접하여 플라즈마를 구성한다. 기체 이온은 통상적으로 코팅 처리시에 기판과 같은 작업편에 입사되는 원자의 방출을 야기시켜 타깃 구조에 충격을 가한다.Magnetron sputter devices are characterized by crossed electric and magnetic fields in a vacuum chamber into which an inert, ionizable gas, such as argon, is introduced. The gas is ionized by electrons accelerated by the electric field. The magnetic field defines the ionized gas and forms a plasma in close proximity to the target structure. Gas ions typically impact the target structure by causing the release of atoms incident on a workpiece such as a substrate during the coating process.

일반적으로, 이를 위해 전자 장치의 사용이 증가되고 있지만, 자계는 영구자석 구조에 의해 형성된다. 코팅 응용에 있어서, 마그네트론 스퍼터링 장치는 보통 전자 집적 회로형 장치의 제조시 금속을 증착시키는데 자주 사용된다. 또한 자기 디스크메모리에 사용된 고밀도 자기 디스크 제조시 자기 재료를 증착시키는 것도 공지되어 있다.In general, the use of electronic devices is increasing for this purpose, but the magnetic field is formed by the permanent magnet structure. In coating applications, magnetron sputtering devices are often used to deposit metals in the manufacture of electronic integrated circuit type devices. It is also known to deposit magnetic materials in the manufacture of high density magnetic disks used in magnetic disk memories.

종래의 마그네트론 스퍼터링 장치에 있어서, 기판의 균일한 코팅 두께는 코팅 동안 기판을 이동시킴으로써 얻어졌다. 또한 계단 덮개를 얻는데 도움이 되는 기판의 이동에 의해 계단형 전이 기간에 걸쳐 적절한 코팅이 얻어진다. 물론, 스퍼터링 장치의 동작 동안 기판을 이동시키는 데는 많은 문제가 있다. 또한, 서로 다른 물질 특히, 합금하기 어렵거나 불가능한 여러가지 물질 즉, 단일 타깃에 적용될 수 없는 물질을 공동 증착시키는 것은 어떤 경우에 바람직할 수도 있다. 모든 경우에서, 가능한 고속도로 스퍼터링 장치를 동작시키는 것이 바람직하다.In a conventional magnetron sputtering apparatus, a uniform coating thickness of the substrate was obtained by moving the substrate during coating. In addition, the appropriate coating is obtained over the step transition period by the movement of the substrate which helps to obtain the step cover. Of course, there are many problems in moving the substrate during operation of the sputtering apparatus. In addition, it may be desirable in some cases to co-deposit different materials, particularly various materials that are difficult or impossible to alloy, ie, materials that cannot be applied to a single target. In all cases, it is desirable to operate the highway sputtering apparatus as far as possible.

종래 기술의 장치에 있어서, 단지 영구자석만을 합체한 스퍼터원은 플라즈마를 한정하는 자계가 타깃의 수명을 변화시킬 수 있게 하지는 못한다. 결과적으로, 스퍼터 장치의 임피던스, 즉 플라즈마에 흐르는 방전 전류에 대한 전계를 설정하는 방전 전압의 비율은 사용하는 동안 타깃이 부식함에 따라 점차적으로 감소한다. 그렇기 때문에 전계를 제공하는데 필요한 전원 장치는 비교적 복잡하며, 타깃 수명동안 변하는 스퍼터장치 임피던스를 정합시키는 데에는 비싼 값이 소요된다.In the prior art device, the sputter source incorporating only permanent magnets does not allow the magnetic field defining the plasma to change the life of the target. As a result, the impedance of the sputter device, that is, the ratio of the discharge voltage which sets the electric field to the discharge current flowing in the plasma, gradually decreases as the target corrodes during use. As a result, the power supply required to provide an electric field is relatively complex and expensive to match the sputter device impedance that varies over the life of the target.

사용하는 동안 타깃면이 부식함에 따라, 타깃은 소스로부터 방출된 재료에 대해 샤도우를 발생시키는 경향이 있다. 이에 따라 스퍼터 장치의 전체 효율은 사용하는 동안 타깃이 부식함에 따라 감소된다. 상기 샤도우 효과 때문에, 타깃이 부식할 때 재료가 기판상에 침착되는 속도가 비선형으로 감소된다.As the target surface corrodes during use, the target tends to generate shadows for the material released from the source. The overall efficiency of the sputter device is thus reduced as the target corrodes during use. Because of the shadow effect, the rate at which material deposits on the substrate when the target corrodes is reduced non-linearly.

샤도우 효과에 의해 야기되는 감소된 침전 속도를 최소화시키기 위한 한가지 시도는, 스퍼터링 장치의 축을 중심으로 영구자석이 포함되는 조립체를 회전시키는 것이다. 자석 조립체를 회전시키는 것은 타깃의 수명이 다할 때 스퍼터링 처리의 효율을 실제로 개선하지만, 타깃이 부식함에 따라 장치의 임피던스의 감소가 여전히 관찰되었다. 부가적으로, 상기 시도에 의해 재료가 타깃으로부터 스퍼터되는 속도는 타깃이 부식할 때 감소된다. 물론 영구자석 구조체를 회전시키는 것은 기계적으로 복잡하다.One attempt to minimize the reduced settling rate caused by the shadow effect is to rotate the assembly containing permanent magnets about the axis of the sputtering apparatus. Rotating the magnet assembly actually improves the efficiency of the sputtering process at the end of the life of the target, but a decrease in the impedance of the device is still observed as the target corrodes. Additionally, the rate at which material sputters from the target by the attempt is reduced when the target corrodes. Of course, rotating the permanent magnet structure is mechanically complex.

영구자석 구성과 관련된 많은 문제들이 전자석을 사용함으로써 제거되는 반면, 전자석 장치는 일반적으로 1인치의 비교적 좁은 폭을 갖는 단일 타깃을 사용해야 한다는 단점을 갖고 있다. 최근에, 타깃이 상호 동심을 갖는 이중의 타깃 소자를 갖는 조립체로서 구성되는 시스템이 개발되었다. 상기 제1구성에서, 타깃은 2개의 평면 소자이며, 제2구성에서, 내부 타깃은 평면이며, 외부 타깃은 요면 형태로, 원추의 절두체의 측벽에 의해 규정되는 방출 표면을 갖는다. 이와같은 종래 장치는 재료가 코팅되는 기판이나 에칭되는 표면과 같은 작업편의 큰 영역에 걸쳐 효율적으로 균일하게 침착되도록 한 것이다.While many of the problems associated with permanent magnet construction are eliminated by using electromagnets, electromagnet devices generally have the disadvantage of using a single target with a relatively narrow width of 1 inch. Recently, a system has been developed in which the target is constructed as an assembly having dual target elements with concentric concentricity. In the first configuration, the target is two planar elements, and in the second configuration, the inner target is planar, and the outer target is in the form of a concave, having an emitting surface defined by the sidewall of the frustum of the cone. Such conventional devices allow for efficient uniform deposition over large areas of the workpiece, such as substrates onto which materials are coated or surfaces to be etched.

작업편상의 두개의 타깃의 상대적인 기여는 사용 동안 타깃이 부식함에 따라 다르게 변한다는 것이 관찰되었다. 즉, 타깃이 소비되거나 부식될 때 제1타깃으로부터 작업편에 이르는 재료양은 제2타깃으로부터 작업편에 도달하는 재료양과 관련하여 변한다. 그러므로, 타깃 조립체의 유효 수명 동안 작업편상의 재료의 충격을 균일하게 하기 위해 다수의 소자 타깃 조립체용 제어기를 설계한다는 것은 복잡하며 간단한 일이 아니다. 이는 특히 6인치의 집적 회로 웨이퍼나 하드컴퓨터 저장 자기 디스크와 같은 비교적 넓은 영역의 작업편에 걸쳐서 균일하게 증착시키기 위한 경우이다. 또한, 시스템은 타깃이 부식할 때 발생하는 변동 상태에서 플라즈마 방전 임피던스를 제어해야 하므로 복잡하다.It has been observed that the relative contribution of the two targets on the workpiece varies differently as the target corrodes during use. That is, the amount of material from the first target to the workpiece when the target is consumed or corroded varies with respect to the amount of material reaching the workpiece from the second target. Therefore, it is not complicated and simple to design a controller for multiple element target assemblies to uniformize the impact of the material on the workpiece during the useful life of the target assembly. This is particularly the case for uniform deposition over a relatively wide area of work, such as 6 inch integrated circuit wafers or hard computer storage magnetic disks. In addition, the system is complex because the plasma discharge impedance must be controlled in the fluctuating state that occurs when the target corrodes.

따라서, 본 발명의 목적은 마그네트론 스퍼터 장치를 제어하기 위한 신규의 개선된 기구 및 방법을 제공하는 것이다.It is therefore an object of the present invention to provide a novel and improved mechanism and method for controlling a magnetron sputter device.

본 발명의 다른 목적은 재료가 스퍼터되는 다수의 타깃 소자가 소비될 때 균일한 양의 재료가 비교적 큰영역의 작업편상에 침착되도록 하기 위해 마그네트론 스퍼터 장치를 제어하는 신규의 개선된 기구 및 방법을 제공하는 것이며, 타깃 소자의 소비동안 방전의 임피던스가 제어되는 상황에서, 개별 방전 및 개별 한정 자계의 영향을 각각 받는 다수의 타깃 소자를 갖는 마그네트론 스퍼너 장치를 제어하는 신규의 개선된 기구 및 방법을 제공하는 것이다.It is another object of the present invention to provide a novel and improved mechanism and method for controlling a magnetron sputter device to ensure that a uniform amount of material is deposited on a relatively large area of work piece when a large number of target elements are sputtered into the material. And a novel improved mechanism and method for controlling a magnetron spinner device having a plurality of target elements each affected by an individual discharge and an individual confining magnetic field in a situation where the impedance of the discharge is controlled during consumption of the target element. It is.

본 발명에 따라, 캐소드 스퍼터 마그네트론 장치는 재료가 스퍼터되는 다수의 이간된 타깃의 수명 기간동안 비교적 넓은 영역을 갖는 작업편에 재료가 균일하게 공급되도록 제어되며, 여기에서, 각 타깃은 개별적인 자계에 의해 관련 타깃을 한정하는 개별적인 플라즈마 방전의 영향을 받는다. 본 발명의 한 관점에 따라, 균일성은 상대 전력이 타깃 부식 상태의 함수로서 상대 전력이 변하도록 하기 위해 개별적인 플라즈마 방전의 상대 전력을 제어하므로써 얻어진다.According to the invention, the cathode sputter magnetron device is controlled such that the material is uniformly supplied to a workpiece having a relatively large area for the lifetime of the plurality of spaced targets on which the material is sputtered, wherein each target is controlled by a separate magnetic field. It is influenced by the individual plasma discharges that define the relevant targets. According to one aspect of the invention, uniformity is obtained by controlling the relative power of the individual plasma discharges so that the relative power changes as a function of the target corrosion state.

개별적인 플라즈마 방전의 상대 전력을 변화시킴으로써 타깃의 수명 기간에 걸쳐서 균일성이 유지된다는 것을 알았다. 타깃 소자에서 자체 샤도우 정도가 타깃 소모 기간 동안 서로 다르게 변하므로, 플라즈마 방전의 상대 전력이 변화함으로써 소망의 균일성이 얻어지게 된다. 타깃의 부식 윤곽은 다음과 같다. 내부 타깃보다 고속으로 부식되는 외부 타깃은 내부 타깃보다 높은 속도록 자체 샤도우잉을 형성한다. 외부 타깃이 내부 타깃보다 고속으로 부식되므로, 외부 타깃은 타깃 부식이 진행됨에 따라 증착 효율의 손실을 보상하기 위해 더 많은 전력을 필요로 한다.It has been found that by varying the relative power of individual plasma discharges, uniformity is maintained over the life of the target. Since the degree of self shadow in the target element varies differently during the target consumption period, the desired uniformity is obtained by changing the relative power of the plasma discharge. The corrosion profile of the target is as follows. The outer target, which corrodes at a higher speed than the inner target, forms its own shadowing at a higher rate than the inner target. Since the outer target corrodes at a higher rate than the inner target, the outer target needs more power to compensate for the loss of deposition efficiency as the target corrosion progresses.

본 발명의 다른 실시예에 따라, 개별적인 방전의 임피던스는 타깃이 부식될 때 제어된다. 임피던스는 각각의 개별 한정 자계를 화시킴으로써 제어된다. 각 자계는 각각의 방전 임피던스를 제어하는 가변 전류를 공급하는 전자석에 의해 유출된다. 제1방전의 임피던스는 고정값과 비교된다. 제1방전용으로 전자석에 인가된 전류는 상기 비교에 응답하여 제어된다. 제2방전용으로 전자석에 인가된 전류는 그것이 제1방전용르로 전자석에 인가된 전류의 상수 인수가 되도록 제어된다.According to another embodiment of the invention, the impedance of the individual discharges is controlled when the target is corroded. Impedance is controlled by personalizing each individual confined magnetic field. Each magnetic field flows out by an electromagnet that supplies a variable current that controls each discharge impedance. The impedance of the first discharge is compared with a fixed value. The current applied to the electromagnet for the first discharge is controlled in response to the comparison. The current applied to the electromagnet for the second discharge is controlled so that it is a constant factor of the current applied to the electromagnet for the first discharge.

바람직하게, 방전에 대한 상대 전력 및 임피던스는 최대의 바람직한 균일 결과를 얻기 위해 동시에 제어된다. 제1, 제2타깃용 방전 전력은 타깃 부식이 발생할 때 제1타깃에 공급된 전력의 양에 비해 제2타깃에 공급된 전력의 양이 작업편상에 재료가 투입되게 해주는 타깃의 경향을 극복하기 위해 증가되도록 조정된다.Preferably, the relative power and impedance for the discharge are controlled simultaneously to achieve the maximum desired uniform result. The discharge power for the first and second targets overcomes the tendency of the target to cause the material to be injected onto the work piece in the amount of power supplied to the second target relative to the amount of power supplied to the first target when the target corrosion occurs. Is adjusted to increase.

본 발명의 또 다른 특성에 따르면, 캐소드 스퍼터 타깃은 원래의 위치에 보유되고, 베이어닛(bayonet)슬로트를 타깃에, 그리고 타깃 지지체를 슬로트와 맞물리는 핀과 조합하여 제공함으로써 지지체로부터 쉽게 제거된다.According to another feature of the invention, the cathode sputter target is retained in its original position and is easily removed from the support by providing a bayonet slot on the target and a target support in combination with a pin that engages the slot. do.

따라서, 본 발명의 또 다른 목적은 캐소드 스퍼터 타깃을 적소에 보유하고 이 타깃을 쉽게 제거하기 위한 새로운 개선된 구조체를 제공하는 것이다.Accordingly, another object of the present invention is to provide a new improved structure for holding a cathode sputter target in place and for easily removing the target.

본 발명의 스퍼터 도포기와 연관하여 행해지는 원래의 작업에서, 자기 회로 하나가 각각의 타깃 방전용으로 사용되는 상황에서 한쌍의 자기 회로에 의한 자계는 한쌍의 타깃 사이에서 단일 중간폴(pole)부분 부재에 조합되었다. 자속장은 적절한 작동을 행하도록 중간폴 부분 부재에 부가적으로 조합되어야 한다. 중간폴 부분은 적절한 성능을 발휘하도록 양호하게 뾰족 형태로 됨을 알았다.In the original work performed in connection with the sputter applicator of the present invention, in a situation where one magnetic circuit is used for each target discharge, the magnetic field by the pair of magnetic circuits is a single middle pole part member between the pair of targets. Was combined. The magnetic field must additionally be combined with the intermediate pole part member to effect proper operation. The midpole portion was found to be well pointed to exhibit adequate performance.

본 발명의 또 다른 목적, 특성 및 장점은 특정 실시예에 대한 다음의 상세한 설명을 고려하고, 특히 첨부 도면과 관련하여 볼때 명백해질 것이다.Further objects, features and advantages of the present invention will become apparent upon consideration of the following detailed description of specific embodiments and particularly in view of the accompanying drawings.

이하 도면을 참조하여 본 발명을 더욱 상세히 설명할 것이다.Hereinafter, the present invention will be described in more detail with reference to the drawings.

제1도에서, 마그네트론 스퍼터링 기구(11)는 진공실(12), 봉입된 스퍼터 코팅 처리실 또는 증착실(13)로 이루어지는데, 상기 증착실내에는 기판(14)이 종래 수단(도시되지 않음)에 의해 고정적으로 장착되어 있다. 기판(14)은 4 내지 6인치의 비교적 큰 직경을 갖는 집적 회로의 일부이며, 침착된 물질의 선택된 영역을 후속적으로 제거함으로써 기판상에 재료가 침착된다. 이와같은 상황에서, 비자화 재료가 기판상에 침착된다.In FIG. 1, the magnetron sputtering mechanism 11 consists of a vacuum chamber 12, an enclosed sputter coating process chamber or a deposition chamber 13 in which the substrate 14 is formed by conventional means (not shown). It is fixedly mounted. Substrate 14 is part of an integrated circuit having a relatively large diameter of 4 to 6 inches, and material is deposited on the substrate by subsequently removing selected regions of deposited material. In such a situation, nonmagnetic material is deposited on the substrate.

그러나, 본 발명은 자기 디스크메모리와 같은 장치를 형성하는 기판(14)상에 자기 재료를 침착시키는데 적합하다. 제2도 내지 제4도와 관련하여 설명된 특정 구성을 변형시키는 것은 자기 재료의 침착에 대한 최적의 결과를 제공하는데 필요하다. 자기 재료를 스퍼터시키기 위한 각 타깃은 비자화, 금속 홀더상에 장착된 비교적 얇은 자기 스트립을 포함한다. 자기 스트립은 1/4과 1/2인치 정도로 비교적 얇으며, 자계 라인은 상기 자기 스트립의 재료에 의해 영향을 받지 않는다. 자화 재질은 자기 스트립을 통해 흐르는 자기력 선상의 효과를 최소화시키도록 포화된다. 각각의 재료의 층은 제1도내의 장치에 의해 캐소드 조립체(15)용 타깃 재료를 적절히 선택함으로써 기판(14)상에 침착된다.However, the present invention is suitable for depositing a magnetic material on a substrate 14 forming a device such as a magnetic disk memory. Modifying the particular configuration described in connection with FIGS. 2 through 4 is necessary to provide the best results for the deposition of magnetic materials. Each target for sputtering magnetic material includes a relatively thin magnetic strip mounted on a non-magnetic, metal holder. Magnetic strips are relatively thin, such as 1/4 and 1/2 inches, and magnetic field lines are not affected by the material of the magnetic strip. The magnetization material is saturated to minimize the effect of the line of magnetic force flowing through the magnetic strip. Each layer of material is deposited on the substrate 14 by appropriately selecting the target material for the cathode assembly 15 by the apparatus in FIG.

진공실(12)은 고전도재로된 전기적으로 접지된 하우징(16)을 포함한다. 하우징(16)은 애노드 조립체의 일부이고 기판(14)과 동심이며 타깃 캐소드 조립체(15)와 동심인 실린더와 함께 형성된다. 캐소드 조립체(15)내의 타깃은 DC 전원(18)에 의한 접지에 대해 네가티브 고전압 전위로 유지된다.The vacuum chamber 12 includes an electrically grounded housing 16 of high conductivity. The housing 16 is formed with a cylinder that is part of the anode assembly and concentric with the substrate 14 and concentric with the target cathode assembly 15. The target in cathode assembly 15 is maintained at a negative high voltage potential with respect to ground by DC power supply 18.

캐소드 조립체(15)의 근방에서 침착실(13)내에 플라즈마를 형성하기 위해, 불활성 기체 즉 아르곤이 압축된 불활성 기체원(19)으로부터 침착실로 공급된다. 침착실은 진공 펌프(20)에 의해 진공으로 된다. 기체원(19)과 진공 펌프(20)의 조합은 7millitorr의 비교적 낮은 압력으로 침착실(13)을 유지시킨다.In order to form a plasma in the deposition chamber 13 near the cathode assembly 15, an inert gas, ie argon, is supplied from the compressed inert gas source 19 to the deposition chamber. The deposition chamber is vacuumed by the vacuum pump 20. The combination of gas source 19 and vacuum pump 20 maintains deposition chamber 13 at a relatively low pressure of 7 millitorr.

예증된 실시예에서, 캐소드 조립체(15)는 두개의 타깃 소자(22, 23)를 포함하는데, 각각은 디스크형 타깃소자(22)의 길이 방향축에 직각으로 베이스(47)를 갖는 원추의 절두체의 측벽과 같은 모양을 한 평면, 환상형 원자 방출 표면(24) 및 요면의 원자 방출 표면(25)을 구비한다. 표면(24)은 베이스(26)에 대해 45°의 각도로 길이 방향으로 기울어진다. 타깃 소자(22, 23)는 상호 동심이며 기판(14)의 축을 따른 동심축을 갖는다. 타깃 소자(22, 23)의 구성은 제2도 내지 제4도와 관련하여 더욱 상세히 설명될 것이다.In the illustrated embodiment, the cathode assembly 15 comprises two target elements 22, 23, each of which is a conical frustum having a base 47 perpendicular to the longitudinal axis of the disc shaped target element 22. A planar, annular atomic emission surface 24 and a concave atomic emission surface 25 shaped like a sidewall of the substrate. Surface 24 is inclined longitudinally at an angle of 45 ° relative to base 26. The target elements 22, 23 are concentric with each other and have concentric axes along the axis of the substrate 14. The configuration of the target elements 22, 23 will be described in more detail with reference to FIGS. 2 to 4.

타깃 소자(22, 23)에 걸쳐 각각의 플라즈마 방전이 한정되어 이루어진다. 전자석(29, 30)으로부터 유출된 자계에 응답하여 각각의 방전은 자기 폴편 조립체(28)에 의해 타깃 소자(22, 23)에 결합된 개별적인 가변의 자계에 의해 한정된다. 폴편 조립체(28) 및 코일(29, 30)은 축(27) 및 코일(29)의 외측에 위치하는 코일(30)과 동축이다.Each plasma discharge is limited across the target elements 22 and 23. In response to the magnetic field flowing out of the electromagnets 29 and 30, each discharge is defined by an individual variable magnetic field coupled to the target elements 22 and 23 by the magnetic pole piece assembly 28. The pole piece assembly 28 and the coils 29 and 30 are coaxial with the shaft 27 and the coil 30 located outside the coil 29.

폴편 조립체(28)는 중심 스터드(33) 및 링(34, 35)에 결합되며 축(27)에 대해 직각으로 배치된 디스크형 베이스(32)를 포함한다. 스터드(33)는 축(27)을 따라 연장하며, 링(34, 35)은 축(27)과 동심이며, 스터드 및 각 링은 기판(14)을 향해 베이스(32)로부터 길이 방향으로 연장된다. 스터드(33)는 코일(29)내의 실린더형 공간애에 중심적으로 위치하며, 링(34)는 코일(29, 30)사이로 연장한다. 링(35)은 코일(30)과 타깃 소자(23)의 외측에 존재한다. 링(35)은 축(27)에 직각으로 내측으로 향한 플랜지(26)를 포함한다. 링(34)은 환상형 타깃 소자(22)의 외측 직경과 비슷하며, 중심 스터드(33)는 타깃 소자(22)의 배부 직경과 비슷하다.The pole piece assembly 28 includes a disc-shaped base 32 coupled to the center stud 33 and the rings 34 and 35 and disposed at right angles to the axis 27. Stud 33 extends along axis 27, rings 34 and 35 are concentric with axis 27, and the stud and each ring extend longitudinally from base 32 towards substrate 14. . The stud 33 is located centrally in the cylindrical space within the coil 29, and the ring 34 extends between the coils 29, 30. The ring 35 is on the outside of the coil 30 and the target element 23. The ring 35 includes a flange 26 facing inwardly at right angles to the axis 27. The ring 34 is similar to the outer diameter of the annular target element 22, and the center stud 33 is similar to the rear diameter of the target element 22.

각각 독립적으로 제어되는 전류는 DC전원(37, 38)에 의해 각각 전자석 코일(29, 30)에 공급된다. 전원(37, 38)은 제어기(39)로부터 유출된 신호에 응답하여 각각 제어되며, 타깃 소자(22, 23)가 사용동안 부식될 때, 코일(29, 30)에 공급된 전류는 방전 임피든스를 일정하게 유지시킨다.Each independently controlled current is supplied to electromagnet coils 29 and 30 by DC power supplies 37 and 38, respectively. The power sources 37 and 38 are respectively controlled in response to signals flowing out of the controller 39, and when the target elements 22 and 23 are corroded during use, the current supplied to the coils 29 and 30 is discharged impedance. Keep it constant.

방전을 분리시키기 위해, DC전원(18)은 타깃 소자(22, 23)를 다른 네가티브 DC고전압 레벨(-Ea 및 -Eb)로 유지시킨다. 폴편 조립체(28)의 상세한 구성 및 DC전원이 타깃 소자(22, 23)로 공급되는 구성은 제2도 내지 제4도와 관련하여 상세히 설명될 것이다.To isolate the discharge, the DC power source 18 maintains the target elements 22, 23 at different negative DC high voltage levels (-Ea and -Eb). The detailed configuration of the pole piece assembly 28 and the configuration in which the DC power supply is supplied to the target elements 22 and 23 will be described in detail with reference to FIGS. 2 to 4.

제어기(39)는 타깃 소자가 부식할 때 방전의 전력 및 임피던스를 제어하는 타깃 소자중 하나의 타깃 소자와 관련된 플라즈마 방전의 임피던스와 타깃 소자(22, 23)를 보유하고 있는 타깃 조립체의 부식의 표시와 응답한다. 타깃 부식은 타깃 소자(22, 23)에 공급된 전체 에너지에 의해 또는 코일(29, 30)에 공급된 전류에 비례하는 전기 신호를 유출시킴으로써, 또는 상업적으로 유용한 임의의 전류 손실 측정 장치를 사용하여 침착 균일성을 온-라인 측정함으로써 결정될 수 있다. 방전 임피던스는 방전 전압, 전류에 응답하여 측정된다. 언급된 실시예에서, 타깃 소자(22, 23)에 공급된 전체 에너지는 타깃 부식 지시를 유도해 내도록 계산된다.The controller 39 is indicative of the corrosion of the target assembly having the target elements 22, 23 and the impedance of the plasma discharge associated with one of the target elements controlling the power and impedance of the discharge when the target element erodes. Answer with Target corrosion can be achieved either by the total energy supplied to the target elements 22, 23 or by flowing out an electrical signal proportional to the current supplied to the coils 29, 30, or by using any commercially available current loss measurement device. Deposition uniformity can be determined by on-line measurement. The discharge impedance is measured in response to the discharge voltage and the current. In the mentioned embodiment, the total energy supplied to the target elements 22, 23 is calculated to induce the target corrosion indication.

이와 같은 목적을 위해, DC전원(18)은 전압 레벨(-Ea, -Eb)과, 전원(18)에 의해 전압(-Ea, -Eb)을 이동시키는 리드에 공급된 전류(Ia, Ib)를 조정하기 위한 종래 장치를 포함하고 있다. 제어기(39)는 전원(18)으로부터의 측정 신호, 즉, 신호(Eam, Ebm, Iam, Ibm) 및 타깃 조립체가 타깃 조립체에 인가되어 소비되는 에너지를 계산하도록 사용된 전체 시간을 지시하는 신호, 타깃 소자(23)용 방전 임피던스에 응답한다. 계산된 신호에 응답하여, 제어기(39)는 세트 포인트 신호(If1S및 If2S)를 코일 전원(37, 38)에 공급한다. 부가적으로, 제어기(39)는 전원(18)의 전원 세트 포인트값(Pas, Pbs)에 대한 신호를 유출시킨다. 전원(18)은 전원에 의해 타깃 소자(24, 25)에 공급된 전원이 소자의 방전 전압 및 전류의 함수로써 일정하도록 구성된다. 그러므로, 타깃 소자(22, 23)에 공급되도록 결합된 전류 및 전압은 Pas, Pbs의 값의 함수로 변한다. 소자(22, 23)를 포함하는 타깃 조립체가 부식할 때, 소자와 관련된 방전 전력비는 변한다. 처음에, 소자(22, 23)용 방전 전력비는 비교적 낮다. 소자(22, 23)용 방전 전력비는 타깃 소자가 부식할 때 증가한다. 예로, 하나의 실제적인 구성에 있어서 타깃 소자(22, 23)용 방전에 공급된 전력의 비는 1:5이며, 최종비는 1:12, 타깃 소자(23)에 공급된 전력(Pb)은 타깃 소자(22)에 공급된 전력(Pa)을 초과한다.For this purpose, the DC power source 18 has voltage levels (-Ea, -Eb) and currents (Ia, Ib) supplied to the leads for moving the voltages (-Ea, -Eb) by the power source 18. It includes a conventional device for adjusting. The controller 39 indicates the measurement signal from the power source 18, i.e., the signals Eam, Ebm, Iam, Ibm and the total time used to calculate the energy consumed by the target assembly being applied to the target assembly, It responds to the discharge impedance for the target element 23. In response to the calculated signal, the controller 39 supplies the set point signals If1 S and If2 S to the coil power sources 37, 38. In addition, the controller 39 sends out a signal for the power supply set point values Pas, Pbs of the power supply 18. The power source 18 is configured such that the power supplied to the target elements 24, 25 by the power source is constant as a function of the discharge voltage and current of the device. Therefore, the current and voltage coupled to be supplied to the target elements 22, 23 vary as a function of the values of Pas, Pbs. As the target assembly comprising the elements 22, 23 erodes, the discharge power ratio associated with the element changes. Initially, the discharge power ratios for the elements 22 and 23 are relatively low. The discharge power ratio for the elements 22 and 23 increases when the target element is corroded. For example, in one practical configuration, the ratio of the power supplied to the discharges for the target elements 22 and 23 is 1: 5, the final ratio is 1:12, and the power Pb supplied to the target element 23 is The power Pa supplied to the target element 22 is exceeded.

일반적으로, 코일(29, 30) 및 폴편 조립체(28)의 구성에 공급된 DC전류는 타깃 소자(22, 23)내에 자력선을 형성하는데, 이는 방출면(24)을 가로지르며, 방출면의 외경에 인접한 환상형 방출면(24)의 경계를 통해 제1수직 방향 즉, 상측으로 통과한다. 동일한 자력선이 방출면의 내경에 인접한 방출면(24)을 통해 제2수직 방향 즉, 하측으로 통과한다. 유사하게, 방출면의 외경에 인접한 축(27)을 향해 방출면(25)을 통해 통과하는 자력선은 타깃 소자의 내경에서 타깃 소자(28)내로 다시 통과한다. 그러므로써, 각각의 플라즈마 방전이 방출면(24, 25)상에서 이루어지며, 타깃 소자(22, 23)의 부식 윤곽은 타깃의 방출면상에 중심 설정된다. 면(24, 25)에 의해 규정된 경계를 가로지르는 자계선간의 각도는 자기 폴 조립체(28)에 의해 매우 낮게 유지되어 자계는 방출면(24), (25) 전체에 걸쳐 매우 균일하게 된다. 방출면(24) 전체에 걸쳐 가능한 균일하게 플라즈마 밀도를 유지하여 방출면으로부터 균일한 부식을 제공하며, 따라서, 방출된 재료에 의해 타깃 자체 샤도우를 감소시키는 "V"부식 윤곽이 되는 경향을 최소화하도록 하느 것이 중요하다. 자체 샤도우는 타깃으로부터 방출되거나 스퍼터되는 재료가 타깃상에 집속되며 타깃으로부터 기판을 향하는 재료의 이동을 방지시키는 현상을 의미한다.Generally, the DC current supplied to the configuration of the coils 29 and 30 and the pole piece assembly 28 forms magnetic lines of force in the target elements 22 and 23, which cross the emitting surface 24 and the outer diameter of the emitting surface. It passes through the boundary of the annular emitting surface 24 adjacent to the first vertical direction, ie upward. The same magnetic lines of force pass through the emitting surface 24 adjacent to the inner diameter of the emitting surface in a second vertical direction, ie downward. Similarly, the lines of magnetic force passing through the emitting surface 25 toward the axis 27 adjacent to the outer diameter of the emitting surface pass back into the target element 28 at the inner diameter of the target element. Thus, respective plasma discharges are made on the emitting surfaces 24 and 25, and the corrosion contours of the target elements 22 and 23 are centered on the emitting surface of the target. The angle between the magnetic field lines across the boundary defined by the faces 24, 25 is kept very low by the magnetic pole assembly 28 so that the magnetic field is very uniform throughout the emitting surfaces 24, 25. To maintain the plasma density as uniform as possible throughout the emitting surface 24 to provide uniform corrosion from the emitting surface, thus minimizing the tendency to be a "V" corrosion profile that reduces the target itself shadows by the emitted material. It is important to By itself, the shadow refers to a phenomenon in which the material discharged or sputtered from the target is focused on the target and prevents the movement of the material from the target toward the substrate.

코일(29)에 의해 폴편 조립체(28)에 결합된 자장은 자력선으로 하여금 제1자기 회로를 통해 흐르도록 한다. 제1자기 회로내의 자력선은 링(34)을 따라 축방향으로 흐르며, 그 다음에 타깃 소자(22)를 통해 방사상의 내부 방향으로, 방출면(24) 약간 위로 흐른다. 타깃 소자(22)와, 방출면(24) 약간 위의 공간으로부터 스터드(33)쪽으로 방사상의 내부 방향으로 자력선이 흐르며, 스터드(33)를 따라 베이스(32)에서 축방향으로 흐른다. 베이스(32)에서, 제1자기 회로는 링(34)으로 방사 방향으로 다시 흐르는 자력선에 의해 완성된다.The magnetic field coupled to the pole piece assembly 28 by the coil 29 causes magnetic force lines to flow through the first magnetic circuit. The lines of magnetic force in the first magnetic circuit flow axially along the ring 34 and then slightly over the emitting surface 24 in the radially inward direction through the target element 22. Magnetic lines of force flow radially inward from the space between the target element 22 and the emission surface 24 toward the studs 33, and axially in the base 32 along the studs 33. In the base 32, the first magnetic circuit is completed by magnetic lines of force flowing back to the ring 34 in the radial direction.

전자석(30)에 의해 형성된 자력선은 제2자기 회로를 통해 흐른다. 제2자기 회로내의 자력선은 링(34)을 통해 타깃 소자(23)내로 축방향으로 흐른다. 자력선은 타깃 소자(23)내로, 그리고 방출면(25) 약간 위로 흐른 다음, 플랜지(36)를 통해 링(35)내로 흐른다. 링(35)에서, 자력선은 베이스(32)에서 축방향으로 다시 흐른다. 여기에서, 제2자기 회로를 완성하도록 링(35)에 내향으로 축방향으로 흐른다. 전자석(29), (30)의 권선의 방향과, 전원(37, 38)에 의해 전자석에 인가된 전류의 극성은 동일 방향으로 흐른다. 링(34)내의 자력선 레벨은 포화 이하로 유지되고, 링(34)은 그러한 이유로 링(35)보다 두껍다.The magnetic force lines formed by the electromagnet 30 flow through the second magnetic circuit. Magnetic lines of force in the second magnetic circuit flow axially into the target element 23 through the ring 34. The magnetic lines of force flow into the target element 23 and slightly above the discharge surface 25 and then through the flange 36 into the ring 35. In the ring 35, the lines of magnetic force flow back in the axial direction at the base 32. Here, it flows inwardly in the ring 35 to complete the second magnetic circuit. The direction of the windings of the electromagnets 29 and 30 and the polarity of the current applied to the electromagnets by the power sources 37 and 38 flow in the same direction. The magnetic field level in the ring 34 remains below saturation, and the ring 34 is thicker than the ring 35 for that reason.

만일 타깃 소자(22, 23)가 자성을 띠고 있으며, 충분한 전류가 전원(37, 38)에 의해 전자석(29, 30)에 공급되어 자기 타깃을 포화시키며, 따라서 플라즈마를 방출면 바로 위에 한정하기 위해 타깃(22, 23)상에 주변자장이 존재하게 된다.If the target elements 22, 23 are magnetic, sufficient current is supplied to the electromagnets 29, 30 by the power sources 37, 38 to saturate the magnetic target, thus confining the plasma just above the emitting surface. Peripheral magnetic fields are present on the targets 22 and 23.

타깃(22, 23)은 상호 관련하여 위치하며, 기판의 면 양단에 균일하게 재료를 코딩시키도록 기판(14)과 이간되어 있다. 면(24, 25)으로부터 상대적 스퍼터링 속도는 전원(18)으로 하여금 타깃 소자(22, 23)에 전력(Pa 및 Pb)을 각각 제공하게 만드는 전력 세트점(Pas 및 Pbs)을 조정함으로써, 스퍼터링 기구(11)의 수명동안 조정된다. Pas 및 Pbs의 값은 타깃 소자(22, 23)의 방출면(24, 25)이 부식할 때 서로 다른 기판(14)상에 균일 침착을 유지시킨다.The targets 22, 23 are located in relation to each other and are spaced apart from the substrate 14 so as to uniformly code the material across both sides of the substrate. The relative sputtering rate from the planes 24 and 25 causes the sputtering mechanism by adjusting the power set points Pas and Pbs, which causes the power supply 18 to provide power Pa and Pb to the target elements 22 and 23, respectively. Is adjusted for the life of (11). The values of Pas and Pbs maintain uniform deposition on different substrates 14 when the emitting surfaces 24, 25 of the target elements 22, 23 are corroded.

폴편 조립체(28)뿐만 아니라 타깃 소자(22, 23)는 제2도 내지 제4도와 관련하여 상세하게 설명될 바법으로 냉각된다. 타깃 소자(22, 23)를 냉각시키는 동일 구조체가 전원(18)으로부터의 DC동작 전압을 타깃 소자(22, 23)에 공급한다. 폴편 조립체(28)에 냉각 액체를 공급하는 구성은 폴편 조립체를 지지하는데 사용된다.The target pieces 22, 23 as well as the pole piece assembly 28 are cooled in the manner described in detail with reference to FIGS. 2 to 4. The same structure that cools the target elements 22 and 23 supplies the DC operating voltage from the power supply 18 to the target elements 22 and 23. The configuration for supplying cooling liquid to the pole piece assembly 28 is used to support the pole piece assembly.

제2도 내지 제4도는 캐소드 조립체(15)를 좀더 상세히 나타낸 것이다. 제2도와 제3도를 비교하면, 제2도의 단면도는 제3도의 점선 2-2을 따라 취한 것이며, 상기 단면도는 캐소드 조립체(15)의 가장 중요한 특징을 명확히 도시한 것이다.2-4 show the cathode assembly 15 in more detail. Comparing FIGS. 2 and 3, the cross sectional view of FIG. 2 is taken along the dashed line 2-2 of FIG. 3, which clearly shows the most important features of the cathode assembly 15.

평면, 환상형 방출면(24)을 포함하는 디스크형 타깃 소자(22)는 테이퍼된 내부 반경(41)을 포함하는데, 이는 축(27)으로부터 외측을 향해 벌어진 형태를 하며, 이는 방출면(24)과 반대이며 방출면에 평행인 평면형면(42)을 향하여 타깃(22)의 길이 방향으로 연장된다. 타깃(22)의 외주부는 면(24), (42)에 평행으로 배치된 방사 연장 림(44)뿐만 아니라 면(42)을 가로지르는 축방향 연장 세그먼트(43)를 포함한다. 면(2)과 림(44)간의 축방향으로 연장되는 것은 경사면(45)이다. 축방향으로 연장된 벽 세그먼트(43)상에는 각각 타깃소자(22)를 홀딩하는데 쓰이는 비자화핀을 수용하는 두개의 직경 방향으로 대향 배치된 구멍(46)이 존재하며 평행 파이프형을 하며, 구멍(46)내의 핀온 베릴륨-구리 합금으로 이루어져 있다.Disc-shaped target element 22 comprising a planar, annular emitting surface 24 comprises a tapered inner radius 41, which is shaped outwardly away from axis 27, which is an emitting surface 24. And extend in the longitudinal direction of the target 22 toward a planar face 42 parallel to the discharge face. The outer periphery of the target 22 includes axially extending segments 43 across the face 42 as well as radially extending rims 44 arranged parallel to the faces 24, 42. Extending in the axial direction between the face 2 and the rim 44 is an inclined surface 45. On the axially extending wall segment 43, there are two radially opposed holes 46 arranged in parallel with each other for receiving the non-magnetizing pins used to hold the target element 22, and having a parallel pipe shape. It consists of a pin-on beryllium-copper alloy.

타깃 소자(23)는 베이스(47)와 원통형 측벽(48)과 조합으로 요면의 방사면(25)을 갖는 링으로서 형성된다. 베이스(47)와 측벽(48)은 각각 축(27)에 직각으로, 평행하게 존재한다. 요면의 방사면(25)은 면의 길이를 통해 베이스(47) 및 벽(48)에 45°기울어진 원추의 절두체인 벽으로서 형성된다. 제2기저부(26)는 축(27)으로부터 멀리 떨어진 면(25)의 상측 단부와 측벽(48)사이에 위치한다. 측벽(48)내의 직경 방향으로 대향 배치된 구멍(49)은 타깃 소자(23)를 홀딩시키기 위해 비자화 베릴륨-구리 합금을 수용한다.The target element 23 is formed as a ring having the radial surface 25 of the concave surface in combination with the base 47 and the cylindrical side wall 48. Base 47 and side wall 48 are each parallel and at right angles to axis 27. The radial surface 25 of the concave surface is formed as a wall, which is a truncated cone of 45 ° inclined to the base 47 and the wall 48 through the length of the surface. The second base 26 is located between the upper end of the face 25 and the side wall 48 away from the axis 27. The diametrically opposed holes 49 in the side wall 48 receive a non-magnetic beryllium-copper alloy to hold the target element 23.

타깃 소자(22, 23)는 반경 R2를 갖는 평면 환상형 방출면(24)의 외경이 경사진 방출면(25)의 내경 R3보다 작도록 배치된다. 물론, 방출면(25)의 외경(R4)는 R3보다 크며, 면(24)의 내경 R1은 R2보다 작다.A target element (22, 23) are arranged such that the outer diameter of the planar annular emitting surface 24 having a radius R 2 to the inner diameter is smaller than R 3 of the inclined discharge surface 25. Of course, the outer diameter R 4 of the emitting surface 25 is larger than R 3 , and the inner diameter R 1 of the surface 24 is smaller than R 2 .

제2도에 도시된 바와같이, 폴편 조립체(28)는 각각 여러개의 개별적인 구조체를 포함하므로, 중심 폴편스터드(33), 폴편 링(34) 및 외부 폴편 링(35)은 나사(51)에 의해 베이스(32)상에 장착되어 고정된다. 코일(29, 30)을 베이스(32)상에 장착되며, 동일한 접촉 조립체(52)에 의해 전원(37, 38)으로부터 고일에 전류가 공급된다.As shown in FIG. 2, the pole piece assembly 28 each includes several individual structures, so that the center pole piece stud 33, the pole piece ring 34 and the outer pole piece ring 35 are separated by screws 51. As shown in FIG. It is mounted on the base 32 and fixed. Coils 29 and 30 are mounted on base 32 and current is supplied from power sources 37 and 38 by the same contact assembly 52.

제2도에 도시된 바와같이, 조립체(52)중의 하나는 내측벽상에 비교적 얇은 금속 코팅(54)을 갖는 전기 절연 슬리브(53)를 포함하는데, 상기 내측벽내로 금속 평판 워셔(56)에 대항하여 기대는 금속 나사(56)가 삽입된다. 단자 러그(lug)(도시되지 않음)는 나사(55)의 헤드와 워셔(56)사이로 리드되도록 전원(37)의 단자에 접속되어 있다. 스퍼터링 장치의 잔여 부분으로부터 러그를 전기적으로 절연시키기 위해서, 유전체 워셔(57)는 슬리브(53)의 상측면과 워셔 사이에 개입된다.As shown in FIG. 2, one of the assemblies 52 includes an electrically insulating sleeve 53 having a relatively thin metal coating 54 on the inner wall, against the metal plate washer 56 into the inner wall. The leaning metal screw 56 is inserted. A terminal lug (not shown) is connected to the terminal of the power supply 37 so as to lead between the head of the screw 55 and the washer 56. In order to electrically insulate the lugs from the remainder of the sputtering device, a dielectric washer 57 is interposed between the upper side of the sleeve 53 and the washer.

원하는 자계형을 제공하기 위해, 중심 폴편 스터드(33)는 자성 금속(되도록이면 강자성 스테인레스 스틸) 폴편 삽입체(69)에 의해 덮혀진 상향, 내향으로 경사진 세그먼트를 갖는 원통형 모양을 가지고 있다. 스터드(33)와 삽입체(69)의 상측 부분(58)은 타깃(22)의 내측면(41)의 경사각과 동일한 각도로 축(27)에 대해 기울어져 있다. 따라서, 상측 부분(58)과 삽입체(69)사이에 일정한 간격이 존재하여, 플라즈마와 스퍼터된 금속이 소스의 아래에 침투되는 것을 방지하는데 도움을 준다. 캡(58)은 비자성 오스테나이트(austenitic)스테인레스 스틸 나사(59)에 의해 스터드(33)상의 원위치에 보유된다.To provide the desired magnetic field shape, the central pole piece stud 33 has a cylindrical shape with upward, inwardly inclined segments covered by a magnetic metal (preferably ferromagnetic stainless steel) pole piece insert 69. The upper portion 58 of the stud 33 and the insert 69 is inclined with respect to the axis 27 at an angle equal to the inclination angle of the inner surface 41 of the target 22. Thus, there is a constant gap between the upper portion 58 and the insert 69 to help prevent plasma and sputtered metal from penetrating underneath the source. The cap 58 is retained in situ on the stud 33 by a non-austenitic stainless steel screw 59.

링(34)은 축(27)에 평행한 벽을 갖는 상하측 세그먼트와 축(27)에 대해 외향으로 기울어진 내벽을 갖는 중심 세그먼트를 갖는다. 링(34)의 하측 부분에서는 비교적 큰 횡단 면적 때문에 자계 포화가 일어나지 않는다.The ring 34 has a top and bottom segment with walls parallel to the axis 27 and a center segment with an inner wall inclined outwardly with respect to the axis 27. In the lower portion of the ring 34, no magnetic field saturation occurs due to the relatively large transverse area.

링(35)은 전길이를 통해 일정한 두께인 벽을 갖는다. 링(35)의 상측 단부에는 비자성 오스테나이트 스테인레스 스틸 나사(63)에 의해 본 위치에 수용된 두개의 분리된 인접 금속 소자, 즉, 외부 폴편 삽입체(61)와 외부 비자성 폴편 차폐부(62)로 이루어진 외향 확장 플랜지(36)가 있다. 삽입체(61) 및 차폐부(62)의 내면은 타깃 소자(23)의 외벽(48)과 이간되며, 따라서, 타깃과 폴편 사이의 일정한 간격을 갖는 공기 갭이 설정된다.The ring 35 has a wall of constant thickness throughout its length. At the upper end of the ring 35 there are two separate adjacent metal elements housed in place by the nonmagnetic austenitic stainless steel screws 63, namely the outer pole piece insert 61 and the outer nonmagnetic pole piece shield 62 There is an outwardly extending flange 36. The inner surfaces of the insert 61 and the shield 62 are spaced apart from the outer wall 48 of the target element 23, so that an air gap having a constant gap between the target and the pole piece is set.

중간링(34)으로부터의 자력선을 타깃 소자(22, 23)에 결합시키기 위해, 중간 폴편 상입체(64)가 중간링의 상측 면상에 금속 비자성, 양호한 예로는 오스테나이트 스테인레스 스틸 나사(65)에 의해 장착된다. 폴편 삽입체(64)는 타깃 소자(22, 23)의 대향면(45, 47)과 폴편 사이에 일정한 공기 갭을 제공하도록 구성된다. 이와같은 목적을 위해, 폴편 삽입체(64)는 타깃면(44)의 평면 아래의 평면으로부터 폴편 삽입체의 상부로 연장된, 외향으로 테이퍼된 내측 원통형 벽(65)을 포함한다. 폴편(64)의 상부는 타깃 소자(23)의 하부면(47)에 평행하게 배치된 평면 환상부(66)에 의해 한정된다. 면(66)은 타깃 소자(23)의 방출면(25)과 평면(47)의 교차점의 바로 외부점으로부터 방사 방향으로 면(47)의 길이의 약 1/4점으로, 축으로부터 외측 방사 방향으로 연장된다. 폴편 삽입체(64)와 각각의 타깃 소자(22, 23)사이에 일정한 공기 갭이 제공된다.In order to couple the magnetic lines of force from the intermediate ring 34 to the target elements 22 and 23, the intermediate pole piece encasement 64 is a metal nonmagnetic, preferably austenite stainless steel screw 65 on the upper side of the intermediate ring. Is mounted by. The pole piece insert 64 is configured to provide a constant air gap between the pole pieces and the opposing surfaces 45, 47 of the target elements 22, 23. For this purpose, the pole piece insert 64 includes an outwardly tapered inner cylindrical wall 65 extending from the plane below the plane of the target surface 44 to the top of the pole piece insert. The upper portion of the pole piece 64 is defined by the planar annular portion 66 disposed in parallel to the lower surface 47 of the target element 23. The surface 66 is about one quarter of the length of the surface 47 in the radial direction from the point just outside of the intersection of the emitting surface 25 of the target element 23 and the plane 47, and from the axis to the outer radial direction. Extends. A constant air gap is provided between the pole piece insert 64 and the respective target elements 22, 23.

타깃 소자(22, 23)는 접지된 폴편 조립체(28)와 비교하여, 이와는 다른 고전압 부전위로 유지되는데, 타깃소자(22)는 -Ea의 전압으로, 타깃 소자(23)는 -Eb의 전압으로 유지된다. 타깃 소자(22, 23)와 인접한 폴편 소자 즉, 중심 스터드(33)상의 중심 폴편 삽입체(69), 중심 폴편 삽입체(64), 외부 폴편 삽입체(61) 및 차폐부(62)사이에 존재하는 공기 갭 때문에 전기적 선이 공기 갭을 따라서 존재한다.The target elements 22, 23 are maintained at a different high voltage potential compared to the grounded pole piece assembly 28, where the target element 22 is at a voltage of -Ea, and the target element 23 is at a voltage of -Eb. maintain. Between the pole piece element adjacent to the target element 22, 23, that is, the center pole piece insert 69 on the center stud 33, the center pole piece insert 64, the outer pole piece insert 61, and the shield 62. Because of the air gap present, electrical lines are present along the air gap.

타깃(22)은 축(27)에 동심인 축을 갖는 금속의 비자화(바람직하게는 구리) 링(72)에 기계적, 전기적으로 접속되어 축방향으로 연장된 금속의 비자화(바람직하게는 구리) 튜브(71)에 의해 -Ea의 전압이 공급된다. 또한, 링(72)은 타깃의 수평, 수직으로 연장된 면(42, 43)을 교차하는 점에 인접한 타깃(22)의 하측을 지지한다. 링(72)내에는 작은 삭제 부분이 제공되어 타깃(22)을 유지시키기 위해 삭제 부분(46)을 정합시키는 동일한 비자화 핀을 수용한다. 링(72)과 면(42)은 타깃(22)의 외주 연부 사이의 면(42)의 반경의 1/4 거리를 통해 중심을 향해 상호에 대해 이웃한다.The target 22 is a non-magnetic (preferably copper) of the metal extending in the axial direction by being mechanically and electrically connected to a non-magnetic (preferably copper) ring 72 of a metal having an axis concentric with the shaft 27. The voltage of -Ea is supplied by the tube 71. In addition, the ring 72 supports the lower side of the target 22 adjacent to the point crossing the horizontal and vertically extending surfaces 42 and 43 of the target. A small erase portion is provided within the ring 72 to receive the same non-magnetizing pin that aligns the erase portion 46 to hold the target 22. The ring 72 and the face 42 are adjacent to each other toward the center through a quarter distance of the radius of the face 42 between the outer peripheral edges of the target 22.

튜브(71)는 베이스(32)를 통과하지만 축방향으로 연장된 유전체 슬리브(73)에 의해 베이스와 전기적으로 절연된다. 링(72) 근방의 튜브(71)의 단부는 슬리브형 유전체 스페이서(74)에 의해 지지되고, 다음, 차례로 금속의 비자화, 바람직하게는 스테인레스 스틸, 중심스터드(33)와 링(34)사이에 축방향으로 연장되며 그들에 접속된 벌크 헤드(75)에 의해 지지된다. 클램프(도시되지 않음)는 구리 튜브(71)에 걸쳐 고정되며, 리드에 접속되며, 차례로 DC전원(18)의 전압 단자 Ea에 접속된다.The tube 71 is electrically insulated from the base by a dielectric sleeve 73 that passes through the base 32 but extends in the axial direction. The end of the tube 71 near the ring 72 is supported by a sleeved dielectric spacer 74, which in turn is non-metalized, preferably between stainless steel, between the center stud 33 and the ring 34. Is supported by a bulk head 75 extending in the axial direction and connected thereto. A clamp (not shown) is fixed over the copper tube 71 and connected to the lead, which in turn is connected to the voltage terminal Ea of the DC power source 18.

축(27)의 반대측상의 타깃(22)의 부분은 비자화, 금속 나사(76)가 박혀지는 축방향 나사 구멍을 갖는 유전체 스터드(275)에 의해 지지된다. 나사(76)는 스터드(275)를 고정시키기 위해 벌크 헤드(75)내의 유사한 나사 구멍내로 연장된다. 스터드(275)에는 방사 방향으로 연장되며, 축방향으로 이간된 슬롯(77)이 제공되는데, 이는, 스터드와 인접한 금속 부분간에 전기적 브레이크 다운을 방지한다. 슬롯(77)은 타깃 소자(22, 23)로부터 금속 입자로의 높은 유출 임피던스를 가지므로 슬롯내의 금속의 이동을 방지하게 되며, 따라서, 스터드의 전기 절연 특성을 유지하게 된다. 스터드(275)는 링(72)의 하측면용 축방향으로 연장된 견부(79)를 수용하는 방사 방향으로 연장된 슬롯(78)을 포함한다. 상술된 바와같이, 타깃 소자(22)는 -Ea의 전위로 유지되며, 동일 구조에 의한 타깃 소자(23) 및 접지와 전기적으로 절연된다.The portion of the target 22 on the opposite side of the shaft 27 is supported by a dielectric stud 275 having a non-magnetized, axial threaded hole into which the metal screw 76 is embedded. Screw 76 extends into a similar threaded hole in bulk head 75 to secure stud 275. The stud 275 is provided with radially extending, axially spaced slots 77, which prevents electrical breakdown between the stud and adjacent metal parts. The slot 77 has a high outflow impedance from the target elements 22 and 23 to the metal particles, thereby preventing the movement of the metal in the slot, thus maintaining the electrical insulating properties of the stud. The stud 275 includes a radially extending slot 78 that receives an axially extending shoulder 79 for the underside of the ring 72. As described above, the target element 22 is maintained at a potential of -Ea and is electrically insulated from the target element 23 and ground by the same structure.

또한. 타깃 소자(22)용 지지구조체는 타깃이 냉각되도록 한다. 이와같은 목적을 위해, 링(72)에 축방향으로 연장된 한쌍의 환상형 슬롯(81, 82)이 제공되어 튜브(71)의 내측과 액체 전송이 가능하게 된다. 튜브(71)의 내측에 공급된 냉각 액체, 바람직하게는 물은 링(72)의 전외주부를 냉각시키기 위해 슬롯(81, 82)내로 흐른다. 슬롯(81, 82)은 링(72) 전체 크기에 걸쳐 연장된다. 슬롯(81, 82)내의 물은 슬롯으로 부터 구리 튜브(83)(제3도) 및 인접 튜브(71)를 통해 흐른다. 구리 링(72)의 하측면상에 장착도니 환상형 가스켓(84)은 슬롯(81, 82)을 덮는데, 상기 슬롯이 튜브(70, 71)에 접속되어 슬롯과 장치의 잔여 부분 사이의 액체의 타이트한 봉압을 제공하는 곳은 제외된다. 튜브(70)는 튜브(71)와 동일한 방법으로 베이스(32)를 통해 연장되며, 슬리브(73)와 동일한 슬리브에의해 베이스와 전기적으로 절연된다.Also. The support structure for the target element 22 allows the target to cool. For this purpose, the ring 72 is provided with a pair of axially extending annular slots 81, 82 to allow liquid transfer with the inside of the tube 71. Cooling liquid, preferably water, supplied inside the tube 71 flows into the slots 81, 82 to cool the front and outer periphery of the ring 72. Slots 81 and 82 extend over ring 72 overall size. Water in the slots 81 and 82 flows from the slot through the copper tube 83 (FIG. 3) and the adjacent tube 71. Mounting on the lower side of the copper ring 72, an annular gasket 84 covers the slots 81, 82, which are connected to the tubes 70, 71 so that the liquid between the slot and the remainder of the device can be Except where tight tight pressure is provided. Tube 70 extends through base 32 in the same manner as tube 71 and is electrically insulated from the base by the same sleeve as sleeve 73.

전원 전압 -Eb에 전기적으로 접속된 타깃 소자(23)는 타깃 소자(22)에 대해 설명된 동일한 방법으로 기계적으로 지지되고 냉각된다. 특히, 타깃 소자(23)는 축방향으로 연장된 구리 튜브(85, 86)에 전기적으로 접속되는데, 이는 베이스(32)를 통해 연장되며, 슬리브(73)와 동일한 유전체 슬리브(85)에 의해 베이스와 전기적으로 절연된다. 구리 튜브(85)로부터의 전류는 링(88)내로 흐르는데, 이는 타깃의 원통형 벽(48)과 평면형 면(47)과 교차되어 유지된다. 링(88)은 타깃 소자(23)를 본위치에 보유하기 위해 삭제 부분(49)과 정합되는 동일한 비자화 핀을 수용하기 위한 적은 삭제 부분 세그먼트를 포함한다. 링(88)은 축방향으로 연장된 유전체 슬리브(91) 및 스터드(92)에 의해 장치의 남은 부분과 기계적으로 지지되고 전기적으로 절연된다.The target element 23 electrically connected to the power supply voltage -Eb is mechanically supported and cooled in the same manner as described for the target element 22. In particular, the target element 23 is electrically connected to the axially extending copper tubes 85, 86, which extend through the base 32 and are made by the same dielectric sleeve 85 as the sleeve 73. And electrically insulated. Current from the copper tube 85 flows into the ring 88, which remains intersected with the cylindrical wall 48 and the planar face 47 of the target. The ring 88 includes a small portion of the erase portion for receiving the same non-magnetizing pin that mates with the portion of the erase portion 49 to hold the target element 23 in place. The ring 88 is mechanically supported and electrically insulated from the rest of the device by the axially extending dielectric sleeve 91 and studs 92.

슬리브(91)는 구리 튜브(85)가 연장되는 중심공을 갖는다. 슬리브(91)는 금속의 비자화, 바람직하게는 스테인레스 스틸, 링(34)과 링(35)사이에 방사 방향으로 연장되며 그들에 기계적으로 접속된 벌크 헤드(93)에 대항하여 하향으로 인접한 견부를 갖는다.The sleeve 91 has a center hole through which the copper tube 85 extends. The sleeve 91 is non-magnetic, preferably stainless steel, shoulders extending radially between the rings 34 and 35 and adjoining downwardly against a bulk head 93 mechanically connected thereto. Has

벌크 헤드(93)의 내부벽을 따라 환상형 채널(94)이 존재하는데, 상기 채널을 통해, 냉각 액체가 상술된 바와같이 순환된다. 링 지지 스터드(92)는 구리링(88)의 내향으로 연장된 플랜지(96)를 수용하여 이동하는 방사형 슬롯(95)를 포함한다. 또한, 스터드(92)는 스터드(275)상의 슬롯(77)과 동일한 기능을 수행하는 방사 방향으로 연장된 슬롯(97)를 포함한다.There is an annular channel 94 along the inner wall of the bulk head 93 through which the cooling liquid is circulated as described above. The ring support stud 92 includes a radial slot 95 that moves in and receives the flange 96 extending inwardly of the copper ring 88. The stud 92 also includes a radially extending slot 97 that performs the same function as the slot 77 on the stud 275.

타깃 소자(23)를 냉각시키기 위해, 링(88)에는 환상형이며, 축방향으로 연장된 한쌍의 슬롯(98, 99)이 제공되어 튜브(85, 86)의 내부와 액체 이동된다. 슬롯(98, 99)은 링(72)내의 슬롯(81, 82)에 대해 상술된 바와같은 동일한 방법으로 링(88)의 전면적 주위로 연장된다. 액체 봉입은 환상형 가스켓(101)에 의해 슬롯(98, 99)에 제공되며, 이는 슬롯(98, 99)이 튜브(85, 86)의 내부에 접속된 영역을 제외하고는 링(88)의 저면을 따라 방사방향으로 연장되어 이웃한다.To cool the target element 23, the ring 88 is provided with a pair of annular, axially extending slots 98, 99 that are in liquid motion with the interior of the tubes 85, 86. Slots 98 and 99 extend around the entire surface of ring 88 in the same manner as described above for slots 81 and 82 in ring 72. Liquid encapsulation is provided to the slots 98, 99 by an annular gasket 101, which is provided in the ring 88 except for the region where the slots 98, 99 are connected inside the tubes 85, 86. It extends radially along the bottom and neighbors.

플라즈마와 스퍼터 금속이 고전압 타깃 소자(22, 23)와, 캐소드 조립체(15)의 주변 전기 접지 부품 사이의 갭에 침투하는 것을 방지하기 위하여, 금속의 비자화, 바람직하게는 알루미늄, 환상형 스페이서(103, 104)가 제공된다. 내부 스페이서(103)는 금속의 비자화 나사(304)에 의해 벌크 헤드(75)상에 장착되고 고정된다. 스페이서(103)는 중심 스터드(33)의 약간 외측 영역으로 부터 링(34)의 약간 내측 영역으로 방사 방향으로 연장된다. 스페이서(104)는 나사(105)에 의해 벌크헤드(93)상에 장착되어 고정된다. 스페이서(104)는 링(34)의 외측벽에 일렬로 된 위치로부터 링(35)의 내측벽의 바로 안의 위치로 방사 방향으로 연장된다. 스페이서(103, 104)와 인접 금속 부분간에 일정한 갭이 존재하여 고전압 방전을 최소화하며, 따라서 유니트의 수명이 연장된다.In order to prevent the plasma and sputter metal from penetrating the gap between the high voltage target elements 22, 23 and the peripheral electrical ground component of the cathode assembly 15, the non-magnetic, preferably aluminum, annular spacers ( 103, 104 are provided. The inner spacer 103 is mounted and fixed on the bulk head 75 by metal non-magnetic screws 304. The spacer 103 extends radially from the slightly outer region of the center stud 33 to the slightly inner region of the ring 34. Spacer 104 is mounted and fixed on bulkhead 93 by screws 105. The spacer 104 extends radially from a position in line with the outer wall of the ring 34 to a position just inside the inner wall of the ring 35. There is a constant gap between the spacers 103 and 104 and adjacent metal parts to minimize high voltage discharge, thus extending the life of the unit.

효율을 최대로 하기 위해, 폴편 조립체(28)와, 타깃 소자(22, 23)를 포함하는 타깃 조립체는 냉각된다. 폴편 조립체(28)를 냉각시키기 위해, 중심 스터드(33)는 축방향으로, 방사 방향으로 연장된 공(107, 108, 109)을 포함한다. 방사 방향으로 연장된 공(109)은 중심 스터드(33)의 상측과, 인접한 타깃 소자(22) 근방에 위치한다. 공(107, 108)은 베이스(32)를 통해 연장된 튜브(111, 112)에 의해 물 공급원에 접속된다. 링(34)을 냉각시키기 위해, 베이스(32)를 통해 물 공급원으로 연장된 튜브(115, 116)에 각각 접속된 축방향으로 연장된 공(113, 114)을 포함한다. 벌크 헤드(93)에 인접한 공(113)의 단부에는 외측으로 연장된 통로(117)가 존재하는데, 이를 통해 냉각 액체가 공(113)과 환상형 액체 통로(94)사이를 흐른다. 따라서, 냉각 액체는 링을 냉각시키기 위해 링(34)의 외주부를 중심으로 외부를 흐른다. 외부링(35)은 넓은 영역에 걸쳐 노출되어 있으며, 캐소드 조립체(15)의 중심으로부터의 이간때문에 냉각시킬 필요가 있다.In order to maximize efficiency, the target assembly including the pole piece assembly 28 and the target elements 22 and 23 is cooled. To cool the pole piece assembly 28, the central stud 33 includes balls 107, 108, 109 extending axially and radially. A radially extending ball 109 is located above the center stud 33 and near the adjacent target element 22. The balls 107, 108 are connected to the water source by tubes 111, 112 extending through the base 32. To cool the ring 34, it includes axially extending balls 113, 114 connected to the tubes 115, 116 extending through the base 32 to the water source, respectively. At the end of the ball 113 adjacent the bulk head 93 is an outwardly extending passage 117 through which cooling liquid flows between the ball 113 and the annular liquid passage 94. Thus, the cooling liquid flows out around the outer circumference of the ring 34 to cool the ring. The outer ring 35 is exposed over a large area and needs to be cooled because of the separation from the center of the cathode assembly 15.

동작시, 타깃 소자(22, 23)는 재료가 그들로부터 스퍼터링될 때 소비된 방전 전력으로부터 가열됨에 따라 확장된다. 타깃 소자(22, 23)의 확장은 타깃과 지지링(72, 88)사이를 더욱 가까이 접촉시키게 된다. 그러므로, 타이트한 봉입이 타깃 소자(22, 23)와 링(72, 88)간에 이루어져, 타깃과 링 사이에 양호한 열 전송을 제공하며, 이에 의해 타깃으로부터 링으로의 열을 전송하는데 냉각효율이 증가하게 된다.In operation, the target elements 22, 23 expand as they are heated from the discharge power consumed when the material is sputtered from them. Expansion of the target elements 22, 23 brings the closer contact between the target and the support rings 72, 88. Therefore, a tight encapsulation is made between the target elements 22 and 23 and the rings 72 and 88 to provide good heat transfer between the target and the ring, thereby increasing the cooling efficiency in transferring heat from the target to the ring. do.

진공 농도는 플라즈마 방전이 벌크 헤드(75, 93)를 갖는 기판(14)과 캐소드 조립체(15)간에 한정되는 영역뿐만 아니라 타깃 소자(22, 23)상의 공간에서 유지된다. 벌크 헤드를 통해 맞춰지는 모든 소자는 O형 링(121)에 의해 벌크 헤드내의 벽에 봉입된다. 예로 절연 슬리브(74, 91)는 각각 O형 링(121)에 의해 벌크 헤드(75, 93)로 봉입된다.The vacuum concentration is maintained in the space on the target elements 22, 23 as well as the region where the plasma discharge is defined between the substrate 14 with the bulk heads 75, 93 and the cathode assembly 15. All elements fitted through the bulk head are enclosed in a wall in the bulk head by an O-shaped ring 121. For example, insulating sleeves 74 and 91 are encapsulated into bulk heads 75 and 93 by O-shaped rings 121, respectively.

캐소드 조립체(15)는 링(35)의 외측벽상에 견고히 장착된 축방향으로 배치되고, 방사방향으로 연장된 장착플랜지(211)에 의해 진공실(16)에 고정된다. 적당한 봉입을 제공하기 위해, 플랜지(211)는 O형 링(213)을 이동시키기 위한 슬롯을 포함한다. Rf 차폐부(214)는 플랜지(211)내의 다른 슬롯내에 위치한다.The cathode assembly 15 is disposed axially rigidly mounted on the outer wall of the ring 35 and is fixed to the vacuum chamber 16 by a radially extending mounting flange 211. To provide proper sealing, the flange 211 includes a slot for moving the O-ring 213. Rf shield 214 is located in another slot in flange 211.

제1도의 제어기(39)의 개략선도가 도시되어 있는 제5도를 참조해 보기로 한다. 제어기(39)는 전원(18)으로부터 유도되고, 각각 타깃 소자(23)에 인가된 전압에 대한 측정치와, 타깃 소자(23)와 관련된 방전시의 전류를 나타내는 아날로그 신호(Ebm 및 Ibm)에 응답한다. 신호(Ebm 및 Ibm)는 아날로그 배율기(301)및 아날로그 분할기(303)에 인가된다. 타깃 소자(22)용 방전 전력은 배율기(301)에서 신호(Ebm 및 Ibm)를 배율시킴으로써 결정된다. 외부 타깃 소자(23)에 의해 소모되는 전체 순간 전력을 나타내는 아날로그 신호인 배율기(301)의 출력 Pb는 아날로그-디지탈 변환기(305)에 의해 디지탈 신호로 변환된다.Reference is made to FIG. 5, which shows a schematic diagram of the controller 39 of FIG. The controller 39 is derived from the power source 18 and responds to analog signals Ebm and Ibm, respectively, which represent measurements of the voltage applied to the target element 23 and the current at discharge associated with the target element 23. do. Signals Ebm and Ibm are applied to analog multiplier 301 and analog divider 303. The discharge power for the target element 22 is determined by multiplying the signals Ebm and Ibm in the multiplier 301. The output Pb of the multiplier 301, which is an analog signal representing the total instantaneous power consumed by the external target element 23, is converted by the analog-digital converter 305 into a digital signal.

변환기의 출력 신호를 나타내는 전력은 타깃 소자(22, 23)가 동작되는 시간 주기에 걸쳐 합해진다. 이와같은 목적을 위해, 어큐뮬레이터(306)는 변환기(305)의 순서 출력에 응답하며, 재료가 타깃 소자(22, 23)로부터 스퍼터링될 때 발생하는 단락 상태인 시작/정지 스위치(307)에 응답하여 작동할 수 있게 된다. 새로운 타깃 소자가 스퍼터링 기구(11)내로 삽입될 때, 어큐뮬레이터(306)는 0으로 리세트된다. 그러므로, 어큐뮬레이터(306)는 타깃 소자(22)에 의해 소비된 에너지를 나타내는 출력을 유도한다. 타깃 소자(22)의 소비량은 어큐뮬레이터(306)내의 인수를 타깃의 부식도로 배율시킴으로써 상호 관련된다.The power representing the output signal of the converter is summed over the time period during which the target elements 22, 23 are operated. For this purpose, the accumulator 306 is responsive to the sequential output of the transducer 305 and in response to the start / stop switch 307 which is a short-circuit that occurs when material is sputtered from the target elements 22 and 23. It will work. When a new target element is inserted into the sputtering mechanism 11, the accumulator 306 is reset to zero. Therefore, the accumulator 306 induces an output representative of the energy consumed by the target element 22. The consumption of the target element 22 is correlated by multiplying the factor in the accumulator 306 by the corrosiveness of the target.

어큐뮬레이터(306)의 부식도를 나타내는 디지탈 출력 신호는 ROM(308, 309)에 병렬로 인가된다. ROM(308, 309)은 타깃 부식의 함수로서 타깃 소자(22, 23)에서의 예정된 소망의 전력 소모 비율에 따라서 프로그램 작성된다. DC 전원(18)이 타깃 소자(22, 23)에 일정한 전력 레벨을 공급하기 때문에, ROM(308, 309)은 타깃 소자(22, 23)에 인가될 전력에 대한 세트 포인트값(Pas 및 Pbs)을 나타내는 디지탈 신호를 가각 저장한다. Pas, Pbs를 나타내는 ROM(308, 309)으로부터 연속적으로 판독되는 디지탈 신호는 디지탈-아날로그 변환기(311, 312)에 각각 공급되어, Pas, Pbs를 나타내는 아날로그 신호를 유도해 낸다. 디지탈-아날로그 변환기(311, 312)에 의해 유도된 Pas, Pbs를 나타내는 아날로그 신호는 DC 전원(18)에 공급된다.The digital output signal indicative of the degree of corrosion of the accumulator 306 is applied in parallel to the ROMs 308, 309. The ROMs 308 and 309 are programmed according to the desired desired power consumption rate in the target elements 22 and 23 as a function of the target corrosion. Since the DC power supply 18 supplies a constant power level to the target elements 22, 23, the ROMs 308, 309 set point values (Pas and Pbs) for the power to be applied to the target elements 22, 23. Each digital signal is stored. The digital signals continuously read from the ROMs 308 and 309 indicating Pas and Pbs are supplied to the digital-to-analog converters 311 and 312, respectively, to derive the analog signals indicating Pas and Pbs. An analog signal representing Pas, Pbs induced by the digital-to-analog converters 311 and 312 is supplied to the DC power supply 18.

타깃 소자(22, 23)와 관련된 방전 임피던스 타깃소자(22)에 관련된 방전 임피던스가 타깃 소자(23)의 측정임피던스에 응답하여 일정하게 유지되도록 하기 위하여 타깃 소자가 부식됨에 따라 제어된다. 타깃 소자(23)와 관련된 방전 임피던스는 존재할 필요가 없으며, 제어되지 않는다. 타깃 소자(23)와 관련된 방전 임피던스는 타깃 소자(23)와 관련된 방전 임피던스를 측정하여, 측정된 임피던스와 세트 포인트값을 비교함으로써 제어된다. 결과로 나타나는 오차 신호가 유출되어 코일 전원(38)의 전류를 제어하며, 따라서 타깃 소자(23)과 관련된 방전 임피던스를 제어한다. 코일(29)용 전원(37)에 인가된 전류는 전류값이 전원(38)에 의해 코일(30)에 결합된 전류에 대해 고정된 비율의 값을 갖도록 변한다.Discharge Impedance Associated with Target Elements 22 and 23 The discharge impedance associated with the target element 22 is controlled as the target element is corroded in order to remain constant in response to the measurement impedance of the target element 23. The discharge impedance associated with the target element 23 need not be present and is not controlled. The discharge impedance associated with the target element 23 is controlled by measuring the discharge impedance associated with the target element 23 and comparing the measured impedance with the set point value. The resulting error signal flows out to control the current in the coil power source 38, thus controlling the discharge impedance associated with the target element 23. The current applied to the power supply 37 for the coil 29 changes so that the current value has a fixed ratio of values relative to the current coupled to the coil 30 by the power supply 38.

이와같은 목적을 위해, 타깃 소자(23)의 전압을 나타내는 신호(Eam) 및 타깃 소자(23)와 관련된 방전전류를 나타내는 신호(Iam)는 디지탈 분할기(303)에 비선형적으로 결합된다. 분할기(303)는 타깃 소자(23)와 관련된 측정된 방전 임피던스인 아날로그 출력 신호(

Figure kpo00001
)를 유도해낸다. 타깃 소자(23)와 관련된 방전 임피던스의 측정치는 전자석 코일 전류 제어기(313)내의 세트 포인트값(Zbs)과 비교된다. 제어기(313)는 Zb와 Zbs사의 오차 신호에 응답하여, 코일 (30)용 정전류 전원(38)에 인가된 신호(If2S)를 유도해낸다. 전원(37, 38)에 의해 코일(29, 30)로 공급된 전류에 대한 세트 포인트값 사이의 비는 일정한다.For this purpose, the signal Eam representing the voltage of the target element 23 and the signal Iam representing the discharge current associated with the target element 23 are nonlinearly coupled to the digital divider 303. The divider 303 is an analog output signal (a measured discharge impedance associated with the target element 23).
Figure kpo00001
Elicit). The measurement of the discharge impedance associated with the target element 23 is compared with the set point value Zbs in the electromagnet coil current controller 313. The controller 313 derives the signal If2 S applied to the constant current power supply 38 for the coil 30 in response to the error signal of Zb and Zbs. The ratio between the set point values for the currents supplied to the coils 29, 30 by the power sources 37, 38 is constant.

제어기 (313)에 포함된 회로에 대한 상세한 블럭선도가 도시되어 있는 제6도를 참조해 보자. 코일 전류 제어기(313)는 타깃 소자(23)과 관련된 측정된 방전 임피던스에 응답하여, 조정된 값과 세트 포인트값 Zbs사이의 편차를 나타내는 오차 신호를 유도해 낸다. 세트 포인트값 Zbs는 Zb에 대한 허용 가능한 값의 윈도우(window)를 규정하는 값의 범위이다. 각각 허용 범위 이상과 그 이하인 Zb의 측정치에 응답하여, 카운터는 증가 및 감소된다. 처음에, 카운터는 사용되지 않은 타깃 소자(23)로 공급된 전류의 값으로 로딩되어, 그러한 타깃 소자의 방전에 대해 원하는 임피던스를 달성한다. 이를 위해, 제5도의 Zb를 나타내는 분할기(303)의 아날로그 출력 신호는 진폭 변별기(314, 315)에 병렬로 인가된다. 변별기(314, 315)는 허용 가능한 범위의 값 이상 및 이하인 입력 신호에 응답하도록 세트되며, 이 값으로부터 각각 2진수 1별기(314, 315)에 의해 유도된 2진수 1레벨은 플립플롭(316)에 인가되는데, 상기 플립플롭(316)은 교차 결합된 NAND게이트(317, 318)을 포함하며, 이들 각각은 변별기(314, 315)의 출력에 응답하는 입력을 구비한다.See FIG. 6, which shows a detailed block diagram of the circuitry included in the controller 313. FIG. The coil current controller 313 derives an error signal indicative of the deviation between the adjusted value and the set point value Zbs in response to the measured discharge impedance associated with the target element 23. The set point value Zbs is a range of values that defines a window of allowable values for Zb. In response to the measurement of Zb, which is above and below the allowable range, respectively, the counter is incremented and decremented. Initially, the counter is loaded with the value of the current supplied to the unused target element 23, to achieve the desired impedance for the discharge of that target element. To this end, the analog output signal of the divider 303 representing Zb in FIG. 5 is applied in parallel to the amplitude discriminators 314 and 315. The discriminators 314 and 315 are set to respond to input signals that are above and below an acceptable range of values, from which the binary one level derived by the binary ones 314 and 315, respectively, is a flip-flop 316. Flip-flop 316 includes cross-coupled NAND gates 317 and 318, each of which has an input responsive to the output of discriminator 314 and 315.

NAND게이트(318)는 카운터(319)의 업/다운 입력 제어단자(333)에 결합된 출력을 갖는다. 카운터(319)는 단안정 회로(321)의 출력 신호에 응답하는 클럭 입력 단자(334)를 포함한다. 단안정 회로(321)는 변별기(314, 315)중의 임의의 하나의 출력에서 유도되는 2진수 1값에 응답하여 작동할 수 있는 상태로 되며, 이러한 목적으로, 변별기(314, 315)의 출력 단자는 단안정 회로(321)의 입력에 결합된 출력을 갖는 OR 게이트(322)에 결합된다.NAND gate 318 has an output coupled to up / down input control terminal 333 of counter 319. The counter 319 includes a clock input terminal 334 responsive to the output signal of the monostable circuit 321. The monostable circuit 321 is operable in response to the binary one value derived at any one of the outputs of the discriminator 314, 315, for which purpose the discriminator 314, 315 may be operated. The output terminal is coupled to an OR gate 322 having an output coupled to the input of the monostable circuit 321.

카운터(319)는 부식되지 않은 타깃 소자(23)와 관련된 방전 임피던스값 Zbs를 얻기 위해, 멀티 비트 병렬 디지탈 소스(327)에 의해 전류에 대한 세트 포인트값과 대응하는 2진값으로 초기에 세트되는 다단(multiple)을 포함한다. 카운터(319)는 멀티 비트의 병렬 출력을 포함하는데, 상기 출력에는 전원(38)에 의해 전자석(30)으로 결합된 전류에 대한 제어값을 나타내는 신호가 유도된다. 변별기(314, 315)에 의해 설정된 윈도우의 외측에 존재하는 타깃 소자(23)와 관련된 방전에 대한 측정 임피던스값 Zb에 응답하여, 카운터(319)에 의해 유도된 출력 신호는 증가되거나 감소된다. NAND 게이트(318)의 출력에 대한 2진수 레벨은 카운터(319)가 증가될 것인가, 감소될 것인가를 결정한다. 카운터(319)의 클럭 발생은 단안정 회로(321)의 출력에 의해 이루어진다.The counter 319 is initially set by the multi-bit parallel digital source 327 with a binary value corresponding to the set point value for the current to obtain the discharge impedance value Zbs associated with the non-corrosive target element 23. contains (multiple) The counter 319 includes a multi-bit parallel output, which outputs a signal representing a control value for the current coupled to the electromagnet 30 by the power source 38. In response to the measured impedance value Zb for the discharge associated with the target element 23 present outside the window set by the discriminators 314 and 315, the output signal induced by the counter 319 is increased or decreased. The binary level for the output of the NAND gate 318 determines whether the counter 319 is incremented or decremented. The clock generation of the counter 319 is made by the output of the monostable circuit 321.

OR 게이트(322)의 출력에 의해 2진수 1로 공급될 때 단안정 회로(321)는 카운터(319)의 클럭 입력에 주기 펄스를 공급한다. 지연 회로(323)의 출력의 제어하에 펄스는 선택적으로 지연된다. 지연 회로(323)가 선택적으로 지연되는 종래의 기술에서 처럼, 출력 레벨은 OR 게이트(322)에서 단안정 회로(321)의 입력으로 인가된다. 지연 작동에 의하여, 카운터(319)에 의해 유도된 값은 단지 서서히 변할 수 있게 되며, 따라서, 코일(29, 30)에 인가된 전류내의 지터가 방지된다. 만일, 변별기(314, 315)중의 어느것도 2진수의 1출력을 유도 해내지 않는다면, 단안정 회로(321)에 의해 어떠한 펄스도 카운터(319)에 공급되지 않는다.When supplied in binary 1 by the output of the OR gate 322, the monostable circuit 321 supplies a periodic pulse to the clock input of the counter 319. Under the control of the output of the delay circuit 323, the pulses are selectively delayed. As in the prior art in which the delay circuit 323 is selectively delayed, the output level is applied to the input of the monostable circuit 321 at the OR gate 322. By the delayed operation, the value induced by the counter 319 can only be changed slowly, thus preventing jitter in the current applied to the coils 29 and 30. If neither of the discriminators 314, 315 derives one output of the binary number, no pulse is supplied to the counter 319 by the monostable circuit 321.

전원(38)의 출력 전류에 대한 세트 포인트값(If2S)을 나타내는 카운터(319)의 출력 신호는 멀티플랙서(324)를 통해 디지탈-아날로그 변환기(325)에 선택적으로 결합된다. 방전이 시작될 때 새로운 기판(14)이 원래의 위치에 위치하거나 새로운 타깃 조립체가 설치되기 때문에, 멀티플렉서(324)는 디지탈-아날로그 변환기(325)에 멀티 비트의 초기 프리세트값을 공급한다. 초기의 프리세트값은 정상 동작 기간 동안의 값보다 더 높은 값(If2S)을 설정하여, 타깃(22, 23)에는 전기 방전을 하는데 필요한 더 높은 자계를 제공한다. 초기치 If2S는 디지탈 신호원(326)으로부터 유도되어, 카운터(319)가 응답하는 입력 버스와는 분리된 멀티플렉서(324)의 입력 버스에 결합된다. 동시에, 멀티플렉서(324)는 카운터(319)의 출력 대신에 디지탈원(326)에 응답하도록 활성화되며, 카운터(319)는 디지탈 신호원(327)의 출력에 응답하여 원하는 초기 전류를 설정하는 전류값으로 프리세트된다.The output signal of the counter 319 representing the set point value If2 S for the output current of the power supply 38 is selectively coupled to the digital-to-analog converter 325 via the multiplexer 324. The multiplexer 324 supplies the digital-to-analog converter 325 with an initial preset value of the multi-bit because the new substrate 14 is in its original position or a new target assembly is installed when the discharge begins. The initial preset value sets a higher value If2 S than the value during the normal operation period, providing the targets 22 and 23 with a higher magnetic field required for electrical discharge. The initial value If2 S is derived from the digital signal source 326 and coupled to the input bus of the multiplexer 324 separate from the input bus to which the counter 319 responds. At the same time, the multiplexer 324 is activated to respond to the digital source 326 instead of the output of the counter 319 and the counter 319 is a current value that sets the desired initial current in response to the output of the digital signal source 327. Is preset.

디지탈-아날로그 변환기(325)는 멀티플렉서(324)에 의해 상기 변환기에 공급된 입력 신호에 응답하여, DC 연산 증폭기(328)에 의해 배율되고 반전된 아날로그 DC신호를 유출시킨다. 증폭기(328)의 출력은 코일(30)용 전원(38) 입력 신호(If2S)를 공급하는 버퍼 증폭기(329)에 결합된다. 증폭기(329)의 출력 신호는 1 이외의 일정한 이득 계수를 갖는 증폭기(331)에 결합된다. 증폭기(331)의 DC 출력 신호는 코일(29)용 전원(37)에 공급된다. 전원(38)에 의해 전자석 (30)에 공급된 전류는 전원(37)에 의해 전자석(29)과 결합된 전류에 대해 정해진 비율의 값을 갖는다. 그러므로, 전자석(29, 30)에 공급된 자계 전류의 비는 타깃 소자(22, 23)를 포함하는 타깃 조립체의 동작 수명 동안 일정하게 유지된다. 자계는 전자석(29, 30)을 활성화시킴으로써 형태가 정해지고, 전자석(29, 30)과 관련된 자계의 크기가 변할지라도 고정된 형태를 유지한다. 전원(37, 38)에 의해 전자석 (29, 30)에 결합된 전류는 설명된 궤환 루프에 의해 타깃 소자(22, 23)와 관련된 방전을 위해 고정된 효과적인 임피던스를 유지하도록 조정된다. 따라서 전원(18)의 전력 이용도가 증가된다.The digital-to-analog converter 325 leaks an analog DC signal that is multiplied and inverted by the DC operational amplifier 328 in response to the input signal supplied to the converter by the multiplexer 324. The output of the amplifier 328 is coupled to a buffer amplifier 329 which supplies a power supply 38 input signal If2 S for the coil 30. The output signal of the amplifier 329 is coupled to an amplifier 331 with a constant gain factor other than one. The DC output signal of the amplifier 331 is supplied to the power supply 37 for the coil 29. The current supplied to the electromagnet 30 by the power source 38 has a value of a predetermined ratio for the current coupled to the electromagnet 29 by the power source 37. Therefore, the ratio of the magnetic field currents supplied to the electromagnets 29 and 30 is kept constant for the operating life of the target assembly including the target elements 22 and 23. The magnetic field is determined by activating the electromagnets 29 and 30, and remains fixed even if the magnitude of the magnetic field associated with the electromagnets 29 and 30 changes. The current coupled to the electromagnets 29 and 30 by the power sources 37 and 38 is adjusted by the feedback loop described to maintain a fixed effective impedance for discharge associated with the target elements 22 and 23. Thus, the power utilization of the power source 18 is increased.

본 발명이 특정 실시예에 국한되어 설명되었다해도, 첨부된 특허청구범위에서 한정되어 있는 바와같이 본 발명의 진정한 정신과 범위내에서 여러가지 변형이 가능하다. 예로, 본 발명은 공통 평판이거나 또는 그렇지 않을 수도 있는 다수의 타깃 소자 뿐만 아니라, r.f방전에도 적용 가능하다.Although the invention has been described in terms of specific embodiments, various modifications are possible within the true spirit and scope of the invention as defined in the appended claims. For example, the invention is applicable to r.f discharges as well as many target elements that may or may not be common plate.

Claims (11)

분리된 제1및 제2타깃 수단으로부터의 재료가 작업편상에 스퍼터되게 하는 진공 스퍼터링 장치로서, 상기 진공 스퍼터링 장치는 타깃과 작업편 사이에 있는 공간을 진공으로 되도록 조정하기 위해 이온화 가능한 가스를 공급하기 위한 수단과, 제1및 제2타깃의 방사면 바로 위의 이온화된 가스에서 각각의 분리된 제1및 제2방전을 발생시키기 위한 수단으로서 제1및 제2타깃 위의 기체에 대해 분리된 제1및 제2이온화 전계를 형성하기 위한 수단과 제1및 제2타깃의 방사면의 근방에서 전계에 의해 이온화된 가스에 대해 서로 다른 한정된 자계를 형성하기 위한 수단을 포함하는 상기 분리된 방전 발생 수단을 포함하며, 상기 자계 한정 수단은 각각 제1및 제2타깃을 통한 제1및 제2자기 회로를 포함하되, 상기 제1자기 회로는 제1자계 소스로부터 자력선을 제1타깃으로 결합시키기 위한 제1및 제2폴편을 포함하고, 상기 제2자기 회로는 제2자계 소스로부터의 자력선을 제2타깃으로 결합시키기 위한 제2및 제3폴편을 포함하며, 상기 자기 회로 및 자계 소스는 제1및 제2자계 소스로부터 자력선이 제2폴편에 결합되도록 배열되는 것을 특징으로 하는 진공 스퍼터링 장치.A vacuum sputtering apparatus for causing material from separate first and second target means to be sputtered on a workpiece, the vacuum sputtering apparatus for supplying an ionizable gas to adjust the space between the target and the workpiece to be vacuum Means for generating a separate first and second discharge in the ionized gas directly above the radiation surfaces of the first and second targets, the second separated for the gas on the first and second targets. And means for forming a first and a second ionizing electric field and means for forming a different defined magnetic field for a gas ionized by an electric field in the vicinity of the radiating surface of the first and second targets. Wherein the magnetic field confinement means includes first and second magnetic circuits through first and second targets, respectively, wherein the first magnetic circuit is configured to draw a magnetic force line from a first magnetic source. A first pole piece and a second pole piece for coupling to a feather, the second magnetic circuit including second and third pole pieces for coupling a magnetic force line from a second magnetic source to a second target, the magnetic circuit and And the magnetic field source is arranged such that magnetic lines of force from the first and second magnetic field sources are coupled to the second pole piece. 제1항에 있어서, 제2폴편은 제1 및 제2타깃에 떨어진 부분에서 보다 제1 및 제2타깃에 인접한 부분에서 더 작은 횡 절단 면적을 갖는 것을 특징으로 하는 진공스퍼터링 장치.The vacuum sputtering apparatus according to claim 1, wherein the second pole piece has a smaller transverse cutting area at a portion adjacent to the first and second targets than at a portion away from the first and second targets. 제2항에 있어서, 제1및 제2자계 소스는 제1, 제2및 제3폴편용 공통축과 동축인 제1 및 제2톨로이드 자계 소스를 포함하고, 제1 및 제2자계 소스는 공통축과 각각 인접하는 반경과 공통축에서 떨어진 반경을 가지며, 제1폴편은 제1소스로부터 자력선을 제1소스에서 제1타깃으로 결합시키기 위해 공통축을 따라 연장되는 중앙 폴편으로 이루어지며, 제2폴편은 제1소스로부터 자력선을 제1타깃을 통해 결합하고, 제2소스로부터 자력선을 제2타깃을 통해 결합시키기 위하여 공통축 방향으로 연장되는 중간 폴편을 포함하되, 제1및 제2소스로부터의 자력선은 중간 폴편에 부가적으로 결합되며, 제3폴편은 제2소스로부터 자력선을 방사방향으로 제2타깃을 통해 결합시키기 위하여 공통축의 방향으로 연장되는 외부 폴편을 포함하며, 상기 폴편에서, 중간 폴편의 반경이 중앙 폴편의 반경보다는 크고, 외부 폴편보다는 작은 반경을 갖는 것을 특징으로 하는 진공 스퍼터링 장치.3. The magnetic field of claim 2 wherein the first and second magnetic field sources comprise first and second toroidal magnetic fields coaxial with the common axis for the first, second and third pole pieces, and the first and second magnetic source sources Each of which has a radius adjacent to the common axis and a radius away from the common axis, wherein the first pole piece consists of a central pole piece extending along the common axis to couple the magnetic lines of force from the first source to the first target at the first source, and a second The pole piece includes an intermediate pole piece extending in a common axis direction to couple magnetic lines of force from the first source through the first target, and couple magnetic lines of force from the second source through the second target, wherein the pole pieces extend from the first and second sources. The magnetic force line is additionally coupled to the intermediate pole piece, wherein the third pole piece includes an outer pole piece extending in the direction of the common axis to couple the magnetic force line from the second source through the second target in the radial direction, wherein the pole piece Convenience radius A vacuum sputtering apparatus, characterized by having a radius larger than the radius of the central pole piece and smaller than the outer pole piece. 제1항에 있어서, 제1, 제2자계 소스는 제2 및 제3폴편용의 공통축과 동심인 제1및 제2톨로이드 자계 소스를 포함하되, 상기 제1 및 제2자계 소스는 각각 공통축과 가까운 반경과 공통축과 떨어진 반경을 가지며, 제1폴편은 제1소스로부터의 자력선을 제1타깃으로 결합시키기 위해 공통축을 따라 연장되는 중앙 폴편을 포함하며, 제2폴편은 제1소스로부터 자력선을 방사방향으로 제1타깃을 통해 결합하고, 제2소스로부터의 자력선을 제2타깃을 통해 결합시키기 위하여 공통축의 방향으로 연장되는 중간 폴편을 포함하고, 여기서 제1 및 제2소스로부터의 자력선은 중간 폴편에 부가적으로 결합되며, 제3폴편은 제2소스로부터의 자력선을 방사 방향으로 결합시키기 위하여 축방향으로 연장되는 외부 폴편을 포함하며, 상기 폴편은 중간 폴편의 반경이 중앙 폴편의 반경보다는 크고, 외부 폴편보다는 작은 반경을 갖도록 구성되는 것을 특징으로 하는 진공 스퍼터링 장치.The magnetic field of claim 1, wherein the first and second magnetic source sources include first and second toroidal magnetic sources concentric with a common axis for the second and third pole pieces, wherein the first and second magnetic source sources are respectively. It has a radius close to the common axis and a radius away from the common axis, the first pole piece includes a central pole piece extending along the common axis to couple the magnetic lines of force from the first source to the first target, the second pole piece is the first source A middle pole piece extending in a direction of a common axis to couple the magnetic force lines from the second source in a radial direction through the first target, and to couple the magnetic lines from the second source through the second target, wherein from the first and second sources The magnetic force line is additionally coupled to the intermediate pole piece, the third pole piece including an outer pole piece extending in the axial direction to radially couple the magnetic force lines from the second source, the pole piece having a radius of the center pole piece. Vacuum sputtering apparatus being greater than the radius, configured to have a smaller radius than the outer polpyeon. 제1항에 있어서, 방사된 재료가 제1타깃 외측의 제2타깃의 방사면으로부터 스퍼터되도록 타깃을 장착시키기 위한 수단을 더 포함하는 것을 특징으로 하는 진공 스퍼터링 장치.The vacuum sputtering apparatus of claim 1, further comprising means for mounting the target such that the sputtered material is sputtered from the radiation surface of the second target outside the first target. 제5항에 있어서, 장착 수단은 제1 및 제2타깃 각각의 벽이 지탱하는 내벽을 각각 구비하는 제1 및 제2장착 소자와, 제1타깃을 제1장착소자에, 제2 타깃을 제2장착 소자에 고정시키기 위한 각 슬로트내의 삽입핀을 포함하고, 여기서 제1장착용 소자의 벽과 제1타깃의 벽은 최소한 한개의 슬롯을 형성하기 위해 서로 인접한 절단 세그먼트를 가지며, 제2장착용 소자의 벽과 제1타깃의 벽은 최소한 한개의 슬롯을 형성하기 위해 인접한 절단 세그먼트를 구비하는것을 특징으로 하는 진공 스퍼터링 장치.6. The mounting apparatus of claim 5, wherein the mounting means comprises: first and second mounting elements each having an inner wall supported by a wall of each of the first and second targets, the first target being attached to the first mounting element, and the second target being selected. An insertion pin in each slot for securing to the mounting element, wherein the wall of the first mounting element and the wall of the first target have cutting segments adjacent to each other to form at least one slot, and the second mounting And the wall of the first element and the wall of the first target have adjacent cutting segments to form at least one slot. 제6항에 있어서, 직경 방향으로 대향 배치된 한쌍의 슬롯은 장착소자 및 타깃 각각에 형성되고, 각각의 슬롯은 삽입핀을 수용하는 것을 특징으로 하는 진공 스퍼터링 장치.7. The vacuum sputtering apparatus according to claim 6, wherein a pair of slots arranged in the radial direction opposite to each other is formed in each of the mounting element and the target, and each slot receives the insertion pin. 제6항에 있어서, 장착용 소자 및 타깃의 벽은 원형이며, 벽과 장착 소자의 직경은 외주부 전체를 통해 상호 인접되어 있는 것을 특징으로 하는 진공 스퍼터링 장치.The vacuum sputtering apparatus according to claim 6, wherein the wall of the mounting element and the target is circular, and the diameters of the wall and the mounting element are adjacent to each other through the entire outer peripheral portion. 타깃 수단으로부터의 재료를 작업편상으로 스퍼터되게 하기 위한 진공 스퍼터링 장치로서, 타깃과 작업편사이에 진공으로 되도록 채택된 공간에 이온화 가능한 가스를 공급하기 위한 수단과, 타깃 수단의 방사면 바로 위의 이온화된 가스내서 방전을 발생시키고, 타깃수단 바로 위의 가스에 대해 이온화 전장을 형성 하는 수단을 포함하는 수단과, 방사된 재료가 타깃 수단의 방사면에서 작업편으로 스퍼터되게 타깃 수단을 장착시키기 위한 수단과, 타깃 수단이 지지하는 내벽을 구비하고, 최소한 한개의 슬롯을 형성하도록 상호 인접한 절단 부분을 구비하는 타깃 소자와 제1장착 소자의 벽을 구비하는 장착 소자와, 타깃 수단을 장착 소자에 고정시키기 위한 슬롯내의 삽입형 핀을 갖는 것을 특징으로 하는 진공 스퍼터링 장치.A vacuum sputtering apparatus for sputtering material from a target means onto a workpiece, comprising: means for supplying an ionizable gas into a space adapted to be vacuum between the target and the workpiece, and ionization directly on the radiation surface of the target means; Means for generating a discharge in the gas, the means for forming an ionization electric field with respect to the gas directly above the target means, and means for mounting the target means such that the radiated material is sputtered from the radiating surface of the target means onto the workpiece. And a mounting element having an inner wall supported by the target means, the target element having a cutting portion adjacent to each other to form at least one slot, and a wall of the first mounting element, and fixing the target means to the mounting element. Vacuum sputtering device, characterized in that it has an insert pin in the slot for. 제9항에 있어서, 장착용 소자와 타깃 수단에 직경 방향으로 대향 위치한 한쌍의 슬롯이 형성되며, 각각의 슬롯은 삽입형 핀을 수용하는 것을 특징으로 하는 진공 스퍼터링 장치.10. The vacuum sputtering apparatus according to claim 9, wherein a pair of slots are disposed radially opposed in the mounting element and the target means, and each slot receives an insertion pin. 제10항에 있어서, 장착용 소자 및 타깃의 벽은 원형이며, 타깃과 장착용 소자의 직경은 벽이 그 외주부 전체를 통하여 서로 인접하도록 되어 있는 것을 특징으로 하는 진공 스퍼터링 장치.The vacuum sputtering apparatus according to claim 10, wherein the wall of the mounting element and the target is circular, and the diameters of the target and the mounting element are such that the walls are adjacent to each other through the entire outer peripheral portion thereof.
KR1019900004030A 1984-05-17 1990-03-26 Vacuum sputtering apparatus KR900004602B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900004030A KR900004602B1 (en) 1984-05-17 1990-03-26 Vacuum sputtering apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US611,435 1984-05-17
US06/611,435 US4595482A (en) 1984-05-17 1984-05-17 Apparatus for and the method of controlling magnetron sputter device having separate confining magnetic fields to separate targets subject to separate discharges
KR1019850003385A KR900004600B1 (en) 1984-05-17 1985-05-17 Setting target and target set of magnetron sputter
KR1019900004030A KR900004602B1 (en) 1984-05-17 1990-03-26 Vacuum sputtering apparatus

Publications (1)

Publication Number Publication Date
KR900004602B1 true KR900004602B1 (en) 1990-06-30

Family

ID=27348453

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900004030A KR900004602B1 (en) 1984-05-17 1990-03-26 Vacuum sputtering apparatus

Country Status (1)

Country Link
KR (1) KR900004602B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140038328A (en) * 2012-09-20 2014-03-28 도쿄엘렉트론가부시키가이샤 Metal film forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140038328A (en) * 2012-09-20 2014-03-28 도쿄엘렉트론가부시키가이샤 Metal film forming method

Similar Documents

Publication Publication Date Title
KR900004601B1 (en) Controlling device of cathode sputter apparatus and cathode sputter magnetron and controlling method therefor
KR890004172B1 (en) Vacuum sputtering device
EP0227438B1 (en) Magnetron sputter device having separate confining magnetic fields to separate targets and magnetically enhanced r.f. bias
US4865712A (en) Apparatus for manufacturing planarized aluminum films
US4657654A (en) Targets for magnetron sputter device having separate confining magnetic fields to separate targets subject to separate discharges
US4661228A (en) Apparatus and method for manufacturing planarized aluminum films
US6440282B1 (en) Sputtering reactor and method of using an unbalanced magnetron
US4407713A (en) Cylindrical magnetron sputtering cathode and apparatus
US6368678B1 (en) Plasma processing system and method
US4606806A (en) Magnetron sputter device having planar and curved targets
US6338781B1 (en) Magnetron sputtering cathode with magnet disposed between two yoke plates
KR100917463B1 (en) Magnetron cathode and magnetron sputtering apparatus
KR890004171B1 (en) Vacuum sputtering device
US6146509A (en) Inverted field circular magnetron sputtering device
JPH028365A (en) Sputter coating apparatus
JPH06235063A (en) Sputtering cathode
JP3315114B2 (en) Method for performing sputter coating and sputter coating
KR900004602B1 (en) Vacuum sputtering apparatus
EP0197770B1 (en) Planar penning magnetron sputtering device
JP2662582B2 (en) Method and apparatus for forming a planarized aluminum film
JP2000319780A (en) Sputtering cathode and magnetron type sputtering device equipped with the same
JPH034620B2 (en)
JPS63230872A (en) target and magnetically enhanced R. F. Magnetron sputter device with separate limiting magnetic field to separate bias
EP0246765A2 (en) Apparatus and method for manufacturing planarized aluminium films
KR890005316B1 (en) Cathode sputtering apparatus of magnetron type

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040629

Year of fee payment: 15

EXPY Expiration of term