KR20140013312A - 활성탄소 막을 형성시킨 발포성 열가소성 수지 입자의 제조방법 - Google Patents

활성탄소 막을 형성시킨 발포성 열가소성 수지 입자의 제조방법 Download PDF

Info

Publication number
KR20140013312A
KR20140013312A KR1020120079980A KR20120079980A KR20140013312A KR 20140013312 A KR20140013312 A KR 20140013312A KR 1020120079980 A KR1020120079980 A KR 1020120079980A KR 20120079980 A KR20120079980 A KR 20120079980A KR 20140013312 A KR20140013312 A KR 20140013312A
Authority
KR
South Korea
Prior art keywords
activated carbon
weight
parts
resin particles
particles
Prior art date
Application number
KR1020120079980A
Other languages
English (en)
Other versions
KR101441334B1 (ko
Inventor
김재천
Original Assignee
김재천
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김재천 filed Critical 김재천
Priority to KR1020120079980A priority Critical patent/KR101441334B1/ko
Publication of KR20140013312A publication Critical patent/KR20140013312A/ko
Application granted granted Critical
Publication of KR101441334B1 publication Critical patent/KR101441334B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

본 발명은 활성탄소를 침투 코팅시킨 열가소성 발포성 수지 입자에 관한 것으로서, 발포성 열가소성 수지 입자 100중량부의 표면층에 입경 1~80μm의 활성탄소 분말 0.05~ 20 중량부를 침투시켜 코팅시킴으로써, 수지 입자에 흡착성이 우수한 미세기공의 막을 형성시킨 단열성과 유체의 흡착성이 우수한 열가소성 발포성 수지 입자의 제조방법과 이 수지 입자로 성형한 성형물에 관한 것이다.

Description

활성탄소 막을 형성시킨 발포성 열가소성 수지 입자의 제조방법{Activated carbon foam thermoplastic effervescent that creates a barrier method for manufacturing resin particles}
본 발명은 활성탄소를 침투 코팅시킨 열가소성 발포성 수지 입자에 관한 것으로서, 발포성 열가소성 수지 입자 100중량부의 표면층에 입경 1~80μm의 활성탄소 분말 0.05~ 20 중량부를 침투시켜 코팅시킴으로써, 수지 입자에 흡착성이 우수한 미세기공의 막을 형성시킨 것이다. 보다 상세하게는 비표면적이 300 ㎡/g ~2500㎡/g 인 활성탄소를 열가소성 발포성 수지 입자 표면층에 침투시키며 코팅해서 수지입자 표면층에 단열성과 유체의 흡착성을 향상시킨 열가소성 발포성 수지 입자의 제조방법과 이 수지 입자로 성형한 성형물에 관한 것이다.
열가소성 수지인 발포성 폴리스티렌 수지(Expanded Polystyene)는 스티렌의 중합체이다. 통상적으로 직경 0.3mm~2mm 제조되는 수지 입자에는 발포제로 펜탄, 부탄 등의 탄화수소가스가 포함되어 있으며 가열하면 입자가 연화되면서 85배~100배까지 발포를 한다. 체적의 98%가 공기인 폴리스티렌 발포 입자를 성형한 스티로폼은 생산성, 경량성, 내수성, 단열성이 우수하여 산업전반에 널리 사용되고 있다.
본 발명은 열가소성 수지인 발포성 폴리스티렌 수지 입자 표면층에 활성 탄소를 침투시키고 코팅하여 수지 입자 표면층에 흡착성이 우수한 미세기공의 막을 형성시켜서 단열성을 향상시키고 유해 물질을 흡착시키는 특성을 갖는 스티로폼을 제조하려는 것이다. 활성탄소를 활용한 종래의 발명으로 대한민국 공개특허 10-2005-0079100호에는 세라믹 필터의 공극에 활성탄소 섬유를 포함시키는 방법을 개시하고 있으며, 공개특허 10-2010-0110719호는 활성탄소 전구체를 인계화학용액으로 코팅해서 활성탄소를 제조하는 방법을 개시하고 있으며, 10-2006-0010024호에서는 활성탄소를 할로겐화수소 수용액으로 차리한 후 질산은(AgNO3)에 함침하고 열처리하여 항균성 활성탄소를 제조하는 방법을 개시하고 있으나, 본 발명과는 기술분야가 상이하며 또한, 선행기술은 세균이나 미생물에 대한 항균활성을 높이는데 목적이 있다. 10-2011-0079715호에서는 스티렌 중합체에 활성 탄소를 혼합하고 가열 압출해서 수지 입자를 제조하고 단열성을 향상시키는 방법을 개시하고 있으나 스티렌수지에 흑연을 비롯한 단열성 물질을 혼합하고 가열 압출해서 입경 0.3~2mm의 발포성 폴리스티렌 수지 입자를 제조하는 방법은 당 업계에서 상용화되고 있는 기술로서 고가의 설비비용 및 생산성이 낮고 제조원가가 높은 문제점이 있었다.
본 발명은 상기의 문제점들을 해결하기 위한 것으로 비표면적이 300㎡/g ~2500㎡/g 로 크고, 유체의 흡착성이 우수한 활성 탄소를 중합이 완료된 발포성 폴리스티렌 입자 표면층에 침투 코팅하여 유체의 흡착력이 탁월한 활성탄소 막을 형성한 스티로폼을 제공하는 것을 목적으로 한다.
본 발명은 상기의 목적을 달성하기 위하여, 열가소성 발포성 수지 입자 및 스티렌 중합이 완료된 발포성 폴리스티렌 수지 입자 또는 가열 압출하여 제조된 입경 0.3mm~2mm 크기의 발포성 폴리스티렌 수지 입자 또는 수지 입자 내부에 흑연, 알루미늄, 카본, 아연 및 단열성과 난연성 물질이 분산된 수지입자 100 중량부를 0.1~5중량부의 유기용매로 수지입자 표면층을 미세하게 용해하고 연화시켜서 입경 1∼80μm의 활성탄소(activated carbon) 0.05∼20 중량부를 발포성 폴리스티렌 입자 표면층에 침투시키면서 코팅하는 것으로 구성되며 이하, 본 발명을 상세히 설명한다.
본 발명에서 사용하는 활성탄소는(Activated carbon) 형상에 따라서 분말상, 입상, 섬유상, 허니콤상으로 분류할 수 있으며 식물계, 석유계, 석탄계, 합성수지계가 있다. 활성탄소는 비표면적이 300 ㎡/g ~2500㎡/g 으로 매우 크며 기공은 일반적으로 직경1,000Å 이상의 대세공, 직경 20Å ~1,000 Å의 중간세공, 직경 20Å이하의 미세공 등 3가지로 분류하며 더 세밀하게는 직경 7Å이하의 초미세공으로도 분류하기도 한다.
활성탄소는 기공이 클수록 피흡착질의 확산과 흡착속도에 영향을 주므로 기공의 크기에 따라서 기상흡착용, 액상흡착용으로 용도를 분류하여 선택하여 사용 할 수 있다. 활성탄소는 표면에 존재하는 탄소원자의 관능기가 기체와 액체에 압력을 가하여 피흡착 물질의 분자를 흡착하는 성질로 인해서 각종 유체들에 대한 흡착력이 발생한다. 본 발명은 활성탄소를 열가소성 발포성 수지인 발포성 폴리스티렌 수지 입자의 표면층에 침투 코팅시켜서 단열성이 우수하고 유체의 흡착력이 탁월한 기능성 스티로폼을 제조하는 것으로서, 직경 20Å이하의 미세공이 형성되고 단열성과 흡착력이 탁월한 식물계의 분말상 활성탄을 사용하는 것이 바람직하다. 본 발명의 성형물은 흡착성 단열재, 미생물 담체, 방독면 필터, 공기정화, 매연정화, 탈황 , 유기용매 흡착, 냄새제거, 정수용, 가스의 제거 정제용으로 사용할 수 있으며 그 외에도 활성탄소의 물성을 활용한 용도는 매우 다양하다.
본 발명에서 사용하는 열가소성 발포성 수지입자 또는 발포성 폴리스티렌 수지 입자는 발포하지 않은 입자와 발포한 입자의 종류와 선택에 제한을 받지 않는다. 수지입자의 표면층이 용매에 용융되고 연화될 수 있으며 증기 또는 열 성형, 압출 성형을 할 수 있는 열가소성 발포성 수지입자 또는 발포성 폴리스티렌 수지 입자는 제한 없이 사용할 수 있다. 예를 들어서 스티렌을 중합하여 제조된 발포성 폴리스티렌(SH에너지화학 SE2000)수지 입자 100중량부에 입경 1~80μm 이며 직경 20Å 이하의 미세공을 형성한 활성탄소 분말 0.05~ 20 중량부, 바람직하기로는 입경10~40μm이며 직경 1~20Å의 활성탄소 0.5∼10 중량부를 혼합하고 30~3000rpm 으로 압착 교반하며 스티렌을 용해시키는 유기용매 0.1~5중량부, 바람직하게는 0.3~ 3중량부를 분사하고 포함시켜서 활성탄소 분말을 발포성 폴리스티렌 수지입자의 표면층에 침투 코팅한다.
유기용매는 일정량을 연속적으로 분사하여도 가능하고 단속적으로 분사하는 것도 가능하고 수지 입자에 분사하고 활성탄소를 혼합하여도 가능하고 활성탄소를 혼합하는 과정에서 분사하여도 가능하고 혼합한 후에 분사하여도 가능하며 바람직하게는 활성탄소를 수지 입자와 혼합하고 분사하여 유기용매를 수지입자 표면층에 함유시키는 것이다. 사용 가능한 용매는 본 발명의 수지입자를 연화하고 용해하는 목적에 부합하는 한 제한 할 수 없으며 발포성 열가소성 수지 또는 발포성 폴리스티렌 수지를 용해시키는 유기용매는 모두 사용할 수 있다. 용매는 1종 단독 또는 2종 이상 혼합해서 사용할 수 있으며 바람직하게는 톨루엔, 에틸벤젠, 메틸에틸케톤, 스티렌모노마이다. 선택한 용매는 물을 혼합해서 사용할 수도 있으며 알콜을 혼합해서 사용할 수도 있다. 활성탄소의 침투 코팅 작용을 더 향상시키기 위하여 용매에 접착제를 첨가할 수 있으며 활성 탄소에 흡착시켜서 사용할 수도 있다. 반면 접착제를 사용하면 활성 탄소의 미세기공이 막히는 단점이 발생한다.
접착제의 첨가양은 발포성 폴리스티렌 수지 입자 100중량부에 대해서 0.1~10 중량부이며 올레핀계, 폴리에스테르계, 방향족 비닐계, 아크릴계, 염화비닐계가 바람직하며 선택하여 1종 단독 내지 2종 이상 혼합해서 사용할 수 있다. 본 발명은 수지 입자를 발포한 입자에도 활성탄소를 침투 코팅할 수 있다.
예를 들어서 발포성 폴리스티렌(SH에너지화학 SE2000)수지 입자 100중량부를 공지의 비드법으로 60배 발포하고 입경 1~80μm 이며 직경 20Å 이하의 미세공을 형성한 활성탄소 분말 0.05~ 20 중량부, 바람직하기로는 입경10~40μm이며 직경 1~20Å의 활성탄소 0.5∼10 중량부를 혼합하고 30~3000rpm으로 압착 교반하며 메틸에틸케톤 0.1~5 중량부에 대하여 1:4로 물을 혼합한 용매를 분사하여 발포한 수지 입자의 표면층에 활성탄소를 침투 코팅시킬 수 있다. 경우에 따라서는 활성탄소를 용매에 혼합해서 분사할 수도 있으며 수지 입자의 표면층에 침투 코팅되는 작용과 효과는 동일하다.
본 발명에서 사용하는 용매는 발포성 폴리스티렌 입자의 표면층을 미세하게 용해하고 연화시켜서 활성탄소 분말이 수지입자 표면층에 침투하면서 코팅되도록 하는 작용을 하고 기화하므로 용매에 물 또는 알콜이 혼합되면 수지입자 표면층이 급격하게 용해되거나 과도하게 용해되어서 수지 입자들이 서로 엉켜붙는 문제점을 해결한다. 용매와 물의 혼합 비율은 발포성 폴리스티렌 입자 100중량부에 대하여 용매 0.5∼5중량부이고 용매에 대하여 물의 혼합양은 1:0.01~99이며 용매와 알콜의 혼합량은1:0.01~99 이며 물과 알콜의 혼합량도 1:0.01~99 이다.
본 발명에서 사용하는 알콜은 지방족탄화수소의 유도체 중에서 -OH(히드록시기)가 알킬기(CnH2n+1,n1,2,3,4....) 에 결합한 형태의 유도체의 총칭을 말하며 예를 들어서 에탄올, 메탄올, 부탄올, 프로판올이 있으며 1종 또는 2종 이상을 혼합해서 사용할 수 있다. 용매에 물의 혼합양이 증가하면 수지입자의 용해도는 감소하고 건조 시간은 길어지므로 수지 입자의 분자량과 물성과 작업조건에 따라 적절하게 알콜을1:0.01~99을 혼합한다. 용매에 물과 알콜을 혼합하지 않고 활성탄소 또는 수지입자에 혼합해도 작용과 효과는 유사하다.
본 발명은 발포성 폴리스티렌 수지 입자에 자소성(self-extinguishing, 自消性)을 형성하기 위한 목적으로 공지의 난연제를 수지입자 표면층에 침투시켜서 코팅할 수도 있다. 예를 들어서 할로겐계화합물, 안티몬계산화물, 인계화합물, 염소계화합물, 중에서 선택하여 1종 단독 또는 2종 이상을 활성탄소 또는 수지입자에 혼합하여 사용할 수 있으며 또는 용매에 혼합해서 분사할 수 있으며 접착제에 혼합해서 분사할 수도 있다. 난연재의 사용양은 수지입자 100중량부에 할로겐계 화합물인 헥사브로모 시클로도데칸(HBCD) 0.1~2 중량부이며, 안티몬산화물인 삼산화안티몬은 0.1~10중량부이며, 인계난연제는(인함량) 0,1-10중량부이며, 염소계난연제인 염화파라핀(염소70중량%)은 0,1~10중량부가 바람직하다.
한편 본 발명의 활성탄소의 침투 코팅이 완료된 수지 입자에 또는 수지입자를 발포한 발포입자에 기능성을 향상시키는 물질을 분사하고 30~3000rpm으로 교반하여 흡착시킬 수 있다. 예를 들어서 단열성을 향상시킬 목적으로 입경 1~80μm 바람직하게는 입경 1~ 40μm 흑연, 알루미늄, 실리카에어로겔 0.05~10중량부를 접착제 또는 물, 또는 알콜에 혼합하여 분사하고 30~3000rpm으로 교반해서 활성탄소에 흡착시킬 수 있으며, 내구성과 내열성을 향상시킬 목적으로 내열성 수지와 내열성 물질를 흡착시킬 수 있다. 예를 들어서 폴리벤즈이미다졸계, 폴리이미드계, 불소계, 실리콘계, 멜라민계, 에폭시계, 페놀계, 우레탄계수지, 요소계수지 중 선택한 1종 또는 2종 이상 0.05~10중량부를 분사해서 흡착시킬 수 있으며, 입경 1~80μm 바람직하게는 입경 1~ 40μm 액상의 실리카졸, 수산화마그내슘졸, 산화아연졸, 탄산칼슘졸, 규산나트륨졸, 규산칼륨졸 중에서 선택 한 1종 또는 2종 이상 0.05~40 중량부를 혼합하고 분사해서 흡착시킬 수 있다.
산성과 알카리성의 물성을 목적으로 염산, 질산, 초산등의 산성 용액 또는 수산화나트륨, 탄산나트륨등의 알카리성 물질을 흡착시켜서 활성탄소를 산성 또는 알카리성으로 물성을 변화시킬 수 있으며, 미생물 유동상 담체로서 유익한 미생물의 성장에 요구되는 영양물질을 흡착시키고 함유시킬 수도 있다. 본 발명에서 흡착, 함유시키는 물질의 사용양은 발포성 폴리스티렌 입자 100중량부에 대해서 0.05중량부 ~40중량부 이며 바람직하게는 0.1중량부~ 20중량부이다. 40중량부 이상이면 흡착이 어려우며 0.05 중량부 이하이면 목적했던 효과가 미약하다.
(식물계 활성탄( 야자각 ) 미세공사진 2500 배)
Figure pat00001
( 석탄질 활성탄소 미세공 사진 2500배)
Figure pat00002
본 발명에 의하여 활성 탄소가 침투 코팅된 열가소성 발포성 수지 입자 및 발포성 폴리스티렌 수지 입자를 간편하고 경제적으로 제조할 수 있다.
본 발명의 활성탄소가 침투 코팅된 발포성 폴리스티렌 수지 입자로 성형된 성형물은(스티로폼) 유체의 흡착력이 탁월한 단열재로서 원하는 형상으로 성형할 수 있다. 특히 활성탄소에 형성된 미세기공과 흡착력을 활용하여 사용하는 용도의 기능에 부합하는 물질들을 흡착시켜서 다양한 물성의 기능들을 보유한 기능성 스티로폼을 제조할 수 있게 되었다.
이하, 실시예를 통해 본 발명의 작용효과를 상세히 설명하나, 본 발명의 범위는 실시예의 범위에 한정되지 아니하며 실시예로부터 뒷받침되는 모든 범위를 포함한다고 할 수 있다.
( 실시예 1)
발포성 폴리스티렌 입자(SH에너지화학 SE2500) 300kg에 입경 35~50μm 이며 직경 20Å 이하의 미세공의 활성탄소 15㎏을 교반기에 투입하고 30∼3000rpm으로 압착 교반하며 메틸에틸케톤(Methyl-ethyl-keton) 9kg을 3분간 분사하여 활성탄소를 발포성 폴리스티렌 입자의 표면층에 침투시키며 코팅하고 질소를 분사하여 60초 건조시켜서 활성탄소가 침투 코팅된 발포성 폴리스티렌 입자를 제조하였다. 공지의 비드법으로 60배 발포하여 성형하였고 스티로폼을 제조하였다. 성형체를 KSM 3808-비드법 2종의 실험방법으로 물성을 측정하였다, [표 1][표 2]에 알 수 있듯이 본 발명의 실시예 1로 제조된 스티로폼은 밀도, 열전도율, 굴곡강도, 압축강도, 흡수율 및 연소성 등이 KSM 3808-비드법 2종의 기준에 적합한 것으로 확인되었다.
( 실시예 2)
실시예 1과 동일하게 시행하되, 메틸에틸케톤(Methyl-ethyl-keton) 9kg에 물 1.8Kg 혼합하여 분사하였다. 수지입자의 표면 점착력이 감소하였고 건조 시간이 90초로 길어진 것 외에 물성은 실시예 1과 유사하였다.
( 실시예 3)
실시예 1과 동일하게 시행하되, 발포성 폴리스티렌 입자(SH에너지화학 SE2500) 300kg을 60배로 발포하여 사용하였고 메틸에틸케톤(Methyl-ethyl-keton) 3kg에 물 6Kg과 메탄올3Kg을 혼합하여 사용하였다. 건조 시간이 120초로 길어진 것 외에 나머지 물성은 실시예 1과 유사하였다.
KSM3808-비드법 2종 기준
시험항목 KSM3808 2종 단위 적합기준 실시예1 실시예2 실시예3
밀도 ㎏/㎥ 25.00 25.2 25.3 25.3
열전도율(평균온도23±℃) w/(m.k) 0.032 0.032 0.032 0.032
굴곡강도 ㎏f/㎠ 3.0이상 3.8 4.1 3.9
압축강도 ㎏f/㎠ 1.2이상 2.0 2.2 2.2
흡수율 g/㎠ 1이하 0.4 0.5 0.1
연소성 s (초) 3초내소화 3 2 3
활성탄비표면적 500 ㎡/g ~2000㎡/g
항목(Properties) 흡 착 통 과
형상(Type)스티로폼 300X300X50mm
밀도(㎏/㎥) 25.00
평균 세공직경 5~20Å
유기탄소 TOC (ppm) 15 2
질산염(질소포함)(ppm) 6 3
COO(ppm) 52 8.2
냄새 12 1
( 실시예 4)
실시예 1~3과 동일하게 시행하되 활성탄소 분말에 삼산화 안티몬 4.5Kg을 혼합하여 발포성 폴리스티렌 입자 표면층에 침투 코팅시켰다. 자소성이 향상되었고 물성은 실시예 1과 유사하였다.
( 실시예 5 )
실시예 1~3과 동일하게 시행하되 활성탄소 분말에 염화파라핀 4.5Kg을 혼합하여 발포성 폴리스티렌 입자 표면층에 침투 코팅시켰다. 자소성이 향상되었고 물성은 실시예 4과 유사하였다.
( 실시예 6 )
실시예 1~3과 동일하게 시행하되 활성탄소 분말에 헥사브로모 시클로도데칸(HBCD) 600g을 혼합하여 발포성 폴리스티렌 입자 표면층에 침투 코팅시켰다. 자소성이 향상되었고 물성은 실시예 4와 유사하였다.
KSM3808-비드법 2종 기준
시험항목 KSM3808 2종 단위 적합기준 실시예4 실시예5 실시예6
밀도 ㎏/㎥ 25.00 26.2 26.3 24.3
열전도율(평균온도23±℃) w/(m.k) 0.032 0.032 0.032 0.032
굴곡강도 ㎏f/㎠ 3.0이상 3.8 4.1 3.9
압축강도 ㎏f/㎠ 1.2이상 2.0 2.2 2.2
흡수율 g/㎠ 1이하 0.4 0.5 0.1
연소성 s (초) 3초내소화 1 1 1
( 실시예 7)
실시예 1~3과 동일하게 시행하되 용매에 초산비닐수지(고령분 35%) 9kg을 혼합하였다. 활성탄소의 침투 코팅과 전착은 향상되었으나 흡착력은 5~10%감소하였다.
( 실시예 8)
실시예 1~3과 동일하게 시행하되 용매에 아크릴 수지(고령분 35%) 9kg을 혼합하였다. 활성탄소의 침투 코팅과 전착은 향상되었으나 흡착력은 5~10%감소하였다.
( 실시예 9 )
실시예 1~3과 동일하게 시행하되 용매에 우레탄 수지(고령분 35%) 9kg을 혼합하였다. 활성탄소의 침투 코팅과 전착은 향상되었으나 흡착력은 5~10%감소하였다.
( 실시예 10)
실시예 1~3과 동일하게 시행하되 활성탄소 침투 코팅이 완료된 수지입자에, 올레핀계, 폴리에스테르계, 방향족비닐계, 아크릴계, 염화비닐계수지 용액 중에서 1종 또는 2종이상 9Kg(고형분 35% )을 분사하여 활성탄소에 흡착 코팅하였다. 공지의 비드법으로 성형하였고 스티로폼을 제조하였다. 성형체를 KSM 3808-비드법 2종의 실험방법으로 물성을 측정하였다 물성은 실시예 1~3과 유사하였고 융착성, 내구성, 내열성이 향상되었다.
( 실시예 11)
실시예 1~3과 동일하게 시행하되 활성탄소 침투 코팅이 완료된 수지 입자에 입경 1~20μm 의 인상흑연 3Kg 알루미늄 3Kg 실리카에어로겔 3Kg을 염화비닐수지 9Kg 혼합해서 활성탄소에 흡착 코팅하였다. 공지의 비드법으로 60배 발포하여 성형하였고 스티로폼을 제조하였다. 성형체를 KSM 3808-비드법 2종의 실험방법으로 물성을 측정하였다 물성은 실시예 1~3과 유사하였고 단열성이 향상되었다.(표 4)
KSM3808-비드법 2종 기준
시험항목 KSM3808 2종 단위 적합기준 실시예7 실시예8 실시예9
밀도 ㎏/㎥ 25.00 26. 25.6 25.3
열전도율(평균온도23±℃) w/(m.k) 0.032 0.030 0.030 0.031
굴곡강도 ㎏f/㎠ 3.0이상 3.6 4.0 3.4
압축강도 ㎏f/㎠ 1.2이상 2.0 2.2 2.2
흡수율 g/㎠ 1이하 0 0 0
연소성 s (초) 3초내소화 1.3 1.5 1.7
( 실시예 12)
실시예 1~9와 동일하게 시행하되 활성탄소를 침투 코팅시킨 수지 입자를 60배 발포하고, 입경 1~20μm 액상의 실리카졸, 수산화마그내슘졸, 산화아연졸, 탄산칼슘졸, 규산나트륨졸, 규산칼륨졸 중에서 1종 또는 2종 이상을 혼합하여 60Kg(고형분기분)을 분사하여 활성탄소에 흡착 코팅하였다. 비드법으로 성형하였고 스티로폼을 제조하였다. 성형체를 KSM 3808-비드법 2종의 실험방법으로 물성을 측정하였다 물성은 실시예 1과 유사하였고 융착성, 내구성, 내열성은 향상되었다.

Claims (13)

  1. 직경 0.3∼10mm인 100중량부의 열가소성 발포성 수지입자 또는 발포한 수지입자 표면층에 0.1~ 5 중량부의 유기용매를 포함시켜서 수지입자 표면층을 연화 및 용해하여 입경 1∼80um의 활성탄소 0.05 ~20중량부를 혼합하고 30∼3000rpm으로 압착 교반하여 연화 및 용해된 폴리스티렌 입자 표면층에 활성탄소를 침투 코팅시키는 것을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자의 제조방법.
  2. 제 1항에 있어서, 수지입자는 발포성 폴리스티렌 수지입자인 것을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자의 제조방법.
  3. 제1항 또는 제2항에 있어서, 수지입자 100중량부 대해서 0.1~10 중량부의 할로겐계화합물, 안티몬계산화물, 인계화합물, 염소계화합물의 난연재 중에서 선택한 1종 또는 2종 이상을 수지입자 표면층에 침투 코팅시키는 것을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자의 제조방법.
  4. 제1항 또는 제 2항에 있어서, 유기 용매는 톨루엔, 에틸벤젠, 메틸에틸케톤, 스티렌모노마인 중에서 선택한 1종 또는 2종 이상인 것을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자의 제조방법.
  5. 제1항 또는 제 2항에 있어서, 유기용매와 물이 1:0.01~99 혼합되는 것을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자의 제조방법.
  6. 제1항 또는 제 2항에 있어서, 유기용매와 알콜이 1:0.01~99 혼합되는 것을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자의 제조방법.
  7. 제6항에 있어서, 알콜은 에탄올, 메탄올, 부탄올, 프로판올 인것을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자의 제조방법.
  8. 제1항 또는 제 2항에 있어서, 활성탄소 분말은 식물계의 분말상 활성탄인 것을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자의 제조방법.
  9. 제1항 또는 제2항에 있어서, 활성탄소 분말에 올레핀계, 폴리에스테르계, 방향족비닐계, 아크릴계, 염화비닐계, 불소계, 실리콘계, 폴리이미드계, 멜라민계, 에폭시계, 페놀계, 우레탄계, 요소계 수지 중에서 선택하여 1종 또는 2종 이상 0.05~10·중량부를 흡착시키는 것을 을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자의 제조방법.
  10. 제1항 또는 제2항에 있어서, 활성탄소 분말에 실리카졸, 수산화마그내슘, 산화아연, 탄산칼슘, 규산나트륨, 규산칼륨, 용액 중에서 선택된 1종 또는 2종 이상 0.05~40 중량부를 흡착시키는 것을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자의 제조방법.
  11. 제1항 또는 제2항에 있어서, 활성탄소 분말에 흑연, 알루미늄, 실리카에어로겔 중에서 선택한 1종 또는 2종 이상 0.05~10 중량부를 흡착시키는 것을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자의 제조방법.
  12. 발포성 열가소성 수지 입자 100중량부의 표면층에 0.1~ 5 중량부의 유기용매를 포함시켜서 수지입자의 표면층을 연화 및 용해하여 입경 1∼80um의 활성탄소 0.05 ~20중량부를 혼합하고 30∼3000rpm으로 압착 교반해서 연화 및 용해된 수지입자 표면층에 활성탄소를 침투 코팅시킨 것을 특징으로 하는 흡착성과 단열성이 형성된 발포성 폴리스티렌 입자.
  13. 제12항의 활성탄소가 침투 코팅된 것을 특징으로 하는 수지 입자와 성형한 성형물.
KR1020120079980A 2012-07-23 2012-07-23 활성탄소 막을 형성시킨 발포성 폴리스티렌 수지입자의 제조방법 KR101441334B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120079980A KR101441334B1 (ko) 2012-07-23 2012-07-23 활성탄소 막을 형성시킨 발포성 폴리스티렌 수지입자의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120079980A KR101441334B1 (ko) 2012-07-23 2012-07-23 활성탄소 막을 형성시킨 발포성 폴리스티렌 수지입자의 제조방법

Publications (2)

Publication Number Publication Date
KR20140013312A true KR20140013312A (ko) 2014-02-05
KR101441334B1 KR101441334B1 (ko) 2014-09-17

Family

ID=50263765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120079980A KR101441334B1 (ko) 2012-07-23 2012-07-23 활성탄소 막을 형성시킨 발포성 폴리스티렌 수지입자의 제조방법

Country Status (1)

Country Link
KR (1) KR101441334B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11759767B2 (en) 2016-05-06 2023-09-19 Goldcorp Inc. Adsorbent composition, method of making the same, and uses thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292104A (ja) * 1997-04-18 1998-11-04 Tsuurongu:Kk ポリウレタンフォーム体およびその製造方法
KR20050090059A (ko) * 2005-07-20 2005-09-09 전창호 불연성 스티로폼의 불연성 첨가물 및 그의 제조방법
KR100899029B1 (ko) 2008-01-29 2009-05-26 한국화학연구원 고온 가공용 발포체를 얻기 위한 복합 발포제 및 이의제조방법
KR101028523B1 (ko) * 2009-05-19 2011-04-11 남가연 고단열성 발포성 폴리스티렌 입자 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11759767B2 (en) 2016-05-06 2023-09-19 Goldcorp Inc. Adsorbent composition, method of making the same, and uses thereof

Also Published As

Publication number Publication date
KR101441334B1 (ko) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5005694B2 (ja) 難燃性及び疎油性/疎水性特性を有する連続気泡フォーム及びその製造方法
JP5485144B2 (ja) 難燃性ポリスチレン
Wang et al. Remarkable adsorption performance of MOF-199 derived porous carbons for benzene vapor
KR101028523B1 (ko) 고단열성 발포성 폴리스티렌 입자 및 그 제조방법
KR101489087B1 (ko) 단열성 발포성 폴리스티렌 입자 및 단열성 발포성 폴리스티렌 입자의 제조방법
Huang et al. Significantly increasing porosity of mesoporous carbon by NaNH2 activation for enhanced CO2 adsorption
DK2580271T3 (en) FOAMED ITEMS THAT EXTEND IMPROVED THERMAL PROPERTIES
KR101643001B1 (ko) 친환경 벽지 조성물 및 그 제조 방법
Tsyntsarski et al. Porosity development during steam activation of carbon foams from chemically modified pitch
CN101248120A (zh) 生产泡沫板的方法
Li et al. An effective green porous structural adhesive for thermal insulating, flame-retardant, and smoke-suppressant expandable polystyrene foam
Zhang et al. One-pot solvent-free synthesis of nitrogen and magnesium codoped mesoporous carbon composites for CO2 capture
Rende et al. Controlling foam morphology of poly (methyl methacrylate) via surface chemistry and concentration of silica nanoparticles and supercritical carbon dioxide process parameters
CN105585725B (zh) 一种隔热阻燃泡沫材料的制备方法与应用
WO2007149418A2 (en) Nucleating agents for plastic foams
Arif et al. Selective low-energy carbon dioxide adsorption using monodisperse nitrogen-rich hollow carbon submicron spheres
Zhu et al. Ionic liquid-based monolithic porous polymers as efficient flame retardant and thermal insulation materials
Wang et al. Rigid and fire-resistant all-biomass aerogels
Wang et al. Metal-graphene-synergized melamine aerogel with robust elasticity and flame-retardancy for thermal-insulated-packaging industry
KR101441334B1 (ko) 활성탄소 막을 형성시킨 발포성 폴리스티렌 수지입자의 제조방법
Ergun Activated carbon and cellulose-reinforced biodegradable chitosan foams
KR101693369B1 (ko) 발포 폴리스타이렌 난연성 접착제 조성물
Li et al. Superior pore size for enhancing the competitive adsorption of VOCs under high humid conditions: an experiment and molecular simulation study
Mayoral et al. Functional porous carbons: Synthetic strategies and catalytic application in fine chemical synthesis
Bi et al. Nanoporous flame retardants: Toward asphalt with enhanced fire safety and smoke suppression behavior

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
R401 Registration of restoration