KR20130124880A - Electroless copper plating bath and electroless copper plating method - Google Patents

Electroless copper plating bath and electroless copper plating method Download PDF

Info

Publication number
KR20130124880A
KR20130124880A KR1020130007542A KR20130007542A KR20130124880A KR 20130124880 A KR20130124880 A KR 20130124880A KR 1020130007542 A KR1020130007542 A KR 1020130007542A KR 20130007542 A KR20130007542 A KR 20130007542A KR 20130124880 A KR20130124880 A KR 20130124880A
Authority
KR
South Korea
Prior art keywords
copper plating
electroless copper
plating bath
plating
concentration
Prior art date
Application number
KR1020130007542A
Other languages
Korean (ko)
Inventor
다카히로 이시자키
도모하루 나카야마
데루유키 홋타
Original Assignee
우에무라 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우에무라 고교 가부시키가이샤 filed Critical 우에무라 고교 가부시키가이샤
Publication of KR20130124880A publication Critical patent/KR20130124880A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1605Process or apparatus coating on selected surface areas by masking
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/166Process features with two steps starting with addition of reducing agent followed by metal deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemically Coating (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

Provided are an electroless copper plating bath and an electroless copper plating method for enabling to use in neutral pH condition without formaldehyde, increasing the stability of the plating bath, and forming a plating film with proper thickness while electrodepositing a pattern only. In the present invention, the electroless copper plating bath in pH 4-9 contains water soluble copper salt, and amino boron or substituted derivatives thereof as a reducing agent, and also contains polyamino polyphosphonic acid, anionic surfactant, antimony compound, and nitrogen-containing aromatic compound as a complex agent. [Reference numerals] (AA) Deposition film thickness [關m/hrs];(BB) End part cutting generation;(CC) Antimony concentration [mg/L]

Description

무전해 동 도금욕 및 무전해 동 도금 방법{ELECTROLESS COPPER PLATING BATH AND ELECTROLESS COPPER PLATING METHOD}Electroless Copper Plating Bath and Electroless Copper Plating Method {ELECTROLESS COPPER PLATING BATH AND ELECTROLESS COPPER PLATING METHOD}

본 발명은, 무전해 동 도금욕 및 무전해 동 도금 방법에 관한 것이며, 보다 상세하게는, 포름알데히드를 포함하지 않고, 중성 부근에서 사용 가능한 무전해 동 도금욕, 및 이 무전해 동 도금욕을 사용한 무전해 동 도금 방법에 관한 것이다. 본 출원은, 일본에서 2012년 5월 7일자로 출원된 일본 특허 출원 번호 2012-105924를 기초로 하여 우선권을 주장하는 것이며, 이들 출원은 참조에 의해, 본 출원에 포함된다.The present invention relates to an electroless copper plating bath and an electroless copper plating method, and more particularly, to an electroless copper plating bath which does not contain formaldehyde and can be used in a neutral vicinity, and this electroless copper plating bath. It relates to the electroless copper plating method used. This application claims priority based on Japanese Patent Application No. 2012-105924 for which it applied on May 7, 2012 in Japan, and these applications are integrated in this application by reference.

종래의 무전해 동 도금욕에는, 동 이온의 환원제로서 포름알데히드가 사용되고 있지만, 포름알데히드는 증기압이 높고, 자극적인 냄새에 의한 작업 환경의 악화와, 발암성에 의한 인체에 대한 악영향 등이 지적되고 있다. 또한, 포름알데히드를 사용하는 무전해 동 도금욕은, 강알칼리성이므로, 피도금물에 대하여 손상을 입혀 열화를 일으키기 쉬워, 예를 들면, 알루미늄 또는 알루미늄 합금 등의 금속에 대해서는 유효하게 사용할 수 없어, 그 용도가 한정되고 있다.In conventional electroless copper plating baths, formaldehyde is used as a reducing agent for copper ions, but formaldehyde has a high vapor pressure, deteriorates the working environment due to an irritating odor, and adverse effects on the human body due to carcinogenicity. . In addition, since the electroless copper plating bath using formaldehyde is strongly alkaline, it is easy to cause damage to the plated material and cause deterioration. For example, it cannot be effectively used for metals such as aluminum or aluminum alloy, Its use is limited.

한편, 예를 들면, 특허 문헌 1에 기재되어 있는 바와 같이, 환원제로서 포름알데히드를 사용하지 않고, 아민보란 또는 그 유도체를 사용한 무전해 동 도금욕에 대하여 제안하고 있다. 이 아민보란은, 중성∼약알칼리성의 pH 조건에서 사용할 수 있는 환원제이며, 피도금물의 열화를 방지할 수 있고, 또한 높은 안전성으로 사용할 수 있게 된다.On the other hand, for example, as described in Patent Document 1, an electroless copper plating bath using an amine borane or a derivative thereof is proposed without using formaldehyde as a reducing agent. This amine borane is a reducing agent which can be used in neutral to weak alkaline pH conditions, can prevent deterioration of the plated material and can be used with high safety.

그러나, 이 아민보란은, 환원력이 매우 높으며, 도금욕을 쉽게 분해시키는 문제가 있다. 지금까지, 이 아민보란을 환원제로서 함유하면서, 양호한 욕 안정성을 가지고 실용성이 높은 무전해 동 도금욕액은 존재하지 않았다.However, this amine borane has a very high reducing power and has a problem of easily decomposing the plating bath. Up to now, there was no electroless copper plating bath solution having good bath stability and high practicality while containing this amine borane as a reducing agent.

또한, 환원제로서 포름알데히드를 사용한 경우에는, 이 포름알데히드가 팔라듐이나 동 등의 금속 표면에 대하여 선택적으로 강한 환원성을 나타내는 한편, 도금욕 중의 환원 작용은 약하기 때문에, 패턴(금속) 이외의 개소에서는 석출(析出)이 일어나기 어려웠다. 이에 비해, 디메틸아민보란 등의 보란 화합물은, 물을 수소로 환원시킬 수 있을 만큼 그 환원력이 강하고, 금속 상에서 뿐만아니라 도금욕 중에서도 금속 이온을 금속으로 환원시키기 때문에, 패턴 상에서의 선택성이 낮고, 패턴 외에서는 석출되는 문제점이 있었다.In addition, when formaldehyde is used as a reducing agent, this formaldehyde selectively exhibits strong reducing properties with respect to metal surfaces such as palladium, copper, etc., while the reducing action in the plating bath is weak. Therefore, precipitation is performed at points other than the pattern (metal). (析出) was difficult to occur. In contrast, borane compounds such as dimethylamine borane have a strong reducing power enough to reduce water to hydrogen, and reduce the metal ions to metal not only on the metal but also in the plating bath. There was a problem of precipitation outside.

일본 특허출원 공개번호 2001-131761호 공보Japanese Patent Application Publication No. 2001-131761

이에, 본 발명은, 전술한 바와 같은 종래의 실정을 감안하여 이루어진 것이며, 포름알데히드를 사용하지 않고, 중성 부근의 pH 조건에서 사용할 수 있고, 도금욕의 안정성을 향상시키며, 또한 패턴 외 석출을 억제하면서 양호한 막 두께를 가지는 도금 피막을 형성할 수 있는 무전해 동 도금욕, 및 이 무전해 동 도금욕을 사용한 무전해 동 도금 방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made in view of the conventional situation as described above, and can be used in a pH condition near neutral without using formaldehyde, improves the stability of the plating bath, and also suppresses out-of-pattern precipitation. It is an object of the present invention to provide an electroless copper plating bath capable of forming a plated film having a good film thickness and an electroless copper plating method using the electroless copper plating bath.

본 발명자들은, 전술한 목적을 해결하기 위해 검토를 거듭한 결과, 포름알데히드 프리(formaldehyde free)의 무전해 동 도금욕에 있어서, 도금 석출의 촉진 작용과 억제 작용의 밸런스를 제어함으로써, 패턴 외 석출을 효과적으로 억제하고, 또한 양호한 막 두께를 가지는 도금 피막을 형성할 수 있는 것을 발견하고, 본 발명을 완성시켰다.MEANS TO SOLVE THE PROBLEM As a result of repeated examination in order to solve the above-mentioned object, in the formaldehyde free electroless copper plating bath, the pattern out precipitation is controlled by controlling the balance of the promotion action and the suppression action of plating precipitation. The present invention was completed to find that a plating film having a good film thickness can be effectively suppressed and a film thickness can be effectively formed.

즉, 본 발명에 따른 무전해 동 도금욕은, 수용성 동염과, 환원제로서 아미노보란 또는 그의 치환 유도체를 포함하고, 포름알데히드를 함유하지 않은 pH 4∼9의 무전해 동 도금욕으로서, 착화제로서의 폴리아미노폴리포스폰산, 음이온 계면활성제, 안티몬 화합물, 및 질소 함유 방향족 화합물을 함유하는 것을 특징으로 한다.That is, the electroless copper plating bath according to the present invention is an electroless copper plating bath having a water-soluble copper salt and an amino borane or a substituted derivative thereof as a reducing agent and containing no formaldehyde, and having a pH of 4-9 as a complexing agent. It is characterized by containing a polyamino polyphosphonic acid, an anionic surfactant, an antimony compound, and a nitrogen containing aromatic compound.

또한, 본 발명에 따른 무전해 동 도금 방법은, 기판에 대하여, 상기 무전해 동 도금욕을 사용하여 동 도금 피막을 형성하는 것을 특징으로 한다.Moreover, the electroless copper plating method which concerns on this invention is characterized by forming a copper plating film with respect to a board | substrate using the said electroless copper plating bath.

본 발명에 의하면, 중성 부근의 pH 조건에서 사용할 수 있어, 피도금물에 대하여 손상을 입히지 않고 도금 처리를 행할 수 있다. 또한, 패턴 외에서의 도금 석출을 효과적으로 억제할 수 있으며, 양호한 막 두께를 가지는 도금 피막을 형성할 수 있다. 이에 따라, 알루미늄 또는 알루미늄 합금 등의 기재(基材)에 대하여 배리어층 등을 설치하지 않고 간편하게 도금 처리를 행할 수 있게 되어, 반도체 웨이퍼 등의 제조에 바람직하게 사용할 수 있다.According to the present invention, it can be used in a pH condition near neutral, and plating can be performed without damaging the plated object. In addition, plating precipitation outside the pattern can be effectively suppressed, and a plating film having a good film thickness can be formed. As a result, the plating process can be easily performed on a substrate such as aluminum or an aluminum alloy without providing a barrier layer or the like, and thus it can be suitably used for the manufacture of semiconductor wafers and the like.

도 1은 무전해 동 도금욕 중의 안티몬 농도와 석출 막 두께의 관계를 나타내는 그래프이다.
도 2는 무전해 동 도금욕 중의 안티몬 농도와 석출 막 두께의 관계를 나타내는 그래프이다.
1 is a graph showing the relationship between the antimony concentration and the deposited film thickness in an electroless copper plating bath.
2 is a graph showing the relationship between the antimony concentration and the deposited film thickness in the electroless copper plating bath.

이하에서, 본 발명에 따른 무전해 동 도금욕 및 무전해 동 도금 방법의 구체적인 실시형태(이하, 본 실시형태라고 함)에 대하여, 이하의 순서에 따라 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, specific embodiment (henceforth this embodiment) of an electroless copper plating bath and an electroless copper plating method which concern on this invention is described in detail according to the following procedures.

1. 무전해 동 도금욕1. Electroless Copper Plating Bath

2. 무전해 동 도금 방법2. Electroless Copper Plating Method

3. 실시예3. Example

≪1. 무전해 동 도금욕≫«1. Electroless Copper Plating Bath≫

본 실시형태에 따른 무전해 동 도금욕은, 포름알데히드를 함유하지 않는, 이른바 포름알데히드(포르말린) 프리의 도금욕으로서, 수용성 동염과, 환원제로서 아미노보란 또는 그의 치환 유도체를 포함하고, pH 4∼9의 무전해 동 도금욕이다. 그리고, 이 무전해 동 도금욕은, 착화제로서의 폴리아미노폴리포스폰산, 음이온 계면활성제, 안티몬 화합물, 및 질소 함유 방향족 화합물을 함유하여 이루어지는 것을 특징으로 하고 있다.The electroless copper plating bath according to the present embodiment is a so-called formaldehyde (formalin) -free plating bath containing no formaldehyde, which contains a water-soluble copper salt and aminoborane or a substituted derivative thereof as a reducing agent, and has a pH of 4 to 4. 9, electroless copper plating bath. The electroless copper plating bath is characterized by containing a polyamino polyphosphonic acid, an anionic surfactant, an antimony compound, and a nitrogen-containing aromatic compound as a complexing agent.

본 실시형태에 따른 무전해 도금욕은, 전술한 바와 같이, 포름알데히드나 글리옥실산 등의 강알칼리성의 pH 조건에서 사용하는 환원제를 함유하지 않고, 중성∼약알칼리성에서 사용할 수 있는 아미노보란 또는 그의 치환 유도체를 환원제로서 사용한다. 이에 따라, 포름알데히드 등을 환원제로서 사용한 강알칼리성 도금욕과 같이, 피도금물이 되는 금속 기재에 대하여 손상을 입히지 않게 된다. 따라서, 예를 들면, 알루미늄 또는 알루미늄 합금 등으로 이루어지는 반도체 웨이퍼에 대하여 도금 피막을 형성하기 위한 도금욕으로서 바람직하게 사용할 수 있고, 양호한 도금 피막을 형성할 수 있다.As described above, the electroless plating bath according to the present embodiment does not contain a reducing agent used under strong alkaline pH conditions such as formaldehyde and glyoxylic acid, and can be used in neutral to weak alkaline properties or aminoboranes thereof. Substituted derivatives are used as reducing agents. This prevents damage to the metal substrate to be plated, such as a strong alkaline plating bath using formaldehyde or the like as a reducing agent. Therefore, it can be used suitably as a plating bath for forming a plating film with respect to the semiconductor wafer which consists of aluminum, aluminum alloy, etc., for example, and can form a favorable plating film.

그러나, 환원제로서 아미노보란 또는 그의 치환 유도체를 사용한 경우, 매우 강한 환원력에 의해, 도금욕이 분해되기 쉬우며, 또한 피도금물인 기재 상에 형성된 패턴 외에서의 석출이 생겨 패턴 선택성이 낮은 문제점이 있다. 그러나, 본 실시형태에 따른 무전해 동 도금욕에서는, 전술한 착화제로서의 폴리아미노폴리포스폰산, 음이온 계면활성제, 안티몬 화합물, 및 질소 함유 방향족 화합물을 함유시키고 있으므로, 도금욕의 안정성을 높이고, 또한 도금 석출의 촉진 작용과 억제 작용의 밸런스를 제어할 수 있고, 높은 패턴 선택성을 가지며, 양호한 막 두께를 가지는 도금 피막을 형성할 수 있다.However, when aminoborane or a substituted derivative thereof is used as a reducing agent, the plating bath is easily decomposed due to a very strong reducing power, and there is a problem in that the pattern selectivity is low due to precipitation outside the pattern formed on the substrate to be plated. . However, in the electroless copper plating bath according to the present embodiment, the polyamino polyphosphonic acid, the anionic surfactant, the antimony compound, and the nitrogen-containing aromatic compound as the above-mentioned complexing agent are contained, thereby increasing the stability of the plating bath. It is possible to control the balance between the promoting action and the suppressing action of the plating precipitation, to form a plated film having high pattern selectivity and having a good film thickness.

이와 같은 무전해 동 도금욕에 의하면, 예를 들면, 알루미늄 또는 알루미늄 합금이나, 마그네슘 또는 마그네슘 합금 등의 금속 기재 상에, 패턴 외 석출을 방지하기 위한 배리어층 등을 설치하지 않고, 돌출이 없는 양호한 도금 피막을 간편하게 형성할 수 있고, 예를 들면, 반도체 웨이퍼의 제조에 있어서 바람직하게 사용할 수 있다.According to such an electroless copper plating bath, for example, it is preferable that no barrier is formed on a metal substrate such as aluminum or an aluminum alloy or magnesium or magnesium alloy to prevent out-of-pattern deposition, without protruding. A plating film can be formed easily and can be used preferably, for example in manufacture of a semiconductor wafer.

<수용액 동염><Aqueous copper salt>

수용성 동염으로서는, 예를 들면, 황산 동, 질산 동, 염화 동, 아세트산 동, 구연산 동, 주석산 동, 글루콘산 동 등이 있으며, 이들 수용성 동염을 1종 단독으로 사용하거나, 또는 2종 이상을 임의의 비율로 혼합하여 사용할 수 있다.Examples of the water-soluble copper salts include copper sulfate, copper nitrate, copper chloride, copper acetate, copper citric acid, copper tartarate, and copper gluconate. These water-soluble copper salts may be used alone or in combination of two or more thereof. It can be used by mixing in the ratio of.

수용성 동염의 농도로서는, 예를 들면, 동의 농도는 0.005∼0.5 mol/L로 할 수 있고, 0.01∼0.5 mol/L로 하는 것이 바람직하고, 0.05∼0.1 mol/L로 하는 것이 보다 바람직하다. 수용성 동염의 농도가 0.005 mol/L 미만이면, 석출 속도가 늦어져서 도금 시간이 길어지므로 경제적이지 않다. 한편, 농도가 0.5 mol/L를 초과하면, 드래그아웃량(drag-out amount)이 많아져서 비용이 상승하고, 또한 도금액이 불안정하게 된다. 또한, 노듈(nodule)이 발생하거나 거칠어져서, 패턴성이 저하된다.As a concentration of water-soluble copper salt, copper concentration can be 0.005-0.5 mol / L, for example, it is preferable to set it as 0.01-0.5 mol / L, and it is more preferable to set it as 0.05-0.1 mol / L. If the concentration of the water-soluble copper salt is less than 0.005 mol / L, the deposition rate is slowed and the plating time becomes long, which is not economical. On the other hand, when the concentration exceeds 0.5 mol / L, the drag-out amount increases, the cost increases, and the plating liquid becomes unstable. In addition, nodule is generated or roughened, so that the patternability is lowered.

<환원제><Reduction agent>

환원제로서의 아민보란 또는 그의 치환 유도체는, 예를 들면, 디메틸아민보란, tert-부틸아민보란, 트리에틸아민보란, 트리메틸아민보란 등이 있다.Examples of the amine borane or substituted derivatives thereof as the reducing agent include dimethylamine borane, tert-butylamine borane, triethylamine borane, trimethylamine borane and the like.

아민보란 또는 그의 치환 유도체는, 중성∼약알칼리성에서 사용할 수 있는 환원제이다. 그러므로, 포름알데히드나 글리옥실산 등의 알데히드계의 환원제를 사용한 도금욕과 같이, 강알칼리성에서 사용되는 것이 아니므로, 피도금물인 금속 기재 등에 대한 손상이 억제되어, 그 열화를 방지할 수 있다. 또한, 알데히드계의 환원제와 같이, 작업 환경을 악화시키거나 인체에 대한 악영향을 배제할 수 있어, 안전성을 향상시킬 수 있다.An amine borane or its substituted derivative is a reducing agent which can be used from neutral to weak alkaline. Therefore, since it is not used in strong alkalinity, such as a plating bath using an aldehyde-based reducing agent such as formaldehyde or glyoxylic acid, damage to a metal substrate or the like to be plated can be suppressed and the deterioration can be prevented. . In addition, like an aldehyde-based reducing agent, it is possible to deteriorate the working environment or to exclude adverse effects on the human body, thereby improving safety.

환원제로서의 아민보란 또는 그의 치환 유도체의 농도는, 0.01∼0.5 mol/L로 하는 것이 바람직하다.It is preferable that the density | concentration of the amine borane or its substituted derivatives as a reducing agent shall be 0.01-0.5 mol / L.

<착화제><Complexing agent>

본 실시형태에 따른 무전해 동 도금욕은, 착화제로서의 폴리아미노폴리포스폰산을 함유한다. 폴리아미노폴리포스폰산은, 중성 부근에서 동 이온을 효율적으로 착화시키기 쉽고, 도금욕의 분해를 억제하여 안정성을 높일 수 있다.The electroless copper plating bath which concerns on this embodiment contains polyamino polyphosphonic acid as a complexing agent. Polyamino polyphosphonic acid is easy to complex copper ions efficiently in neutral vicinity, can suppress decomposition of a plating bath, and can improve stability.

구체적으로, 이 폴리아미노폴리포스폰산으로서는, 예를 들면, N,N,N',N'-에틸렌디아민테트라키스(메틸렌포스폰산), 니트릴로트리스(메틸렌포스폰산), 디에틸렌디아민펜타(메틸렌포스폰산), 디에틸렌트리아민펜타(메틸렌포스폰산), 비스(헥사메틸렌트리아민펜타(메틸렌포스폰산), 글리신-N,N-비스(메틸렌포스폰산) 등을 예로 들 수 있다.Specifically, as this polyamino polyphosphonic acid, N, N, N ', N'- ethylenediamine tetrakis (methylene phosphonic acid), nitrile tris (methylene phosphonic acid), diethylenediamine penta (methylene, for example) Phosphonic acid), diethylene triamine penta (methylene phosphonic acid), bis (hexamethylene triamine penta (methylene phosphonic acid), glycine-N, N-bis (methylene phosphonic acid), etc. are mentioned.

착화제로서의 폴리아미노폴리포스폰산의 농도는, 특별히 한정되지 않지만, 0.01∼1 mol/L로 하는 것이 바람직하다. 농도가 0.01 mol/L 미만이면, 동 이온을 충분히 착화시키지 못하여 도금욕이 불안정하게 될 가능성이 있다. 한편, 농도가 1 mol/L를 초과하면, 드래그아웃량이 많아져셔 비용이 상승한다. 또한, 동의 석출 속도가 늦어져서 도금 시간이 길어지므로 경제적이지 않다. 그리고, 바탕막에 대하여 손상을 입혀 열화시킬 가능성이 있다.Although the density | concentration of the polyamino polyphosphonic acid as a complexing agent is not specifically limited, It is preferable to set it as 0.01-1 mol / L. If the concentration is less than 0.01 mol / L, copper ions may not be sufficiently complexed and the plating bath may become unstable. On the other hand, when the concentration exceeds 1 mol / L, the drag-out amount increases, resulting in an increase in cost. In addition, since the deposition rate of copper becomes slow and the plating time becomes long, it is not economical. There is a possibility of damaging and deteriorating the base film.

<음이온 계면활성제><Anionic surfactant>

본 실시형태에 따른 무전해 동 도금욕은, 음이온 계면활성제를 함유한다. 음이온 계면활성제를 함유시킴으로써, 도금욕의 안정성을 향상시킬 수 있다.The electroless copper plating bath which concerns on this embodiment contains anionic surfactant. By containing an anionic surfactant, the stability of a plating bath can be improved.

도금욕의 안정성을 향상시키는 상세한 메카니즘은 확실하지 않지만, 음이온 계면활성제를 첨가함으로써, 이 음이온 계면활성제가 도금욕 중에 생성된 금속 미립자에 흡착되어, 그 이상 입자가 성장하는 것을 저해하게 되며, 이에 따라, 전술한 착화제나 그 외의 첨가제에 의한 미립자의 용해를 돕는 효과가 있는 것으로 여겨진다. 또한, 이 음이온 계면활성제에 의한 분산 효과에 의해, 도금욕 중에 생성된 금속 미립자가 응집하여 성장하는 것을 저해하는 것도 욕 안정성이 향상되는 요인인 것으로 여겨진다.The detailed mechanism for improving the stability of the plating bath is not clear, but by adding an anionic surfactant, the anionic surfactant is adsorbed to the metal fine particles generated in the plating bath, which further inhibits the growth of particles. It is considered that there is an effect of assisting dissolution of the fine particles by the above-mentioned complexing agent or other additives. In addition, it is considered that the stability of the bath is improved by inhibiting the aggregation and growth of the metal fine particles generated in the plating bath by the dispersing effect of the anionic surfactant.

한편, 양이온 계면활성제에서는, 금속 미립자의 표면에 대한 흡착성이 지나치게 높기 때문에, 도금 석출을 저해시킨다(일단 한 번 표면에 흡착된 양이온 계면활성제는 그 표면으로부터 이탈되기 어려워진다). 또한, 비이온 계면활성제는, 음이온 계면활성제나 양이온 계면활성제에 비하여, 금속 미립자에 대한 흡착성이 낮고 욕안정성을 향상시키는 효과가 약하다. 또한, 무전해 동 도금욕은, 염의 농도가 높으며, 이에 따라, 비이온 계면활성제는 담점(cloud point)이 저하되어 쉽게 탁해진다. 또한, 비이온 계면활성제는, 그 농도를 높이면 발포성이 강해지므로, 욕 안정성의 향상을 위해서는 농도를 높이기 곤란하다.On the other hand, in the cationic surfactant, the adsorption property of the metal fine particles to the surface is too high, thereby inhibiting the plating precipitation (the cationic surfactant adsorbed on the surface once becomes difficult to detach from the surface). In addition, nonionic surfactants have a lower adsorption property to metal fine particles and a weaker effect of improving bath stability than anionic surfactants and cationic surfactants. In addition, the electroless copper plating bath has a high salt concentration, whereby the non-ionic surfactant has a low cloud point and becomes cloudy easily. In addition, since a foaming property becomes strong when the nonionic surfactant is made to increase the density | concentration, it is difficult to raise concentration in order to improve bath stability.

구체적으로, 전술한 음이온 계면활성제로서는, 알킬카르복시산계 계면활성제, β-나프탈렌술폰산 포르말린 축합물의 나트륨염[예를 들면, 가오(주)에서 제조한 데몰 N, 다이이치공업제약(주)에서 제조한 라베린 시리즈 등] 등의 나프탈렌술폰산염 포름알데히드 축합물, 폴리옥시에틸렌라우릴에테르황산 나트륨[예를 들면, 가오(주)에서 제조한 에마르 20C 등]이나 폴리옥시에틸렌알킬에테르황산 트리에탄올아민[예를 들면, 가오(주)에서 제조한 에마르 20T 등] 등의 폴리옥시알킬렌에테르황산염, 도데실황산 나트륨[예를 들면, 가오(주)에서 제조한 에마르 10G 등]이나 도데실황산 트리에탄올아민[예를 들면, 가오(주)에서 제조한 에마르 TD 등]이나 도데실황산 암모늄[예를 들면, 가오(주)에서 제조한 에마르 AD-25 등] 등의 고급 알코올 황산 에스테르 또는 그의 염, 도데실벤젠술폰산 나트륨[예를 들면, 가오(주)에서 제조한 네오펠렉스 GS, 라이온(주)에서 제조한 라이폰 LH-200, 다이이치공업제약(주)에서 제조한 모노겐 Y-100 등)이나 직쇄 알킬벤젠술폰산 나트륨[예를 들면, 다이이치공업제약(주)에서 제조한 네오겐 S-20F 등] 등의 알킬벤젠술폰산 또는 그의 염, 디알킬술포숙신산 나트륨[예를 들면, 가오(주)에서 제조한 펠렉스 OT-P, (주)ADEKA에서 제조한 아데카콜 EC 시리즈]이나 라우릴술포숙신산 2나트륨[예를 들면, 다이이치공업제약(주)에서 제조한 네오하이테놀 LS 등]이나 디옥틸술포숙신산 나트륨[예를 들면, 다이이치공업제약(주)에서 제조한 네오콜 SW-C 등] 등의 알킬술포숙신산 에스테르계 계면활성제, 폴리옥시에틸렌알킬술포숙신산 또는 그의 염[예를 들면, 다이이치공업제약(주)에서 제조한 네오하이테놀 S-70 등), 모노알킬인산 에스테르 또는 그의 염[예를 들면, (주)ADEKA에서 제조한 아데카톨 PS/CS/TS 시리즈, 도호화학공업(주)에서 제조한 포스파놀 시리즈 등], 폴리옥시에틸렌트리데실에테르인산 에스테르[예를 들면, 다이이치공업제약(주)에서 제조한 플라이서프 A212C 등]나 폴리옥시에틸렌라우릴에테르인산 에스테르[예를 들면, 다이이치공업제약(주)에서 제조한 플라이서프 A208B 등] 등의 폴리옥시에틸렌알킬에테르인산 또는 그의 염, α-올레핀술폰산 또는 그의 염[예를 들면, 다이이치공업제약(주)에서 제조한 네오겐 AO-90등] 등을 예로 들 수 있다.Specifically, as the above-mentioned anionic surfactants, sodium salts of alkylcarboxylic acid-based surfactants and β-naphthalenesulfonic acid formalin condensates (for example, demol N manufactured by Gao Corporation, manufactured by Daiichi Pharmaceutical Co., Ltd.) Naphthalene sulfonate formaldehyde condensate, such as Laberin series, sodium polyoxyethylene lauryl ether sulfate (for example, Emar 20C manufactured by Gao Co., Ltd.) and polyoxyethylene alkyl ether sulfate triethanolamine [ For example, polyoxyalkylene ether sulfates such as Emar 20T manufactured by Gao Co., Ltd., sodium dodecyl sulfate (for example, Emar 10G manufactured by Gao Co., Ltd.) and dodecyl sulfate Higher alcohol sulfate esters such as triethanolamine [for example, Emar TD manufactured by Gao Corporation] and ammonium dodecyl sulfate [for example, Emar AD-25 manufactured by Gao Corporation] His Salt, sodium dodecylbenzenesulfonate [For example, Neopelex GS manufactured by Gao Corporation, Lipon LH-200 manufactured by Lion Corporation, Monogen Y manufactured by Daiichi Pharmaceutical Co., Ltd. Alkyl benzene sulfonic acid or salts thereof, such as -100), and straight chain alkylbenzene sulfonate (e.g., neogen S-20F manufactured by Daiichi Kogyo Co., Ltd.) [sodium dialkyl sulfosuccinate] , PEX OT-P manufactured by Gao Co., Ltd., Adekacol EC series manufactured by ADEKA Co., Ltd. or lauryl sulfosuccinate disodium [for example, Neo manufactured by Daiichi Pharmaceutical Co., Ltd.] Alkylsulfosuccinic acid ester-based surfactants such as hytenol LS and the like, sodium dioctylsulfosuccinate [for example, neo-Col SW-C manufactured by Daiichi Kogyo Pharmaceutical Co., Ltd.], polyoxyethylene alkylsulfosuccinic acid, or Salts thereof [for example, neohithenol S- produced by Daiichi Pharmaceutical Co., Ltd. 70), monoalkyl phosphate esters or salts thereof (e.g., Adecatol PS / CS / TS series manufactured by ADEKA Corporation, Phospanol series manufactured by Toho Chemical Industries, Ltd.), polyoxy Ethylene tridecyl ether phosphate esters (e.g., Flysurf A212C manufactured by Dai-ichi Pharmaceutical Co., Ltd.) and polyoxyethylene lauryl ether phosphate esters (e.g., manufactured by Dai-ichi Pharmaceutical Co., Ltd.) Polyoxyethylene alkyl ether phosphoric acid or its salt, α-olefinsulfonic acid or its salt [for example, neogen AO-90 etc. manufactured by Dai-ichi Pharmaceutical Co., Ltd.] etc. are mentioned, for example. Can be.

음이온 계면활성제의 농도는, 특별히 한정되지 않지만, 0.01∼2000 mg/L로 하는 것이 바람직하다. 농도가 0.01 mg/L 미만이면, 안정제로서의 효과를 충분히 얻을 수 없으며, 도금욕이 불안정하게 될 가능성이 있다. 또한, 노듈이 발생하거나 거칠어지기 쉬워진다. 한편, 농도가 2000 mg/L를 초과하면, 발포성이 지나치게 높아진다. 또한, 후속 공정에 있어서의 수세성이 저하되어, 폐액 처리, 배수 처리가 곤란하게 된다.Although the density | concentration of an anionic surfactant is not specifically limited, It is preferable to set it as 0.01-2000 mg / L. If the concentration is less than 0.01 mg / L, the effect as a stabilizer cannot be sufficiently obtained, and the plating bath may become unstable. In addition, the nodule tends to be generated or roughened. On the other hand, when concentration exceeds 2000 mg / L, foamability becomes high too much. Moreover, the water washing property in a subsequent process falls and it becomes difficult for a waste liquid process and a drainage process.

<안티몬 화합물><Antimony compound>

본 실시형태에 따른 무전해 동 도금욕은, 안티몬 화합물을 함유한다. 이와 같이 안티몬 화합물을 첨가함으로써, 미달 전위 석출(underpotential deposition) 현상에 의한 도금 석출 촉진 효과와, 안티몬의 흡착에 따른 촉매독(catalytic poison) 효과에 의한 석출 저해 효과의 밸런스에 의해, 석출 속도 향상과 돌출 억제 효과를 얻을 수 있다.The electroless copper plating bath which concerns on this embodiment contains an antimony compound. By adding the antimony compound in this way, the precipitation rate is improved by the balance of the plating precipitation promoting effect by underpotential deposition phenomenon and the precipitation inhibiting effect by the catalytic poison effect due to the adsorption of antimony. Protrusion suppression effect can be obtained.

그리고, 미달 전위 석출 현상이란, 첨가하는 원소(안티몬)가 일단 환원된 후에 즉시 이온으로서 재용해될 때 방출되는 전자에 의해, 목적으로 하는 금속(동)의 석출이 촉진되므로, 이론적으로 계산되는 석출 전위보다 낮은 전위에서 금속이 석출되는 현상을 말한다.The underpotential precipitation phenomenon is the precipitation calculated theoretically because the precipitation of the target metal (copper) is promoted by the electrons released when the element (antimony) to be added is once redissolved as an ion immediately after reduction. It is the phenomenon that the metal precipitates at a potential lower than the potential.

구체적으로, 안티몬 화합물은, 그 도금 금속의 석출 속도에 미치는 농도의 영향을 그래프로 나타내면 위로 볼록(convex)하여, 즉 농도가 지나치게 낮아도 혹은 지나치게 높아도 석출 속도가 늦어져, 석출 속도가 최대가 되는 농도가 존재한다. 그러므로, 안티몬이 흡착되기 쉬운 패턴 단부(에지부)에 대하여 억제 작용이 나타나며, 안티몬이 흡착되기 어려운 단부 이외에서는 주로 촉진 작용이 나타나고, 이로써, 석출 속도가 빨라도 패턴 외로 석출이 확대되는 것을 억제할 수 있는 것으로 여겨진다.Specifically, the antimony compound is convex upward when the effect of the concentration on the deposition rate of the plated metal is graphed, that is, the concentration at which the precipitation rate becomes slow even when the concentration is too low or too high and the precipitation rate becomes the maximum. Is present. Therefore, the inhibitory action is exhibited at the end portion of the pattern (edge portion) where antimony is easily adsorbed, and the promoting action is mainly exhibited at the end portion where the antimony is hardly adsorbed. It is believed to be present.

여기서, 안티몬 화합물의 농도 추이에 따른 도금 금속의 석출 속도의 관계에 대하여, 구체적인 실험예를 참조하여 보다 구체적으로 설명한다.Here, the relationship between the deposition rate of the plated metal according to the concentration change of the antimony compound will be described in more detail with reference to specific experimental examples.

먼저, 실험예 1로서, 실리콘 웨이퍼 상에 형성된 Al-Si 합금 스퍼터 상에 TiN 막에 의해 패턴 형성한 후, 정법(定法)에 따라 징케이트(zincate) 처리가 2회 행해진 샘플을, 하기에 나타낸 조성으로 이루어지는 무전해 동 도금욕에 1시간 침지함으로써 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.First, as Experimental Example 1, a pattern was formed by a TiN film on an Al-Si alloy sputter formed on a silicon wafer, and then a sample subjected to jincate treatment twice according to a prescribed method was shown below. The electroless copper plating process was performed by immersing in the electroless copper plating bath which consists of compositions for 1 hour, and the copper plating film was formed on the pattern.

[무전해 동 도금욕 조성][Electroless Copper Plating Bath Composition]

에틸렌디아민테트라(메틸렌포스폰산) :0.08 mol/LEthylenediaminetetra (methylenephosphonic acid): 0.08 mol / L

동(황산 동·5수염) :0.063 mol/L(동의 농도로서 4 g/L)Copper (copper sulfate, five hydrochloride): 0.063 mol / L (as copper concentration 4 g / L)

디메틸아민보란 :8 g/LDimethylamine borane : 8 g / L

라우릴황산 나트륨 :20 mg/LSodium lauryl sulfate: 20 mg / L

o-페난트롤린 :4 mg/Lo-phenanthroline: 4 mg / L

산화 안티몬 :하기 표 1을 참조(안티몬 농도로서)Antimony oxide: Refer to the following Table 1 (as antimony concentration)

pH :7.7pH : 7.7

욕온 :60℃Bath temperature : 60 degrees Celsius

그리고, 형성된 도금 피막의 막 두께, 패턴 외 석출량(돌출량), 및 도금의 외관에 대하여 조사하였다. 하기 표 1에 각 측정 결과를 나타내었다. 또한, 도 1에, 무전해 동 도금욕 중의 안티몬 농도에 대한 석출 막 두께의 변화를 나타내었다. 그리고, 하기 표 1에 있어서, 돌출 평가에 있어서의 「브릿지」란, 도금 돌출에 의해 패턴 사이가 접속된 상태를 나타내고, 외관 평가에 있어서의 「단부 깍임 발생」이란, 기판/패드 외주부의 막 두께가 얇아지는 현상이 생긴 것을 나타낸다. 그리고, 돌출값이 마이너스인 것은, 단부 깍임 발생에 의해 패턴 단부에 도금이 석출되지 않고, 바탕부가 노출되어 있는 것을 의미한다.And the film thickness of the formed plating film, the amount of precipitation out of a pattern (protrusion amount), and the external appearance of plating were investigated. Table 1 shows each measurement result. In addition, in FIG. 1, the change of the precipitation film thickness with respect to the antimony concentration in an electroless copper plating bath is shown. And in Table 1 below, "bridge" in protrusion evaluation shows the state in which patterns were connected by plating protrusion, and "end shaping generate | occur | produced" in external appearance evaluation is the film thickness of a board | substrate / pad outer peripheral part. Indicates that thinning occurs. And a protrusion value of minus means that plating does not precipitate in a pattern edge part by edge chipping, but the base part is exposed.

[표 1][Table 1]

Figure pat00001
Figure pat00001

전술한 실험예 1에 있어서의 도금욕 조성이나 바탕부의 조건으로 도금 처리를 행하면, 표 1에 나타낸 바와 같이, 안티몬 무첨가나 저농도의 경우 및 고농도의 경우에는, 도금 석출 속도가 늦어져서, 도금 막 두께가 얇아지며, 또한 패턴 단부에 있어서의 석출 이상이 생기는 것을 알 수 있다. 한편, 안티몬 농도가 표 1의 농도 범위에 있어서 중 정도인 경우에는, 양호한 막 두께의 도금막이 형성되며, 또한 패턴 외로 석출이 확대되는 것이나 단부 깍임이 억제되어 있는 것을 알 수 있다.When the plating treatment is performed under the plating bath composition and the conditions of the base portion in Experimental Example 1 described above, as shown in Table 1, in the case of no addition of antimony, a low concentration, and a high concentration, the plating deposition rate is slowed, and the plating film thickness is reduced. It turns out that it becomes thin and it turns out that precipitation abnormality in a pattern edge part arises. On the other hand, when antimony concentration is moderate in the density | concentration range of Table 1, it turns out that the plating film of a favorable film thickness is formed, and that the precipitation spreads out of a pattern and the edge clipping is suppressed.

다음으로, 실험예 2로서, 니켈막에 의해 패턴 형성된 세라믹 기판을, 정법에 따라 팔라듐 치환 처리를 행한 샘플을, 실험예 1과 동일한 조성으로 이루어지는 무전해 도금욕에 1시간 침지함으로써 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다. 즉, 도금 처리 대상이 되는 바탕부의 조건을 변경한 경우에 안티몬 화합물의 농도 추이에 따른 도금 금속의 석출 속도의 관계에 대하여 조사하였다. 그리고, 도금욕의 구성 성분인 산화 안티몬 농도(안티몬 농도로서)에 대해서는, 하기 표 2에 기재된 바와 같이 변경하였다.Next, as Experimental Example 2, an electroless copper plating was performed by immersing a ceramic substrate patterned with a nickel film by palladium substitution treatment according to a regular method in an electroless plating bath having the same composition as Experimental Example 1 for 1 hour. The process was performed and the copper plating film was formed on the pattern. That is, the relationship between the precipitation rate of the plated metal according to the concentration change of the antimony compound was examined when the conditions of the base portion to be plated were changed. And the antimony oxide concentration (as antimony concentration) which is a component of a plating bath was changed as shown in following Table 2.

그리고, 형성된 도금 피막의 막 두께, 패턴 외 석출량(돌출량), 및 도금 외관에 대하여 조사하였다. 하기 표 2에 각 측정 결과를 나타내었다. 또한, 도 2에, 무전해 동 도금욕 중의 안티몬 농도에 대한 석출 막 두께의 변화를 나타낸다. 그리고, 하기 표 2에서의 평가에 대한 용어는, 상기 표 1과 동일하다.And the film thickness of the formed plating film, the amount of precipitation out of a pattern (protrusion amount), and plating appearance were investigated. Table 2 shows each measurement result. 2, the change of the precipitation film thickness with respect to the antimony concentration in an electroless copper plating bath is shown. In addition, the term for the evaluation in following Table 2 is the same as that of the said Table 1.

[표 2][Table 2]

Figure pat00002
Figure pat00002

표 2에 나타낸 바와 같이, 바탕부의 조건을 변경한 경우에도, 안티몬 무첨가나 저농도의 경우 및 고농도의 경우에는, 도금 석출 속도가 늦어져서, 도금 막 두께가 얇아지며, 또한 패턴 단부에서 석출 이상이 생기는 것을 알 수 있다. 한편, 안티몬 농도가 표 2의 농도 범위에 있어서 중 정도인 경우에는, 양호한 막 두께의 도금막이 형성되며, 또한 패턴 외 도금 석출의 확대나 단부 깍임이 억제되어 있는 것을 알 수 있다.As shown in Table 2, even when the conditions of the base portion were changed, in the case of no addition of antimony, low concentration, and high concentration, the plating precipitation rate was slowed, and the thickness of the plating film became thin, and more than the precipitation at the end of the pattern occurred. It can be seen that. On the other hand, when antimony concentration is moderate in the density | concentration range of Table 2, it turns out that the plating film of a favorable film thickness is formed, and the expansion of an out-of-pattern precipitation and chipping of an edge is suppressed.

이상과 같은 실험예 1 및 2에 나타낸 바와 같이, 도금욕 조성이나 도금 바탕부의 조건, 또한 교반 조건 등에 따라 다르지만, 농도가 지나치게 낮아도 지나치게 높아도 석출 속도가 늦어져서, 도금 석출 속도가 최대가 되는 농도 범위가 존재하는 경향이 관찰되는 것을 명확하게 알 수 있다. 그리고, 그 석출 속도가 최대가 되는 농도 범위에서는, 안티몬이 흡착되기 쉬운 패턴 단부(에지부)에 대하여 억제 작용이 나타나며, 안티몬이 흡착되기 어려운 단부 이외에서는 촉진 작용이 주로 나타나고, 이에 따라, 양호한 막 두께의 도금 피막을 형성하면서, 패턴 외로 도금 석출이 확대(돌출)되는 것을 억제할 수 있는 것을 알 수 있다.As shown in Experimental Examples 1 and 2 as described above, the concentration range varies depending on the plating bath composition, the conditions of the plating base portion, the stirring conditions, and the like, but the precipitation rate is slow even when the concentration is too low, and the plating precipitation rate is maximized. It can be clearly seen that a tendency to be observed. In the concentration range in which the precipitation rate is maximum, the inhibitory action is exhibited at the pattern end (edge portion) where antimony is easily adsorbed, and the promotion action is mainly at the other end than where the antimony is hardly adsorbed. It is understood that it is possible to suppress the expansion (protrusion) of plating precipitation out of the pattern while forming a plating film having a thickness.

따라서, 이와 같이 도금욕에 소정 농도의 안티몬 화합물을 첨가함으로써, 도금 석출 촉진 효과와, 안티몬의 흡착에 따른 촉매독 효과에 의한 석출 저해 효과의 밸런스에 따라 석출 속도 향상과 돌출 억제 효과를 얻어 패턴 선택성을 높일 수 있고, 돌출이 억제된, 양호한 막 두께를 가지는 도금 피막을 형성할 수 있다.Therefore, by adding an antimony compound having a predetermined concentration to the plating bath in this manner, the deposition rate improvement and the protrusion suppression effect are obtained according to the balance between the plating precipitation promoting effect and the precipitation inhibiting effect due to the catalytic poisoning effect due to the adsorption of antimony to obtain the pattern selectivity. It is possible to form a plated film having a good film thickness in which the protrusion can be increased and the protrusion is suppressed.

구체적인 안티몬 화합물의 첨가량(농도)에 대해서는, 전술한 바와 같이, 다른 도금욕의 구성 성분(도금 조성)이나 바탕부의 조건, 교반 조건 등에 따라 상이하므로, 이러한 다른 조건에 따라 적절하게 변경하는 것이 바람직하지만, 예를 들면, 0.1∼20 mg/L로 하고, 바람직하게는 0.5∼10 mg/L로 하고, 보다 바람직하게는 1∼4 mg/L로 할 수 있다.The amount (concentration) of the specific antimony compound is different depending on the constituent components (plating composition) of the other plating bath, the conditions of the base portion, the stirring conditions, and the like, as described above. For example, it may be 0.1-20 mg / L, Preferably it is 0.5-10 mg / L, More preferably, it may be 1-4 mg / L.

안티몬 화합물로서는, 도금욕 중에서 용해되는 수용성 화합물이면 특별히 한정되지 않으며, 예를 들면, 산화 안티몬, 염화 안티몬 등을 사용할 수 있다.It will not specifically limit, if it is a water-soluble compound melt | dissolved in a plating bath as an antimony compound, For example, antimony oxide, antimony chloride, etc. can be used.

<질소 함유 방향족 화합물><Nitrogen-containing aromatic compound>

본 실시형태에 따른 무전해 동 도금욕은, 질소 함유 방향족 화합물을 함유한다.The electroless copper plating bath which concerns on this embodiment contains a nitrogen containing aromatic compound.

종래, 예를 들면, 2,2'-비피리딜, 1,10-페난트롤린 등의 질소 함유 방향족 화합물은, 도금욕의 안정제나 피막 물성 개선제로서 사용되고 있다. 그러나, 상세한 메카니즘은 확실하지 않지만, 본 실시형태에 따른 무전해 동 도금욕에 질소 함유 방향족 화합물을 첨가함으로써, 이 질소 함유 방향족 화합물이 도금 금속을 촉진시키는 촉진제로서 작용하게 된다.Conventionally, nitrogen-containing aromatic compounds, such as 2,2'-bipyridyl and 1,10- phenanthroline, are used as a stabilizer of a plating bath, or a film physical property improving agent. However, although the detailed mechanism is not certain, by adding a nitrogen-containing aromatic compound to the electroless copper plating bath according to the present embodiment, the nitrogen-containing aromatic compound acts as an accelerator for promoting the plating metal.

구체적으로, 이 질소 함유 방향족 화합물로서는, 이미다졸 또는 그의 치환 유도체, 피라졸 또는 그의 치환 유도체, 옥사졸 또는 그의 치환 유도체, 티아졸 또는 그의 치환 유도체, 피리딘 또는 그의 치환 유도체, 피라진 또는 그의 치환 유도체, 피리미딘 또는 그의 치환 유도체, 피리다진 또는 그의 치환 유도체, 트리아진 또는 그의 치환 유도체, 벤조티오펜 또는 그의 치환 유도체, 벤조티아졸 또는 그의 치환 유도체, 2,2'-디피리딜, 4,4'-디피리딜, 니코틴산, 니코틴아미드, 피콜린류, 루티딘류 등의 피리딘 또는 그의 치환 유도체, 하이드록시퀴놀린 등의 퀴놀린 또는 그의 치환 유도체, 3,6-디메틸아미노아크리딘, 프로플라빈, 아크리딘산, 퀴놀린-1,2-디카르복시산 등의 아크리딘 또는 그의 치환 유도체, 우라실, 우리딘, 티민, 2-티오우라실, 6-메틸-2-티오우라실, 6-프로필-2-티오우라실 등의 피리미딘 또는 그의 치환 유도체, 1,10-페난트롤린, 네오쿠프로인, 바소페난트롤린 등의 페난트롤린 또는 그의 치환 유도체, 아미노퓨린, 아데닌, 아데노신, 구아닌, 히단토인, 아데노신, 크산틴, 히포크산틴, 카페인, 테오피린, 테오브로민, 아미노피린 등의 퓨린 또는 그의 치환 유도체 등을 예로 들 수 있다.Specifically, as the nitrogen-containing aromatic compound, imidazole or its substituted derivative, pyrazole or its substituted derivative, oxazole or its substituted derivative, thiazole or its substituted derivative, pyridine or its substituted derivative, pyrazine or its substituted derivative, Pyrimidine or substituted derivatives thereof, pyridazine or substituted derivatives thereof, triazine or substituted derivatives thereof, benzothiophene or substituted derivatives thereof, benzothiazole or substituted derivatives thereof, 2,2'-dipyridyl, 4,4 ' -Pyridine or substituted derivatives thereof, such as dipyridyl, nicotinic acid, nicotinamide, picolines, and lutidines; quinoline or substituted derivatives thereof, such as hydroxyquinoline, 3,6-dimethylaminoacridine, proflavin, and acrylamide; Acridine or substituted derivatives thereof, such as chrydinic acid and quinoline-1,2-dicarboxylic acid, uracil, uridine, thymine, 2-thiouracil, 6-methyl-2-thioura Pyrimidine or substituted derivatives thereof, such as sil, 6-propyl-2-thiouracil, phenanthroline or substituted derivatives thereof, such as 1,10-phenanthroline, neocouproin and vasophenanthroline, aminopurine, adenine And purine such as adenosine, guanine, hydantoin, adenosine, xanthine, hypoxanthine, caffeine, theophyrin, theobromine, aminopyrin, or substituted derivatives thereof.

질소 함유 방향족 화합물의 농도는, 특별히 한정되지 않지만, 0.01∼1000 mg/L로 하는 것이 바람직하다. 농도가 0.01 mg/L 미만이면, 촉진제로서의 효과를 얻지 못하여, 속도가 늦어져서 도금 시간이 길어지므로 경제적이지 않다. 또한, 초기에 있어서의 동의 석출이 악화되어, 바탕부 기재에 대한 손상이 생기거나, 미석출 개소가 생길 가능성이 있다. 한편, 농도가 1000 mg/L를 초과하면, 석출 속도가 지나치게 빨라져서 조잡한 피막이 된다. 또한, 노듈이 발생하거나 거칠어지기 쉬워지고, 그리고 패턴성이 저하된다. 또한, 도금욕이 불안정하게 될 가능성이 있다.Although the density | concentration of a nitrogen-containing aromatic compound is not specifically limited, It is preferable to set it as 0.01-1000 mg / L. If the concentration is less than 0.01 mg / L, the effect as an accelerator is not obtained, and the speed is slowed down, so that the plating time becomes long, which is not economical. In addition, precipitation of copper in the initial stage may deteriorate and damage to the base material may occur, or unprecipitated sites may occur. On the other hand, when the concentration exceeds 1000 mg / L, the precipitation rate is too fast, resulting in a crude coating. In addition, nodules tend to be generated or rough, and the patternability is lowered. In addition, there is a possibility that the plating bath becomes unstable.

<그 외의 조건><Other conditions>

도금욕의 pH는, pH 4.0∼9.0으로 하고, 바람직하게는 pH 5.0∼9.0, 보다 바람직하게는 pH 6.0∼8.0으로 한다. 전술한 바와 같이, 본 실시형태에 따른 무전해 동 도금욕에는, 환원제로서 중성 내지 알칼리성 조건에서 사용할 수 있는 아미노보란 또는 그의 치환 유도체를 함유시키고 있다. 이에 따라, pH 4.0∼9.0의 범위에서 사용할 수 있고, 피도금물인 기재에 대하여 손상을 입히지 않고 도금 처리를 행할 수 있다.The pH of the plating bath is set to pH 4.0 to 9.0, preferably pH 5.0 to 9.0, more preferably pH 6.0 to 8.0. As described above, the electroless copper plating bath according to the present embodiment contains an aminoborane or a substituted derivative thereof that can be used in neutral to alkaline conditions as a reducing agent. Thereby, it can be used in the range of pH 4.0-9.0, and can perform plating process, without damaging the base material to be plated.

여기서, pH가 4.0 미만이면, 환원제의 자연 소모가 많아져서 비용 상승으로 이어지며, 또한 도금욕이 불안정하게 된다. 한편, pH가 9.0보다 커지면, 피도금물이 되는 기재에 대한 손상이 커지게 된다.Here, when the pH is less than 4.0, the natural consumption of the reducing agent increases, leading to an increase in cost, and the plating bath becomes unstable. On the other hand, when the pH is greater than 9.0, damage to the substrate to be plated becomes large.

도금욕의 pH는, 예를 들면, 수산화 나트륨, 수산화 칼륨, 수산화 테트라메틸암모늄 등의 pH 조정제를 함유시킴으로써 조정할 수 있다.PH of a plating bath can be adjusted by containing pH adjusters, such as sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, for example.

또한, 도금욕의 온도는, 특별히 한정되지 않지만, 20∼90 ℃로 하고, 바람직하게는 40∼80 ℃로 하고, 보다 바람직하게는 60∼70℃로 한다. 욕온이 20℃ 미만이면, 석출 속도가 늦어져서 도금 시간이 길어지므로 경제적이지 않다. 한편, 욕온이 90℃를 초과하면, 석출 속도가 지나치게 빨라져 조잡한 피막이 되고, 또한 도금 후의 피막의 열 수축에 의해 기재에 휨이 발생하는 경우가 있다. 또한, 노듈이 발생하거나 거칠어지기 쉬워져, 패턴성이 저하될 가능성도 있다. 또한, 도금욕이 불안정하게 되며, 환원제의 자연 소모가 많아져서 비용 상승으로 이어진다.Moreover, the temperature of a plating bath is although it does not specifically limit, It is 20-90 degreeC, Preferably it is 40-80 degreeC, More preferably, it is 60-70 degreeC. If the bath temperature is less than 20 ° C, the deposition rate is slow and the plating time becomes long, so it is not economical. On the other hand, when a bath temperature exceeds 90 degreeC, precipitation rate will become too high and it will be a rough film, and the base material may warp by heat shrink of the film after plating. Moreover, a nodule may generate | occur | produce or become rough, and pattern property may fall. In addition, the plating bath becomes unstable, and the natural consumption of the reducing agent increases, leading to an increase in cost.

이상과 같이, 본 실시형태에 따른 무전해 동 도금욕에서는, 환원제로서 아미노보란 또는 그의 치환 유도체를 포함하고, 포름알데히드를 함유하지 않는 무전해 동 도금욕에 있어서, 착화제로서의 폴리아미노폴리포스폰산, 음이온 계면활성제, 안티몬 화합물, 및 질소 함유 방향족 화합물을 함유시키고 있다. 이 무전해 동 도금욕에 의하면, 중성 부근에서 사용할 수 있으므로, 피도금물에 대하여 손상을 입히지 않고, 예를 들면, 알루미늄 등과 같이 열화되기 쉬운 피도금물에 대해서도, 양호한 도금 처리를 행할 수 있다.As described above, in the electroless copper plating bath according to the present embodiment, in the electroless copper plating bath containing aminoborane or a substituted derivative thereof as a reducing agent and not containing formaldehyde, polyaminopolyphosphonic acid as a complexing agent , Anionic surfactant, antimony compound, and nitrogen-containing aromatic compound. According to this electroless copper plating bath, since it can be used in neutral vicinity, favorable plating process can be performed also to the to-be-plated object which does not damage to a to-be-plated object, for example, which is easy to deteriorate, such as aluminum.

또한, 이 무전해 동 도금욕에 의하면, 도금욕의 안정성을 향상시킬 수 있으며, 도금 석출의 촉진 작용과 억제 작용의 밸런스를 제어할 수 있으므로, 패턴 외로 돌출하는 것을 효과적으로 억제하면서, 한편으로는 단부 깍임 등이 생기지 않도록 하여, 원하는 바의 양호한 막 두께를 가지는 도금 피막을 형성할 수 있다.In addition, according to the electroless copper plating bath, the stability of the plating bath can be improved, and the balance between the promoting action and the suppressing action of the plating deposition can be controlled, thereby effectively suppressing protruding out of the pattern, and on the other hand, It is possible to form a plated film having a desired film thickness as desired so that chipping or the like does not occur.

이로써, 예를 들면, 알루미늄 또는 알루미늄 합금이나 마그네슘 또는 마그네슘 합금 상에, 패턴 외 석출을 방지하기 위한 배리어층 등을 설치하지 않고, 돌출이 없는 양호한 도금 피막을 간편하게 형성할 수 있고, 예를 들면, 반도체 웨이퍼의 제조 시에 바람직하게 사용할 수 있다.Thereby, for example, a good plating film without protruding can be easily formed on aluminum or aluminum alloy or magnesium or magnesium alloy without providing a barrier layer or the like for preventing out-of-pattern deposition. It can be used preferably at the time of manufacture of a semiconductor wafer.

또한, 전술한 바와 같이 도금 석출의 촉진 작용과 억제 작용의 밸런스를 제어할 수 있으므로, 형성되는 도금 피막이 평활하게 되고, 예를 들면, 와이어 본딩의 필(peel) 강도를 향상시킬 수 있다. 또한, 이 도금 피막의 외관도 매우 양호하게 된다.In addition, as described above, since the balance between the promoting action of the plating precipitation and the suppressing action can be controlled, the plated film formed can be smoothed, for example, the peel strength of the wire bonding can be improved. Moreover, the appearance of this plating film is also very good.

≪2. 무전해 동 도금 방법≫«2. Electroless Copper Plating Method≫

다음으로, 전술한 무전해 동 도금욕을 사용한 무전해 동 도금 방법에 대하여 설명한다. 무전해 도금 방법으로서, 공지의 방법을 사용할 수 있다. 또한, 전처리로서 촉매 부여 처리 등이 필요한 경우의 촉매 부여 처리도, 공지의 방법을 적용할 수 있다.Next, the electroless copper plating method using the electroless copper plating bath mentioned above is demonstrated. As the electroless plating method, a known method can be used. Moreover, a well-known method can also be applied to the catalyst provision process, when the catalyst provision process etc. are needed as pretreatment.

무전해 동 도금 처리 시의 온도는, 전술한 바와 같이, 무전해 동 도금욕의 욕온을 20∼90 ℃, 바람직하게는 40∼80 ℃, 보다 바람직하게는 60∼70 ℃로 제어한다.As mentioned above, the temperature at the time of electroless copper plating process controls the bath temperature of an electroless copper plating bath to 20-90 degreeC, Preferably it is 40-80 degreeC, More preferably, it is 60-70 degreeC.

또한, 무전해 동 도금 처리 시간은, 특별히 한정되지 않고, 원하는 막 두께로 되도록 적절하게 설정하면 된다. 구체적으로는, 예를 들면, 30초∼15시간 정도로 할 수 있다.In addition, the electroless copper plating process time is not specifically limited, What is necessary is just to set suitably so that it may become desired film thickness. Specifically, it can be made into about 30 second-15 hours, for example.

또한, 무전해 동 도금 처리를 행하는데 있어서는, 도금 처리의 진행에 따라, 동 이온이 환원제에 의해 금속 동으로 환원되어 기재 상에 석출된 결과, 도금액 중의 동 이온 농도나 환원제 농도가 저하되고, 또한 pH도 변화하게 된다. 따라서, 연속적으로 또는 정기적으로, 무전해 동 도금액 중에, 동 이온원으로서의 수용성 동염, 환원제, 착화제, 그 외의 첨가제를 보급하여, 이들의 농도를 일정한 농도 범위로 유지시켜 두는 것이 바람직하다.In addition, in performing the electroless copper plating treatment, as the plating treatment proceeds, copper ions are reduced to metal copper by the reducing agent and precipitated on the substrate, whereby the copper ion concentration and the reducing agent concentration in the plating liquid are lowered. pH will also change. Therefore, it is preferable to continuously or regularly supply the electrolytic copper plating solution with a water-soluble copper salt, a reducing agent, a complexing agent, and other additives as the copper ion source, and to maintain these concentrations in a constant concentration range.

또한, 무전해 동 도금욕은, 필요에 따라 에어 버블링 등의 방법으로 교반하는 것이 바람직하다.Moreover, it is preferable to stir an electroless copper plating bath by methods, such as air bubbling, as needed.

구체적으로, 전술한 무전해 동 도금욕을 사용한 무전해 동 도금 방법으로서는, 예를 들면, 배리어층을 설치하지 않고, 알루미늄 또는 알루미늄 합금, 마그네슘 또는 마그네슘 합금으로 이루어지는 기재에 대하여 징케이트(아연 치환) 처리를 행한 후, 전술한 무전해 동 도금욕을 사용하여 무전해 동 도금 처리를 행한다. 본 실시형태에 따른 무전해 동 도금 방법에서는, 전술한 바와 같이 패턴 외 석출을 효과적으로 억제할 수 있으므로, 배리어층 등을 설치하지 않고 간편하게, 양호한 도금 피막을 형성할 수 있다.Specifically, as the electroless copper plating method using the above-mentioned electroless copper plating bath, for example, without a barrier layer, the substrate is made of aluminum or an aluminum alloy, magnesium or a magnesium alloy. After the treatment, the electroless copper plating treatment is performed using the electroless copper plating bath described above. In the electroless copper plating method according to the present embodiment, since the out-of-pattern precipitation can be effectively suppressed as described above, a good plating film can be easily formed without providing a barrier layer or the like.

또는, 무전해 동 도금 방법의 다른 예로서는, 예를 들면, 동, 니켈, 팔라듐, 백금, 텅스텐, 몰리브덴, 로듐, 티탄, 탄탈 등을 포함하는 박막 상에, 팔라듐이나 백금, 구리 등에 의해 치환하여 활성 처리를 행한 후, 전술한 무전해 동 도금욕을 사용하여 무전해 동 도금 처리를 행한다.Alternatively, as another example of the electroless copper plating method, for example, copper, nickel, palladium, platinum, tungsten, molybdenum, rhodium, titanium, tantalum, or the like is replaced with palladium, platinum, copper, or the like to activate the thin film. After the treatment, the electroless copper plating treatment is performed using the electroless copper plating bath described above.

또는, 전술한 활성 처리 후에, 보란 또는 그의 치환 유도체를 포함하는 처리액에 의해 환원 처리를 행한 후, 전술한 무전해 동 도금욕을 사용하여 무전해 동 도금 처리를 행한다.Alternatively, after the above-described active treatment, the reduction treatment is performed with a treatment liquid containing borane or a substituted derivative thereof, and then the electroless copper plating treatment is performed using the electroless copper plating bath described above.

[실시예][Example]

≪3. 실시예≫≪3. Example ''

이하에서, 본 발명의 구체적인 실시예에 대하여 설명한다. 그리고, 하기 중 어느 하나의 실시예로 본 발명이 한정되는 것은 아니다.Hereinafter, specific embodiments of the present invention will be described. In addition, this invention is not limited to any one of the following Examples.

<무전해 동 도금욕의 조성에 대한 검토><Review about the composition of the electroless copper plating bath>

먼저, 하기에 나타내는 실시예 1∼실시예 2, 및 비교예 1∼비교예 10에 있어서, 무전해 도금욕의 조성을 변경하여, 도금 피막의 막 두께와 패턴 외 석출량(돌출량)에 대하여 조사하였다.First, in Examples 1 to 2 and Comparative Examples 1 to 10 shown below, the composition of the electroless plating bath was changed, and the film thickness of the plating film and the amount of precipitation out of the pattern (protrusion amount) were investigated. It was.

[실시예 1]Example 1

(무전해 동 도금욕 조성)(Electroless Copper Plating Bath Composition)

에틸렌디아민테트라(메틸렌포스폰산) :0.08 mol/LEthylenediaminetetra (methylenephosphonic acid): 0.08 mol / L

동(황산 동·5수염) :0.063 mol/L(동의 농도로서 4 g/L)Copper (copper sulfate, five hydrochloride): 0.063 mol / L (as copper concentration 4 g / L)

디메틸아민보란 :8 g/LDimethylamine borane : 8 g / L

라우릴황산 나트륨 :20 mg/LSodium lauryl sulfate: 20 mg / L

o-페난트롤린 :4 mg/Lo-phenanthroline: 4 mg / L

산화 안티몬 :안티몬 농도로서 2 mg/LAntimony oxide: As antimony concentration, 2 mg / L

pH :7.7pH : 7.7

욕온 :60℃Bath temperature : 60 degrees Celsius

(무전해 동 도금 방법)(Electroless Copper Plating Method)

실리콘 웨이퍼 상에 형성된 Al-Si 합금 스퍼터 상에 TiN막에 의해 패턴을 형성한 후, 정법에 따라 징케이트 처리가 2회 행해진 샘플을, 전술한 조성으로 이루어지는 무전해 동 도금욕에 1시간 침지함으로써 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.After the pattern was formed on the Al-Si alloy sputter formed on the silicon wafer by a TiN film, the sample subjected to the quenching treatment twice in accordance with the conventional method was immersed in an electroless copper plating bath having the above-described composition for 1 hour. The electroless copper plating process was performed and the copper plating film was formed on the pattern.

(평가)(evaluation)

형성된 도금 피막에 대하여, 레이저 현미경에 의해, 도금 처리 전후의 고저차 측정에 의해 도금 막 두께를 계측하였다. 그 결과, 형성된 도금 피막은, 막 두께가 5.3㎛로 양호한 막 두께를 가지고, 또한 패턴으로부터의 돌출은 5㎛로 거의 없었다.About the formed plating film, the plated film thickness was measured by the laser beam microscope by the height difference measurement before and behind a plating process. As a result, the formed plating film had a favorable film thickness of 5.3 micrometers and hardly protruded from the pattern to 5 micrometers.

[실시예 2][Example 2]

(무전해 동 도금욕 조성)(Electroless Copper Plating Bath Composition)

글리신-N,N-비스(메틸렌포스폰산) :0.13 mol/LGlycine-N, N-bis (methylenephosphonic acid): 0.13 mol / L

동(황산 동·5수염) :0.063 mol/L(동의 농도로서 4 g/L)Copper (copper sulfate, five hydrochloride): 0.063 mol / L (as copper concentration 4 g / L)

디메틸아민보란 :8 g/LDimethylamine borane : 8 g / L

라우릴황산 나트륨 :20 mg/LSodium lauryl sulfate: 20 mg / L

2,9-디메틸-1,10-페난트롤린 :2 mg/L2,9-dimethyl-1,10-phenanthroline : 2 mg / L

산화 안티몬 :안티몬 농도로서 2 mg/LAntimony oxide: As antimony concentration, 2 mg / L

pH :7.7pH : 7.7

욕온 :60℃Bath temperature : 60 degrees Celsius

(무전해 동 도금 방법)(Electroless Copper Plating Method)

실리콘 웨이퍼 상에 형성된 Al-Si 합금 스퍼터 상에 TiN막에 의해 패턴을 형성한 후, 정법에 따라 징케이트 처리가 2회 행해진 샘플을, 전술한 조성으로 이루어지는 무전해 동 도금욕에 1시간 침지함으로써 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.After the pattern was formed on the Al-Si alloy sputter formed on the silicon wafer by a TiN film, the sample subjected to the quenching treatment twice according to the conventional method was immersed in an electroless copper plating bath having the above-described composition for 1 hour. The electroless copper plating process was performed and the copper plating film was formed on the pattern.

(평가)(evaluation)

형성된 도금 피막에 대하여, 레이저 현미경에 의해, 도금 처리 전후의 고저차 측정에 의해 도금 막 두께를 계측하였다. 그 결과, 형성된 도금 피막은, 그 막 두께가 5.3㎛로 양호한 막 두께를 가지고, 또한 패턴으로부터의 돌출은 5㎛로 거의 없었다.About the formed plating film, the plated film thickness was measured by the laser beam microscope by the height difference measurement before and behind a plating process. As a result, the formed plating film had a favorable film thickness of 5.3 micrometers and hardly protruded from the pattern at 5 micrometers.

[비교예 1]Comparative Example 1

무전해 동 도금욕 조성에 대하여, 안티몬 화합물을 첨가하지 않은 점 이외는, 실시예 1과 동일한 방법으로 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.The electroless copper plating treatment was performed in the same manner as in Example 1 except that the antimony compound was not added to the electroless copper plating bath composition to form a copper plating film on the pattern.

그 결과, 형성된 도금 피막의 막 두께는 2.6㎛로 실시예 1 및 2에 비해 얇고, 또한 패턴으로부터의 돌출은 15㎛나 되었다. 이와 같이, 도금 석출이 억제되었고, 또한 다량의 돌출 석출이 생기게 하여 패턴 선택성은 매우 낮았다.As a result, the film thickness of the formed plating film was 2.6 micrometers, compared with Examples 1 and 2, and the protrusion from the pattern was 15 micrometers or more. In this way, plating precipitation was suppressed, and a large amount of protruding precipitation occurred, resulting in a very low pattern selectivity.

[비교예 2]Comparative Example 2

무전해 동 도금욕 조성에 대하여, 안티몬 2 mg/L 대신 납 2 mg/L를 첨가한 점 이외는, 실시예 1과 동일한 방법으로 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.With respect to the electroless copper plating bath composition, except for adding 2 mg / L of lead instead of 2 mg / L of antimony, an electroless copper plating was performed in the same manner as in Example 1, and a copper plating film was formed on the pattern. Formed.

그 결과, 형성된 도금 피막의 막 두께는 2.2㎛로 실시예 1 및 2에 비해 얇고, 또한 패턴으로부터의 돌출은 12㎛나 되었다. 이와 같이, 도금 석출이 억제되었고, 또한 다량의 돌출 석출이 생기게 하여 패턴 선택성은 매우 낮았다.As a result, the film thickness of the formed plating film was 2.2 micrometers, compared with Examples 1 and 2, and the protrusion from the pattern was 12 micrometers. In this way, plating precipitation was suppressed, and a large amount of protruding precipitation occurred, resulting in a very low pattern selectivity.

[비교예 3][Comparative Example 3]

무전해 동 도금욕 조성에 대하여, 안티몬 2 mg/L 대신 탈륨 0.3 mg/L를 첨가한 점 이외는, 실시예 1과 동일한 방법으로 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.For the electroless copper plating bath composition, except that 0.3 mg / L of thallium was added instead of 2 mg / L of antimony, an electroless copper plating treatment was performed in the same manner as in Example 1, and the copper plating film was formed on the pattern. Formed.

그 결과, 형성된 도금 피막의 막 두께는 1.8㎛로 실시예 1 및 2에 비해 매우 얇았다. 또한, 패턴으로부터의 돌출량이 많고, 이 돌출에 의해 패턴 사이의 접속(브릿지)이 생겼기 때문에, 돌출량을 측정할 수 없었다. 이와 같이, 도금 석출이 억제되었고, 또한 다량의 돌출 석출이 생기게 하여 패턴 선택성은 매우 낮았다.As a result, the film thickness of the formed plating film was 1.8 µm, which was very thin in comparison with Examples 1 and 2. Moreover, since the amount of protrusion from the pattern was large, and the connection (bridge) between patterns was formed by this protrusion, the amount of protrusion could not be measured. In this way, plating precipitation was suppressed, and a large amount of protruding precipitation occurred, resulting in a very low pattern selectivity.

[비교예 4][Comparative Example 4]

무전해 동 도금욕 조성에 대하여, 라우릴황산 나트륨을 첨가하지 않은 점 이외는, 실시예 1과 동일한 방법으로 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.The electroless copper plating treatment was performed in the same manner as in Example 1 except that sodium lauryl sulfate was not added to the electroless copper plating bath composition to form a copper plating film on the pattern.

이 비교예 4에서는, 도금 처리 중에 도금욕의 분해가 일어나, 정상적으로 도금 처리를 행할 수 없었다.In this Comparative Example 4, the plating bath was decomposed during the plating treatment, and the plating treatment could not be normally performed.

[비교예 5][Comparative Example 5]

무전해 동 도금욕 조성에 대하여, o-페난트롤린을 첨가하지 않은 점 이외는, 실시예 1과 동일한 방법으로 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.The electroless copper plating treatment was performed in the same manner as in Example 1 except that no o-phenanthroline was added to the electroless copper plating bath composition to form a copper plating film on the pattern.

그 결과, 패턴으로부터의 돌출은 0.5㎛로 적었지만, 도금 막 두께는 1.2㎛로 매우 얇아져, 도금 속도가 현저하게 저하되었다.As a result, the protrusion from the pattern was as small as 0.5 占 퐉, but the plating film thickness was very thin as 1.2 占 퐉, and the plating rate was significantly lowered.

[비교예 6][Comparative Example 6]

무전해 동 도금욕 조성에 대하여, 라우릴황산 나트륨 20 mg/L 대신 폴리에틸렌글리콜(PEG) #1000을 0.5 g/L 첨가한 점 이외는, 실시예 1과 동일한 방법으로 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.The electroless copper plating treatment was carried out in the same manner as in Example 1, except that 0.5 g / L of polyethylene glycol (PEG) # 1000 was added instead of 20 mg / L of sodium lauryl sulfate in the electroless copper plating bath composition. The copper plating film was formed on the pattern.

이 비교예 6에서는, 도금 처리 중에 도금욕의 분해가 일어나, 정상적으로 도금 처리를 행할 수 없었다.In this Comparative Example 6, the plating bath was decomposed during the plating treatment, and the plating treatment could not be normally performed.

[비교예 7][Comparative Example 7]

무전해 동 도금욕 조성에 대하여, 안티몬 2 mg/L 대신 비스무스 2 mg/L를 첨가한 점 이외는, 실시예 1과 동일한 방법으로 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.The electroless copper plating treatment was performed in the same manner as in Example 1 except that bismuth 2 mg / L was added instead of antimony 2 mg / L to the electroless copper plating bath composition, and the copper plating film was formed on the pattern. Formed.

그 결과, 형성된 도금 피막의 막 두께는 4.4㎛로 양호하였지만, 패턴 외로의 도금의 돌출에 의해 패턴 사이의 접속(브릿지)이 생겨서, 돌출량을 측정할 수 없었다.As a result, although the film thickness of the formed plating film was favorable at 4.4 micrometers, the connection (bridge) between patterns was formed by the protrusion of plating to the outside of a pattern, and the amount of protrusion was not able to be measured.

[비교예 8][Comparative Example 8]

무전해 동 도금욕 조성에 대하여, 에틸렌디아민테트라(메틸렌포스폰산) 0.08 mol/L 대신 디에틸렌트리아민5아세트산 0.08 ml/L를 첨가한 점 이외는, 실시예 1과 동일한 방법으로 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.Electroless copper plating was carried out in the same manner as in Example 1, except that 0.08 ml / L of diethylenetriamine pentaacetic acid was added instead of 0.08 mol / L of ethylenediaminetetra (methylenephosphonic acid) to the electroless copper plating bath composition. The process was performed and the copper plating film was formed on the pattern.

이 비교예 8에서는, 동 도금은 석출되지 않았고, 패턴을 구성하고 있는 Al-Si 합금 스퍼터의 부식이 발생하였다.In this comparative example 8, copper plating did not precipitate, and the corrosion of the Al-Si alloy sputter which comprises the pattern generate | occur | produced.

[비교예 9][Comparative Example 9]

하기 조성으로 이루어지는 무전해 동 도금욕을 사용한 점 이외는, 실시예 1과 동일한 방법으로 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.The electroless copper plating process was performed by the method similar to Example 1 except having used the electroless copper plating bath which consists of the following composition, and the copper plating film was formed on the pattern.

(무전해 동 도금욕 조성)(Electroless Copper Plating Bath Composition)

에틸렌디아민 4아세트산 :0.08 mol/LEthylenediaminetetraacetic acid : 0.08 mol / L

동(황산 동·5수염) :0.0315 mol/L(동의 농도로서 2 g/L)Copper (copper sulfate, five hydrochloride): 0.0315 mol / L (as copper concentration 2 g / L)

포름알데히드 :2 g/LFormaldehyde : 2 g / L

폴리에틸렌 글리콜(PEG) #1000 :1 g/LPolyethylene glycol (PEG) # 1000: 1 g / L

2,2"-디피리딜 :20 mg/L2,2 "-dipyridyl: 20 mg / L

pH :13.2(NaOH에 의해 조정)pH: 13.2 (adjust with NaOH)

욕온 :60℃Bath temperature : 60 degrees Celsius

이 비교예 9에서는, Al-Si 합금 스퍼터가 용해되어 정상적으로 도금을 행할 수 없었다. 이는, 도금욕이 포름알데히드를 환원제로서 사용하여, 고알칼리성이므로, 기재에 대한 손상이 커졌기 때문으로 여겨진다.In Comparative Example 9, the Al-Si alloy sputter was dissolved and plating could not be performed normally. This is considered to be because the plating bath uses formaldehyde as a reducing agent and is highly alkaline, thus causing damage to the substrate.

[비교예 10][Comparative Example 10]

하기 조성으로 이루어지는 무전해 동 도금욕을 사용한 점 이외는, 실시예 1과 동일한 방법으로 무전해 동 도금 처리를 실시하여, 패턴 상에 동 도금 피막을 형성하였다.The electroless copper plating process was performed by the method similar to Example 1 except having used the electroless copper plating bath which consists of the following composition, and the copper plating film was formed on the pattern.

(무전해 동 도금욕 조성)(Electroless Copper Plating Bath Composition)

에틸렌디아민 4아세트산 :0.08 mol/LEthylenediaminetetraacetic acid : 0.08 mol / L

동(황산 동·5수염) :0.0315 mol/L(동의 농도로서 2 g/L)Copper (copper sulfate, five hydrochloride): 0.0315 mol / L (as copper concentration 2 g / L)

글리옥실산 :6 g/LGlyoxylic acid : 6 g / L

폴리에틸렌글리콜(PEG) #1000 :1 g/LPolyethylene glycol (PEG) # 1000: 1 g / L

2,2"-디피리딜 :20 mg/L2,2 "-dipyridyl: 20 mg / L

pH :13.2(NaOH에 의해 조정)pH: 13.2 (adjust with NaOH)

욕온 :60℃Bath temperature : 60 degrees Celsius

이 비교예 10에서는, Al-Si 합금 스퍼터가 용해되어 정상적으로 도금을 행할 수 없었다. 이는, 도금욕이 글리옥실산을 환원제로서 사용하여, 포름알데히드와 마찬가지로 고알칼리성이므로, 기재에 대한 손상이 커졌기 때문으로 여겨진다.In this Comparative Example 10, the Al-Si alloy sputter was dissolved and plating could not be performed normally. This is considered to be because the plating bath uses glyoxylic acid as the reducing agent and is highly alkaline like formaldehyde, and thus damage to the substrate is increased.

Claims (7)

수용성 동염과, 환원제로서 아미노보란 또는 그의 치환 유도체를 포함하고, 포름알데히드를 함유하지 않는 pH 4∼9의 무전해 동 도금욕으로서,
착화제로서의 폴리아미노폴리포스폰산;
음이온 계면활성제;
안티몬 화합물; 및
질소 함유 방향족 화합물
을 함유하는 무전해 동 도금욕.
As an electroless copper plating bath of pH 4-9 which contains a water-soluble copper salt and aminoborane or its substituted derivative as a reducing agent, and does not contain formaldehyde,
Polyaminopolyphosphonic acid as complexing agent;
Anionic surfactants;
Antimony compounds; And
Nitrogen-containing aromatic compounds
Electroless copper plating bath containing a.
제1항에 있어서,
상기 폴리아미노폴리포스폰산의 농도가, 0.01∼1 mol/L인, 무전해 동 도금욕.
The method of claim 1,
The electroless copper plating bath whose density | concentration of the said polyamino polyphosphonic acid is 0.01-1 mol / L.
제1항에 있어서,
상기 음이온 계면활성제의 농도가, 0.01∼2000 mg/L인, 무전해 동 도금욕.
The method of claim 1,
The electroless copper plating bath whose density | concentration of the said anionic surfactant is 0.01-2000 mg / L.
제1항에 있어서,
상기 안티몬 화합물의 농도가, 0.1∼20 mg/L인, 무전해 동 도금욕.
The method of claim 1,
The electroless copper plating bath whose density | concentration of the said antimony compound is 0.1-20 mg / L.
제1항에 있어서,
상기 질소 함유 방향족 화합물의 농도가, 0.01∼1000 mg/L인, 무전해 동 도금욕.
The method of claim 1,
The electroless copper plating bath whose density | concentration of the said nitrogen-containing aromatic compound is 0.01-1000 mg / L.
기재(基材)에 대하여, 제1항에 기재된 무전해 동 도금욕을 사용하여 동 도금 피막을 형성하는, 무전해 동 도금 방법.The electroless copper plating method which forms a copper plating film with respect to a base material using the electroless copper plating bath of Claim 1. 제6항에 있어서,
상기 기재가, 알루미늄 또는 알루미늄 합금, 또는 마그네슘 또는 마그네슘 합금인, 무전해 동 도금 방법.
The method according to claim 6,
The base material is aluminum or an aluminum alloy, or magnesium or magnesium alloy, electroless copper plating method.
KR1020130007542A 2012-05-07 2013-01-23 Electroless copper plating bath and electroless copper plating method KR20130124880A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2012-105924 2012-05-07
JP2012105924A JP6030848B2 (en) 2012-05-07 2012-05-07 Electroless copper plating bath and electroless copper plating method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200016929A Division KR102092929B1 (en) 2012-05-07 2020-02-12 Electroless copper plating bath and electroless copper plating method

Publications (1)

Publication Number Publication Date
KR20130124880A true KR20130124880A (en) 2013-11-15

Family

ID=49512720

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020130007542A KR20130124880A (en) 2012-05-07 2013-01-23 Electroless copper plating bath and electroless copper plating method
KR1020200016929A KR102092929B1 (en) 2012-05-07 2020-02-12 Electroless copper plating bath and electroless copper plating method

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020200016929A KR102092929B1 (en) 2012-05-07 2020-02-12 Electroless copper plating bath and electroless copper plating method

Country Status (5)

Country Link
US (1) US20130295294A1 (en)
JP (1) JP6030848B2 (en)
KR (2) KR20130124880A (en)
CN (1) CN103388138B (en)
TW (1) TWI593824B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6645881B2 (en) 2016-03-18 2020-02-14 上村工業株式会社 Copper plating solution and copper plating method
CN105648426B (en) * 2016-03-23 2017-03-15 深圳市松柏实业发展有限公司 Heavy copper combines liquid
JP7064115B2 (en) * 2016-08-15 2022-05-10 アトテック ドイチュラント ゲー・エム・ベー・ハー ウント コー. カー・ゲー Acidic aqueous composition for electrolytic copper plating
CN108336473A (en) * 2018-02-06 2018-07-27 北京宏诚创新科技有限公司 Copper-aluminium nanometer junction normal-temperature processing method
US20220049357A1 (en) * 2019-04-10 2022-02-17 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing same
DE112021005992T5 (en) 2020-11-10 2023-08-24 Meltex Inc. SOLUTION FOR ELECTRIC COPPER PLATING
CN113463074B (en) * 2021-06-03 2022-06-14 广东硕成科技股份有限公司 Copper deposition composition and copper deposition method
CN115440989A (en) * 2022-09-30 2022-12-06 楚能新能源股份有限公司 Negative current collector for lithium ion battery, pole piece and preparation method of negative current collector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615737A (en) * 1969-08-04 1971-10-26 Photocircuits Corp Electroless copper deposition
NL7304650A (en) * 1973-04-04 1974-10-08
US4143186A (en) * 1976-09-20 1979-03-06 Amp Incorporated Process for electroless copper deposition from an acidic bath
CA1144304A (en) * 1978-10-23 1983-04-12 Glenn O. Mallory, Jr. Electroless deposition of copper
USH325H (en) * 1980-07-30 1987-09-01 Richardson Chemical Company Electroless deposition of transition metals
US4374009A (en) * 1981-09-28 1983-02-15 Xerox Corporation Electrochemical post treatment of perpendicular magnetic recording media
JPH05195237A (en) * 1992-01-21 1993-08-03 Hitachi Ltd Chemical copper plating method without using formalin
JP2001131761A (en) * 1999-11-02 2001-05-15 Murata Mfg Co Ltd Electroless copper plating bath, method of electroless copper plating and electronic parts
JP2004273315A (en) * 2003-03-10 2004-09-30 Sharp Corp Apparatus for generating ion, air conditioner, and charging device

Also Published As

Publication number Publication date
KR20200020750A (en) 2020-02-26
JP2013234343A (en) 2013-11-21
KR102092929B1 (en) 2020-03-24
CN103388138A (en) 2013-11-13
TW201346068A (en) 2013-11-16
JP6030848B2 (en) 2016-11-24
TWI593824B (en) 2017-08-01
CN103388138B (en) 2018-07-24
US20130295294A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
KR102092929B1 (en) Electroless copper plating bath and electroless copper plating method
CA2875317C (en) Plating bath for electroless deposition of nickel layers
JP5136746B2 (en) Surface treatment method of aluminum or aluminum alloy
JP6980017B2 (en) Tin plating bath and method of depositing tin or tin alloy on the surface of the substrate
JP5699794B2 (en) Aluminum oxide film removal solution and surface treatment method of aluminum or aluminum alloy
JP2000144441A (en) Electroless gold plating method and electroless gold plating solution used therefor
KR20070037312A (en) Non-cyanogen type electrolytic gold plating bath for bump forming
KR20180044923A (en) Plating bath composition for electroless plating of gold and method for depositing gold layer
US20080206474A1 (en) Stabilization and Performance of Autocatalytic Electroless Processes
JP5583896B2 (en) High-speed plating method of palladium and palladium alloy
JP6448634B2 (en) Method and apparatus for reducing tin whisker growth on tin and tin plated surfaces by doping tin with gold
KR101873626B1 (en) Method for activating a copper surface for electroless plating
JP4822519B2 (en) Semiconductor wafer pretreatment agent and pretreatment method
JP7012135B2 (en) Electroless copper plating and prevention of passivation
JP2001192886A (en) Gold-tin alloy electroplating bath
JP7111410B1 (en) Electroless copper plating solution
EP3792374B1 (en) Electroless copper plating bath
JP6043996B2 (en) No cyanide electroless gold plating bath

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application
E801 Decision on dismissal of amendment
A107 Divisional application of patent