JP5593320B2 - Method for forming Co film - Google Patents

Method for forming Co film Download PDF

Info

Publication number
JP5593320B2
JP5593320B2 JP2011529945A JP2011529945A JP5593320B2 JP 5593320 B2 JP5593320 B2 JP 5593320B2 JP 2011529945 A JP2011529945 A JP 2011529945A JP 2011529945 A JP2011529945 A JP 2011529945A JP 5593320 B2 JP5593320 B2 JP 5593320B2
Authority
JP
Japan
Prior art keywords
film
reducing gas
substrate
forming
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011529945A
Other languages
Japanese (ja)
Other versions
JPWO2011027835A1 (en
Inventor
正一郎 熊本
聡 豊田
治憲 牛川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011529945A priority Critical patent/JP5593320B2/en
Publication of JPWO2011027835A1 publication Critical patent/JPWO2011027835A1/en
Application granted granted Critical
Publication of JP5593320B2 publication Critical patent/JP5593320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition

Description

本発明は、Co膜の形成方法に関する。   The present invention relates to a method for forming a Co film.

現行のCu配線膜形成プロセスでは、PVD−バリア膜(例えば、PVD−Ti膜やTa膜)とPVD−シード膜(PVD−Cu膜)とを真空一貫(in-situ)で形成し、その後、Cuメッキ工程、CMP工程を行っている。しかし、近年の配線の微細化によって、デバイスノード32nm世代以降では、PVD膜のウェハーエッジの非対称性やオーバーハングが顕著になってきており、メッキ工程でボイドが発生するという問題がある。   In the current Cu wiring film formation process, a PVD-barrier film (for example, PVD-Ti film or Ta film) and a PVD-seed film (PVD-Cu film) are formed in-situ, and then A Cu plating process and a CMP process are performed. However, due to the recent miniaturization of wiring, the asymmetry and overhang of the wafer edge of the PVD film have become prominent after the device node 32 nm generation, and there is a problem that voids are generated in the plating process.

ここで、PVD−バリア膜とは、PVD法により形成されたバリア膜を意味し、PVD−シード膜とは、PVD法により形成されたシード膜を意味する。以下に記載するPVD(CVD)−Cu膜、ALD−バリア膜、(CVD、ALD)−Co膜は、それぞれ、PVD、CVD、ALDにより形成された各膜を意味するものとする。   Here, the PVD-barrier film means a barrier film formed by the PVD method, and the PVD-seed film means a seed film formed by the PVD method. The PVD (CVD) -Cu film, ALD-barrier film, and (CVD, ALD) -Co film described below mean films formed by PVD, CVD, and ALD, respectively.

例えば、図1(a)及び(b)に示すように、Φ32nmのホールやトレンチが設けられている基板101上に形成されているバリア膜102上にPVD−シード膜103(PVD−Cu膜)を形成すると、ホールやトレンチの上部がオーバーハング(A部分)してホール等の開口部が狭まり、次いでメッキ工程によりホール等の内部をCu膜104で埋め込む際に、メッキ液が内部に入り難くなると共に、Cu膜とバリア膜との密着性が良くないために、Cu膜が埋め込まれるにつれてCu膜が吸いあがって、Cu膜中にボイド(B部分)が発生するという問題がある。また、図1(c)及び(d)に示すように、ホール等の側面にPVD−シード膜103が均一に対称的に形成できず(C部分)、このバリア膜の非対称性のために、次のメッキ工程において埋め込まれるCu膜104中にボイド(D部分)が発生するという問題もある。   For example, as shown in FIGS. 1A and 1B, a PVD-seed film 103 (PVD-Cu film) is formed on a barrier film 102 formed on a substrate 101 provided with holes and trenches of Φ32 nm. When the hole is formed, the upper part of the hole or trench is overhanged (part A) and the opening of the hole or the like is narrowed. Then, when the inside of the hole or the like is filled with the Cu film 104 by the plating process, the plating solution is difficult to enter. In addition, since the adhesion between the Cu film and the barrier film is not good, there is a problem that the Cu film is sucked up as the Cu film is buried, and voids (B portion) are generated in the Cu film. Further, as shown in FIGS. 1C and 1D, the PVD-seed film 103 cannot be uniformly and symmetrically formed on the side surface of the hole or the like (C portion). Due to the asymmetry of this barrier film, There is also a problem that voids (D portion) are generated in the Cu film 104 to be embedded in the next plating step.

ALD法やCVD法で形成したバリア膜及びCVD−Cu膜は非対称性やオーバーハングがないので、この2つのプロセスを用いてCu配線膜を形成する方法が試みられている(例えば、特許文献1参照)。しかし、この場合の問題点は、CVD−Cu膜とその下地膜のALD−バリア膜との密着性が悪いために、Cu膜中にボイドが発生することである。そのため、いまだ実用化には至っていない。   Since the barrier film and the CVD-Cu film formed by the ALD method or the CVD method do not have asymmetry or overhang, a method of forming a Cu wiring film using these two processes has been attempted (for example, Patent Document 1). reference). However, the problem in this case is that voids are generated in the Cu film because the adhesion between the CVD-Cu film and the ALD-barrier film of the underlying film is poor. Therefore, it has not yet reached practical use.

例えば、図2(a)及び(b)に示すように、基板201に設けられたホールやトレンチ内にALD法によりTiNバリア膜(ALD−TiNバリア膜)202を形成した後、ホール等の内部をCVD−Cu膜203で埋め込んだ場合、Cu膜内部にボイド(A部分)が発生する。図2(a)は、CVD−Cu膜203で埋め込んだ状態の基板断面のSEM写真であり、図2(b)はその模式図である。   For example, as shown in FIGS. 2A and 2B, after a TiN barrier film (ALD-TiN barrier film) 202 is formed by ALD in holes or trenches provided in the substrate 201, the inside of the holes or the like is formed. Is embedded in the CVD-Cu film 203, voids (A portion) are generated inside the Cu film. FIG. 2A is a SEM photograph of a cross section of the substrate in a state where it is embedded with the CVD-Cu film 203, and FIG. 2B is a schematic diagram thereof.

上記したようなCVD−Cu膜とその下地膜のALD−バリア膜との密着性が悪いために発生するCu膜中のボイドをなくし、バリア性/密着性を改善するために、カバレッジ性がよく、薄膜で低抵抗なCo膜を利用しようとする試みが始まり、CVD法やALD法によるCo膜の成膜技術の開発が急務となっている。Co膜については、Cu配線膜の分野のみならず、シリサイド層やキャップ層の分野においても、同様にカバレッジ性の高いCo膜への要求が高まりつつある。   In order to eliminate voids in the Cu film due to poor adhesion between the CVD-Cu film as described above and the ALD-barrier film of the underlying film, and to improve the barrier property / adhesion, the coverage property is good. Attempts to use a thin, low-resistance Co film have begun, and development of a film forming technique for a Co film by CVD or ALD has become an urgent task. Regarding the Co film, not only in the field of the Cu wiring film but also in the field of the silicide layer and the cap layer, there is a growing demand for a Co film having a high coverage property.

これに対し、従来技術によるCoとアミンとを含む有機金属材料を用いたCVD法により得られたCo膜の場合(例えば、特許文献2参照)、Co核の成長時間が20分と長く、Co核の成長速度も1nm/分と遅く、また、Cの不純物濃度が30%と多いなどの問題を有していた。   In contrast, in the case of a Co film obtained by a CVD method using an organic metal material containing Co and amine according to the prior art (see, for example, Patent Document 2), the growth time of Co nuclei is as long as 20 minutes. The growth rate of nuclei was as low as 1 nm / min, and the impurity concentration of C was as high as 30%.

特開2003−055769号公報JP 2003-055569 A 特開2006−299407号公報JP 2006-299407 A

本発明の課題は、上述の従来技術の問題点を解決することにあり、特定の還元ガスを用い、CVD法等によりCo膜を形成する方法を提供することにある。   An object of the present invention is to solve the above-described problems of the prior art, and to provide a method of forming a Co film by a CVD method or the like using a specific reducing gas.

本発明のCo膜の形成方法は、下地としてのSi基材表面にCo膜を形成する方法において、前記Si基材表面をNHで前処理してSi基材表面をNHでターミネートし、コバルトアルキルアミジネイトと、NH、N、NH(CH、NCH、及びNから選ばれた還元ガスのラジカル、又はH及び前記還元ガスのラジカルの組み合わせガスとを用いてCo膜を形成することを特徴とする。 Method of forming a Co film of the present invention is a method of forming a Co film on the Si substrate surface as a base, and terminated with NH the Si substrate surface pretreated said Si substrate table surface with NH 3, Cobalt alkyl amidinate and a radical of a reducing gas selected from NH 3 , N 2 H 4 , NH (CH 3 ) 2 , N 2 H 3 CH, and N 2 , or a radical of H 2 and the reducing gas A Co film is formed using a combination gas.

このように、還元ガスとして、従来のH ガスの代わりに又はH ガスに加えて、NH ガス等を用いることにより、また、Si基材のような基材の表面をNHで前処理してSi基材表面をNHでターミネートし、さらに還元ガスのラジカルを用いることにより、Coの核生成時間の抑制や、Co膜の成長速度の制御、表面モフォロジーの改善、不純物濃度の抑制、低抵抗化を可能にし、半導体デバイスの微細パターンにおけるCo膜の利用が可能になる。 Thus, as a reducing gas, instead of or in addition to H 2 gas of the conventional H 2 gas, by use of the NH 3 gas or the like, also, before the surface of substrates such as a Si substrate with NH 3 By treating the surface of the Si substrate with NH and further using a reducing gas radical, the Co nucleation time is suppressed, the Co film growth rate is controlled, the surface morphology is improved, the impurity concentration is suppressed, The resistance can be reduced, and the Co film can be used in a fine pattern of a semiconductor device .

上記コバルトアルキルアミジネイトが、Co(tBu−Et−Et−amd)であることを特徴とする。The cobalt alkyl amidinate is Co (tBu-Et-Et-amd) 2 .

本発明によれば、従来のHのみを還元ガスに使って形成したCo膜に比べ、Si基材表面をNHで前処理した後、H及び/又はNH等を還元ガスとして用いて形成したCo膜は、Coの核生成時間の短縮や、Co膜の低抵抗化、表面モフォロジーの改善、低温成膜が可能となり、半導体デバイス作製工程においてスループットの向上をもたらし、Co膜の使用温度領域を広げることで微細加工へのCo膜の使用を可能にするという効果を達成できる。 According to the present invention, compared with the Co film formed by using only conventional H 2 in the reducing gas, was pretreated with S i substrate surface with NH 3, H 2 and / or NH 3 or the like as a reducing gas The Co film formed using this method shortens the Co nucleation time, lowers the Co film resistance, improves the surface morphology, and enables low-temperature film formation, resulting in increased throughput in the semiconductor device manufacturing process. The effect of enabling the use of the Co film for microfabrication can be achieved by widening the operating temperature range.

さらに本発明によれば、Co膜をCVD法、ALD法で形成することができると共に、薄膜化することができ、半導体デバイスにおいてCo膜をより多くの工程で利用できるようになる。   Furthermore, according to the present invention, the Co film can be formed by the CVD method or the ALD method, and can be thinned, so that the Co film can be used in more steps in the semiconductor device.

従来技術の場合のボイド発生を示す模式図であり、(a)及び(b)は、ホール上部のオーバーハングによるボイドの発生、また、(c)及び(d)は、ホール側面におけるバリア膜の非対称性によるボイドの発生を示す図である。FIG. 4 is a schematic diagram showing the generation of voids in the case of the prior art, in which (a) and (b) show the generation of voids due to an overhang at the top of the hole, and (c) and (d) show the barrier film on the side of the hole. It is a figure which shows generation | occurrence | production of the void by asymmetry. 従来技術によるボイドの発生を示すSEM写真(a)及びその模式図(b)である。It is the SEM photograph (a) which shows generation | occurrence | production of the void by a prior art, and its schematic diagram (b). 実施例1で得られたH−NH還元Co膜及びH還元Co膜の成膜時間(分)と単位時間当たりの成膜レート(1nm/分)に相当する膜厚(nm)との関係を示すグラフである。The film formation time (min) of the H 2 —NH 3 reduced Co film and the H 2 reduced Co film obtained in Example 1 and the film thickness (nm) corresponding to the film formation rate (1 nm / min) per unit time, It is a graph which shows the relationship. 実施例3で得られたCo膜についてのAES分析結果を示すグラフであり、(a)はH還元Co膜の場合、(b)はH−NH還元Co膜の場合のAES分析結果を示すグラフである。Is a graph showing the AES analysis results for the Co film obtained in Example 3, (a) in the case of H 2 reduction Co film, (b) the AES analysis results for H 2 -NH 3 reduction Co film It is a graph which shows. 実施例5で得られたSi基板表面のSEM写真であり、(a)はNHを吸着させない場合の基板表面のSEM写真、(b)はNHを吸着させた場合の基板表面のSEM写真である。It is a SEM photograph of the Si substrate surface obtained in Example 5, (a) is a SEM photograph of the substrate surface when NH 3 is not adsorbed, and (b) is a SEM photograph of the substrate surface when NH 3 is adsorbed. It is. 実施例5で得られたSi基板表面上のイメージ図であり、(a)はNHを表面吸着させない場合、(b)はNHを表面吸着させた場合である。Is an image diagram on the Si substrate surface obtained in Example. 5, (a) shows the case of not surface adsorption NH 3, and a case where (b) is allowed to surface adsorption of NH 3. 実施例7で得られたH還元Co膜とH−NH還元Co膜についての基板温度と比抵抗値との関係を示すグラフである。10 is a graph showing the relationship between the substrate temperature and the specific resistance value for the H 2 reduced Co film and the H 2 —NH 3 reduced Co film obtained in Example 7.

本発明に係るCo膜の形成方法の実施の形態によれば、下地としてのSi基材のような基材の表面にCo膜を形成する方法において、コバルト2−アルキルアミジネイトのようなCoとアルキルアミジネイト基(このアルキルは、エチル、ブチルである)とを含む有機金属材料、及びこの有機金属材料を還元してCo膜を形成するための還元ガスとして、公知の還元ガスであるNH、N、NH(CH、NCH、及びNから選ばれたガス、又はH及び前記還元ガス(この中でも、特にNHが好ましい)の組み合わせガスを用い、CVD法やALD法で、成膜圧力:100〜1000Pa、基板温度:200〜400℃、還元ガス(例えば、NH)流量:100〜1000sccmの下で、CVD(ALD)−Co膜を形成することができ、このような還元ガスを用いることにより、Coの核生成時間の抑制や、Co膜の成長速度の制御、表面モフォロジーの改善、不純物濃度の抑制、低抵抗化を可能にし、微細パターンにおけるCo膜の密着層、シリサイド層、キャップ層での利用が可能になる。According to the embodiment of the method for forming a Co film according to the present invention, in a method for forming a Co film on the surface of a substrate such as a Si substrate as a base, a Co such as cobalt 2-alkyl amidinate is used. And an alkylamidinate group (this alkyl is ethyl or butyl), and a known reducing gas as a reducing gas for reducing the organometallic material to form a Co film A gas selected from NH 3 , N 2 H 4 , NH (CH 3 ) 2 , N 2 H 3 CH, and N 2 , or a combined gas of H 2 and the reducing gas (among these, NH 3 is particularly preferable). In the CVD method or the ALD method, the film forming pressure is 100 to 1000 Pa, the substrate temperature is 200 to 400 ° C., the reducing gas (for example, NH 3 ) flow rate is 100 to 1000 sccm, and the CVD (A LD) -Co film can be formed, and by using such a reducing gas, Co nucleation time is suppressed, the growth rate of Co film is controlled, surface morphology is improved, impurity concentration is suppressed, low The resistance can be achieved, and the Co film can be used in the adhesion layer, the silicide layer, and the cap layer in a fine pattern.

上記Co膜の形成方法において、Si基材のような基材の表面を、成膜圧力:100〜1000Pa、基板温度:200〜400℃、ガス流量:100〜1000sccmのような条件下で、NHで前処理した後に、コバルト2−アルキルアミジネイトのようなCoとアルキルアミジネイト基とを含む有機金属材料、及び公知の還元ガスであるNH、N、NH(CH、NCH、及びNから選ばれたガスや、H、又はH及び前記還元ガス(この中でも、特にNHが好ましい)の組み合わせガスを用い、CVD法やALD法で、公知のプロセス条件(例えば、成膜圧力:100〜1000Pa、基板温度:200〜400℃、ガス流量:100〜1000sccm)の下で、CVD(ALD)−Co膜を形成することができ、このようにSi基材表面をNHで前処理した後に、還元ガスを用いることにより、Coの核生成時間の抑制や、Co膜の成長速度の制御、表面モフォロジーの改善、不純物濃度の抑制、低抵抗化を可能にし、微細パターンにおけるCo膜の密着層、シリサイド層、キャップ層での利用が可能になる。In the above Co film formation method, the surface of a substrate such as a Si substrate is formed under conditions such as film formation pressure: 100 to 1000 Pa, substrate temperature: 200 to 400 ° C., gas flow rate: 100 to 1000 sccm. 3 is pretreated with an organometallic material containing Co and an alkylamidinate group, such as cobalt 2-alkylamidinate, and the known reducing gases NH 3 , N 2 H 4 , NH (CH 3 2 ) CVD method or ALD method using a gas selected from 2 , N 2 H 3 CH, and N 2 , a combined gas of H 2 , or H 2 and the reducing gas (among these, NH 3 is particularly preferable). Under the known process conditions (for example, film forming pressure: 100 to 1000 Pa, substrate temperature: 200 to 400 ° C., gas flow rate: 100 to 1000 sccm), CVD (ALD) -C It can form a film, after the pretreatment in this way Si substrate surface with NH 3, by using a reducing gas, suppressing or nucleation time of Co, control of the growth rate of the Co film, surface morphology Improvement, suppression of impurity concentration, and reduction in resistance, and use in the adhesion layer, silicide layer, and cap layer of the Co film in a fine pattern becomes possible.

上記したコバルトアルキルアミジネイトからなる有機金属材料としては、例えば、Co(tBu−Et−Et−amd)等を挙げることができる。Examples of the organometallic material composed of the above cobalt alkyl amidinate include Co (tBu-Et-Et-amd) 2 .

本実施例では、自然酸化物を除去したSi基材上に、CVD法により、成膜圧力:500Pa、基板温度:300℃、還元ガス流量:200sccmの条件下で、有機金属材料としてCo(tBu−Et−Et−amd)を用い、還元ガスとしてNHのみを用いてCo膜(NH還元Co膜)を形成した場合と、CVD法により、成膜圧力:500Pa、基板温度:300℃、還元ガス流量:200sccmの条件下で、有機金属材料としてCo(tBu−Et−Et−amd)を用い、還元ガスとしてHを用いてCo膜(H還元Co膜)を形成した場合との、成膜時間(分)に対する膜厚(nm)の関係を検討した。この膜厚は、単位時間当たり成膜レートに相当する。In this example, Co (tBu) is used as an organometallic material on a Si base material from which natural oxide has been removed by CVD, under conditions of film forming pressure: 500 Pa, substrate temperature: 300 ° C., reducing gas flow rate: 200 sccm. -Et-Et-amd) 2 and using only NH 3 as a reducing gas to form a Co film (NH 3 -reduced Co film) and by CVD, a film forming pressure of 500 Pa and a substrate temperature of 300 ° C. When a Co film (H 2 reduced Co film) is formed using Co (tBu-Et-Et-amd) 2 as the organometallic material and H 2 as the reducing gas under the condition of reducing gas flow rate: 200 sccm And the relationship of the film thickness (nm) to the film formation time (min). This film thickness corresponds to the film formation rate per unit time.

得られた結果を図3に示す。図3から明らかなように、H還元Co膜の場合は、成膜レート1nm/分、核生成時間20分であるのに対しNH還元Co膜の場合は、成膜レートが8nm/分で核生成時間はゼロであり、核が直ちに生成されると共に成膜が始まることが分かる。The obtained results are shown in FIG. As is apparent from FIG. 3, in the case of the H 2 reduced Co film, the film formation rate is 1 nm / min and the nucleation time is 20 minutes, whereas in the case of the NH 3 reduced Co film, the film formation rate is 8 nm / min. Thus, the nucleation time is zero, and it can be seen that the nuclei are generated immediately and the film formation starts.

これらのNHを還元ガスとして用いたことによる不純物量の低下に起因したCo膜表面の平滑化、Co膜の低抵抗化及びCo成膜レートの増大、Co核の生成時間の短縮は、NHラジカルが原料の分解を促進することでCoの分圧が増大するためだと考えられる。従って、本発明のCo膜の形成には、このようなラジカルを発生する還元ガスを使用できる。Smoothing of the Co film surface due to a decrease in the amount of impurities due to the use of these NH 3 as a reducing gas, lowering the resistance of the Co film, increasing the Co film formation rate, and shortening the Co nucleus generation time are NH This is thought to be because the partial pressure of Co increases due to the 3 radicals promoting the decomposition of the raw material. Therefore, a reducing gas that generates such radicals can be used to form the Co film of the present invention.

実施例1で用いた還元ガスとしてのNHの代わりに、N、NH(CH、NCH、及びNから選ばれた還元ガスを用いた場合、また、HとNH、NH(CH、NCH及びNから選ばれた還元ガスとの組み合わせガスを用いた場合について、実施例1のプロセスを繰り返したところ、実施例1の場合と同様に、Co核の生成時間は殆どゼロであり、核が直ちに生成され、成膜が始まることが分かる。When a reducing gas selected from N 2 H 4 , NH (CH 3 ) 2 , N 2 H 3 CH, and N 2 is used instead of NH 3 as the reducing gas used in Example 1, When the combined gas of H 2 and a reducing gas selected from NH 3 , NH (CH 3 ) 2 , N 2 H 3 CH and N 2 was used, the process of Example 1 was repeated. As in the case of, the generation time of Co nuclei is almost zero, and it can be seen that nuclei are immediately generated and film formation starts.

本実施例では、自然酸化物を除去したSi基板上に、CVD法により、成膜圧力:500Pa、基板温度:300℃、還元ガス流量:500sccmのプロセス条件下で、有機金属材料としてCo(tBu−Et−Et−amd)を、還元ガスとしてHを用いて、H還元Co膜を30nm形成した場合と、CVD法により、成膜圧力:500Pa、基板温度:300℃、還元ガス流量:500sccmのプロセス条件下で、有機金属材料としてCo(tBu−Et−Et−amd)を用い、還元ガスとしてHとNHとの組み合わせガスを用いて、H−NH還元Co膜を30nm形成した場合との各試料のAES分析を行った。In this embodiment, Co (tBu) is used as an organometallic material on a Si substrate from which a natural oxide has been removed by a CVD method under process conditions of a film forming pressure of 500 Pa, a substrate temperature of 300 ° C., and a reducing gas flow rate of 500 sccm. -Et-Et-amd) 2 using H 2 as the reducing gas and forming a 30 nm H 2 -reduced Co film and by CVD, the film forming pressure is 500 Pa, the substrate temperature is 300 ° C., and the reducing gas flow rate H 2 —NH 3 reduced Co film using Co (tBu-Et-Et-amd) 2 as the organometallic material and a combined gas of H 2 and NH 3 as the reducing gas under the process conditions of 500 sccm AES analysis was performed on each sample with a thickness of 30 nm.

得られた結果を図4(a)及び(b)に示す。図4(a)に示すように、H還元Co膜の場合はCの不純物量が30%含まれているのに対し、図4(b)に示すように、H−NH還元Co膜の場合はCの不純物量が5%と少ないことが分かる。The obtained results are shown in FIGS. 4 (a) and 4 (b). As shown in FIG. 4A, the H 2 -reduced Co film contains 30% of the impurity of C, whereas as shown in FIG. 4B, H 2 —NH 3 reduced Co In the case of the film, it can be seen that the impurity amount of C is as small as 5%.

実施例3で用いたH−NH還元ガスの代わりにNH還元ガスを用いて実施例3のプロセスを繰り返したところ、得られたNH還元Co膜は実施例3の場合と同様なAES分析結果が得られた。When the process of Example 3 was repeated using NH 3 reducing gas instead of the H 2 —NH 3 reducing gas used in Example 3, the resulting NH 3 reduced Co film was the same as in Example 3. AES analysis results were obtained.

本実施例では、Co成膜前に、Si基板表面をNHガスで前処理した。In this example, the surface of the Si substrate was pretreated with NH 3 gas before the Co film formation.

Φ300mmのSi基板を用意し、その表面からドライエッチングにより自然酸化膜を除去した後、5分間大気開放し、次いで有機金属材料としてコバルト2−アルキルアミジネイト(このアルキルは、エチル、ブチルである)、還元ガスとしてHを用い、CVD法により、成膜圧力:200Pa、基板温度:200℃、還元ガス流量:300sccm、成膜時間:10分間のプロセス条件で、H還元Co膜を形成した。また、自然酸化膜除去後に同様に大気開放させたSi基板の表面にNHを吸着させた(成膜圧力:500Pa、基板温度:200℃、還元ガス(NH)流量:300sccm、処理時間:5分間)後に、同じ有機金属材料及び還元ガスを用い、同じCVDプロセス条件で、H還元Co膜を形成した。A Si substrate having a diameter of 300 mm was prepared, the natural oxide film was removed from the surface by dry etching, and then released to the atmosphere for 5 minutes. Then, cobalt 2-alkylamidinate as the organometallic material (this alkyl is ethyl or butyl) ), Using H 2 as the reducing gas, and forming the H 2 reduced Co film under the process conditions of film forming pressure: 200 Pa, substrate temperature: 200 ° C., reducing gas flow rate: 300 sccm, film forming time: 10 minutes by CVD. did. Further, NH 3 was adsorbed on the surface of the Si substrate which was similarly opened to the atmosphere after removing the natural oxide film (film forming pressure: 500 Pa, substrate temperature: 200 ° C., reducing gas (NH 3 ) flow rate: 300 sccm, processing time: After 5 minutes, an H 2 reduced Co film was formed using the same organometallic material and reducing gas under the same CVD process conditions.

かくして得られたSi基板表面のSEM写真を図5(a)及び(b)に示す。NHを吸着させない場合は、Si基板表面にCoの核が殆ど生ぜず、Co膜は形成されなかった(図5(a))が、NHを吸着させた場合は、吸着させない場合と比べて、Coの核が成長しており、Co膜が形成されることが分かる(図5(b))。これは、SiのダングリングボンドにターミネートされたHをNHに置き換えることにより核成長が促進することを示しており、NHを表面吸着させることで核生成時間の抑制が可能であることを示している。図6に、この点ついてのSi基板表面上のイメージ図を示す。図6(a)はNHを表面吸着させない場合、図6(b)はNHを表面吸着させた場合である。SEM photographs of the surface of the Si substrate thus obtained are shown in FIGS. 5 (a) and 5 (b). When NH 3 was not adsorbed, Co nuclei were hardly formed on the Si substrate surface, and no Co film was formed (FIG. 5A). However, when NH 3 was adsorbed, compared with the case where NH 3 was not adsorbed. Thus, it can be seen that Co nuclei have grown and a Co film is formed (FIG. 5B). This indicates that nucleation is promoted by replacing NH terminated with Si dangling bonds with NH, and that nucleation time can be suppressed by adsorbing NH 3 on the surface. ing. FIG. 6 shows an image diagram on the surface of the Si substrate for this point. 6A shows the case where NH 3 is not adsorbed on the surface, and FIG. 6B shows the case where NH 3 is adsorbed on the surface.

本実施例では、実施例5に従って、NHを表面吸着させないでH還元Co成膜した場合と、NHを表面吸着させてH還元Co成膜した場合とにおけるCo成膜したSi基板上の表面モフォロジーを検討した。その結果、NHを表面吸着させた場合の表面モフォロジーは良好であった。In this embodiment, according to Example 5, Si substrate was Co deposited to the case of H 2 reduction Co deposition is not surface adsorption of NH 3, in the case where the NH 3 by surface adsorption H 2 reduction Co deposited The above surface morphology was studied. As a result, the surface morphology when NH 3 was adsorbed on the surface was good.

本実施例では、基板温度を190℃〜320℃と変動させて実施例3記載の方法に従って得られたH還元Co膜及びH−NH還元Co膜の比抵抗に対する温度依存性を検討した。In this example, the temperature dependence on the specific resistance of the H 2 reduced Co film and the H 2 —NH 3 reduced Co film obtained according to the method described in Example 3 with the substrate temperature varied from 190 ° C. to 320 ° C. was examined. did.

すなわち、自然酸化物を除去していないSi基板温度を250℃〜320℃に設定し、この基板上に、還元ガスとしてHガスを300sccm、有機金属材料としてコバルト2−アルキルアミジネイト:Co(tBu−Et−Et−amd)をキャニスターで60℃〜90℃に加温し、キャリアガスとしてArガスを300sccm流し、CVD法に従って200Paの圧力下、H還元Co膜を形成した。また、上記と同様な自然酸化膜を除去していないSi基板温度を190℃〜300℃に設定して、この基板上に、還元ガスとしてHとNHとの混合ガスをそれぞれ、200sccm及び400sccm用い、有機金属材料としてコバルト2−アルキルアミジネイト:Co(tBu−Et−Et−amd)をキャニスターで60℃〜90℃に加温して供給し、CVD法に従って200Paの圧力下、H−NH還元Co膜を形成した。That is, the Si substrate temperature from which the native oxide is not removed is set to 250 ° C. to 320 ° C., H 2 gas as a reducing gas is 300 sccm, and cobalt 2-alkyl amidinate as an organic metal material: Co (TBu-Et-Et-amd) 2 was heated to 60 ° C. to 90 ° C. with a canister, Ar gas was flowed at 300 sccm as a carrier gas, and an H 2 reduced Co film was formed under a pressure of 200 Pa according to the CVD method. Further, the Si substrate temperature from which the natural oxide film similar to that described above is not removed is set to 190 ° C. to 300 ° C., and a mixed gas of H 2 and NH 3 is used as a reducing gas on this substrate at 200 sccm and Using 400 sccm, cobalt 2-alkylamidinate: Co (tBu-Et-Et-amd) 2 as an organometallic material was heated to 60 ° C. to 90 ° C. with a canister and supplied under a pressure of 200 Pa according to the CVD method. A H 2 —NH 3 reduced Co film was formed.

かくして得られたH−還元Co膜とH−NH還元Co膜とに対して、4端子法により比抵抗(μΩ・cm)を測定し、その結果を図7にプロットした。図7から明らかなように、H還元Co膜の場合は、比抵抗は高く、かつ基板温度による比抵抗の変動は激しいが、H−NH還元Co膜との場合は、H還元Co膜の場合と比べて比抵抗は低く、かつ温度依存性が少ないことが分かる。Thus obtained H 2 - against the reduced Co film and H 2 -NH 3 reduction Co film, measurement of specific resistance (μΩ · cm) by 4-terminal method, and the results plotted in FIG. As apparent from FIG. 7, in the case of H 2 reduction Co film, the specific resistance is high, and although intense variation in specific resistance caused by the substrate temperature, in the case of the H 2 -NH 3 reduction Co film, H 2 reduction It can be seen that the specific resistance is lower and the temperature dependence is lower than in the case of the Co film.

本発明によれば、得られたCo膜は、Coの核生成時間の短縮や、Co膜の低抵抗化、表面モフォロジーの改善、低温成膜が可能となり、半導体デバイス作製工程においてスループットの向上をもたらし、Co膜の使用温度領域を広げることで、微細パターン加工においてCo膜を利用できるので、本発明は、半導体デバイス技術分野において利用可能である。   According to the present invention, the obtained Co film can shorten the Co nucleation time, reduce the resistance of the Co film, improve the surface morphology, and form a film at a low temperature, thereby improving the throughput in the semiconductor device manufacturing process. As a result, the Co film can be used in fine pattern processing by widening the operating temperature range of the Co film, and therefore the present invention can be used in the field of semiconductor device technology.

101,201 基板
102 バリア膜
103 PVD−シード膜
104 Cu膜
202 TiNバリア膜
203 CVD−Cu膜
101, 201 Substrate 102 Barrier film 103 PVD-seed film 104 Cu film 202 TiN barrier film 203 CVD-Cu film

Claims (4)

下地としてのSi基材表面にCo膜を形成する方法において、前記Si基材表面をNH で前処理してSi基材表面をNHでターミネートし、コバルトアルキルアミジネイトと、NH、N、NH(CH、NCH、及びNから選ばれた還元ガスのラジカル、又はH及び前記還元ガスのラジカルの組み合わせガスとを用いてCo膜を形成することを特徴とするCo膜の形成方法。 In the method of forming a Co film on the surface of a Si base material as a base, the Si base material surface is pretreated with NH 3 and the Si base material surface is terminated with NH, and a cobalt alkylamidate, NH 3 , N A Co film is formed using a radical of a reducing gas selected from 2 H 4 , NH (CH 3 ) 2 , N 2 H 3 CH, and N 2 , or a combined gas of H 2 and the radical of the reducing gas. A method for forming a Co film. 前記コバルトアルキルアミジネイトが、Co(tBu−Et−Et−amd)であることを特徴とする請求項1記載のCo膜の形成方法。 It said cobalt alkyl amidinate Nate is, Co (tBu-Et-Et -amd) forming method of claim 1 Symbol placement of the Co film characterized in that it is a 2. 下地としての基材表面にCo膜を形成する方法において、前記基材表面をNH で前処理して基材表面をNHでターミネートし、コバルトアルキルアミジネイトと、NH、N、NH(CH、NCH、及びNから選ばれた還元ガスのラジカル、又はH及び前記還元ガスのラジカルの組み合わせガスとを用いてCo膜を形成することを特徴とするCo膜の形成方法。 In the method of forming a Co film on the surface of a base material as a base, the base material surface is pretreated with NH 3 , the base material surface is terminated with NH, and a cobalt alkyl amidate, NH 3 , N 2 H 4 A Co film is formed using a radical of a reducing gas selected from NH (CH 3 ) 2 , N 2 H 3 CH, and N 2 , or a combination gas of radicals of H 2 and the reducing gas. A method for forming a Co film. 前記コバルトアルキルアミジネイトが、Co(tBu−Et−Et−amd)であることを特徴とする請求項記載のCo膜の形成方法。 4. The method of forming a Co film according to claim 3, wherein the cobalt alkyl amidinate is Co (tBu-Et-Et-amd) 2 .
JP2011529945A 2009-09-02 2010-09-02 Method for forming Co film Active JP5593320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011529945A JP5593320B2 (en) 2009-09-02 2010-09-02 Method for forming Co film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009202890 2009-09-02
JP2009202890 2009-09-02
JP2011529945A JP5593320B2 (en) 2009-09-02 2010-09-02 Method for forming Co film
PCT/JP2010/065064 WO2011027835A1 (en) 2009-09-02 2010-09-02 METHOD FOR FORMING Co FILM

Publications (2)

Publication Number Publication Date
JPWO2011027835A1 JPWO2011027835A1 (en) 2013-02-04
JP5593320B2 true JP5593320B2 (en) 2014-09-24

Family

ID=43649369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011529945A Active JP5593320B2 (en) 2009-09-02 2010-09-02 Method for forming Co film

Country Status (3)

Country Link
JP (1) JP5593320B2 (en)
TW (1) TW201124552A (en)
WO (1) WO2011027835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074215A (en) * 2012-10-05 2014-04-24 Taiyo Nippon Sanso Corp Cleaning method for gas-phase growth apparatus piping, and gas-phase growth apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874781B (en) * 2011-10-07 2016-02-10 气相成长株式会社 Cobalt-based film formation method
JP2013104100A (en) * 2011-11-14 2013-05-30 Taiyo Nippon Sanso Corp Method for depositing metallic thin film and raw material for depositing metallic thin film
JP2014045037A (en) * 2012-08-24 2014-03-13 Ulvac Japan Ltd Deposition method of metal film
JP5917351B2 (en) * 2012-09-20 2016-05-11 東京エレクトロン株式会社 Method for forming metal film
JP2014101564A (en) * 2012-11-21 2014-06-05 Ulvac Japan Ltd Formation method of cobalt film
JP6220649B2 (en) * 2013-11-25 2017-10-25 東京エレクトロン株式会社 Method for forming metal film
CN108475638B (en) 2016-05-16 2022-11-18 株式会社爱发科 Method for forming Cu film
JP6559107B2 (en) * 2016-09-09 2019-08-14 東京エレクトロン株式会社 Film forming method and film forming system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365502B1 (en) * 1998-12-22 2002-04-02 Cvc Products, Inc. Microelectronic interconnect material with adhesion promotion layer and fabrication method
JP2003133377A (en) * 2001-08-14 2003-05-09 Oki Electric Ind Co Ltd Inspection pattern of multilayered wring structure, semiconductor device having inspection pattern, and method and system for inspecting semiconductor device
WO2004061154A1 (en) * 2002-12-27 2004-07-22 Ulvac Inc. Method for forming tungsten nitride film
JP2005086185A (en) * 2003-09-11 2005-03-31 Tokyo Electron Ltd Deposition method
JP2006511716A (en) * 2002-11-15 2006-04-06 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Atomic layer deposition using metal amidinates.
JP2006257073A (en) * 2005-02-04 2006-09-28 Air Products & Chemicals Inc Organometallic complex and method for depositing using the same
JP2009130288A (en) * 2007-11-27 2009-06-11 Ulvac Japan Ltd Thin-film forming method
WO2009088522A2 (en) * 2007-04-09 2009-07-16 President And Fellows Of Harvard College Cobalt nitride layers for copper interconnects and methods for forming them

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365502B1 (en) * 1998-12-22 2002-04-02 Cvc Products, Inc. Microelectronic interconnect material with adhesion promotion layer and fabrication method
JP2003133377A (en) * 2001-08-14 2003-05-09 Oki Electric Ind Co Ltd Inspection pattern of multilayered wring structure, semiconductor device having inspection pattern, and method and system for inspecting semiconductor device
JP2006511716A (en) * 2002-11-15 2006-04-06 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Atomic layer deposition using metal amidinates.
WO2004061154A1 (en) * 2002-12-27 2004-07-22 Ulvac Inc. Method for forming tungsten nitride film
JP2005086185A (en) * 2003-09-11 2005-03-31 Tokyo Electron Ltd Deposition method
JP2006257073A (en) * 2005-02-04 2006-09-28 Air Products & Chemicals Inc Organometallic complex and method for depositing using the same
WO2009088522A2 (en) * 2007-04-09 2009-07-16 President And Fellows Of Harvard College Cobalt nitride layers for copper interconnects and methods for forming them
JP2009130288A (en) * 2007-11-27 2009-06-11 Ulvac Japan Ltd Thin-film forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074215A (en) * 2012-10-05 2014-04-24 Taiyo Nippon Sanso Corp Cleaning method for gas-phase growth apparatus piping, and gas-phase growth apparatus

Also Published As

Publication number Publication date
JPWO2011027835A1 (en) 2013-02-04
WO2011027835A1 (en) 2011-03-10
TW201124552A (en) 2011-07-16

Similar Documents

Publication Publication Date Title
JP5593320B2 (en) Method for forming Co film
TWI809712B (en) Method of forming cobalt layer on substrate
TWI623643B (en) Tungsten growth modulation by controlling surface composition
JP4674061B2 (en) Thin film formation method
JPWO2011027834A1 (en) Method for forming Co film and method for forming Cu wiring film
TW201131005A (en) Process for production of ni film
US8722526B2 (en) Growing of gallium-nitrade layer on silicon substrate
KR20140085329A (en) Manganese-containing film forming method, processing system, electronic device manufacturing method and electronic device
Kim et al. Remote plasma enhanced atomic layer deposition of titanium nitride film using metal organic precursor (C12H23N3Ti) and N2 plasma
JP5371783B2 (en) ULSI fine wiring member having ruthenium electroplating layer on barrier layer
TWI732976B (en) Methods for silicide formation
US6969677B2 (en) Methods of forming conductive metal silicides by reaction of metal with silicon
TWI671422B (en) Thin film formation method
TW200818272A (en) Film forming method and film forming apparatus
KR101621852B1 (en) Semiconductor device and method for manufacturing the same
KR100872799B1 (en) Manufacturing method of metal silicide by plasma-enhanced atomic layer deposition for contact application in semiconductor devices
KR100609049B1 (en) Method for forming metal interconnection of semiconductor device
CN103579100A (en) Method for preparing ultra-thin copper seed crystal layer on diffusion barrier layer and application thereof
TWI261873B (en) Plasma treatment to lower CVD Cu film resistivity and enhance Cu(111)/Cu(200) peak ratio
JP2004014626A (en) SEED FILM AND FORMING METHOD THEREOF, Cu WIRE AND FORMING METHOD THEREOF, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF, AND MANUFACTURING APPARATUS FOR SEMICONDUCTOR DEVICE
Ohta et al. Cu displacement plating on electroless plated CoWB layer on SiO2 and its adhesion property
KR20100025870A (en) Preparation of copper thin films using copper precursor by atomin layer deposition
KR20070097188A (en) Method for fabricating semiconductor device
JP2008047929A (en) Barrier film manufacturing method
KR20190081455A (en) Method of manufacturing a cobalt-containing thin film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R150 Certificate of patent or registration of utility model

Ref document number: 5593320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250