KR101376732B1 - Transparent electronic devices having 2D transition metal dichalcogenides with multi-layers, optoelectronic device, and transistor device - Google Patents

Transparent electronic devices having 2D transition metal dichalcogenides with multi-layers, optoelectronic device, and transistor device Download PDF

Info

Publication number
KR101376732B1
KR101376732B1 KR1020120104186A KR20120104186A KR101376732B1 KR 101376732 B1 KR101376732 B1 KR 101376732B1 KR 1020120104186 A KR1020120104186 A KR 1020120104186A KR 20120104186 A KR20120104186 A KR 20120104186A KR 101376732 B1 KR101376732 B1 KR 101376732B1
Authority
KR
South Korea
Prior art keywords
transition metal
metal chalcogenide
transparent
multilayer
electronic device
Prior art date
Application number
KR1020120104186A
Other languages
Korean (ko)
Other versions
KR20140037702A (en
Inventor
김선국
김영훈
이정노
오민석
유병욱
Original Assignee
전자부품연구원
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원, 경희대학교 산학협력단 filed Critical 전자부품연구원
Priority to KR1020120104186A priority Critical patent/KR101376732B1/en
Publication of KR20140037702A publication Critical patent/KR20140037702A/en
Application granted granted Critical
Publication of KR101376732B1 publication Critical patent/KR101376732B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides

Abstract

본 발명은 다층 전이금속 칼코겐화합물을 이용한 투명전자소, 이를 이용한 광전자 소자, 및 트랜지스터 소자에 관한 것으로서, 종래의 단층 전이금속 칼코겐화합물을 바람직하게는 3층 이상의 다층으로 구성하여 복수의 투명전극 사이에 채널층으로 형성한 발명에 관한 것이다. 이를 위해 투명 전도성 물질로 이루어진 복수의 전극, 그리고, 다층 전이금속 칼코겐 화합물(Transition Metal Dichalcogenides)에 의해 상기 복수의 전극 사이에 채널이 형성되는 채널영역을 포함하는 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 투명전자소자가 개시된다.The present invention relates to a transparent electronic device using a multilayer transition metal chalcogenide compound, an optoelectronic device using the same, and a transistor device. The conventional single layer transition metal chalcogenide compound is preferably composed of three or more layers of multilayers to provide a plurality of transparent electrodes. The invention relates to a channel layer formed therebetween. To this end, a plurality of electrodes made of a transparent conductive material, and a multi-layer transition metal chalcogen, characterized in that it comprises a channel region in which a channel is formed between the plurality of electrodes by the transition metal dichalcogenides (Transition Metal Dichalcogenides) Disclosed is a transparent electronic device using a compound.

Description

다층 전이금속 칼코겐화합물을 이용한 투명전자소자, 이를 이용한 광전자 소자 및 트랜지스터 소자{Transparent electronic devices having 2D transition metal dichalcogenides with multi-layers, optoelectronic device, and transistor device}Transparent electronic devices having 2D transition metal dichalcogenides with multi-layers, optoelectronic devices, and transistor devices

본 발명은 다층 전이금속 칼코겐화합물을 이용한 투명전자소, 이를 이용한 광전자 소자, 및 트랜지스터 소자에 관한 것으로서, 보다 상세하게는 종래의 단층 전이금속 칼코겐화합물을 바람직하게는 3층 이상의 다층으로 구성하여 복수의 투명전극 사이에 채널층으로 형성한 발명에 관한 것이다.The present invention relates to a transparent electronic device using a multilayer transition metal chalcogen compound, an optoelectronic device using the same, and a transistor device. More specifically, the conventional single-layer transition metal chalcogen compound is preferably composed of three or more layers. The present invention relates to a channel layer formed between a plurality of transparent electrodes.

투명반도체 물질을 통한 투명전자회로를 구현하기 위해서는 물질의 투명성, 고이동도, 신뢰성 확보가 필요하다. 종래의 투명 트랜지스터는 투명전극(일예로 ITO, IZO, 그래핀)과 투명채널(일예로 oxide TFTs)로 연구가 많이 진행 되었다. 그러나 기존의 투명채널 물질은 투명성은 좋으나 이동도면에서 한계점을 드러내고 있었다.In order to realize transparent electronic circuits through transparent semiconductor materials, it is necessary to secure transparency, high mobility, and reliability of materials. Conventional transparent transistors have been researched into transparent electrodes (eg ITO, IZO, graphene) and transparent channels (eg oxide TFTs). However, the existing transparent channel materials have good transparency, but they show limitations in terms of mobility.

대한민국공개특허공보 10-2009-0046179(발명의 명칭 : 투명박막 트랜지스터, 이미지센서 및 투명박막 트랜지스터의 제조방법)에 따르면, 투명 전도체를 이용하여 각 반도체층을 형성함으로써 광학 효율이 증가되고, 제작 공정을 단순화할 수 있는 투명박막 트랜지스터에 관한 발명이다.According to Korean Patent Publication No. 10-2009-0046179 (name of the invention: a method for manufacturing a transparent thin film transistor, an image sensor, and a transparent thin film transistor), optical efficiency is increased by forming each semiconductor layer using a transparent conductor, and a manufacturing process The invention relates to a transparent thin film transistor capable of simplifying. 선행기술문헌은 투명박막 트랜지스터를 제조하기 위해 투명전극 물질을 사용하는 면에서는 본원발명과 유사하나, 본원발명은 투명전극 물질을 사용하여 투명전극을 형성하는 것 이외에도 채널형성을 투명한 2D 나노구조체인 다층 전이금속 칼코겐 화합물에 의해 형성하는 것으로서 그 차이점이 분명하다.The prior art document is similar to the present invention in terms of using a transparent electrode material to manufacture a transparent thin film transistor, but the present invention is a multi-layered 2D nanostructure in addition to forming a transparent electrode using a transparent electrode material. The difference is apparent as formed by the transition metal chalcogenide compound.

따라서, 본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 창출된 것으로서, 투명전극(일예로 게이트, 드레인, 소스) 및 2차원 전이금속 칼코겐화합물을 다층으로 형성하여 반도체 채널을 이룸으로써 투명전자소자의 고투명성, 고이동도, 고신뢰성을 확보하는 발명을 제공하는데 그 목적이 있다.Therefore, the present invention was created in order to solve the above problems, and forms a transparent electrode (for example, a gate, a drain, a source) and a two-dimensional transition metal chalcogenide compound in multiple layers to form a semiconductor channel. Its purpose is to provide an invention that ensures high transparency, high mobility, and high reliability.

그러나, 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.

전술한 본 발명의 목적은, 투명 전도성 물질로 이루어진 복수의 전극, 그리고, 다층 전이금속 칼코겐 화합물(Transition Metal Dichalcogenides)에 의해 상기 복수의 전극 사이에 채널이 형성되는 채널영역을 포함하는 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 투명전자소자를 제공함으로써 달성될 수 있다.The object of the present invention described above includes a plurality of electrodes made of a transparent conductive material, and a channel region in which a channel is formed between the plurality of electrodes by a multilayer transition metal chalcogenide (Transition Metal Dichalcogenides). It can be achieved by providing a transparent electronic device using a multi-layer transition metal chalcogenide.

또한, 전자회로를 구성하는 능동소자로서 투명 트랜지스터, 다이오드로 구체화될 수 있다.In addition, the active element constituting the electronic circuit can be embodied as a transparent transistor, a diode.

또한, 투명 전도성 물질은 비정질 산화물, 결정질 산화물, 고분자 유기물 중 적어도 어느 하나의 물질이다. In addition, the transparent conductive material is at least one of an amorphous oxide, a crystalline oxide, a high molecular organic material.

또한, 투명 전도성 물질은 IZO(indium zinc oxide), ITO(indium thin oxide), 그래핀(graphene)이다.In addition, the transparent conductive material is indium zinc oxide (IZO), indium thin oxide (ITO), graphene (graphene).

또한, 다층 전이금속 칼코겐화합물은, 단층 전이금속 칼코겐화합물에 비해 반도체 밴드갭의 에너지가 더 작음으로써 상대적으로 넓은 파장대의 빛을 흡수하는 것을 특징으로 한다.In addition, the multilayer transition metal chalcogenide is characterized by absorbing light in a relatively wide wavelength band because the energy of the semiconductor bandgap is smaller than that of the single layer transition metal chalcogenide.

또한, 단층 전이금속 칼코겐화합물은 직접 천이 밴드갭에 의해 빛을 흡수하고, 다층 전이금속 칼코겐화합물은 간접 천이 밴드갭에 의해 빛을 흡수하는 것을 특징으로 한다.In addition, the single-layer transition metal chalcogenide absorbs light by direct transition bandgap, and the multi-layer transition metal chalcogenide absorbs light by indirect transition bandgap.

또한, 다층 전이금속 칼코겐화합물은, MoS2, MoSe2, WSe2, MoTe2, 및 SnSe2 중 적어도 어느 하나의 화합물인 것을 특징으로 한다.In addition, the multilayer transition metal chalcogenide compound is characterized by being at least one of MoS 2 , MoSe 2 , WSe 2 , MoTe 2 , and SnSe 2 .

또한, 다층 전이금속 칼코겐화합물은, 자외선에서 근적외선 영역까지의 파장을 흡수할 수 있는 것을 특징으로 한다.
In addition, the multilayer transition metal chalcogenide compound is capable of absorbing wavelengths from the ultraviolet to the near infrared region.

한편, 본 발명의 목적은 투명 전도성 물질로 이루어진 애노드 전극 및 캐소드 전극, 그리고, 다층 전이금속 칼코겐 화합물(Transition Metal Dichalcogenides)에 의해 전극 사이에 채널이 형성되는 채널영역을 포함함으로써 입사된 빛의 파장에 따라 동작하는 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 광전자 소자를 제공함으로써 달성될 수 있다.
Meanwhile, an object of the present invention is to include an anode electrode and a cathode electrode made of a transparent conductive material, and a channel region in which a channel is formed between the electrodes by multilayer transition metal dichalcogenides. It can be achieved by providing an optoelectronic device using a multi-layer transition metal chalcogenide, characterized in that operating in accordance with.

한편, 본 발명의 목적은 투명 전도성 물질로 이루어진 게이트 전극, 소스전극, 및 드레인 전극, 그리고, 다층 전이금속 칼코겐 화합물(Transition Metal Dichalcogenides)에 의해 소스전극 및 드레인 전극 사이에 채널이 형성되는 채널영역을 포함함으로써 입사된 빛의 파장에 따라 동작하는 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 트랜지스터 소자를 제공함으로써 달성될 수 있다.Meanwhile, an object of the present invention is a channel region in which a channel is formed between a source electrode and a drain electrode by a gate electrode, a source electrode, and a drain electrode made of a transparent conductive material, and a multilayer transition metal chalcogenide (Transition Metal Dichalcogenides). It can be achieved by providing a transistor device using a multi-layered transition metal chalcogenide, characterized in that it operates in accordance with the wavelength of the incident light.

전술한 바와 같은 본 발명에 의하면 투명전극 및 다층 전이금속 칼코겐 화합물에 의한 채널형성으로 인하여 물질의 투명성, 고이동도, 고신뢰성이 확보되어 투명전자소자의 소비전력을 낮추고, 투명 디스플레이에 활용가능한 효과가 있다.According to the present invention as described above, due to the channel formation by the transparent electrode and the multi-layered transition metal chalcogen compound, transparency, high mobility, and high reliability of the material are secured, thereby lowering power consumption of the transparent electronic device and making it possible to use for transparent displays. It works.

또한, 단층 전이금속 칼코겐화합물에 비해 광대역 파장을 흡수할 수 있는 효과가 있다.In addition, there is an effect that can absorb the broadband wavelength compared to the single-layer transition metal chalcogenide.

또한, 본 발명에 의하면 자외선부터 근적외선 파장까지 감지할 수 있는 효과가 있다.In addition, according to the present invention there is an effect that can detect from the ultraviolet to the near infrared wavelength.

그리고, 본 발명에 의하면 InGaZnO 화합물에 비해 높은 이동성과 게이트 동작 바이어스 전압을 낮출 수 있으며, 발광시 문턱 전압의 이동이 없는 효과가 있다.In addition, according to the present invention, high mobility and gate operating bias voltage can be lowered compared to InGaZnO compounds, and there is no effect of shifting the threshold voltage during light emission.

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.
도 1은 단층 MoS2의 삼차원적 구조를 나타낸 도면이고,
도 2 및 도 3은 단층 MoS2 트랜지스터의 삼차원적 도면이고
도 4는 서로 다른 두께를 가지는 MoS2 결정의 흡수 스펙트럼 도면이고,
도 5는 벌크 MoS2의 밴드 구조를 나타낸 도면이고,
도 6은 직접 천이 밴드갭의 E-k 도면이고
도 7은 간접 천이 밴드갭의 E-k 도면이고
도 8은 MoS2 포토트랜지스터의 Id-Vgs 특성곡선이다.
도 9는 본 발명에 따른 투명 트랜지스터 소자의 구조를 나타낸 도면이고,
도 10 및 도 11은 도 9의 투명 트랜지스터 소자의 특성곡선을 나타낸 도면이다.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention and, together with the description, serve to further the understanding of the technical idea of the invention, It should not be construed as limited.
1 is a view showing a three-dimensional structure of a single layer MoS 2 ,
2 and 3 are three-dimensional views of a single layer MoS 2 transistor
4 is an absorption spectrum diagram of MoS 2 crystals having different thicknesses,
5 is a view showing the band structure of the bulk MoS 2 ,
6 is an Ek diagram of a direct transition bandgap
7 is an Ek diagram of the indirect transition bandgap.
8 is an Id-Vgs characteristic curve of a MoS 2 phototransistor.
9 is a view showing the structure of a transparent transistor device according to the present invention,
10 and 11 illustrate characteristic curves of the transparent transistor device of FIG. 9.

이하, 도면을 참조하여 본 발명의 바람직한 일실시예에 대해서 설명한다. 또한, 이하에 설명하는 일실시예는 특허청구범위에 기재된 본 발명의 내용을 부당하게 한정하지 않으며, 본 실시 형태에서 설명되는 구성 전체가 본 발명의 해결 수단으로서 필수적이라고는 할 수 없다.
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. In addition, the embodiment described below does not unduly limit the content of the present invention described in the claims, and the entire structure described in this embodiment is not necessarily essential as the solution means of the present invention.

<다층 전이금속 칼코겐화합물 소자의 구성><Configuration of Multi-layered Transition Metal Chalcogenide Device>

2차원 물질은 일차원 물질과 비교했을 때 복잡한 구조를 제조하기가 상대적으로 쉬어 차세대 나노전자소자의 물질로 이용하기에 적합하다. 이러한 2차원 물질 중 2차원 전이금속 칼코겐화합물(2D Transition Metal Dichalcogenides)은 MoS2, MoSe2, WSe2, MoTe2, 또는 SnSe2 화합물로 이루어지며, 이 중에서 단층 MoS2의 구조는 도 1에 도시된 바와 같다. 도 1에 도시된 바와 같이 단층 MoS2 결정은 수직적으로 쌓여있는 구조이고 단층(single layer)의 두께는 6.5Å으로 반더발스(van der Waals) 상호작용으로부터 층을 형성하고 있다.
Compared with one-dimensional materials, two-dimensional materials are relatively easy to manufacture complex structures, making them suitable for use as materials for next-generation nanoelectronic devices. Among these two-dimensional materials, two-dimensional transition metal chalcogenides (2D Transition Metal Dichalcogenides) are formed of MoS 2 , MoSe 2 , WSe 2 , MoTe 2 , or SnSe 2 . It consists of a compound, wherein the structure of the single-layer MoS 2 is as shown in FIG. As shown in FIG. 1, the monolayer MoS 2 crystals are vertically stacked, and the single layer has a thickness of 6.5 Å to form a layer from van der Waals interaction.

단층 MoS2는 1.8eV의 고유 밴드갭을 가지고 있지만 이동성(mobility)은 0.5 ~ 3cm2V-1s-1로 매우 낮은 수준이다. 또한, 그래핀이나 박막 실리콘의 이동성 값과 비교해 보았을 때, 밴드갭이 증가하면 이동성이 감소하는 경향이 있다. 이러한 단점을 극복하기 위해 도 2에 도시된 바와 같이 상부 게이트는 유전상수가 25 정도로 높은 하프늄 옥사이드(halfnium oxide, HfO2)를 사용하였고, 상부 게이트 아래에 이동성이 200cm2V-1s-1 이상인 단층 MoS2를 부스터(booster)로 이용하였다. 다만, 이러한 공정은 종래 사용되고 있는 TFT(thin film transistor) 공정과는 일치하지 않는 면을 보이고 있다.
Single layer MoS 2 has an inherent bandgap of 1.8 eV, but its mobility is very low, 0.5 to 3 cm 2 V −1 s −1 . In addition, when compared with the mobility value of graphene or thin film silicon, when the band gap increases, the mobility tends to decrease. In order to overcome this disadvantage, as shown in FIG. 2, the upper gate uses hafnium oxide (HfO 2 ) having a dielectric constant of about 25, and has a mobility of 200 cm 2 V −1 s −1 or higher under the upper gate. Single layer MoS 2 was used as a booster. However, this process is inconsistent with the TFT (thin film transistor) process conventionally used.

이에 비해, 본 발명에서는 상술한 단층에서와 같이 상부 게이트를 하프늄 옥사이드를 사용하지 않고 다층 전이금속 칼코겐화합물을 채널로 사용하여 다층에서 기인하는 전도도의 증가를 통해 이동도를 50cm2V-1s-1로 향상시켰다. 이러한 단일공정으로 이동도를 향상시킴으로써 종래의 TFT 기술과 일치된 공정을 나타낸다.
In contrast, in the present invention, the mobility is increased by 50 cm 2 V -1 s through the increase in conductivity resulting from the multilayer by using the multi-layer transition metal chalcogenide as a channel without using hafnium oxide as the upper gate as in the above-described single layer. Improved to -1 . By improving mobility in such a single process, a process consistent with the conventional TFT technology is shown.

상술한 단층 MoS2는 도 4의 T2, T3 그래프와 같이 약 700nm 아래의 파장을 흡수할 수 있다. 도 4에 도시된 T1, T2, T3는 MoS2 결정의 두께를 나타내며, 두께는 T1 > T2 > T3 순으로서 T1은 약 40nm, T2는 약 4nm, T3는 약 1nm이다.
The single layer MoS 2 described above can absorb wavelengths below about 700 nm as shown in the T2 and T3 graphs of FIG. 4. T1, T2, T3 shown in Figure 4 is MoS 2 The thickness of the crystal is shown in the order of T1>T2> T3, T1 is about 40 nm, T2 is about 4 nm, and T3 is about 1 nm.

도 4 및 도 5에 도시된 흡수 최고점 "A", "B"는 가전자 밴드(valance band) 스핀-궤도 결합으로부터 에너지 분리된 직접 천이 밴드갭에 상응하며, 꼬리 "I"는 간접 천이 밴드갭에 상응한다.
Absorption peaks “A”, “B” shown in FIGS. 4 and 5 correspond to direct transition bandgaps that are energy separated from the valence band spin-orbit coupling, and tail “I” is the indirect transition bandgap. Corresponds to

한편, 도 6에 도시된 바와 같이 직접 천이 밴드갭은 가전자대의 에너지 Ev(k)가 전도대의 에너지 Ec(k)와 같은 파수 k로 발생하는 경우이고, 도 7에 도시된 바와 같이 위의 두 에너지가 다른 파수 값에서 생기는 것을 간접 천이 밴드갭이라 한다. 직접 천이 밴드갭은 광 방사 에너지

Figure 112012076103116-pat00001
에 의해 가전자가 전도대에 직접 천이하지만, 간접 천이 밴드갭은 전도대에 간접 천이하며 그때 에너지 Eph의 포논(phonon)을 발생한다.
Meanwhile, as illustrated in FIG. 6, the direct transition band gap is a case where the energy E v (k) of the valence band is generated at the same wave number k as the energy E c (k) of the conduction band, as shown in FIG. 7. It is called indirect transition bandgap that the two energies of are generated at different frequency values. Direct transition bandgap is light emission energy
Figure 112012076103116-pat00001
By the home appliance directly transitions to the conduction band, the indirect transition bandgap indirectly transitions to the conduction band and then generates a phonon of energy E ph .

따라서, 직접 천이 밴드갭에서의

Figure 112012076103116-pat00002
이고, 간접 천이 밴드갭에서의
Figure 112012076103116-pat00003
이다. 이와 같이 간접 천이 밴드갭에서는 Eph가 발생됨으로써 직접 천이 밴드갭에서의 에너지 갭이 1.8eV(단층 MoS2)에서 1.35eV(다층 MoS2)로 낮아지게 된다. 이때 다층은 3층 이상인 경우가 바람직하다.
Therefore, in the direct transition bandgap
Figure 112012076103116-pat00002
In the indirect transition bandgap
Figure 112012076103116-pat00003
to be. As such, in the indirect transition band gap, E ph is generated so that the energy gap in the direct transition band gap is lowered from 1.8 eV (single layer MoS 2 ) to 1.35 eV (multi layer MoS 2 ). At this time, it is preferable that a multilayer is three or more layers.

에너지 갭이 1.8eV에서 1.35eV로 낮아지는 경우에는 다음의 수학식 1에 의해 파장 값이 변하게 된다.
When the energy gap is lowered from 1.8eV to 1.35eV, the wavelength value is changed by Equation 1 below.

Figure 112012076103116-pat00004
Figure 112012076103116-pat00004

에너지 갭이 1.8eV인 경우보다 1.35eV인 경우, 즉 스몰 밴드갭(small bandgap)인 경우에 파장(

Figure 112012076103116-pat00005
)값이 커지며, 이는 단층 MoS2를 사용하는 경우보다 다층 MoS2를 사용하는 경우 더 넓은 범위의 파장을 흡수할 수 있음을 도 4의 T1, T2, T3 그래프를 통해 알 수 있다.
If the energy gap is 1.35 eV rather than 1.8 eV, i.e. small bandgap, the wavelength (
Figure 112012076103116-pat00005
) Becomes larger, the value, which can be seen through the more T1, T2, T3 graph of Figure 4 that it is possible to absorb a wide range of wavelength when using a multi-layer MoS 2 than it would be with a single layer MoS 2.

단층 MoS2의 경우에는 일반적으로 700nm 아래의 파장을 흡수할 수 있으나, 본 발명에 따른 다층 MoS2(바람직하게는 3층 이상)의 경우에는 1000nm 아래의 모든 파장을 흡수할 수 있다. 이는 근적외선(near IR)에서부터 자외선(ultra violet)까지의 파장대를 감지할 수 있음을 의미한다.
In the case of a single layer MoS 2 it can generally absorb a wavelength below 700nm, in the case of a multi-layer MoS 2 (preferably three or more layers) according to the present invention can absorb all wavelengths below 1000nm. This means that the wavelength range from near IR to ultra violet can be detected.

상술한 다층 전이금속 칼코겐화합물은 화학기상증착(CVD), PE-CVD, 원자층 증착(ALD), 또는 스퍼터(sputter) 등의 종래의 일반적인 증착방식을 이용하여 다층으로 증착되기 때문에 단층에 비해 대면적 성장이 용이하다.
The above-mentioned multilayer transition metal chalcogenide compound is deposited in multiple layers using a conventional general deposition method such as chemical vapor deposition (CVD), PE-CVD, atomic layer deposition (ALD), or sputtering, Large area growth is easy.

도 8에 도시된 바와 같이, 다층 MoS2 포토트랜지스터는 빛이 입사되지 않을 때와 빛이 입사될 때(633nm의 50mWcm-2 강도)의 Id가 약 103 차이가 남을 알 수 있다.
8, the multi-layer MoS 2 phototransistor has a I d of the time the when the light is not incident on the light incident (50mWcm -2 strength of 633nm) can be seen that about 10 3 difference remains.

따라서 상술한 다층 전이금속 칼코겐화합물을 채널물질로 이용하여 빛에 반응하여 동작되는 반도체 소자를 구현할 수 있다. 예를 들면 솔라 셀(solar cell), 포토디텍터(photodetector), 광전자 소자, 또는 박막트랜지스터(Thin Film Transitors) 구조, 또는 하이브리드 디바이스(일예로, P-type organic과 N-type 다층 전이금속 칼코겐화합물)를 통한 포토트랜지스터 소자이다.
Therefore, a semiconductor device that operates in response to light may be implemented using the above-mentioned multilayer transition metal chalcogenide compound as a channel material. For example, solar cells, photodetectors, optoelectronic devices, or thin film transistors, or hybrid devices (eg, P-type organic and N-type multilayer transition metal chalcogenides). Phototransistor device through

<다층 전이금속 <Multilayer transition metal 칼코겐화합물을Chalcogenide 이용한 투명전자소자> Transparent Electronic Devices>

본 발명에 따른 다층 전이금속 칼코겐화합물을 이용한 투명전자소자는 도 9에 도시된 바와 같이 소스, 드레인, 게이트 전극(11,12,13)을 투명전극으로 형성하고, 소스와 드레인 사이의 채널형성(14)을 다층 전이금속 칼코겐화합물을 이용하여 형성함으로써 투명전자소자를 구현할 수 있다.
In the transparent electronic device using the multilayer transition metal chalcogenide compound according to the present invention, as shown in FIG. 9, the source, drain, and gate electrodes 11, 12, and 13 are formed as transparent electrodes, and a channel is formed between the source and the drain. (14) can be formed using a multilayer transition metal chalcogenide compound to realize a transparent electronic device.

투명 디스플레이에서 실리콘 같은 경우에는 약 20 ~ 30%의 빛 투과성을 보이나 본 발명에 따른 투명전극 및 투명한 2D 나노구조체인 다층 전이금속 칼코겐화합물을 이용한 투명 전자소자는 약 80%의 빛 투과성을 보이므로 투명 디스플레이 제작시 소비전력을 대폭 낮출수 있다.
In the case of silicon in the transparent display, the light transmittance of about 20 to 30% is shown, but the transparent electronic device using the multi-layer transition metal chalcogenide, which is the transparent electrode and the transparent 2D nanostructure according to the present invention, exhibits light transmittance of about 80%. The power consumption can be greatly reduced when manufacturing transparent displays.

투명트랜지스터 소자의 특성곡선이 도 10 및 도 11에 나타나 있다. 도면에 도시된 바와 같이 본 발명에 따른 투명전극 및 다층 전이금속 칼코겐화합물에 의해 형성된 채널층을 이용한 투명 트랜지스터는 스위칭 소자(on-off)로서의 특성을 나타냄을 알 수 있다.
The characteristic curve of the transparent transistor device is shown in FIGS. 10 and 11. As shown in the figure, it can be seen that the transparent transistor using the channel layer formed by the transparent electrode and the multilayer transition metal chalcogenide compound according to the present invention exhibits characteristics as an on-off.

소스, 드레인, 게이트, 및 채널의 형성은 화학기상증착(CVD), PE-CVD, 원자층 증착(ALD), 또는 스퍼터(sputter) 등의 종래의 일반적인 증착 방식을 이용하여 형성할 수 있다.
Formation of the source, drain, gate, and channel can be formed using conventional conventional deposition methods such as chemical vapor deposition (CVD), PE-CVD, atomic layer deposition (ALD), or sputtering.

상술한 도 9에 도시된 발명은 트랜지스터를 일예로 들어 설명하였으나, 이에 국한되지 않고 애노드 및 캐소드 전극을 형성하고 애노드 및 캐소드 전극 사이에 채널층을 형성한 PN 접합 다이오드로도 본 발명은 구체화될 수 있다.
The above-described invention shown in FIG. 9 has been described with an example of a transistor, but the present invention can be embodied as a PN junction diode in which an anode and a cathode are formed and a channel layer is formed between the anode and the cathode. have.

더 나아가, PN 접합 다이오드 구조를 활용한 솔라셀 및 포토디텍터 같은 광전자 소자에도 활용될 수 있다. 즉, 본 발명에서는 투명전극을 활용하여 빛 투과도를 높이고, 도 8에 도시된 바와 같이 다층 전이금속 칼코겐화합물(MoS2 포토트랜지스터)을 이용하여 빛에 반응하여 동작되는 반도체 소자를 구현할 수 있다.
Furthermore, it can be applied to optoelectronic devices such as solar cells and photodetectors utilizing a PN junction diode structure. That is, in the present invention, a transparent electrode may be used to increase light transmittance, and as illustrated in FIG. 8, a semiconductor device that operates in response to light may be implemented using a multilayer transition metal chalcogenide (MoS 2 phototransistor).

이상, 본 발명의 일실시예를 참조하여 설명했지만, 본 발명이 이것에 한정되지는 않으며, 다양한 변형 및 응용이 가능하다. 즉, 본 발명의 요지를 일탈하지 않는 범위에서 많은 변형이 가능한 것을 당업자는 용이하게 이해할 수 있을 것이다.Although the present invention has been described with reference to the embodiment thereof, the present invention is not limited thereto, and various modifications and applications are possible. In other words, those skilled in the art can easily understand that many variations are possible without departing from the gist of the present invention.

1 : 단층 MoS2 트랜지스터
10 : 투명 트랜지스터
11 : 소스 전극
12 : 드레인 전극
13 : 게이트 전극
14 : 채널층
1: single layer MoS 2 transistor
10: transparent transistor
11: source electrode
12: drain electrode
13: gate electrode
14: channel layer

Claims (9)

투명 전도성 물질로 이루어진 복수의 전극, 그리고,
다층 전이금속 칼코겐 화합물(Transition Metal Dichalcogenides)에 의해 상기 복수의 전극 사이에 채널이 형성되는 채널영역을 포함하는 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 투명전자소자.
A plurality of electrodes made of a transparent conductive material, and
A transparent electronic device using a multilayer transition metal chalcogenide compound comprising a channel region in which a channel is formed between the plurality of electrodes by a transition metal dichalcogenides.
제 1 항에 있어서,
상기 투명 전도성 물질은 비정질 산화물, 결정질 산화물, 고분자 유기물 중 적어도 어느 하나의 물질인 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 투명전자소자.
The method according to claim 1,
The transparent conductive material is a transparent electronic device using a multi-layer transition metal chalcogenide, characterized in that the material of at least one of amorphous oxide, crystalline oxide, high molecular organic material.
제 1 항에 있어서,
상기 투명 전도성 물질은 IZO(indium zinc oxide), ITO(indium thin oxide), 그래핀(graphene)인 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 투명전자소자.
The method according to claim 1,
The transparent conductive material is IZO (indium zinc oxide), ITO (indium thin oxide), graphene (graphene) Transparent electronic device using a multi-layer transition metal chalcogenide, characterized in that.
제 1 항에 있어서,
상기 다층 전이금속 칼코겐화합물은,
단층 전이금속 칼코겐화합물에 비해 반도체 밴드갭의 에너지가 더 작음으로써 상대적으로 넓은 파장대의 빛을 흡수하는 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 투명전자소자.
The method according to claim 1,
The multilayer transition metal chalcogenide compound,
A transparent electronic device using a multilayer transition metal chalcogen compound, which absorbs light in a relatively wide wavelength band because the energy of the semiconductor bandgap is smaller than that of a single layer transition metal chalcogen compound.
제 4 항에 있어서,
상기 단층 전이금속 칼코겐화합물은 직접 천이 밴드갭에 의해 빛을 흡수하고,
상기 다층 전이금속 칼코겐화합물은 간접 천이 밴드갭에 의해 빛을 흡수하는 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 투명전자소자.
5. The method of claim 4,
The single-layer transition metal chalcogenide directly absorbs light by the transition bandgap,
The multilayer transition metal chalcogenide compound absorbs light by an indirect transition bandgap.
제 1 항에 있어서,
상기 다층 전이금속 칼코겐화합물은,
MoS2, MoSe2, WSe2, MoTe2, 및 SnSe2 중 적어도 어느 하나의 화합물인 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 투명전자소자.
The method according to claim 1,
The multilayer transition metal chalcogenide compound,
A transparent electronic device using a multilayer transition metal chalcogenide compound, which is at least one of MoS 2 , MoSe 2 , WSe 2 , MoTe 2 , and SnSe 2 .
제 1 항에 있어서,
상기 다층 전이금속 칼코겐화합물은,
자외선에서 근적외선 영역까지의 파장을 흡수할 수 있는 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 투명전자소자.
The method according to claim 1,
The multilayer transition metal chalcogenide compound,
A transparent electronic device using a multilayer transition metal chalcogenide compound, which can absorb wavelengths from the ultraviolet to the near infrared region.
투명 전도성 물질로 이루어진 애노드 전극 및 캐소드 전극, 그리고,
다층 전이금속 칼코겐 화합물(Transition Metal Dichalcogenides)에 의해 상기 전극 사이에 채널이 형성되는 채널영역을 포함함으로써 입사된 빛의 파장에 따라 동작하는 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 광전자 소자.
An anode electrode and a cathode electrode made of a transparent conductive material, and
Optoelectronic device using a multi-layer transition metal chalcogen compound characterized in that it operates in accordance with the wavelength of the incident light by including a channel region in which a channel is formed between the electrodes by a transition metal dichalcogenides.
투명 전도성 물질로 이루어진 게이트 전극, 소스전극, 및 드레인 전극, 그리고,
다층 전이금속 칼코겐 화합물(Transition Metal Dichalcogenides)에 의해 상기 소스전극 및 드레인 전극 사이에 채널이 형성되는 채널영역을 포함함으로써 입사된 빛의 파장에 따라 동작하는 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 트랜지스터 소자.
A gate electrode, a source electrode and a drain electrode made of a transparent conductive material, and
The multi-layer transition metal chalcogenide compound is characterized by operating according to the wavelength of the incident light by including a channel region in which a channel is formed between the source electrode and the drain electrode by a transition metal dichalcogenides. Transistor element used.
KR1020120104186A 2012-09-19 2012-09-19 Transparent electronic devices having 2D transition metal dichalcogenides with multi-layers, optoelectronic device, and transistor device KR101376732B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120104186A KR101376732B1 (en) 2012-09-19 2012-09-19 Transparent electronic devices having 2D transition metal dichalcogenides with multi-layers, optoelectronic device, and transistor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120104186A KR101376732B1 (en) 2012-09-19 2012-09-19 Transparent electronic devices having 2D transition metal dichalcogenides with multi-layers, optoelectronic device, and transistor device

Publications (2)

Publication Number Publication Date
KR20140037702A KR20140037702A (en) 2014-03-27
KR101376732B1 true KR101376732B1 (en) 2014-04-07

Family

ID=50646469

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120104186A KR101376732B1 (en) 2012-09-19 2012-09-19 Transparent electronic devices having 2D transition metal dichalcogenides with multi-layers, optoelectronic device, and transistor device

Country Status (1)

Country Link
KR (1) KR101376732B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160126666A (en) 2015-04-24 2016-11-02 경희대학교 산학협력단 Sensor for recognizing touch
KR20160126667A (en) 2015-04-24 2016-11-02 경희대학교 산학협력단 Photo sensor
CN104851935B (en) * 2015-04-08 2017-03-29 浙江大学 A kind of Graphene/indium phosphide solar cell of electric field regulation and control and preparation method thereof
KR101927579B1 (en) 2016-02-19 2018-12-10 경희대학교 산학협력단 Transition metal dichalcogenide thin film transistor and method of manufacturing the same
WO2019191031A1 (en) * 2018-03-27 2019-10-03 Corning Incorporated Methods for forming thin film transistors on a glass substrate and liquid crystal displays formed therefrom
US10890761B2 (en) 2015-04-24 2021-01-12 University-Industry Cooperation Group Of Kyung Hee University Photoreactive sensor including optical amplification phototransistor, and display panel and vehicle control system including photoreactive sensor

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9781838B2 (en) 2014-02-24 2017-10-03 Industry-Academic Cooperation Foundation, Yonsei University Gas sensor and method of manufacturing the same
KR101595429B1 (en) * 2014-05-23 2016-02-26 엘지전자 주식회사 Optical semiconductor device having transition metal dechalcogenides
KR101649102B1 (en) * 2014-08-05 2016-08-30 경희대학교 산학협력단 Semiconductor device including transparent electrodes and method of fabricating thereof
JP2017533574A (en) 2014-09-18 2017-11-09 インテル・コーポレーション Wurtzite heteroepitaxial structure with inclined sidewall cut surface for defect propagation control in silicon CMOS compatible semiconductor devices
KR102325523B1 (en) * 2015-01-29 2021-11-12 엘지전자 주식회사 Metal chalcogenide device and method for manufacturing same
KR102232755B1 (en) 2015-04-07 2021-03-26 삼성전자주식회사 Electronic device using 2-dimensional material and method of manufacturing the same
KR101687490B1 (en) * 2015-06-29 2016-12-16 경희대학교 산학협력단 System and method for controlling vehicle
KR101996407B1 (en) * 2015-06-22 2019-07-04 기초과학연구원 A semiconductor stack having the characteristics of interlayer orientation-dependent light absorption and emission
KR101687526B1 (en) * 2015-07-07 2016-12-19 한국원자력연구원 The radiation detector and method of manufacturing the same
KR102532596B1 (en) * 2015-10-21 2023-05-15 삼성전자주식회사 Photodetector using bandgap-engineered 2D materials and method of manufacturing the same
CN108770336B (en) 2015-11-17 2021-08-24 庆熙大学校产学协力团 Biological information measuring apparatus and method using sensor array
KR102651543B1 (en) * 2015-12-10 2024-03-28 삼성전자주식회사 Optoelectronic deivce and Smart Window comprising thereof
WO2017111869A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Transition metal dichalcogenides (tmdcs) over iii-nitride heteroepitaxial layers
US9577049B1 (en) * 2016-01-06 2017-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device structure and method for forming the same
KR102532598B1 (en) 2016-02-24 2023-05-15 삼성전자주식회사 Image sensor and method of manufacturing the same
US20200057354A1 (en) * 2017-05-03 2020-02-20 North Carolina State University Methods of Electrically Controlling Photons Using Atomically Thin Transition Metal Dichalcogenide (TMDC) and Photonic Devices Including TMDC
US11101376B2 (en) 2017-06-29 2021-08-24 Intel Corporation Non-planar transition metal dichalcogenide devices
CN107316915B (en) * 2017-07-04 2019-04-02 中山大学 The photodetector and preparation method thereof of the integrated graphene molybdenum disulfide of visible light wave range
CN107665926A (en) * 2017-09-21 2018-02-06 京东方科技集团股份有限公司 A kind of array base palte and preparation method thereof, display device
WO2019066953A1 (en) 2017-09-29 2019-04-04 Intel Corporation Group iii-nitride (iii-n) devices with reduced contact resistance and their methods of fabrication
CN108231817A (en) * 2018-01-29 2018-06-29 杭州紫元科技有限公司 A kind of low-power consumption charge coupling device based on two-dimensional material/insulating layer/semiconductor structure
CN109037387A (en) * 2018-06-11 2018-12-18 烟台工程职业技术学院 One kind being based on CH3NH3PbI3And MoSe2The preparation method of the MOSFET structure light-sensitive device of material
KR102138004B1 (en) * 2018-10-02 2020-07-27 연세대학교 산학협력단 Active matrix organic light-emitting diode display device and method of manufacturing the same
KR102426958B1 (en) * 2018-12-14 2022-08-01 한국과학기술원 Thin film transistor compirsing two dimensional material, display comprising the same and manufacturing method for the same
KR102214673B1 (en) * 2019-02-25 2021-02-09 성균관대학교산학협력단 Photoelectronic device, photodiode, and phototransistor
KR102261178B1 (en) * 2019-02-26 2021-07-14 (주)사이언아스 Flexible biosensor for wearable device and Preparation method therof
US11636324B2 (en) 2019-09-11 2023-04-25 The Penn State Research Foundation Gaussian synapses for probabilistic neural networks
CN110808307A (en) * 2019-10-12 2020-02-18 复旦大学 Based on metal phase MoTe2The wide spectrum InGaAs detector and its preparation method
KR102346834B1 (en) * 2019-11-20 2022-01-04 한양대학교 산학협력단 Photodetectors based on transition metal decalogen compound materials and a method for manufacturing the same
CN111509076B (en) * 2020-04-30 2021-07-20 华南理工大学 Self-driven photoelectric detector with low dark current and preparation method thereof
CN113013265A (en) * 2020-10-23 2021-06-22 湘潭大学 Design method of flexible optoelectronic device for realizing low-angle dependence high light absorption and stable flexible contact and optical detector
KR102557596B1 (en) * 2021-08-10 2023-07-19 고려대학교 산학협력단 Modulation-doped high-mobility atomic-layer semiconductor devices and method of manufacturing the same
KR102618344B1 (en) * 2021-12-30 2023-12-28 숭실대학교산학협력단 Optoelectronic device having a double heterojunction structure with improved photodetection efficiency and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620840B1 (en) * 2003-07-10 2006-09-19 인터내셔널 비지네스 머신즈 코포레이션 Solution deposition of chalcogenide films and preparation method of improved field-effect transistors comprising chalcogenide films
KR100722084B1 (en) * 1999-04-30 2007-05-25 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device and method of manufacture thereof
JP2008294207A (en) * 2007-05-24 2008-12-04 Gunma Univ Memory device, memory cell and memory cell array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722084B1 (en) * 1999-04-30 2007-05-25 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device and method of manufacture thereof
KR100620840B1 (en) * 2003-07-10 2006-09-19 인터내셔널 비지네스 머신즈 코포레이션 Solution deposition of chalcogenide films and preparation method of improved field-effect transistors comprising chalcogenide films
JP2008294207A (en) * 2007-05-24 2008-12-04 Gunma Univ Memory device, memory cell and memory cell array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문(2012.8.21) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851935B (en) * 2015-04-08 2017-03-29 浙江大学 A kind of Graphene/indium phosphide solar cell of electric field regulation and control and preparation method thereof
KR20160126666A (en) 2015-04-24 2016-11-02 경희대학교 산학협력단 Sensor for recognizing touch
KR20160126667A (en) 2015-04-24 2016-11-02 경희대학교 산학협력단 Photo sensor
US10890761B2 (en) 2015-04-24 2021-01-12 University-Industry Cooperation Group Of Kyung Hee University Photoreactive sensor including optical amplification phototransistor, and display panel and vehicle control system including photoreactive sensor
KR101927579B1 (en) 2016-02-19 2018-12-10 경희대학교 산학협력단 Transition metal dichalcogenide thin film transistor and method of manufacturing the same
WO2019191031A1 (en) * 2018-03-27 2019-10-03 Corning Incorporated Methods for forming thin film transistors on a glass substrate and liquid crystal displays formed therefrom

Also Published As

Publication number Publication date
KR20140037702A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
KR101376732B1 (en) Transparent electronic devices having 2D transition metal dichalcogenides with multi-layers, optoelectronic device, and transistor device
Long et al. Progress, challenges, and opportunities for 2D material based photodetectors
Xie et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications
Chen et al. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications
Lv et al. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization
Cheng et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures
Wang et al. Design strategies for two‐dimensional material photodetectors to enhance device performance
Guan et al. Recent progress in short‐to long‐wave infrared photodetection using 2D materials and heterostructures
Kang et al. 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge
Wang et al. Van der Waals integration based on two‐dimensional materials for high‐performance infrared photodetectors
KR20130130915A (en) 2d transition metal dichalcogenides device with multi-layers and semiconductor device
Xie et al. Photodetectors based on two‐dimensional layered materials beyond graphene
KR101381169B1 (en) transition metal dichalcogenides device formed by re-crystallization and transistor device using the same
Pradhan et al. Ambipolar molybdenum diselenide field-effect transistors: field-effect and hall mobilities
Li et al. Ultimate thin vertical p–n junction composed of two-dimensional layered molybdenum disulfide
Cho et al. Electric and photovoltaic characteristics of a multi-layer ReS2/ReSe2 heterostructure
Wu et al. Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire
Gao et al. Gate-tunable rectification inversion and photovoltaic detection in graphene/WSe2 heterostructures
Lin et al. Tunable WSe2/WS2 van der Waals heterojunction for self-powered photodetector and photovoltaics
Mu et al. Photodetectors based on sensitized two-dimensional transition metal dichalcogenides—A review
US10529877B2 (en) Semiconductor devices including two-dimensional materials and methods of manufacturing the semiconductor devices
Li et al. High-performance transparent ultraviolet photodetectors based on InGaZnO superlattice nanowire arrays
Sun et al. Piezo-phototronic effect improved performance of n-ZnO nano-arrays/p-Cu2O film based pressure sensor synthesized on flexible Cu foil
Dai et al. Multifunctionality of giant and long-lasting persistent photoconductivity: semiconductor–conductor transition in graphene nanosheets and amorphous InGaZnO hybrids
KR20120110873A (en) Semiconductor device, method of manufacturing the same and electronic device including semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170201

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee