KR20140037703A - Transition metal dichalcogenides device formed by re-crystallization and transistor device using the same - Google Patents

Transition metal dichalcogenides device formed by re-crystallization and transistor device using the same Download PDF

Info

Publication number
KR20140037703A
KR20140037703A KR1020120104188A KR20120104188A KR20140037703A KR 20140037703 A KR20140037703 A KR 20140037703A KR 1020120104188 A KR1020120104188 A KR 1020120104188A KR 20120104188 A KR20120104188 A KR 20120104188A KR 20140037703 A KR20140037703 A KR 20140037703A
Authority
KR
South Korea
Prior art keywords
transition metal
metal chalcogenide
recrystallized
compound
transition
Prior art date
Application number
KR1020120104188A
Other languages
Korean (ko)
Other versions
KR101381169B1 (en
Inventor
김선국
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020120104188A priority Critical patent/KR101381169B1/en
Publication of KR20140037703A publication Critical patent/KR20140037703A/en
Application granted granted Critical
Publication of KR101381169B1 publication Critical patent/KR101381169B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

The present invention relates to a transition metal dichalcogenides device formed by re-crystallization and a transistor device using the same. The present invention is to form single and poly crystals by performing a laser annealing process on amorphous transition metal dichalcogenides formed by a deposition process. For this, a semiconductor channel material is formed by recrystallizing the single and poly crystalline transition metal dichalcogenides by annealing the amorphous transition metal dichalcogenides obtained by the deposition process. [Reference numerals] (AA) After/before laser annealing Vgs_ld

Description

재결정화된 전이금속 칼코겐화합물 소자 및 이를 이용한 트랜지스터 소자{transition metal dichalcogenides device formed by re-crystallization and transistor device using the same}Transition metal dichalcogenides device formed by re-crystallization and transistor device using the same}

본 발명은 재결정화된 전이금속 칼코겐화합물 소자 및 이를 이용한 트랜지스터 소자에 관한 것으로서, 보다 상세하게는 증착에 의해 형성되는 비결정질 전이금속 칼코겐화합물을 레이저 어닐링에 의해 단결정 또는 다결정으로 형성되도록 한 발명에 관한 것이다.The present invention relates to a recrystallized transition metal chalcogenide device and a transistor device using the same, and more particularly, to an amorphous transition metal chalcogenide compound formed by vapor deposition to be formed into a single crystal or polycrystal by laser annealing. It is about.

최근 차세대 디스플레이에 관한 연구로서 플렉시블 디스플레이, 투명 디스플레이, 3D 디스플레이 및 고해상도 디스플레이에 관한 연구가 매우 활발히 진행중에 있다. 이러한 차세대 디스플레이 구현을 위해 현재의 기술은 비결정질 실리콘(a-Si), LTPS(low temperature poly silicon) 박막형 필름을 채널물질로 사용한 TFT(thin film transistor)를 이용하지만 고온 증착시 플렉시블 기판의 기계적 변형에 의한 문제점이 있다. 또한, 구부러지는 동안 쉽게 깨지는 특성, 불투명성, 및 무엇보다도 가장 큰 단점인 물질의 이동도가 30cm2/Vsec 이하이므로 고해상도를 적용하기에 큰 한계성을 보이고 있었다.
Recently, research on flexible display, transparent display, 3D display, and high resolution display has been actively conducted as a research on next generation display. Current technology uses thin film transistor (TFT) using amorphous silicon (a-Si) and low temperature poly silicon (LTPS) thin film as channel material for realizing next-generation display, but it is effective in mechanical deformation of flexible substrate at high temperature deposition. There is a problem. In addition, because of the property of breaking easily during bending, opacity, and most of all, the material's mobility is 30 cm 2 / Vsec or less showed a big limitation to apply high resolution.

차세대 디스플레이에 대한 조건으로 종래의 실리콘은 투명하지 않고, 이동도가 상술한 바와 같이 30cm2/V·sec 이하이고, 기계적 안정성 즉, 구부러짐 동안 박막 타입인 실리콘은 쉽게 깨지는 현상이 발생되어 차세대 디스플레이에 대한 요건을 만족시키지 못하고 있다.
As a condition for the next generation display, the conventional silicon is not transparent, the mobility is 30 cm 2 / V · sec or less as described above, and the mechanical stability, that is, the thin film type silicon during the bending is easily broken, so Does not meet the requirements.

따라서, 실리콘이 갖지 못한 차세대 디스플레이에 대한 요건을 만족시키기 위해 고이동도, 고유연성, 및 고투과성을 보이는 반도체 채널물질의 개발이 필요되고 있었다.Accordingly, there has been a need for the development of semiconductor channel materials that exhibit high mobility, high flexibility, and high transparency in order to satisfy the requirements for the next generation display that silicon does not have.

대한민국등록특허공보 제10-0953422호(발명의 명칭 : 다결정 실리콘 박막 제조 방법 및 장치)에서는 결정화도가 높고 단 시간 내 보다 큰 결정입자를 형성할 수 있는 다결정 실리콘의 제조방법에 관한 발명이다.Korean Patent Publication No. 10-0953422 (name and method of manufacturing a polycrystalline silicon thin film) of the present invention relates to a method for producing polycrystalline silicon having high crystallinity and capable of forming larger crystal grains within a short time. 이를 위해 선행기술문헌에서는 실리콘 화합물을 플라즈마와 반응시켜 증착하는 단계와 증착된 실리콘 입자를 어닐링을 통해 더 큰 다결정 실리콘 입자로 성장시키는 단계를 포함하여 이루어진다.To this end, the prior art document includes a step of depositing a silicon compound by reacting with a plasma and growing the deposited silicon particles into larger polycrystalline silicon particles through annealing. 이러한 선행기술문헌에서는 실리콘 화합물을 플라즈마 및 어닐링을 통해 더 큰 입자로 성장시키는 발명에 관한 것이나 본 발명에서는 실리콘 화합물이 아닌 전이금속 칼코겐화합물을 엑시머 레이저 빔에 의해 어닐링하여 단결정 또는 다결정질로 재결정화하여 반도체 채널을 형성시키는 발명에 관한 것이다.This prior art document relates to the invention of growing a silicon compound into larger particles through plasma and annealing, but in the present invention, a transition metal chalcogenide, which is not a silicon compound, is annealed with an excimer laser beam to recrystallize it into single crystal or polycrystalline. To form a semiconductor channel.

따라서, 본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 창출된 것으로서, 성장 조건에 따라 이동도가 낮게 형성 시 전자의 이동도 향상과 기판의 손상을 막기 위해 기존의 열처리를 대신하여 레이저 어닐링을 통해 순간적으로 비결정질 전이금속 칼코겐화합물을 단결정 또는 다결정질 물질로 재결정화하여 반도체 채널을 형성함으로써 이동도를 향상시키는 발명을 제공하는데 그 목적이 있다.Therefore, the present invention was created in order to solve the problems described above. When the mobility is low depending on the growth conditions, laser annealing is used instead of the conventional heat treatment to improve electron mobility and prevent damage to the substrate. An object of the present invention is to provide an invention for improving mobility by instantaneously recrystallizing an amorphous transition metal chalcogenide compound into a single crystal or polycrystalline material to form a semiconductor channel.

그러나, 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.

전술한 본 발명의 목적은, 증착에 따른 비결정질 전이금속 칼코겐화합물을 어닐링에 의해 단결정 또는 다결정 전이금속 칼코겐화합물로 재결정화하여 반도체 채널물질을 형성하는 것을 특징으로 하는 재결정화된 전이금속 칼코겐화합물 소자를 제공함으로써 달성될 수 있다.The above-described object of the present invention is a recrystallized transition metal chalcogen characterized in that the amorphous transition metal chalcogenide according to the deposition is recrystallized into a single crystal or polycrystalline transition metal chalcogenide by annealing to form a semiconductor channel material. It can be achieved by providing a compound device.

또한, 재결정은 에너지 빔의 조사에 의해 이루어진다.In addition, recrystallization is made by irradiation of an energy beam.

또한, 전이금속 칼코겐화합물은, 단층 또는 다층으로 이루어진다.In addition, the transition metal chalcogenide compound consists of a single layer or multiple layers.

또한, 단층 전이금속 칼코겐화합물은 직접 천이 밴드갭에 의해 빛을 흡수하고, 다층 전이금속 칼코겐화합물은 간접 천이 밴드갭에 의해 빛을 흡수한다.In addition, the single-layer transition metal chalcogenide absorbs light by the direct transition bandgap, and the multilayer transition metal chalcogenide absorbs light by the indirect transition bandgap.

또한, 전이금속 칼코겐화합물은, MoS2, MoSe2, WSe2, MoTe2, 및 SnSe2 중 적어도 어느 하나의 화합물이다.The transition metal chalcogenide compound is at least one of MoS 2 , MoSe 2 , WSe 2 , MoTe 2 , and SnSe 2 .

또한, 다층 전이금속 칼코겐화합물은, 자외선에서 근적외선 영역까지의 파장을 흡수한다.
In addition, the multilayer transition metal chalcogenide absorbs wavelengths from the ultraviolet to the near infrared region.

한편, 본 발명의 목적은 게이트, 드레인, 소스로 형성되는 복수의 전극, 및On the other hand, an object of the present invention is a plurality of electrodes formed of a gate, a drain, a source, and

제 1 항에 따른 재결정화된 전이금속 칼코겐화합물 소자에 의해 드레인 및 소스 전극 사이에 형성된 반도체 채널을 포함하는 것을 특징으로 하는 재결정화된 전이금속 칼코겐화합물을 이용한 트랜지스터 소자를 제공함으로써 달성될 수 있다.It can be achieved by providing a transistor device using a recrystallized transition metal chalcogenide compound comprising a semiconductor channel formed between the drain and the source electrode by the recrystallized transition metal chalcogenide device according to claim 1. have.

전술한 바와 같은 본 발명에 의하면 레이저 어닐링에 의한 재결정화를 통해 비결정질 전이금속 칼코겐화합물이 단결정 또는 다결정질 물질로 결정화됨에 따라 산란이 줄어들어 전자의 이동도가 빨라지는 효과가 있다.According to the present invention as described above, as the amorphous transition metal chalcogenide crystallizes into a single crystal or a polycrystalline material through recrystallization by laser annealing, scattering is reduced and electron mobility is increased.

또한, 전이금속 칼코겐화합물에 의해 고투과성 및 고유연성을 구현함으로써 투명 디스플레이 또는 플렉시블 디스플레이에 사용될 수 있는 효과가 있다.In addition, by implementing a high permeability and high flexibility by the transition metal chalcogenide compound has an effect that can be used in a transparent display or a flexible display.

또한, 다층 전이금속 칼코겐화합물이 재결정화를 통해 다결정질 물질로 됨에 따라 실리콘 물질에 비해 이동도가 더욱 빨라지는 효과가 있다.In addition, as the multi-layered transition metal chalcogenide becomes a polycrystalline material through recrystallization, mobility of the multilayer transition metal chalcogen compound is faster than that of the silicon material.

또한, 전자의 이동도가 빨라짐에 따라 전력소모가 작고 소자의 크기를 줄일 수 있는 효과가 있다.In addition, as the mobility of electrons increases, power consumption is small and the size of the device can be reduced.

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.
도 1은 단층 MoS2의 삼차원적 구조를 나타낸 도면이고,
도 2는 단층 MoS2 트랜지스터의 삼차원적 도면이고
도 3은 서로 다른 두께를 가지는 MoS2 결정의 흡수 스펙트럼 도면이고,
도 4는 벌크 MoS2의 밴드 구조를 나타낸 도면이고,
도 5는 직접 천이 밴드갭의 E-k 도면이고
도 6은 간접 천이 밴드갭의 E-k 도면이고
도 7은 MoS2 포토트랜지스터의 Id-Vgs 특성곡선이다.
도 8은 세 종류의 고체를 도시한 도면이고,
도 9는 엑시머 레이저 빔이 전이금속 칼코겐화합물에 조사되는 도면이고,
도 10은 레이저 빔의 조사에 의해 비결정질 물질이 다결정질 물질로 재결정화되어 그레인 바운드리가 넓어진 도면이고,
도 11, 도 12, 도 13은 레이저 빔의 조사 전/후를 나타낸 특성곡선이다.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention and, together with the description, serve to further the understanding of the technical idea of the invention, It should not be construed as limited.
1 is a view showing a three-dimensional structure of a single layer MoS 2 ,
2 is a three-dimensional view of a single layer MoS 2 transistor
3 is an absorption spectrum diagram of MoS 2 crystals having different thicknesses,
4 is a view showing the band structure of the bulk MoS 2 ,
5 is an Ek diagram of a direct transition bandgap
6 is an Ek diagram of an indirect transition bandgap.
7 is an Id-Vgs characteristic curve of a MoS 2 phototransistor.
8 shows three kinds of solids,
9 is a diagram in which an excimer laser beam is irradiated to a transition metal chalcogenide compound,
10 is a view in which the grain boundary is widened by recrystallizing an amorphous material into a polycrystalline material by irradiation of a laser beam,
11, 12, and 13 are characteristic curves showing before and after irradiation of a laser beam.

이하, 도면을 참조하여 본 발명의 바람직한 일실시예에 대해서 설명한다. 또한, 이하에 설명하는 일실시예는 특허청구범위에 기재된 본 발명의 내용을 부당하게 한정하지 않으며, 본 실시 형태에서 설명되는 구성 전체가 본 발명의 해결 수단으로서 필수적이라고는 할 수 없다.
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. In addition, the embodiment described below does not unduly limit the content of the present invention described in the claims, and the entire structure described in this embodiment is not necessarily essential as the solution means of the present invention.

<재결정화된 전이금속 Recrystallized transition metal 칼코겐화합물Chalcogenide 소자의 구성> Device Configuration>

2차원 물질은 일차원 물질과 비교했을 때 복잡한 구조를 제조하기가 상대적으로 쉬어 차세대 나노전자소자의 물질로 이용하기에 적합하다. 이러한 2차원 물질 중 2차원 전이금속 칼코겐화합물(2D Transition Metal Dichalcogenides)은 판상구조를 갖으며 MoS2, MoSe2, WSe2, MoTe2, 또는 SnSe2 화합물로 이루어진다.
Compared with one-dimensional materials, two-dimensional materials are relatively easy to manufacture complex structures, making them suitable for use as materials for next-generation nanoelectronic devices. Of these two-dimensional materials, 2D transition metal dichalcogenides have a plate-like structure and are formed of MoS 2 , MoSe 2 , WSe 2 , MoTe 2 , or SnSe 2 . It consists of a compound.

(단층 전이금속 (Single layer transition metal 칼코겐화합물과Chalcogen Compounds 다층 전이금속  Multilayer transition metal 칼코겐화합물의Chalcogenide 차이점) difference)

이 중에서 단층 MoS2의 구조 및 단층 MoS2를 이용한 트랜지스터는 도 1 및 도 2에 도시된 바와 같다. 도 1에 도시된 바와 같이 단층 MoS2 결정은 수직적으로 쌓여있는 구조이고 단층(single layer)의 두께는 6.5Å으로 반더발스(van der Waals) 상호작용으로부터 층을 형성하고 있다.
Among them, a transistor using a single-layer structure, and MoS 2, MoS 2, a single layer is shown in Figs. As shown in FIG. 1, the monolayer MoS 2 crystals are vertically stacked, and the single layer has a thickness of 6.5 Å to form a layer from van der Waals interaction.

단층 전이금속 칼코겐화합물인 MoS2는 1.8eV의 고유 밴드갭을 가지며 물질 고유의 이동성(mobility)은 0.5 ~ 3cm2V-1s-1이다. 상술한 단층 MoS2는 도 3의 T2, T3 그래프와 같이 약 700nm 아래의 파장을 흡수할 수 있다. 도 3에 도시된 T1, T2, T3는 MoS2 결정의 두께를 나타내며, 두께는 T1 > T2 > T3 순으로서 T1은 약 40nm, T2는 약 4nm, T3는 약 1nm이다.
MoS 2 , a monolayer transition metal chalcogenide, has an intrinsic bandgap of 1.8 eV and inherent mobility of 0.5 to 3 cm 2 V −1 s −1 . The single layer MoS 2 described above can absorb wavelengths below about 700 nm as shown in the T2 and T3 graphs of FIG. 3. T1, T2 and T3 shown in Figure 3 is MoS 2 The thickness of the crystal is shown in the order of T1>T2> T3, T1 is about 40 nm, T2 is about 4 nm, and T3 is about 1 nm.

도 3 및 도 4에 도시된 흡수 최고점 "A", "B"는 가전자 밴드(valance band) 스핀-궤도 결합으로부터 에너지 분리된 직접 천이 밴드갭에 상응하며, 꼬리 "I"는 간접 천이 밴드갭에 상응한다.
The absorption peaks “A” and “B” shown in FIGS. 3 and 4 correspond to direct transition bandgaps which are energy separated from the valence band spin-orbit coupling, and tail “I” corresponds to the indirect transition bandgap. Corresponds to

한편, 도 5에 도시된 바와 같이 직접 천이 밴드갭은 가전자대의 에너지 Ev(k)가 전도대의 에너지 Ec(k)와 같은 파수 k로 발생하는 경우이고, 도 6에 도시된 바와 같이 위의 두 에너지가 다른 파수 값에서 생기는 것을 간접 천이 밴드갭이라 한다. 직접 천이 밴드갭은 광 방사 에너지

Figure pat00001
에 의해 가전자가 전도대에 직접 천이하지만, 간접 천이 밴드갭은 전도대에 간접 천이하며 그때 에너지 Eph의 포논(phonon)을 발생한다.
Meanwhile, as illustrated in FIG. 5, the direct transition band gap is a case where the energy E v (k) of the valence band occurs at a wave number k equal to the energy E c (k) of the conduction band, and as shown in FIG. 6. It is called indirect transition bandgap that the two energies of are generated at different frequency values. Direct transition bandgap is light emission energy
Figure pat00001
By the home appliance directly transitions to the conduction band, the indirect transition bandgap indirectly transitions to the conduction band and then generates a phonon of energy E ph .

따라서, 직접 천이 밴드갭에서의

Figure pat00002
이고, 간접 천이 밴드갭에서의
Figure pat00003
이다. 이와 같이 간접 천이 밴드갭에서는 Eph가 발생됨으로써 직접 천이 밴드갭에서의 에너지 갭이 1.8eV(단층 MoS2)에서 1.35eV(다층 MoS2)로 낮아지게 된다. 이때 다층은 3층 이상인 경우가 바람직하다.
Therefore, in the direct transition bandgap
Figure pat00002
In the indirect transition bandgap
Figure pat00003
to be. As such, in the indirect transition band gap, E ph is generated so that the energy gap in the direct transition band gap is lowered from 1.8 eV (single layer MoS 2 ) to 1.35 eV (multi layer MoS 2 ). At this time, it is preferable that a multilayer is three or more layers.

에너지 갭이 1.8eV에서 1.35eV로 낮아지는 경우에는 다음의 수학식 1에 의해 파장 값이 변하게 된다.
When the energy gap is lowered from 1.8eV to 1.35eV, the wavelength value is changed by Equation 1 below.

Figure pat00004
Figure pat00004

에너지 갭이 1.8eV인 경우보다 1.35eV인 경우, 즉 스몰 밴드갭(small bandgap)인 경우에 파장(

Figure pat00005
)값이 커지며, 이는 단층 MoS2를 사용하는 경우보다 다층 MoS2를 사용하는 경우 더 넓은 범위의 파장을 흡수할 수 있음을 도 3의 T1, T2, T3 그래프를 통해 알 수 있다.
If the energy gap is 1.35 eV rather than 1.8 eV, i.e. small bandgap, the wavelength (
Figure pat00005
) Becomes larger, the value, which can be seen through a further in Figure 3 that it is possible to absorb the wavelength of a wide range T1, T2, T3 graph case of using a multi-layer MoS 2 than it would be with a single layer MoS 2.

단층 MoS2의 경우에는 일반적으로 700nm 아래의 파장을 흡수할 수 있으나, 본 발명에 따른 다층 MoS2(바람직하게는 3층 이상)의 경우에는 1000nm 아래의 모든 파장을 흡수할 수 있다. 이는 근적외선(near IR)에서부터 자외선(ultra violet)까지의 파장대를 감지할 수 있음을 의미한다.
In the case of a single layer MoS 2 it can generally absorb a wavelength below 700nm, in the case of a multi-layer MoS 2 (preferably three or more layers) according to the present invention can absorb all wavelengths below 1000nm. This means that the wavelength range from near IR to ultra violet can be detected.

단층 또는 다층 전이금속 칼코겐화합물 소자는 도 7에 도시된 바와 같이 빛이 입사되지 않을 때와 빛이 입사될 때(633nm의 50mWcm-2 강도)의 Id가 약 103 차이가 남을 알 수 있으며 이에 의해 스위칭 소자로 사용될 수 있다.
In the single- or multi-layered transition metal chalcogenide device, as shown in FIG. 7, when the light is not incident and when the light is incident (intensity of 50mWcm -2 of 633 nm), the I d is approximately 10 3 . This can be used as a switching element.

상술한 단층 또는 다층 전이금속 칼코겐화합물은 화학기상증착(CVD), PE-CVD, 원자층 증착(ALD), 또는 스퍼터(sputter) 등의 종래의 일반적인 증착방식을 이용하여 증착되므로 대면적 증착이 용이하다.
The above-described single layer or multilayer transition metal chalcogenide compound is deposited by using a conventional general deposition method such as chemical vapor deposition (CVD), PE-CVD, atomic layer deposition (ALD), or sputtering. It is easy.

(단결정 또는 (Single crystal or 다결정Polycrystalline 다층 전이금속  Multilayer transition metal 칼코겐화합물Chalcogenide 소자) device)

일반적으로 반도체에 사용되는 고체는 단결정, 다결정, 비정질 이 세가지로 나눌 수 있다. 결정이라함은 분자의 규칙적인 배열이라고 정의되며 이 규칙적인 배열이 고체 전체에 균일하게 이루어져 있으면 단결정(결정질, Crystalline)이라고 하고, 부분적으로는 결정을 이루지만 전체적으로는 하나의 균일한 결정이 아닌 경우를 다결정(다결정질, Poly Crystal)이라 한다. 한편, 비정질(Amorphous, 비결정질)은 고체이지만 분자가 무작위로 배열되어 규칙이 없는 경우를 말한다. 이러한 예가 도 8에 단결정(10), 다결정(20), 비정질(30)로 나타나있다.
Generally, solids used in semiconductors can be classified into three types: monocrystalline, polycrystalline, and amorphous. Crystals are defined as regular arrays of molecules, and when these regular arrays are homogeneous throughout the solid, they are called single crystals (crystalline, crystalline), and they form crystals in part but not as a single uniform crystal as a whole. Is called polycrystalline (polycrystalline). On the other hand, amorphous (amorphous) is a case in which there are no rules due to random arrangement of molecules. An example of this is shown in FIG. 8 as single crystal 10, polycrystal 20, and amorphous 30.

이때, 결정질은 한 개의 그레인(grain)으로 이루어진 물질이고, 다결정질은 여러 개의 그레인으로 이루어진 물질로 각 그레인마다 결정 방향이 다르다. 비정질은 도 8에 도시된 바와 같이 분자가 무작위로 배열되어 있고, 중간 중간의 불순물 성분 때문에 산란(scattering)이 발생되어 전자 이동이 더디다. 따라서 비정질을 이용하여 반도체 채널을 형성하는 경우 이동도가 좋지 않다.
At this time, the crystalline is a material consisting of one grain (grain), the polycrystalline material is made of a plurality of grains, the crystal direction is different for each grain. In amorphous, molecules are randomly arranged as shown in FIG. 8, and scattering occurs due to an intermediate impurity component, resulting in slow electron transfer. Therefore, in the case of forming the semiconductor channel using amorphous, the mobility is not good.

여기서, 단층 또는 다층 전이금속 칼코겐화합물의 일반적인 대면적 성장은 앞서 설명한 증착방식과 동일하게 스퍼터링, ALD, CVD 등의 방식을 택하여 증착한다. 그러나 이렇게 증착이 되면 비결정질로 증착이 되어서 전이금속 칼코겐화합물이 실질적으로 가지고 있는 고유의 이동도를 구현할 수 없게 된다.
Here, the general large area growth of the single- or multi-layered transition metal chalcogenide compound is deposited by sputtering, ALD, CVD, etc. in the same manner as the deposition method described above. However, if the deposition is made in such a way that the deposition is amorphous, it is impossible to realize the inherent mobility of the transition metal chalcogenide substantially.

따라서, 본 발명에서는 이러한 물질의 이동도 향상과 기판상의 손상을 막기 위해 기존의 열처리를 대신하여 팸토세컨 레이저 어닐링을 통해 순간적으로 비결정질 물질을 단결정 또는 다결정질 물질로 재결정화하여 물질의 이동도를 향상시킨다. 레이저 어닐링은 채널물질의 결정화를 도울 뿐만 아니라, 반도체-도체의 접합부분에서도 적용하여 접촉저항(contact resistance)를 낮춤으로써 전기적 전도도를 향상시킬 수도 있다.
Therefore, in the present invention, in order to improve the mobility of the material and to prevent damage on the substrate, instead of the conventional heat treatment, instantaneous recrystallization of the amorphous material into a single or polycrystalline material through femtosecond laser annealing to improve the mobility of the material. Let's do it. Laser annealing not only helps to crystallize the channel material but can also be applied at the junction of the semiconductor-conductor to improve the electrical conductivity by lowering the contact resistance.

도 9에 도시된 바와 같이 본 발명에 따른 레이저 어닐링은 엑시머 레이저 어닐링으로서 기판(40) 위에 증착된 물질(5, 일예로 단층 또는 다층 전이금속 칼코겐화합물)에 레이저 빔(60)을 조사하여 비결정질 물질을 단결정 또는 다결정질 물질로 재결정화한다. 재결정화된 단층 또는 다층 전이금속 칼코겐화합물은 도 10에 도시된 바와 같이 비결정질(30)에서 다결정질(20)로 재결정화되어 그레인 바운드리(grain boundary)가 넓어져서 산란이 방지되어 이동도가 증가한다. 또한, 엑시머 레이저 어닐링에 의해 다층 전이금속 칼코겐화합물과 소스/드레인 전극의 접합부분의 접합저항을 향상시킴으로 이동도가 빨라지게 된다.
As shown in FIG. 9, the laser annealing according to the present invention is an excimer laser annealing that irradiates a laser beam 60 to a material (for example, a single layer or a multi-layer transition metal chalcogenide) deposited on a substrate 40 in an amorphous state. The material is recrystallized into a monocrystalline or polycrystalline material. The recrystallized single or multilayer transition metal chalcogenide is recrystallized from amorphous (30) to polycrystalline (20) as shown in FIG. 10 so that grain boundaries are widened to prevent scattering and mobility. Increases. In addition, the excimer laser annealing improves the bonding resistance of the junction portion between the multilayer transition metal chalcogenide and the source / drain electrodes, thereby increasing mobility.

상술한 바와 같이, 본 발명에서는 팸토세컨 레이저 어닐링을 통해 기판의 기계적 손상없이 전이금속 칼코겐화합물을 재결정화하여 반도체 채널물질을 형성한다. 특히, 다층 전이금속 칼코겐화합물의 경우에는 스퍼터링에 의한 비결정질 증착에 의해 물질 고유의 이동도가 줄어드는 문제점을 레이저 어닐링을 통한 재결정화에 의해 이동도를 150cm2/V·sec로 향상시킬 수 있다. 이러한 전이금속 칼코겐화합물의 재결정화에 따른 이동도는 앞서 설명한 실리콘에 의한 이동도에 비해 우수함을 알 수 있다.
As described above, in the present invention, the semiconductor metal material is formed by recrystallizing the transition metal chalcogenide compound without mechanical damage to the substrate through femtosecond laser annealing. In particular, in the case of a multi-layered transition metal chalcogenide, the mobility inherent in the material is reduced by amorphous deposition by sputtering, and the mobility may be improved to 150 cm 2 / V · sec by recrystallization through laser annealing. It can be seen that the mobility due to the recrystallization of the transition metal chalcogenide compound is superior to the mobility due to the silicon described above.

도 11에 도시된 바와 같이 레이저 어닐링 전/후에 따라 드레인 전류가 변화되어 이동도가 향상됨을 알 수 있다. 또한, 도 12는 레이저 어닐링 전이며, 도 13은 레이저 어닐링 후로서 레이저 어닐링 전/후에 따라 비결정질 전이금속 칼코겐화합물이 단결정 또는 다결정 전이금속 칼코겐화합물로 재결정화되어 드레인 전류가 더욱 증가함을 알 수 있다.
As shown in FIG. 11, it can be seen that drain current is changed according to before and after laser annealing, thereby improving mobility. 12 shows that before the laser annealing, and FIG. 13 shows that after the laser annealing, before and after the laser annealing, the amorphous transition metal chalcogenide is recrystallized into a single crystal or a polycrystalline transition metal chalcogenide to increase the drain current. Can be.

(재결정화된 전이금속 (Recrystallized transition metal 칼코겐화합물을Chalcogenide 이용한 트랜지스터 소자) Transistor element)

도 2에 도시된 바와 같이 드레인 및 소스 전극 사이에 상술한 재결정화된 전이금속 칼코겐화합물을 이용하여 채널물질을 형성함으로써 차세대 디스플레이에 적합한 TFT를 구성할 수 있다.
As shown in FIG. 2, a channel material is formed using the above-described recrystallized transition metal chalcogen compound between the drain and source electrodes, thereby forming a TFT suitable for a next generation display.

상술한 게이트, 드레인, 및 소스 전극을 투명 전극으로 구성하는 경우에는 고투과성을 지닌 투명 디스플레이를 구현할 수 있다.
When the gate, drain, and source electrodes described above are configured as transparent electrodes, a transparent display having high transparency can be implemented.

이상, 본 발명의 일실시예를 참조하여 설명했지만, 본 발명이 이것에 한정되지는 않으며, 다양한 변형 및 응용이 가능하다. 즉, 본 발명의 요지를 일탈하지 않는 범위에서 많은 변형이 가능한 것을 당업자는 용이하게 이해할 수 있을 것이다.Although the present invention has been described with reference to the embodiment thereof, the present invention is not limited thereto, and various modifications and applications are possible. In other words, those skilled in the art can easily understand that many variations are possible without departing from the gist of the present invention.

1 : 단층 MoS2 트랜지스터
10 : 단결정
20 : 다결정
30 : 비정질(비결정질)
40 : 기판
50 : 증착물질
60 : 레이저 빔
1: single layer MoS 2 transistor
10: single crystal
20 polycrystalline
30: amorphous (amorphous)
40: substrate
50: deposition material
60: laser beam

Claims (7)

증착에 따른 비결정질 전이금속 칼코겐화합물을 어닐링에 의해 단결정 또는 다결정 전이금속 칼코겐화합물로 재결정화하여 반도체 채널물질을 형성하는 것을 특징으로 하는 재결정화된 전이금속 칼코겐화합물 소자.
A recrystallized transition metal chalcogenide device, characterized in that a semiconductor channel material is formed by recrystallization of an amorphous transition metal chalcogenide compound by deposition into a single crystal or polycrystalline transition metal chalcogenide compound.
제 1 항에 있어서,
상기 재결정은 에너지 빔의 조사에 의해 이루어지는 것을 특징으로 하는 재결정화된 전이금속 칼코겐화합물 소자.
The method of claim 1,
The recrystallization is a recrystallized transition metal chalcogenide device, characterized in that by the irradiation of the energy beam.
제 1 항에 있어서,
상기 전이금속 칼코겐화합물은,
단층 또는 다층으로 이루어지는 것을 특징으로 하는 재결정화된 전이금속 칼코겐화합물 소자.
The method of claim 1,
The transition metal chalcogenide compound,
A recrystallized transition metal chalcogenide device, comprising a single layer or multiple layers.
제 3 항에 있어서,
단층 전이금속 칼코겐화합물은 직접 천이 밴드갭에 의해 빛을 흡수하고,
다층 전이금속 칼코겐화합물은 간접 천이 밴드갭에 의해 빛을 흡수하는 것을 특징으로 하는 재결정화된 전이금속 칼코겐화합물 소자.
The method of claim 3, wherein
Monolayer transition metal chalcogenides absorb light directly by the transition bandgap,
A multi-layered transition metal chalcogenide compound absorbs light by an indirect transition bandgap.
제 1 항에 있어서,
상기 전이금속 칼코겐화합물은,
MoS2, MoSe2, WSe2, MoTe2, 및 SnSe2 중 적어도 어느 하나의 화합물인 것을 특징으로 하는 재결정화된 전이금속 칼코겐화합물 소자.
The method of claim 1,
The transition metal chalcogenide compound,
A recrystallized transition metal chalcogenide device, characterized in that the compound is at least one of MoS 2 , MoSe 2 , WSe 2 , MoTe 2 , and SnSe 2 .
제 4 항에 있어서,
상기 다층 전이금속 칼코겐화합물은,
자외선에서 근적외선 영역까지의 파장을 흡수할 수 있는 것을 특징으로 하는 다결정 다층 전이금속 칼코겐화합물 소자.
5. The method of claim 4,
The multilayer transition metal chalcogenide compound,
A polycrystalline multilayer transition metal chalcogenide device, which can absorb wavelengths from the ultraviolet to the near infrared region.
게이트, 드레인, 소스로 형성되는 복수의 전극 및
제 1 항에 따른 재결정화된 전이금속 칼코겐화합물 소자에 의해 드레인 및 소스 전극 사이에 형성된 반도체 채널을 포함하는 것을 특징으로 하는 재결정화된 전이금속 칼코겐화합물을 이용한 트랜지스터 소자.
A plurality of electrodes formed of a gate, a drain, a source, and
A transistor device using a recrystallized transition metal chalcogenide compound comprising a semiconductor channel formed between a drain and a source electrode by the recrystallized transition metal chalcogenide device according to claim 1.
KR1020120104188A 2012-09-19 2012-09-19 transition metal dichalcogenides device formed by re-crystallization and transistor device using the same KR101381169B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120104188A KR101381169B1 (en) 2012-09-19 2012-09-19 transition metal dichalcogenides device formed by re-crystallization and transistor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120104188A KR101381169B1 (en) 2012-09-19 2012-09-19 transition metal dichalcogenides device formed by re-crystallization and transistor device using the same

Publications (2)

Publication Number Publication Date
KR20140037703A true KR20140037703A (en) 2014-03-27
KR101381169B1 KR101381169B1 (en) 2014-04-04

Family

ID=50646470

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120104188A KR101381169B1 (en) 2012-09-19 2012-09-19 transition metal dichalcogenides device formed by re-crystallization and transistor device using the same

Country Status (1)

Country Link
KR (1) KR101381169B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160120057A (en) * 2015-04-07 2016-10-17 삼성전자주식회사 Electronic device using 2-dimensional material and method of manufacturing the same
KR20170000318A (en) * 2015-06-22 2017-01-02 기초과학연구원 A semiconductor stack having the characteristics of interlayer orientation-dependent light absorption and emission
KR101957730B1 (en) * 2017-11-16 2019-03-13 한국세라믹기술원 Method of mamufacturing photodetector using transition metal dichalcogenide
WO2020055013A1 (en) * 2018-09-12 2020-03-19 기초과학연구원 Two-dimensional semiconductor, p-type doping method therefor, and two-dimensional semiconductor device comprising same
CN110923632A (en) * 2019-12-12 2020-03-27 集美大学 Preparation method and device of two-dimensional layered material
KR20200072627A (en) * 2018-12-12 2020-06-23 한국세라믹기술원 Method of mamufacturing transition metal dichalcogenide thin film and method of mamufacturing electronic device using the same
KR20200142596A (en) * 2016-08-31 2020-12-22 마이크론 테크놀로지, 인크 Methods of forming semiconductor device structures including two-dimensional material structures

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101627160B1 (en) 2014-05-29 2016-06-03 한국기계연구원 Carbon aerogels, method for manufacturing the same, electrode and electrical device using the same, apparatus using the electrical device
US10269791B2 (en) 2015-03-16 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Field-effect transistors having transition metal dichalcogenide channels and methods of manufacture
WO2016171369A1 (en) 2015-04-24 2016-10-27 경희대학교산학협력단 Photoreactive sensor including optical amplifying phototransistor, display panel including photoreactive sensor, and vehicle control system
KR101728943B1 (en) 2015-04-24 2017-04-20 경희대학교 산학협력단 Sensor for recognizing touch
KR101719411B1 (en) 2015-04-24 2017-03-23 경희대학교 산학협력단 Photo sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621447B1 (en) * 2003-07-10 2006-09-08 인터내셔널 비지네스 머신즈 코포레이션 Solution deposition of chalcogenide films and preparation method of field-effect transistors comprising chalcogenide films
US20060172067A1 (en) * 2005-01-28 2006-08-03 Energy Conversion Devices, Inc Chemical vapor deposition of chalcogenide materials
KR100869235B1 (en) * 2007-05-25 2008-11-18 삼성전자주식회사 Method of manufacturing semiconductor diode and method of manufacturing pram using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160120057A (en) * 2015-04-07 2016-10-17 삼성전자주식회사 Electronic device using 2-dimensional material and method of manufacturing the same
KR20170000318A (en) * 2015-06-22 2017-01-02 기초과학연구원 A semiconductor stack having the characteristics of interlayer orientation-dependent light absorption and emission
KR20200142596A (en) * 2016-08-31 2020-12-22 마이크론 테크놀로지, 인크 Methods of forming semiconductor device structures including two-dimensional material structures
US11393687B2 (en) 2016-08-31 2022-07-19 Micron Technology, Inc. Semiconductor devices including two-dimensional material structures
KR101957730B1 (en) * 2017-11-16 2019-03-13 한국세라믹기술원 Method of mamufacturing photodetector using transition metal dichalcogenide
WO2020055013A1 (en) * 2018-09-12 2020-03-19 기초과학연구원 Two-dimensional semiconductor, p-type doping method therefor, and two-dimensional semiconductor device comprising same
KR20200072627A (en) * 2018-12-12 2020-06-23 한국세라믹기술원 Method of mamufacturing transition metal dichalcogenide thin film and method of mamufacturing electronic device using the same
CN110923632A (en) * 2019-12-12 2020-03-27 集美大学 Preparation method and device of two-dimensional layered material

Also Published As

Publication number Publication date
KR101381169B1 (en) 2014-04-04

Similar Documents

Publication Publication Date Title
KR101381169B1 (en) transition metal dichalcogenides device formed by re-crystallization and transistor device using the same
KR101376732B1 (en) Transparent electronic devices having 2D transition metal dichalcogenides with multi-layers, optoelectronic device, and transistor device
US9719186B2 (en) Two-dimensional large-area growth method for chalcogen compound, method for manufacturing CMOS-type structure, film of chalcogen compound, electronic device comprising film of chalcogen compound, and CMOS-type structure
US11177352B2 (en) Graphene device, methods of manufacturing and operating the same, and electronic apparatus including the graphene device
US11942553B2 (en) Method for fabricating a semiconductor device
JP5116225B2 (en) Manufacturing method of oxide semiconductor device
US10529877B2 (en) Semiconductor devices including two-dimensional materials and methods of manufacturing the semiconductor devices
KR101927579B1 (en) Transition metal dichalcogenide thin film transistor and method of manufacturing the same
KR20120110873A (en) Semiconductor device, method of manufacturing the same and electronic device including semiconductor device
KR20130130915A (en) 2d transition metal dichalcogenides device with multi-layers and semiconductor device
WO2013122084A1 (en) Oxide semiconductor and semiconductor junction element including same
US8778724B2 (en) High volume method of making low-cost, lightweight solar materials
JP5735306B2 (en) Simultaneous bipolar field effect transistor and method of manufacturing the same
KR20160004433A (en) photo device with amplified photoreactivity and method of macufacturing the same
KR101467237B1 (en) Semiconductor device having superlattice-structured thin film laminated by semiconducting thin film and insulating thin film
WO2020031309A1 (en) Thin-film transistor and method for producing same
US8097885B2 (en) Compound semiconductor film, light emitting film, and manufacturing method thereof
Choi et al. Trap-assisted high responsivity of a phototransistor using bi-layer MoSe2 grown by molecular beam epitaxy
Sattar et al. First-principles study on the structural, electronic, vibrational, and optical properties of the Ru-doped SnSe
KR101539294B1 (en) Thin-Film Transistor with ZnO/MgZnO Active Structure
KR101479395B1 (en) Tunneling diode, tunneling transistor, tunneling photodiode, and tunneling phototransistor with the structure of graphene-insulator-semiconductor
JP2013211490A (en) Chalcopyrite solar cell and manufacturing method of the same
KR102436433B1 (en) Thin film transistor and vertical non-volatile memory device including metal oxide channel layer having bixbyite crystal
KR102145387B1 (en) Thin film transistors and a method for fabricating the same
KR102050955B1 (en) Apparatus for manufacturing oxide thin film transistor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170201

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee