KR20130142470A - Solidifiying composion using circulation resource and the construction method thereof - Google Patents
Solidifiying composion using circulation resource and the construction method thereof Download PDFInfo
- Publication number
- KR20130142470A KR20130142470A KR1020120065708A KR20120065708A KR20130142470A KR 20130142470 A KR20130142470 A KR 20130142470A KR 1020120065708 A KR1020120065708 A KR 1020120065708A KR 20120065708 A KR20120065708 A KR 20120065708A KR 20130142470 A KR20130142470 A KR 20130142470A
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- cement
- soil
- composition
- strength
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/06—Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
- C04B18/08—Flue dust, i.e. fly ash
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/0093—Aluminates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/0006—Waste inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
본 발명은 순환자원을 이용한 고화재 조성물 및 이를 이용한 시공방법에 관한 것으로, 더욱 상세하게는 산업현장에서 발생되는 부산물인 순환자원을 이용하여 시멘트를 포함하지 않고서도 기존의 고화재 조성물과 동등 이상의 강도와 유동성을 확보함으로써, 고함수 유기질 토ㆍ사질토ㆍ마사토 그리고 실트질 점성토 등 시공 토질에 따라 배합하여 사용할 수 있는 고화재 조성물에 관한 것이다.The present invention relates to a fire-fighting composition using circulating resources and a method of applying the same, and more particularly, to a fire-fighting composition using cyclic resources, which is a by-product, And fluidity of the high-fire organic matter, thereby enabling the fire-fighting composition to be used in accordance with the applied soil such as high-function organic soil, sand soil, marathon soil and silt-resistant clay soil.
일반적으로 고화재는 시멘트 및 생석회와 함께 혼합하여 연약지반 강화 용도 등으로 많이 이용되고 있다. 특히, 토목공사와 같은 지반개량공사가 많이 이루어지는 경우 구조물의 대형화에 따라 그 하중 등을 견딜 수 있도록 지반의 안정화를 위해서는 고화재와 같은 안정적인 처리 공법이 많이 이용되고 있다. 특히, 최근에 해상 및 육상 심층혼합처리공법 등에서 시공성면이나 경제성 면에서 많은 이점을 가지고 있기 때문에 시공실적이 증가 추세에 있다.In general, firefighting is widely used in soft ground reinforcement applications by mixing with cement and quicklime. Particularly, in the case of many earth improvement works such as civil engineering works, stable processing methods such as high fire are widely used to stabilize the ground in order to withstand the load as the structure becomes larger. In particular, the construction performance has been on an increasing trend because it has many advantages in terms of workability and economy in recent years, such as marine and deep-sea mixed treatment methods.
특허문헌1에는 60~65중량%의 포틀랜드시멘트와, 고로슬래그미분말, 석탄회미분말, 화산재, 왕겨재, 규조토, 실리카흄 및 제올라이트 중의 하나인 10~15중량%의 포졸란물질과, CSA(Calcium Sulfo-Aluminate)와 석고 또는 CSA와 알루미나시멘트 중의 하나인 10~15중량%의 조강제와, 멜라민계, 나프탈렌계, 카르복실계 분산제 중의 하나인 10~15중량%의 분산제로 구성되고, 4,000cm2/g의 분말도를 가짐을 특징으로 한 연약지반 개량용 기능성 고화재가 개시되어 있다Patent Document 1 discloses a cement admixture comprising 60 to 65% by weight of Portland cement, 10 to 15% by weight of a pozzolanic substance, which is one of blast furnace slag fine powder, coal fly ash, volcanic ash, rice hull ash, diatomaceous earth, silica fume and zeolite, 10 to 15% by weight of a sudsing agent, which is one of gypsum or CSA and alumina cement, and 10 to 15% by weight of a dispersant, which is one of melamine, naphthalene and carboxyl dispersants, A functional powder for improving the soft ground has been disclosed
하지만, 이러한 종래의 고화재 조성물은 다음과 같은 문제가 발생하였다. 연약지반에서 사용하기 위해서는 소정의 유동성과 강도 등을 요구하게 되는데, 이러한 요구를 충족시키기 위해서는 통상의 시멘트나 고로 슬래그 시멘트 등을 함유해햐 했다.However, such a conventional fire retardant composition has the following problems. In order to be used in soft ground, a certain fluidity and strength are required. In order to meet such a demand, ordinary cement, blast furnace slag cement and the like should be contained.
또한, 종래의 이러한 시멘트계는 천연 석회석을 소성하여 제조하게 되는데, 제조과정에서 CO2를 다량으로 배출하고, 그 성분상에는 환경에 유해한 6가 크롬이 일부 존재하는 문제점을 가지고 있다.In addition, the conventional cement system is produced by calcining natural limestone. However, there is a problem that a large amount of CO 2 is discharged in the manufacturing process and a part of hexavalent chromium is harmful to the environment on the components.
본 발명은 이러한 점을 감안하여 안출한 것으로, 산업계에서 발생되는 순환자원(산업 부산물)을 사용하여 시멘트계를 사용하지 않고도 시멘트계를 사용할 때와 동등 또는 그 이상의 강도 발현과 유동성을 확보할 수 있으며, 소성이 필요하지 않기 때문에 CO2 발생량을 대폭 저감할 수 있을 뿐만 아니라, 6가 크롬이 거의 없는 순환자원을 이용한 친환경 고화재 조성물 및 이를 이용한 시공방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is an object of the present invention to provide a cement mortar composition which is capable of securing strength and fluidity equal to or higher than that of cement mortar using cyclic resources (industrial byproducts) because there is no need, as well as be able to significantly reduce CO 2 emissions, to provide eco-friendly and fire 6. the composition and construction methods by using a circular chrome resources have almost no purpose.
특히, 본 발명은 이러한 무시멘트계 고화재 조성물의 조성비를 토질에 따라 배합설계하여 고함수 유기질 토ㆍ사질토ㆍ마사토 그리고 실트질 점성토 등 대상 토질에 적합하게 배합하여 사용할 수 있도록 한 순환자원을 이용한 고화재 조성물 및 이를 이용한 시공방법을 제공하는데 그 목적이 있다.In particular, the present invention relates to a cementitious fire-retardant composition comprising a cementitious fire-retardant composition according to the composition of the earth, such as high-function organic soil, sand, silt and silty clays, And a method for constructing the same.
이러한 목적을 달성하기 위한 본 발명에 따른 순환자원을 이용한 고화재 조성물은, 포졸란 합성물질 65.0~85.0중량%; 강도촉진 활성화제 5.0~45.0중량%; 및 분산제 0.1~5.0중량%;를 포함하여 이루어진다.In order to accomplish the above object, the present invention provides a fire-retardant composition using cyclic resources, comprising: 65.0 to 85.0% by weight of a pozzolanic compound; 5.0-45.0% by weight strength activator; And 0.1 to 5.0% by weight of a dispersing agent.
본 발명의 순환자원을 이용한 고화재 조성물 및 이를 이용한 시공방법에 따르면 다음과 같은 효과가 있다.According to the fire-fighting composition using the circulating resource of the present invention and the construction method using the same, the following effects can be obtained.
1) 시멘트가 함유되어 있지 않으면서도 시멘트 또는 고로 슬래그 시멘트와 동등 이상의 유동성 및 발현효과를 얻을 수 있다.1) It is possible to obtain fluidity and manifestation effect equal to or higher than that of cement or blast furnace slag cement without containing cement.
2) 시공하고자 하는 토질(예를 들어서, 고함수 유기질 토ㆍ사질토ㆍ마사토 그리고 실트질 점성토 등)의 종류에 따라서 적합한 비율로 배합설계하여 사용할 수 있다.2) It can be mixed and designed according to the kind of soil to be applied (for example, high-functional organic soil, sandy soil, marble, silty clays, etc.).
이하, 본 발명의 바람직한 실시예를 보다 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, preferred embodiments of the present invention will be described in more detail. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be interpreted in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.
따라서 본 명세서에 기재된 실시예에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
Therefore, the constitutions shown in the embodiments described herein are merely the most preferred embodiments of the present invention and are not intended to represent all of the technical ideas of the present invention. Therefore, various equivalents which can be substituted at the time of application It should be understood that variations can be made.
<< 고화재Fire 조성물> Composition>
본 발명에 따른 순환자원을 이용한 고화재 조성물은, 포졸란 합성물질 65.0~85.0중량%; 강도촉진 활성화제 5.0~45.0중량%; 및 분산제 0.1~5.0중량%;를 포함하여 이루어진다.
The fire retardant composition using the circulating material according to the present invention comprises 65.0 to 85.0% by weight of a pozzolanic synthetic material; 5.0-45.0% by weight strength activator; And 0.1 to 5.0% by weight of a dispersing agent.
특히, 상기 포졸란 합성물질은, 산업부산물로서 얻어지는 순환자원으로 이루어진 것을 이용한다. 이러한 포졸란 합성물질로는, 고로슬래그 미분말 45 ~ 65중량%; 플라이 애시 10 ~ 45중량%; 연소재 10 ~ 45중량%; 및 제올라이트계 유동 접촉 분해 순환 촉매 0 ~ 30중량%;을 포함한다.Particularly, the pozzolanic synthetic material is made of a circulating material obtained as an industrial by-product. Such pozzolanic synthetic materials include 45 to 65% by weight of fine blast furnace slag powder; 10 to 45 wt% of fly ash; 10 to 45% by weight of soft material; And 0 to 30% by weight of zeolite-based catalytic catalytic cracking circulation catalyst.
이때, 고로슬래그는 볼밀이나 진동밀과 같은 분쇄수단에 의해 분쇄된 것을 이용하게 되고, 그 함량이 45중량% 미만이면 강도가 약해지게 지고 65중량%을 초과하게 되면 응결시간이 길어지고, 점성이 높아져 유동성이 떨어진다.At this time, the blast furnace slag is pulverized by a crushing means such as a ball mill or a vibrating mill. When the content is less than 45 wt%, the strength is weakened. When the content is more than 65 wt%, the coagulation time is long, Liquidity is low.
또한, 플라이 애시는 석탄화력발전소로부터 생성된 것을 이용하며, 믹싱시 볼 베어링과 같은 역할과 점토와의 포졸란 반응에 의한 강도에 기여를 한다. 이러한 플라이 애시는 그 함량이 10중량%이하이면 유동성이 저하되게 되고, 반대로 그 함량이 45중량%를 초과하면 강도가 낮아지게 된다.In addition, fly ash uses what is produced from coal-fired power plants and contributes to the strength by mixing with ball bearings and by pozzolanic reactions with clay. If the content of the fly ash is less than 10% by weight, the flowability of the fly ash is lowered. On the contrary, if the content exceeds 45% by weight, the strength of the fly ash is lowered.
그리고, 연소재는 유연탄 및 무연탄을 연료로 사용하는 순환유동층 연소 보일러를 사용하는 보일러로부터 생성된 것을 이용하며, 주로 함수비가 높은 토질에 함수비를 낮추기 위한 목적으로 사용한다. 이러한 연소재는 그 함량이 10중량%이하이면 함수비 저하가 낮고, 반대로 그 함량이 45중량%를 초과하면 강도가 낮아지게 된다.And, the soft material is produced from boilers using a circulating fluidized bed combustion boiler that uses bituminous coal and anthracite as fuel, and is mainly used for lowering the water content in a high water content soil. If the content of such a soft material is less than 10% by weight, the lowering of the water content is low. On the contrary, if the content exceeds 45% by weight, the strength becomes low.
마지막으로, 제올라이트계 유동 접촉 분해 순환 촉매는 정유시에 생성되는 것을 이용한다.
Finally, the zeolite-based flow catalytic cracking catalyst utilizes what is produced during refining.
또한, 상기 강도 촉진 활성화제는, 망초 25 ~ 65중량%; 탈황석고 20 ~ 55중량%, 및 정련슬래그 5 ~ 45중량%;을 포함한다. Also, the strength-promoting activator may comprise 25 to 65 wt% of manganese oxide; 20 to 55% by weight of desulfurized gypsum, and 5 to 45% by weight of refining slag.
이때, 상기 망초는 유리제조공정에서 얻어진 것을 이용하며, SO3성분이 30 ~ 45%이고; Na2O 성분이 15 ~ 25%;인 것을 이용한다.At this time, the gangue is obtained from the glass manufacturing process, and the SO 3 component is 30 to 45%; Na 2 O component is 15 to 25%;
그리고, 상기 탈황석고는 석유 코크스(Petroleum Cokes) 또는 유연탄 연료를 하나 또는 둘 이상의 혼소하여 연료로 하는 유동층 연소 보일러 탈황공정으로부터 얻어진 것을 이용하는 것이 바람직하다. 이때의 상기 탈황석고는, CaO 성분이 30 ~ 65%이고;, SO3는 10 ~ 35%;인 것을 이용하는 것이 바람직하다.It is preferable that the desulfurization gypsum is obtained from a fluidized bed combustion boiler desulfurization process in which one or two or more petroleum cokes or bituminous coal fuels are mixed and fueled. The desulfurized gypsum preferably contains 30 to 65% of CaO and 10 to 35% of SO 3 .
또한, 상기 정련슬래그는 전기로 및 전로 정련과정으로부터 얻어진 것을 이용한다. 그리고, 이러한 정련슬래그는 CaO 성분이 35 ~ 50%이고; MgO는 5 ~ 10%;인 것을 이용하는 것이 바람직하다.
In addition, the refining slag uses an electric furnace and a furnace obtained from the refining process. The refining slag has a CaO content of 35 to 50%; MgO is preferably 5 to 10%;
그리고, 상기 분산제는 나프탈렌계, 리그닌계, 폴리카르본산계 중에서 적어도 하나인 것을 특징으로 한다.
The dispersant is at least one selected from the group consisting of naphthalene series, lignin series and polycarboxylic acid series.
이러한 본 발명에 따라 얻어지는 순환자원을 이용한 고화재 조성물은 그 비표면적이 3,000 ~ 5,500㎠/g인 것을 특징으로 한다.
The fire-retardant composition using the cyclic resource obtained according to the present invention has a specific surface area of 3,000 to 5,500 cm 2 / g.
<시공방법><Construction method>
본 발명은 상술한 순환자원을 이용한 고화재 조성물 100중량%에 대하여 물 80~120%를 포함시켜 심층혼합처리 공법으로 시공하는 시공방법을 포함한다.
The present invention includes a construction method of applying 80% to 120% of water to 100% by weight of the fire-retardant composition using the above-described recycled resources by a deep layer mixing treatment method.
본 발명의 실시예1에 따른 고화재 조성물은, 포졸란 합성물질 73중량%, 강도촉진 활성화제 25중량%, 폴리카르본산계 분산제 2중량%으로 믹싱 혼련하여 제조하였다. 이때 이 고화재 조성물의 비표면적은 4,535㎠/g였다.
The fire retardant composition according to Example 1 of the present invention was prepared by mixing and kneading 73 wt% of a pozzolanic synthetic material, 25 wt% of a strength promoting activator, and 2 wt% of a polycarboxylic acid dispersant. The specific surface area of the fire retardant composition was 4,535 cm 2 / g.
본 발명의 실시예2에 따른 고화재 조성물은, 포졸란 합성물질 69중량 %, 강도촉진 활성화제 29중량%, 폴리카르본산계 분산제 2중량%로 믹싱 혼련하여 제조하였다. 이때 이 고화재 조성물의 비표면적은 3,895㎠/g였다.
The fire retardant composition according to Example 2 of the present invention was prepared by mixing and kneading 69% by weight of a pozzolanic synthetic material, 29% by weight of a strength promoting activator, and 2% by weight of a polycarboxylic acid dispersant. The specific surface area of the fire retardant composition was 3,895 cm 2 / g.
[비교예 1]Comparative Example 1
비교예1에 따른 고화재 조성물은, 포졸란 합성물질 중 고로슬래그 미분말 73중량%, 강도촉진 활성화제 25중량%, 폴리카르본산계 분산제 2중량%를 믹싱 혼련하여 제조하였다. 비교예1의의 비표면적 4,750㎠/g였다.
The hot-fire composition according to Comparative Example 1 was prepared by mixing and kneading 73% by weight of fine blast-furnace slag powder, 25% by weight of a strength-promoting activator, and 2% by weight of a polycarboxylic acid-based dispersant among pozzolanic synthetic materials. And the specific surface area of Comparative Example 1 was 4,750 cm < 2 > / g.
[비교예 2]Comparative Example 2
비교예2에 따른 고화재 조성물은, 포졸란 합성물질 중 화력발전소 플라이 애시 73중량%, 강도촉진 활성화제 25중량%, 폴리카르본산계 분산제 2중량%를 믹싱 혼련하여 제조하였다. 비교예2의 비표면적 3,685㎠/g인 고화재 조성물을 제조하였다.
The fire retardant composition according to Comparative Example 2 was prepared by mixing and kneading 73 wt% of thermal power plant fly ash, 25 wt% of strength promoting activator, and 2 wt% of polycarboxylic acid dispersant as a pozzolanic synthetic material. And a specific surface area of 3,685 cm < 2 > / g in Comparative Example 2 was prepared.
[비교예 3][Comparative Example 3]
비교예3에 따른 고화재 조성물은, 일반 보통 포틀랜드 시멘트 98중량%, 폴리카르본산계 분산제 2중량%를 믹싱 혼련하여 제조하였다. 비교예3의 비표면적 3,325㎠/g인 고화재 조성물을 제조하였다.
The fire-retardant composition according to Comparative Example 3 was prepared by mixing and kneading 98 wt% of common ordinary Portland cement and 2 wt% of polycarboxylic acid-based dispersant. And the specific surface area of Comparative Example 3 was 3,325 cm 2 / g.
[비교예 4][Comparative Example 4]
비교예3에 따른 고화재 조성물은, 고로슬래그 시멘트 98중량 %, 폴리카르본산계 분산제 2중량%를 믹싱 혼련하여 제조하였다. 비교예4의 비표면적 4,045㎠/g인 고화재 조성물을 제조하였다.
The fire-retardant composition according to Comparative Example 3 was prepared by mixing and blending 98 weight% of blast-furnace slag cement and 2 weight% of a polycarboxylic acid-based dispersant. And the specific surface area of Comparative Example 4 was 4,045 cm < 2 > / g.
<성능평가><Performance evaluation>
다음은 상술한 실시예1과 실시예2 그리고 비교예1~비교예4로부터 얻은 고화재 조성물에 대하여, 1)슬러리 유동성과, 2)고화체 1축압축시험한 결과에 대하여 설명한다.
The following describes the results of 1) slurry fluidity and 2) solidification uniaxial compression test for the fire-retardant compositions obtained from the above-described Example 1, Example 2 and Comparative Examples 1 to 4.
1) 슬러리 유동성 평가1) Slurry fluidity evaluation
우선, 실시예1과 실시예2 그리고 비교예1~비교예4에 의한 고화재 조성물을 제조하고, 이를 온도 23± 1℃에서 KS F 4044의 시험방법에 따라 그라우트 유하시험기로 슬러리의 유하시간을 측정하였다.
First, a fire retardant composition according to Example 1, Example 2 and Comparative Examples 1 to 4 was prepared, and the slurry was dripped at a temperature of 23 ± 1 ° C by a grouting device under a test method of KS F 4044 Respectively.
다음의 표 1은 측정된 유하시간의 결과를 나타낸다.
The following Table 1 shows the results of the measured drought time.
구분
division
물중량(%)
Water weight (%)
슬러리 유하시간(초)
Slurry descending time (sec)
초기
Early
60분후
60 minutes later
실시예 1
Example 1
80
80
8.50
8.50
8.30
8.30
실시예 2
Example 2
80
80
7.90
7.90
7.75
7.75
비교예 1
Comparative Example 1
100
100
9.20
9.20
8.90
8.90
비교예 2
Comparative Example 2
100
100
9.40
9.40
9.35
9.35
비교예 3
Comparative Example 3
100
100
8.65
8.65
8.50
8.50
비교예 4
Comparative Example 4
100
100
9.30
9.30
9.20
9.20
상기 [표 1]에서와 같이, 실시예1 및 실시예2는 물을 80중량% 함유시켰고, 비교예들은 물을 100중량%함유시켰다. 그리고 유동성 개선을 위하여 혼화제로서 동일한 폴리카르본산계 혼화제 2중량%를 첨가시켰다. 그 결과, [표 1]과 같이, 실시예들의 유하시간이 비교예들의 유하시간보다 빨라짐을 알 수 있다. As shown in Table 1, Example 1 and Example 2 contained 80 wt% of water, and Comparative Example contained 100 wt% of water. To improve the fluidity, 2 wt% of the same polycarboxylic acid-based admixture was added as an admixture. As a result, as shown in Table 1, it can be seen that the descending time of the embodiments is faster than the descending time of the comparative examples.
이는 본 발명에 따른 실시예들의 슬러리 유동성이 비교예들의 유하시간과 동등 또는 빨라짐을 의미하는 것으로, 특히 포졸란 합성물질의 초기 반응 시간을 지연시켜 유동성이 향상된 것이라고 할 수 있다.This means that the slurry fluidity of the examples according to the present invention is equal to or faster than the falling time of the comparative examples, and the fluidity is improved by delaying the initial reaction time of the pozzolanic compound.
또한, 이러한 유동성의 향상은 기존의 고로슬래그나 포틀랜드 시멘트를 사용하는 경우에 비해 물의 사용량을 20% 정도 저감할 수 있으며, 원지반에 주입되는 고화재 슬러리 제조시 물의 양을 감소시켜도 유동성이 유지되므로 강도발현에 유리하며, 토출되는 폐기 슬러지의 양도 저감되므로 친환경적이라 할 수 있다.
Further, the improvement of the fluidity can reduce the amount of water used by 20% compared to the case of using the conventional blast furnace slag or Portland cement, and since the fluidity is maintained even when the amount of water is reduced in the production of the fire slurry injected into the paperboard, It is advantageous for the expression, and the amount of the discharged sludge discharged is also reduced, so that it can be said to be environmentally friendly.
2) 1축 압축시험2) Single Axis Compression Test
대상 점토로서 함수비 44.9%이고 습윤밀도 1.754 g/㎤인 해상 점토에 각각 본 발명의 실시예들과 비교예들에 의해 제조된 고화재를 200~250 ㎏/㎤ 첨가하여 5분간 믹싱한 뒤 지름 5cm× 높이 10cm 실린더형 몰드의 공시체를 제작하였다.The target clay was mixed with sea water clay having a water content of 44.9% and a wet density of 1.754 g / cm < 3 > by adding 200 ~ 250 kg / cm < 3 & × 10 cm height of the cylindrical mold.
공시체는 23± 1℃에서 재령기간(7일과 28일) 동안 밀봉하여 양생한 후 일축 압축강도를 KS F 2314 방법에 의하여 측정하였다. [표 2]는 그 측정결과를 보여준다.
The specimens were sealed and cured at 23 ± 1 ℃ during the ages (7 and 28 days), and then uniaxial compressive strength was measured by the KS F 2314 method. [Table 2] shows the measurement results.
구분
division
첨가량(/)
Addition amount (/)
물함량(%)
Water content (%)
축압축강도(/)
Axial Compressive Strength (/)
비표면적(cm2/g)
Specific surface area (cm 2 / g)
7일
7 days
28일
28th
실시예 1
Example 1
200
200
80
80
27.6
27.6
45.3
45.3
4,535
4,535
실시예 2
Example 2
250
250
80
80
25.8
25.8
46.8
46.8
3,895
3,895
비교예 1
Comparative Example 1
250
250
100
100
23.8
23.8
41.4
41.4
4,750
4,750
비교예 2
Comparative Example 2
250
250
80
80
18.9
18.9
38.9
38.9
3,685
3,685
비교예 3
Comparative Example 3
250
250
80
80
22.3
22.3
42.5
42.5
3,325
3,325
비교예 4
Comparative Example 4
250
250
100
100
23.8
23.8
43.8
43.8
4,045
4,045
위의 [표 2]와 같이, 재령 28일 기준으로, 본 발명의 실시예1은 고화재량의 함유량이 200㎏/㎤으로 이로부터 얻어지는 축압은 45.3㎏/㎠으로서, 비교예1 내지 비교예4의 축압 38.9~43.8㎏/㎠보다 우수한 것을 알 수 있다. 또한, 실시예2의 경우 축압은 46.8㎏/㎠로서 더욱 더 커짐을 알 수 있다.As shown in Table 2 above, in Example 1 of the present invention, the content of the solidification amount was 200 kg / cm 3, and the axial pressure obtained therefrom was 45.3 kg / cm 2, and in Comparative Examples 1 to 4 Cm < 3 > / cm < 2 >. In the case of the second embodiment, the axial pressure is 46.8 kg / cm < 2 >
이러한 축압의 우수성은 재령 7일인 경우에도 동일하게 나타남을 알 수 있다.
It can be seen that the superiority of the axial pressure is the same even at the age of 7 days.
이상과 같이 본 발명은 상기 유동성 시험 및 일축압축 강도 시험 결과로부터 본 발명에 따른 고화재는 소정의 압축강도를 얻기 위한 고화재 첨가량이 종래의 시멘트나 고로슬래그 시멘트에 비해 적음에도 불구하고 유동성 및 강도 발현이 동등 이상의 결과를 보이므로 매우 경제적이라고 할 수 있다.From the results of the fluidity test and the unconfined compressive strength test, it can be seen from the above that, according to the present invention, even though the addition amount of the fireproofing for obtaining the predetermined compressive strength is smaller than that of the conventional cement or blast furnace slag cement, Expression is equal to or higher than that of the wild type.
Claims (12)
강도촉진 활성화제 5.0~45.0중량%; 및
분산제 0.1~5.0중량%;를 포함하여 이루어진 것을 특징으로 하는 순환자원을 이용한 고화재 조성물.65.0-85.0 wt% pozzolanic synthetic material;
5.0-45.0% by weight strength activator; And
0.1 ~ 5.0% by weight of a dispersant; solidified fire composition using a circulating resource, characterized in that consisting of.
상기 포졸란 합성물질은,
고로슬래그 미분말 45 ~ 65중량%;
석탄화력발전소로부터 생성된 플라이 애시 10 ~ 45중량%;
열발전 발전소의 보일러로부터 생성된 연소재 10 ~ 45중량%; 및
정유시 생성된 제올라이트계 유동 접촉 분해 순환 촉매 0 ~ 30중량%;을 포함하는 것을 특징으로 하는 순환자원을 이용한 고화재 조성물.The method of claim 1,
The pozzolanic synthetic material may be,
45 to 65% by weight of fine blast furnace slag powder;
10 to 45 wt% of fly ash produced from coal-fired power plants;
10 to 45% by weight of a burned material produced from a boiler of a thermal power plant; And
0 to 30% by weight of zeolite-based fluid catalytic cracking circulation catalyst produced during the refinery; solidified composition using a circulating resource, comprising a.
상기 강도 촉진 활성화제는,
망초 25 ~ 65중량%;
탈황석고 20 ~ 55중량%, 및
정련슬래그 5 ~ 45중량%;을 포함하는 것을 특징으로 하는 순환자원을 이용한 고화재 조성물.The method of claim 1,
The strength-
25 to 65% by weight of gum;
20 to 55 wt% of desulfurized gypsum, and
And 5 to 45% by weight of refining slag.
상기 망초는 유리제조공정에서 얻어진 것을 특징으로 하는 순환자원을 이용한 고화재 조성물.The method of claim 3, wherein
Wherein said gangue is obtained in a glass manufacturing process.
상기 망초는,
SO3성분이 30 ~ 45%이고;,
Na2O 성분이 15 ~ 25%;인 것을 특징으로 하는 순환자원을 이용한 고화재 조성물.5. The method of claim 4,
The above-
The SO 3 component is 30 to 45%; and
And the Na 2 O content is 15 to 25%.
상기 탈황석고는 석유 코크스(Petroleum Cokes) 또는 유연탄 연료를 하나 또는 둘 이상의 혼소하여 연료로 하는 유동층 연소 보일러 탈황공정으로부터 얻어진 것을 특징으로 하는 순환자원을 이용한 고화재 조성물.The method of claim 3, wherein
Wherein the desulfurization gypsum is obtained from a fluidized bed combustion boiler desulfurization process in which one or more petroleum cokes or bituminous coal fuels are mixed and fueled.
상기 탈황석고는,
CaO 성분이 30 ~ 65%이고;,
SO3는 10 ~ 35%;인 것을 특징으로 하는 순환자원을 이용한 고화재 조성물.The method according to claim 6,
In the desulfurized gypsum,
The CaO component is 30 to 65%; and
And SO 3 is 10 to 35%.
상기 정련슬래그는 전기로 및 전로 정련과정으로부터 얻어진 것을 특징으로 하는 특징으로 하는 순환자원을 이용한 고화재 조성물.The method of claim 3, wherein
Characterized in that the refining slag is obtained from an electric furnace and a refining process.
상기 정련슬래그는
CaO 성분이 35 ~ 50%이고;,
MgO는 5 ~ 10%;인 것을 특징으로 하는 순환자원을 이용한 고화재 조성물.The method of claim 8,
The refining slag
The CaO component is 35 to 50%; and
And MgO is 5 to 10%.
상기 분산제는 나프탈렌계, 리그닌계, 폴리카르본산계 중에서 적어도 하나인 것을 특징으로 하는 순환자원을 이용한 고화재 조성물.The method of claim 1,
Wherein the dispersing agent is at least one selected from the group consisting of naphthalene, lignin and polycarboxylic acid.
상기 조성물은 비표면적이 3,000 ~ 5,500 ㎠/g인 것을 특징으로 하는 순환자원을 이용한 고화재 조성물.The method according to any one of claims 1 to 10,
Wherein the composition has a specific surface area of 3,000 to 5,500 cm 2 / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120065708A KR101393201B1 (en) | 2012-06-19 | 2012-06-19 | Solidifiying composion using circulation resource and the construction method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120065708A KR101393201B1 (en) | 2012-06-19 | 2012-06-19 | Solidifiying composion using circulation resource and the construction method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130142470A true KR20130142470A (en) | 2013-12-30 |
KR101393201B1 KR101393201B1 (en) | 2014-05-12 |
Family
ID=49986052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20120065708A KR101393201B1 (en) | 2012-06-19 | 2012-06-19 | Solidifiying composion using circulation resource and the construction method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101393201B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101468363B1 (en) * | 2014-07-25 | 2014-12-03 | 주영에스티에스(주) | Solidifiying Composion Using Subbituminous Coal |
KR101525035B1 (en) * | 2014-10-15 | 2015-06-09 | 주식회사 씨엠디기술단 | Binder composition |
KR20160020621A (en) * | 2014-08-13 | 2016-02-24 | 주식회사 지안산업 | Manufacturing method for grouting chemical liquid agency |
KR20170104702A (en) * | 2016-03-07 | 2017-09-18 | 주식회사 지안산업 | Eep mixing method without cement |
KR20190087395A (en) | 2019-07-18 | 2019-07-24 | 주식회사 포스코건설 | Ground improvement material for deep sea with deep cement mixing by utilizing siliceous slag binder |
KR102009342B1 (en) * | 2018-12-20 | 2019-08-09 | 한국건설기술연구원 | ordinary temperature hardening recycled asphalt mixture |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101468987B1 (en) * | 2014-08-26 | 2014-12-05 | 쌍용기초소재주식회사 | Coke-ash containing ground granulated blast-furance slag composition and method for manufacturing of the same |
KR20190108323A (en) | 2018-03-14 | 2019-09-24 | 한국과학기술원 | Geopolymer Concrete Composition And Method for Manufacturing Geopolymer Concrete Using the Same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050091980A (en) * | 2004-03-13 | 2005-09-16 | 삼성전자주식회사 | Liquid crystal display |
KR100876222B1 (en) * | 2007-09-06 | 2008-12-29 | 주식회사 동아지질 | The solidifying agent composition for softground improvement |
KR100857916B1 (en) * | 2008-01-22 | 2008-09-10 | (주) 지오시스 | Solidifying agent and method for solidfying soft ground using it |
KR101200280B1 (en) * | 2010-02-26 | 2012-11-12 | 주식회사 씨엠디기술단 | Dredging sludge solidified agent and menufacturing method of mixed soil usign the same |
-
2012
- 2012-06-19 KR KR20120065708A patent/KR101393201B1/en active IP Right Grant
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101468363B1 (en) * | 2014-07-25 | 2014-12-03 | 주영에스티에스(주) | Solidifiying Composion Using Subbituminous Coal |
KR20160020621A (en) * | 2014-08-13 | 2016-02-24 | 주식회사 지안산업 | Manufacturing method for grouting chemical liquid agency |
KR101525035B1 (en) * | 2014-10-15 | 2015-06-09 | 주식회사 씨엠디기술단 | Binder composition |
KR20170104702A (en) * | 2016-03-07 | 2017-09-18 | 주식회사 지안산업 | Eep mixing method without cement |
KR102009342B1 (en) * | 2018-12-20 | 2019-08-09 | 한국건설기술연구원 | ordinary temperature hardening recycled asphalt mixture |
KR20190087395A (en) | 2019-07-18 | 2019-07-24 | 주식회사 포스코건설 | Ground improvement material for deep sea with deep cement mixing by utilizing siliceous slag binder |
Also Published As
Publication number | Publication date |
---|---|
KR101393201B1 (en) | 2014-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101393201B1 (en) | Solidifiying composion using circulation resource and the construction method thereof | |
KR101488147B1 (en) | A composition of eco-friendly non-cement type binder by low-temperature calcination, mortar and concrete comprising the same | |
KR101543523B1 (en) | Solidifying composition for deep mixing method using circulation resource and manufacturing method of the same | |
KR101564560B1 (en) | Eco neutral ground For improvements firming agent Production method and construction method | |
KR101299164B1 (en) | Solidification material composition for deep soil stabilization including large amount of non-firing binding materials and deep mixing method using thereof | |
KR101134221B1 (en) | Concrete block composition | |
Feng et al. | Performance of desulfurization ash for the preparation of grouting fire prevention material | |
KR101834539B1 (en) | A composition of low-shrinkage low-carbon green cement comprising carbon-mineralized fly ash and early strength expansive admixture and concrete applied thereby | |
KR20100130470A (en) | Composition for soft ground construction pile using ash | |
KR101380326B1 (en) | Solidified agent composition | |
KR101416005B1 (en) | Nature-friendly block using non-sintering inorgarnic binder and manufacturing method thereof | |
KR20170118991A (en) | Soil stabilizer | |
JP2006143990A (en) | Solidifying material | |
KR102522763B1 (en) | Binder for secondary concrete product and manufacturing method of secondary concrete product | |
JP2021116193A (en) | Admixture for cement and cement composition | |
KR101468363B1 (en) | Solidifiying Composion Using Subbituminous Coal | |
KR102659413B1 (en) | Eco-friendly general-purpose binder composition for solidifying soil | |
KR101974591B1 (en) | Eco-friendly and high functional solidifying composition for point foundation | |
binti Abdul Kadir et al. | An overview of fly ash and bottom ash replacement in self-compaction concrete | |
Naganathan et al. | Use of wastes in developing mortar–a review | |
Pavlík et al. | Utilization of extracted carbonaceous shale waste in eco-friendly cementitious blends | |
KR102535232B1 (en) | High-strength bonding materials and steam curing concrete structures equipped with them | |
KR101743601B1 (en) | solidifying agent and manufacture method for improving ground using the same | |
KR20150112506A (en) | Quick-setting composition for paving soil and method for paving soil road by using the same | |
KR20230093962A (en) | Binder composition using carbonated gypsum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180320 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190411 Year of fee payment: 6 |