JP6030848B2 - Electroless copper plating bath and electroless copper plating method - Google Patents

Electroless copper plating bath and electroless copper plating method Download PDF

Info

Publication number
JP6030848B2
JP6030848B2 JP2012105924A JP2012105924A JP6030848B2 JP 6030848 B2 JP6030848 B2 JP 6030848B2 JP 2012105924 A JP2012105924 A JP 2012105924A JP 2012105924 A JP2012105924 A JP 2012105924A JP 6030848 B2 JP6030848 B2 JP 6030848B2
Authority
JP
Japan
Prior art keywords
copper plating
electroless copper
plating bath
plating
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012105924A
Other languages
Japanese (ja)
Other versions
JP2013234343A (en
Inventor
隆浩 石嵜
隆浩 石嵜
中山 智晴
智晴 中山
輝幸 堀田
輝幸 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C.UYEMURA&CO.,LTD.
Original Assignee
C.UYEMURA&CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C.UYEMURA&CO.,LTD. filed Critical C.UYEMURA&CO.,LTD.
Priority to JP2012105924A priority Critical patent/JP6030848B2/en
Priority to TW101149801A priority patent/TWI593824B/en
Priority to US13/729,721 priority patent/US20130295294A1/en
Priority to KR1020130007542A priority patent/KR20130124880A/en
Priority to CN201310038268.XA priority patent/CN103388138B/en
Publication of JP2013234343A publication Critical patent/JP2013234343A/en
Application granted granted Critical
Publication of JP6030848B2 publication Critical patent/JP6030848B2/en
Priority to KR1020200016929A priority patent/KR102092929B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1605Process or apparatus coating on selected surface areas by masking
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/166Process features with two steps starting with addition of reducing agent followed by metal deposition

Description

本発明は、無電解銅めっき浴及び無電解銅めっき方法に関し、より詳しくは、ホルムアルデヒドを含まず、中性付近において使用可能な無電解銅めっき浴、及びその無電解銅めっき浴を用いた無電解銅めっき方法に関する。   The present invention relates to an electroless copper plating bath and an electroless copper plating method. More specifically, the present invention relates to an electroless copper plating bath that does not contain formaldehyde and can be used near neutral, and an electroless copper plating bath using the electroless copper plating bath. The present invention relates to an electrolytic copper plating method.

従来の無電解銅めっき浴には、銅イオンの還元剤としてホルムアルデヒドが使用されているが、ホルムアルデヒドは蒸気圧が高く、刺激臭による作業環境の悪化や、発がん性による人体への悪影響が指摘されている。また、ホルムアルデヒドを用いる無電解銅めっき浴は、強アルカリ性であるため、被めっき物に対してダメージを与えて劣化を引き起こしやすく、例えばアルミニウム又はアルミニウム合金等の金属に対しては有効に用いることができず、その用途が限られていた。   In conventional electroless copper plating baths, formaldehyde is used as a reducing agent for copper ions. However, formaldehyde has a high vapor pressure, and it has been pointed out that the working environment is deteriorated due to irritating odors and that the carcinogenicity has an adverse effect on the human body. ing. In addition, since the electroless copper plating bath using formaldehyde is strongly alkaline, it tends to damage the object to be plated and cause deterioration, and it can be used effectively for metals such as aluminum or aluminum alloys. It was not possible and its use was limited.

一方、例えば特許文献1に記載されているように、還元剤としてホルムアルデヒドを用いず、アミンボラン又はその誘導体を用いた無電解銅めっき浴が提案されている。このアミンボランは、中性〜弱アルカリ性のpH条件で使用できる還元剤であり、被めっき物の劣化を防止し、また安全性高く使用することが可能となる。   On the other hand, as described in Patent Document 1, for example, an electroless copper plating bath using amine borane or a derivative thereof without using formaldehyde as a reducing agent has been proposed. This amine borane is a reducing agent that can be used under neutral to weakly alkaline pH conditions, prevents deterioration of the object to be plated, and can be used with high safety.

しかしながら、このアミンボランは、還元力が非常に高く、めっき浴を容易に分解してしまうという問題がある。これまで、このアミンボランを還元剤として含有しながら、良好な浴安定性を有し実用性の高い無電解銅めっき浴液はなかった。   However, this amine borane has a problem that the reducing power is very high and the plating bath is easily decomposed. So far, there has been no electroless copper plating bath solution having good bath stability and high practicality while containing this amine borane as a reducing agent.

また、還元剤としてホルムアルデヒドを用いた場合には、そのホルムアルデヒドがパラジウムや銅等の金属表面に対して選択的に強い還元性を示す一方で、めっき浴中での還元作用は弱いため、パターン(金属)以外への箇所への析出は起こりにくかった。それに対して、ジメチルアミンボラン等のボラン化合物は、水を水素に還元できる程にその還元力が強く、金属上のみならずめっき浴中においても金属イオンを金属に還元してしまうため、パターン上への選択性が低く、パターン外にはみ出して析出してしまうという問題があった。   In addition, when formaldehyde is used as a reducing agent, the formaldehyde exhibits a strong reducibility selectively on metal surfaces such as palladium and copper, while the reducing action in the plating bath is weak. Precipitation to places other than (metal) was difficult to occur. In contrast, borane compounds such as dimethylamine borane are strong enough to reduce water to hydrogen and reduce metal ions to metal not only on the metal but also in the plating bath. There was a problem in that the selectivity to the surface was low, and the particles protruded out of the pattern and precipitated.

特開2001−131761号公報JP 2001-131761 A

そこで、本発明は、上述のような従来の実情に鑑みてなされたものであり、ホルムアルデヒドを使用せず、中性付近のpH条件で使用することができ、めっき浴安定性を向上させるとともに、パターン外析出を抑制しながら良好な膜厚を有するめっき皮膜を形成させることができる無電解銅めっき浴、及びその無電解銅めっき浴を用いた無電解銅めっき方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described conventional situation, and does not use formaldehyde, can be used under a pH condition near neutral, and improves the plating bath stability, An object is to provide an electroless copper plating bath capable of forming a plating film having a good film thickness while suppressing out-of-pattern precipitation, and an electroless copper plating method using the electroless copper plating bath. .

本発明者らは、上述した目的を解決するために鋭意検討を重ねた結果、ホルムアルデヒドフリーの無電解銅めっき浴において、めっき析出の促進作用と抑制作用とのバランスを制御するにより、パターン外析出を効果的に抑制するとともに良好な膜厚を有するめっき皮膜を形成できることを見出し、本発明を完成させた。   As a result of intensive studies in order to solve the above-described object, the present inventors have determined that out-of-pattern precipitation is achieved by controlling the balance between the promotion and suppression of plating deposition in a formaldehyde-free electroless copper plating bath. It was found that a plating film having a good film thickness can be formed while effectively suppressing the above, and the present invention has been completed.

すなわち、本発明に係る無電解銅めっき浴は、水溶性銅塩と、還元剤としてアミノボラン又はその置換誘導体とを含み、ホルムアルデヒドを含有しないpH4〜9の無電解銅めっき浴であって、錯化剤としてのポリアミノポリホスホン酸と、アニオン界面活性剤と、アンチモン化合物と、含窒素芳香族化合物とを含有し、アンチモン化合物の濃度が1〜4mg/Lであることを特徴とする。
That is, the electroless copper plating bath according to the present invention is an electroless copper plating bath having a pH of 4 to 9, which contains a water-soluble copper salt and aminoborane or a substituted derivative thereof as a reducing agent and does not contain formaldehyde. It contains polyaminopolyphosphonic acid as an agent, an anionic surfactant, an antimony compound, and a nitrogen-containing aromatic compound, and the concentration of the antimony compound is 1 to 4 mg / L.

また、本発明に係る無電解銅めっき方法は、基板に対して、上記無電解銅めっき浴を用いて銅めっき皮膜を形成することを特徴とする。   The electroless copper plating method according to the present invention is characterized in that a copper plating film is formed on a substrate using the electroless copper plating bath.

本発明によれば、中性付近のpH条件で使用することができ、被めっき物に対してダメージを与えることなくめっき処理を施すことができる。また、パターン外へのめっき析出を効果的に抑制することができるとともに、良好な膜厚を有するめっき皮膜を形成させることができる。これにより、アルミニウム又はアルミニウム合金等の基材に対してバリア層等を設けることなく簡便にめっき処理を施すことが可能となり、半導体ウエハ等の製造に好適に用いることができる。   According to the present invention, it can be used under pH conditions near neutral, and plating can be performed without damaging the object to be plated. In addition, plating deposition outside the pattern can be effectively suppressed, and a plating film having a good film thickness can be formed. This makes it possible to easily perform plating without providing a barrier layer or the like on a base material such as aluminum or an aluminum alloy, and can be suitably used for manufacturing a semiconductor wafer or the like.

無電解銅めっき浴中のアンチモン濃度と析出膜厚の関係を示すグラフである。It is a graph which shows the relationship between the antimony density | concentration in an electroless copper plating bath, and a deposit film thickness. 無電解銅めっき浴中のアンチモン濃度と析出膜厚の関係を示すグラフである。It is a graph which shows the relationship between the antimony density | concentration in an electroless copper plating bath, and a deposit film thickness.

以下、本発明に係る無電解銅めっき浴及び無電解銅めっき方法の具体的な実施の形態(以下、本実施の形態という。)について、以下の順序で詳細に説明する。
1.無電解銅めっき浴
2.無電解銅めっき方法
3.実施例
Hereinafter, specific embodiments of the electroless copper plating bath and the electroless copper plating method according to the present invention (hereinafter referred to as the present embodiment) will be described in detail in the following order.
1. 1. Electroless copper plating bath 2. Electroless copper plating method Example

≪1.無電解銅めっき浴≫
本実施の形態に係る無電解銅めっき浴は、ホルムアルデヒドを含有しない、いわゆるホルムアルデヒド(ホルマリン)フリーのめっき浴であって、水溶性銅塩と、還元剤としてアミノボラン又はその置換誘導体とを含み、pH4〜9の無電解銅めっき浴である。そして、この無電解銅めっき浴は、錯化剤としてのポリアミノポリホスホン酸と、アニオン界面活性剤と、アンチモン化合物と、含窒素芳香族化合物とを含有してなることを特徴としている。
<< 1. Electroless copper plating bath >>
The electroless copper plating bath according to the present embodiment is a so-called formaldehyde-free plating bath that does not contain formaldehyde, and includes a water-soluble copper salt and aminoborane or a substituted derivative thereof as a reducing agent, and has a pH of 4 ~ 9 electroless copper plating bath. The electroless copper plating bath is characterized by containing polyaminopolyphosphonic acid as a complexing agent, an anionic surfactant, an antimony compound, and a nitrogen-containing aromatic compound.

本実施の形態に係る無電解めっき浴は、上述のように、ホルムアルデヒドやグリオキシル酸等の強アルカリ性のpH条件で使用する還元剤を含有せず、中性〜弱アルカリ性において使用することができるアミノボラン又はその置換誘導体を還元剤として使用する。これにより、ホルムアルデヒド等を還元剤として用いた強アルカリ性のめっき浴のように、被めっき物となる金属基材に対してダメージを与えることない。したがって、例えばアルミニウム又はアルミニウム合金等からなる半導体ウエハに対してめっき皮膜を形成するためのめっき浴として好適に用いることができ、良好なめっき皮膜を形成することができる。   As described above, the electroless plating bath according to the present embodiment does not contain a reducing agent used under strong alkaline pH conditions such as formaldehyde and glyoxylic acid, and can be used in neutral to weakly alkaline conditions. Alternatively, a substituted derivative thereof is used as a reducing agent. Thereby, the metal base material used as a to-be-plated object is not damaged like the strong alkaline plating bath which used formaldehyde etc. as a reducing agent. Therefore, it can be suitably used as a plating bath for forming a plating film on a semiconductor wafer made of, for example, aluminum or an aluminum alloy, and a good plating film can be formed.

ところで、還元剤としてアミノボラン又はその置換誘導体を用いた場合、その非常に強い還元力により、めっき浴が分解しやすく、また被めっき物である基材上に形成されたパターン外での析出が生じパターン選択性が低いという問題がある。しかしながら、本実施の形態に係る無電解銅めっき浴では、上述した錯化剤としてのポリアミノポリホスホン酸と、アニオン界面活性剤と、アンチモン化合物と、含窒素芳香族化合物とを含有させるようにしていることから、めっき浴の安定性を高めるとともに、めっき析出の促進作用と抑制作用とのバランスを制御することができ、高いパターン選択性で以って、良好な膜厚を有するめっき皮膜を形成させることができる。   By the way, when aminoborane or a substituted derivative thereof is used as a reducing agent, the plating bath is easily decomposed due to its extremely strong reducing power, and precipitation outside the pattern formed on the substrate that is the object to be plated occurs. There is a problem that the pattern selectivity is low. However, in the electroless copper plating bath according to the present embodiment, the polyaminopolyphosphonic acid as the complexing agent, the anionic surfactant, the antimony compound, and the nitrogen-containing aromatic compound are included. Therefore, it is possible to increase the stability of the plating bath and to control the balance between the promotion and suppression of plating deposition and to form a plating film with a good film thickness with high pattern selectivity. Can be made.

このような無電解銅めっき浴によれば、例えばアルミニウム又はアルミニウム合金やマグネシウム又はマグネシウム合金等の金属基材上に、パターン外析出を防止するためのバリア層等を設けることなく、はみ出しのない良好なめっき皮膜を簡便に形成することができ、例えば半導体ウエハの製造において好適に用いることができる。   According to such an electroless copper plating bath, for example, on a metal substrate such as aluminum or aluminum alloy, magnesium or magnesium alloy, and without providing a barrier layer or the like for preventing out-of-pattern precipitation, good extruding A simple plating film can be easily formed, and can be suitably used, for example, in the manufacture of semiconductor wafers.

<水溶液銅塩>
水溶性銅塩としては、例えば、硫酸銅、硝酸銅、塩化銅、酢酸銅、クエン酸銅、酒石酸銅、グルコン酸銅等を挙げることができ、これらの水溶性銅塩を1種単独、又は2種以上を任意の割合で混合させて用いることができる。
<Aqueous copper salt>
Examples of the water-soluble copper salt include copper sulfate, copper nitrate, copper chloride, copper acetate, copper citrate, copper tartrate, copper gluconate, and the like. Two or more kinds can be mixed and used at an arbitrary ratio.

水溶性銅塩の濃度としては、例えば銅濃度として0.005〜0.5mol/Lとすることができ、0.01〜0.5mol/Lとすることが好ましく、0.05〜0.1mol/Lとすることがより好ましい。水溶性銅塩の濃度が0.005mol/L未満であると、析出速度が遅くなりめっき時間が長くなるため経済的でない。一方で、濃度が0.5mol/Lを超えると、くみ出し量が多くなりコストアップとなり、まためっき液が不安定になる。さらに、ノジュールやザラが発生しやすくなり、パターン性が低下する。   As a density | concentration of water-soluble copper salt, it can be 0.005-0.5 mol / L as a copper concentration, for example, It is preferable to set it as 0.01-0.5 mol / L, 0.05-0.1 mol / L is more preferable. If the concentration of the water-soluble copper salt is less than 0.005 mol / L, the deposition rate becomes slow and the plating time becomes longer, which is not economical. On the other hand, if the concentration exceeds 0.5 mol / L, the amount of squeeze increases and the cost increases, and the plating solution becomes unstable. In addition, nodules and roughness are likely to occur, and pattern properties are degraded.

<還元剤>
還元剤としてのアミンボラン又はその置換誘導体は、例えばジメチルアミンボラン、tert−ブチルアミンボラン、トリエチルアミンボラン、トリメチルアミンボラン等を挙げることができる。
<Reducing agent>
Examples of the amine borane or substituted derivative thereof as a reducing agent include dimethylamine borane, tert-butylamine borane, triethylamine borane, and trimethylamine borane.

アミンボラン又はその置換誘導体は、中性〜弱アルカリ性において使用することができる還元剤である。そのため、ホルムアルデヒドやグリオキシル酸等のアルデヒド系の還元剤を用いためっき浴のように、強アルカリ性において使用されるものではないため、被めっき物である金属基材等に対するダメージが抑制され、その劣化を防止することができる。また、アルデヒド系の還元剤のように、作業環境を悪化させることや人体に対する悪影響を排除することができ、安全性を向上させることができる。   Amine borane or substituted derivatives thereof are reducing agents that can be used in neutral to weakly alkaline conditions. Therefore, unlike plating baths using aldehyde-based reducing agents such as formaldehyde and glyoxylic acid, they are not used in strong alkalinity. Can be prevented. Moreover, like an aldehyde-type reducing agent, a working environment can be worsened and the bad influence with respect to a human body can be excluded, and safety can be improved.

還元剤としてのアミンボラン又はその置換誘導体の濃度としては、0.01〜0.5mol/Lとすることが好ましい。   The concentration of amine borane or a substituted derivative thereof as a reducing agent is preferably 0.01 to 0.5 mol / L.

<錯化剤>
本実施の形態に係る無電解銅めっき浴は、錯化剤としてのポリアミノポリホスホン酸を含有する。ポリアミノポリホスホン酸は、中性付近において効率的に銅イオンを錯化しやすく、めっき浴の分解を抑制して安定性を高めることができる。
<Complexing agent>
The electroless copper plating bath according to the present embodiment contains polyaminopolyphosphonic acid as a complexing agent. Polyaminopolyphosphonic acid can easily complex copper ions efficiently in the vicinity of neutrality, and can suppress the decomposition of the plating bath and enhance the stability.

具体的に、このポリアミノポリホスホン酸としては、例えば、N,N,N’,N’−エチレンジアミンテトラキス(メチレンホスホン酸)、ニトリロトリス(メチレンホスホン酸)、ジエチレンジアミンペンタ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、ビス(ヘキサメチレントリアミンペンタ(メチレンホスホン酸))、グリシン−N,N−ビス(メチレンホスホン酸)等を挙げることができる。   Specifically, examples of the polyaminopolyphosphonic acid include N, N, N ′, N′-ethylenediaminetetrakis (methylenephosphonic acid), nitrilotris (methylenephosphonic acid), diethylenediaminepenta (methylenephosphonic acid), and diethylenetriamine. Examples include penta (methylenephosphonic acid), bis (hexamethylenetriaminepenta (methylenephosphonic acid)), glycine-N, N-bis (methylenephosphonic acid), and the like.

錯化剤としてのポリアミノポリホスホン酸の濃度としては、特に限定されないが、0.01〜1mol/Lとすることが好ましい。濃度が0.01mol/L未満であると、銅イオンを十分に錯化することができずめっき浴が不安定になる可能性がある。一方で、濃度が1mol/Lを超えると、くみ出し量が多くなりコストアップとなる。また、銅の析出速度が遅くなりめっき時間が長くなるため経済的でない。さらに、下地膜に対してダメージを与えて劣化させる可能性がある。   Although it does not specifically limit as a density | concentration of polyamino polyphosphonic acid as a complexing agent, It is preferable to set it as 0.01-1 mol / L. If the concentration is less than 0.01 mol / L, copper ions cannot be complexed sufficiently and the plating bath may become unstable. On the other hand, if the concentration exceeds 1 mol / L, the amount of pumping increases and the cost increases. Moreover, it is not economical because the deposition rate of copper becomes slow and the plating time becomes long. Furthermore, there is a possibility that the underlying film is damaged and deteriorated.

<アニオン界面活性剤>
本実施の形態に係る無電解銅めっき浴は、アニオン界面活性剤を含有する。アニオン界面活性剤を含有させることによって、めっき浴の安定性を向上させることができる。
<Anionic surfactant>
The electroless copper plating bath according to the present embodiment contains an anionic surfactant. By containing an anionic surfactant, the stability of the plating bath can be improved.

めっき浴の安定性を向上させる詳細なメカニズムは定かではないが、アニオン界面活性剤を添加することにより、そのアニオン界面活性剤がめっき浴中に生成した金属微粒子に吸着し、それ以上の粒成長を阻害するようになり、これによって、上述した錯化剤やその他の添加剤による微粒子の溶解を助ける効果があるものと考えられる。また、このアニオン界面活性剤による分散効果により、めっき浴中に生成した金属微粒子が凝集して成長してしまうことを阻害することも浴安定性が向上する要因であると考えられる。   The detailed mechanism for improving the stability of the plating bath is not clear, but by adding an anionic surfactant, the anionic surfactant is adsorbed on the fine metal particles produced in the plating bath, and further grain growth occurs. This is considered to have an effect of helping dissolution of the fine particles by the complexing agent and other additives described above. In addition, it is considered that inhibiting the metal fine particles generated in the plating bath from aggregating and growing due to the dispersion effect of the anionic surfactant is also a factor for improving the bath stability.

一方で、カチオン界面活性剤では、金属微粒子の表面への吸着性が高すぎるため、めっき析出を阻害してしまう(一度表面に吸着したカチオン界面活性剤はその表面から離れにくくなる。)。また、非イオン界面活性剤では、アニオン界面活性剤やカチオン界面活性剤に比べて、金属微粒子に対する吸着性が低く浴安定性を向上させる効果が弱い。また、無電解銅めっき浴は、塩濃度が高いため、それにより非イオン界面活性剤は曇点が低下して濁りが生成しやすい。さらに、非イオン界面活性剤は、その濃度を高くすると発泡性が強くなるため、浴安定性の向上のために濃度を上げることが困難となる。   On the other hand, since the cationic surfactant has too high absorptivity on the surface of the metal fine particles, it inhibits plating deposition (the cationic surfactant once adsorbed on the surface is difficult to separate from the surface). In addition, nonionic surfactants have a lower adsorptivity to metal fine particles and a weak effect of improving bath stability compared to anionic surfactants and cationic surfactants. In addition, since the electroless copper plating bath has a high salt concentration, the nonionic surfactant is liable to generate cloudiness due to a lower cloud point. Furthermore, since the nonionic surfactant has a higher foaming property when its concentration is increased, it is difficult to increase the concentration in order to improve bath stability.

具体的に、このアニオン界面活性剤としては、アルキルカルボン酸系界面活性剤、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(例えば、花王(株)製デモールN、第一工業製薬(株)製ラベリンシリーズなど)等のナフタレンスルホン酸塩ホルムアルデヒド縮合物、ポリオキシエチレンラウリルエーテル硫酸ナトリウム(例えば、花王(株)製エマール20Cなど)やポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン(例えば、花王(株)製エマール20Tなど)等のポリオキシアルキレンエーテル硫酸塩、ドデシル硫酸ナトリウム(例えば、花王(株)製エマール10Gなど)やドデシル硫酸トリエタノールアミン(例えば、花王(株)製エマールTDなど)やドデシル硫酸アンモニウム(例えば、花王(株)製エマールAD−25など)等の高級アルコール硫酸エステル又はその塩、ドデシルベンゼンスルホン酸ナトリウム(例えば、花王(株)製ネオペレックスGS、ライオン(株)製ライポンLH−200、第一工業製薬(株)製モノ元Y−100など)や直鎖アルキルベンゼンスルホン酸ナトリウム(例えば、第一工業製薬(株)製ネオゲンS−20Fなど)等のアルキルベンゼンスルホン酸又はその塩、ジアルキルスルホコハク酸ナトリウム(例えば、花王(株)製ペレックスOT−P、(株)ADEKA製アデカコールECシリーズ)やラウリルスルホイコハク酸二ナトリウム(例えば、第一工業製薬(株)製ネオハイテノールLSなど)やジオクチルスホルコハク酸ナトリウム(例えば、第一工業製薬(株)製ネオコールSW−Cなど)等のアルキルスルホコハク酸エステル系界面活性剤、ポリオキシエチレンアルキルスルホコハク酸又はその塩(例えば、第一工業製薬(株)製ネオハイテールS−70など)、モノアルキルリン酸エステル又はその塩(例えば、(株)ADEKA製アデカトールPS/CS/TSシリーズ、東邦化学工業(株)製フォスファノールシリーズなど)、ポリオキシエチレントリデシルエーテルリン酸エステル(例えば、第一工業製薬(株)製プライサーフA212Cなど)やポリオキシエチレンラウリルエーテルリン酸エステル(例えば、第一工業製薬(株)製プライサーフA208Bなど)等のポリオキシエチレンアルキルエーテルリン酸又はその塩、α-オレフィンスルホン酸又はその塩(例えば、第一工業製薬(株)製ネオゲンAO−90など)等を挙げることができる。   Specifically, as the anionic surfactant, an alkylcarboxylic acid surfactant, a sodium salt of β-naphthalene sulfonic acid formalin condensate (for example, Demol N manufactured by Kao Corporation, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) Naphthalenesulfonate formaldehyde condensates such as labeline series), sodium polyoxyethylene lauryl ether sulfate (for example, Emar 20C manufactured by Kao Corporation) and polyoxyethylene alkyl ether sulfate triethanolamine (for example, Kao Corporation) ) Emul 20T, etc.) polyoxyalkylene ether sulfate, sodium dodecyl sulfate (for example, Emar 10G manufactured by Kao Corporation), triethanolamine dodecyl sulfate (for example, Emar TD manufactured by Kao Corporation) and dodecyl Ammonium sulfate (for example, Emer manufactured by Kao Corporation) Higher alcohol sulfate esters or salts thereof, sodium dodecylbenzenesulfonate (for example, Neoperex GS manufactured by Kao Corporation, Lipon LH-200 manufactured by Lion Corporation, Daiichi Kogyo Seiyaku Co., Ltd.) Monobenzene Y-100, etc.) and linear alkylbenzene sulfonate sodium (for example, Neogen S-20F manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) or the like, sodium dialkylsulfosuccinate (for example, Kao ( Perex OT-P manufactured by Adeka Co., Ltd., Adeka Coal EC series manufactured by ADEKA Co., Ltd.), disodium lauryl sulfoi succinate (for example, Neo Haitenol LS manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) For example, Alkylsulfosuccine such as Neocor SW-C manufactured by Daiichi Kogyo Seiyaku Co., Ltd. Ester surfactant, polyoxyethylene alkyl sulfosuccinic acid or a salt thereof (for example, Neo Hightail S-70 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), monoalkyl phosphate ester or a salt thereof (for example, ADEKA manufactured by ADEKA Corporation) PS / CS / TS series, phosphanol series manufactured by Toho Chemical Industry Co., Ltd.), polyoxyethylene tridecyl ether phosphate (for example, Prisurf A212C manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and polyoxyethylene Polyoxyethylene alkyl ether phosphoric acid such as lauryl ether phosphate (for example, Prisurf A208B manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) or the like, α-olefin sulfonic acid or salt thereof (for example, Daiichi Kogyo Seiyaku ( And Neogen AO-90, etc.).

アニオン界面活性剤の濃度としては、特に限定されないが、0.01〜2000mg/Lとすることが好ましい。濃度が0.01mg/L未満であると、安定剤としての効果が十分に得られず、めっき浴が不安定になる可能性がある。また、ノジュールやザラが発生しやすくなる。一方で、濃度が2000mg/Lを超えると、発泡性が高くなりすぎる。また、後工程における水洗性が低下するとともに、廃液、排水処理が困難になる。   Although it does not specifically limit as a density | concentration of an anionic surfactant, It is preferable to set it as 0.01-2000 mg / L. If the concentration is less than 0.01 mg / L, the effect as a stabilizer cannot be sufficiently obtained, and the plating bath may become unstable. In addition, nodules and roughness are likely to occur. On the other hand, if the concentration exceeds 2000 mg / L, the foamability becomes too high. Moreover, the washability in a post-process falls and waste liquid and waste water treatment become difficult.

<アンチモン化合物>
本実施の形態に係る無電解銅めっき浴は、アンチモン化合物を含有する。このようにアンチモン化合物を添加することにより、アンダーポテンシャルデポジッション現象によるめっき析出促進の効果と、アンチモンの吸着に伴う触媒毒効果による析出阻害の効果のバランスにより、析出速度向上とはみ出し抑制の効果を得ることができる。
<Antimony compound>
The electroless copper plating bath according to the present embodiment contains an antimony compound. By adding an antimony compound in this way, it is possible to improve the deposition rate and suppress the protrusion by balancing the effect of promoting the precipitation of plating due to the underpotential deposition phenomenon and the effect of inhibiting the precipitation due to the catalyst poisoning effect associated with the adsorption of antimony. Can be obtained.

なお、アンダーポテンシャルデポジッション現象とは、添加する元素(アンチモン)が一旦還元された後に直ちにイオンとして再溶解する際に放出される電子により、目的とする金属(銅)の析出が促進されるため、理論的に計算される析出電位よりも低い電位で金属が析出する現象をいう。   The underpotential deposition phenomenon is because the target metal (copper) is promoted by the electrons released when the added element (antimony) is once reduced and then immediately re-dissolved as ions. This is a phenomenon in which metal is deposited at a potential lower than the theoretically calculated deposition potential.

具体的に、アンチモン化合物は、そのめっき金属の析出速度に及ぼす濃度の影響が上に凸、すなわち濃度が低くすぎても高すぎても析出速度が遅くなり、析出速度が最大となる濃度が存在する。そのため、アンチモンが吸着しやすいパターン端部(エッジ部)に対して抑制作用が現れ、アンチモンが吸着しにくい端部以外では促進作用が主として現れ、これにより、析出速度が速くてもパターン外へのめっき析出の広がりを抑制することができると考えられる。   Specifically, for antimony compounds, the concentration effect on the deposition rate of the plating metal is convex, that is, the concentration is too low or too high, the precipitation rate is slow, and there is a concentration that maximizes the deposition rate. To do. Therefore, an inhibitory action appears on the edge of the pattern where the antimony is likely to be adsorbed (edge part), and an accelerating action mainly appears at the edges other than the edge where the antimony is difficult to adsorb. It is considered that the spread of plating deposition can be suppressed.

ここで、アンチモン化合物の濃度推移によるめっき金属の析出速度の関係について、具体的な実験例を参照してより具体的に説明する。   Here, the relationship of the deposition rate of the plating metal depending on the concentration transition of the antimony compound will be described more specifically with reference to specific experimental examples.

先ず、実験例1として、シリコンウエハー上の形成したAl−Si合金スパッタ上にTiN膜にてパターン形成した後、定法に従ってダブルジンケート処理を行ったサンプルを、下記に示す組成からなる無電解銅めっき浴に1時間浸漬することによって無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
〔無電解銅めっき浴組成〕
エチレンジアミンテトラ(メチレンホスホン酸) :0.08mol/L
銅(硫酸銅・5水塩) :0.063mol/L(銅濃度として4g/L)
ジメチルアミンボラン :8g/L
ラウリル硫酸ナトリウム :20mg/L
o−フェナントロリン :4mg/L
酸化アンチモン :下記表1を参照(アンチモン濃度として)
pH :7.7
浴温 :60℃
First, as Experimental Example 1, a sample formed by patterning a TiN film on an Al—Si alloy sputter formed on a silicon wafer and then subjected to double zincate treatment according to a conventional method was subjected to electroless copper plating having the composition shown below. An electroless copper plating treatment was performed by immersing in a bath for 1 hour to form a copper plating film on the pattern.
[Electroless copper plating bath composition]
Ethylenediaminetetra (methylenephosphonic acid): 0.08 mol / L
Copper (copper sulfate / pentahydrate): 0.063 mol / L (4 g / L as copper concentration)
Dimethylamine borane: 8 g / L
Sodium lauryl sulfate: 20 mg / L
o-phenanthroline: 4 mg / L
Antimony oxide: See Table 1 below (as antimony concentration)
pH: 7.7
Bath temperature: 60 ° C

そして、形成されためっき皮膜の膜厚、パターン外析出量(はみ出し量)、及びめっき外観について調べた。下記表1に、各測定結果を示す。また、図1に、無電解銅めっき浴中のアンチモン濃度に対する析出膜厚の変化を示す。なお、下記の表1中において、はみ出し評価における「ブリッジ」とは、めっきはみ出しによってパターン間が接続してしまった状態を示し、外観評価における「端部かじり発生」とは、基板/パッド外周部の膜厚が薄くなる現象が生じてしまったことを示す。なお、はみ出しの値がマイナスのものは、端部かじり発生によりパターン端部にめっきが析出せず、下地が露出していることを意味する。   Then, the film thickness of the formed plating film, the amount of precipitation outside the pattern (the amount of protrusion), and the plating appearance were examined. Table 1 below shows the measurement results. Further, FIG. 1 shows the change of the deposited film thickness with respect to the antimony concentration in the electroless copper plating bath. In Table 1 below, “bridge” in the protrusion evaluation indicates a state where the patterns are connected by plating protrusion, and “edge galling” in the appearance evaluation is the outer peripheral portion of the substrate / pad. This shows that the phenomenon that the film thickness of the film becomes thinner has occurred. A negative protrusion value means that no plating is deposited on the pattern edge due to edge galling and the base is exposed.

Figure 0006030848
Figure 0006030848

上述した実験例1におけるめっき浴組成や下地の条件でめっき処理を行うと、表1に示されるように、アンチモン無添加や低濃度の場合並びに高濃度の場合では、めっき析出速度が遅くなり、めっき膜厚が薄くなるとともにパターン端部における析出異常が生じていることが分かる。一方で、アンチモン濃度が表1の濃度範囲において中程度の場合では、良好な膜厚のめっき膜が形成されるとともに、パターン外へのめっき析出の広がりや端部かじりが抑制されていることが分かる。   When plating is performed under the conditions of the plating bath composition and the base in Experimental Example 1 described above, as shown in Table 1, in the case of no addition of antimony or in the case of a low concentration and in the case of a high concentration, the plating deposition rate becomes slow, It can be seen that as the plating film thickness is reduced, precipitation abnormality occurs at the pattern edge. On the other hand, when the antimony concentration is moderate in the concentration range of Table 1, a plating film having a good film thickness is formed, and the spread of plating deposition outside the pattern and edge galling are suppressed. I understand.

次に、実験例2として、ニッケル膜にてパターン形成を行ったセラミック基板を、定法に従ってパラジウム置換処理を行ったサンプルを、実験例1と同じ組成からなる無電解めっき浴に1時間浸漬することによって無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。つまり、めっき処理対象となる下地の条件を変更した場合におけるアンチモン化合物の濃度推移によるめっき金属の析出速度の関係について調べた。なお、めっき浴の構成成分である酸化アンチモン濃度(アンチモン濃度として)に関しては、下記表2のように変化させた。   Next, as Experimental Example 2, a ceramic substrate patterned with a nickel film was immersed in an electroless plating bath having the same composition as that of Experimental Example 1 for 1 hour with a palladium-substituted sample according to a conventional method. Then, an electroless copper plating treatment was performed to form a copper plating film on the pattern. That is, the relationship of the plating metal deposition rate due to the transition of the concentration of the antimony compound when the condition of the base to be plated was changed was examined. The antimony oxide concentration (as antimony concentration), which is a constituent of the plating bath, was changed as shown in Table 2 below.

そして、形成されためっき皮膜の膜厚、パターン外析出量(はみ出し量)、及びめっき外観について調べた。下記表2に、各測定結果を示す。また、図2に、無電解銅めっき浴中のアンチモン濃度に対する析出膜厚の変化を示す。なお、下記の表2中における評価に関する用語は、上記表1と同じである。   Then, the film thickness of the formed plating film, the amount of precipitation outside the pattern (the amount of protrusion), and the plating appearance were examined. Table 2 below shows the measurement results. Further, FIG. 2 shows the change of the deposited film thickness with respect to the antimony concentration in the electroless copper plating bath. The terms relating to evaluation in Table 2 below are the same as in Table 1 above.

Figure 0006030848
Figure 0006030848

表2に示されるように、下地の条件を変更した場合においても、アンチモン無添加や低濃度の場合並びに高濃度の場合では、めっき析出速度が遅くなり、めっき膜厚が薄くなるとともにパターン端部における析出異常が生じていることが分かる。一方で、アンチモン濃度が表2の濃度範囲において中程度の場合では、良好な膜厚のめっき膜が形成されるとともに、パターン外へのめっき析出の広がりや端部かじりが抑制されていることが分かる。   As shown in Table 2, even when the base conditions are changed, when no antimony is added, when the concentration is low, and when the concentration is high, the plating deposition rate becomes slow, the plating film thickness decreases, and the pattern edge It can be seen that precipitation anomalies have occurred. On the other hand, when the antimony concentration is medium in the concentration range of Table 2, a plating film having a good film thickness is formed, and the spread of plating deposition outside the pattern and edge galling are suppressed. I understand.

以上のような実験例1及び2に示されるように、めっき浴組成やめっき下地の条件、また攪拌条件等によって変わるものの、濃度が低くすぎても高すぎても析出速度が遅くなり、めっき析出速度が最大となる濃度範囲が存在するという傾向がみられることが明確に分かる。そして、その析出速度が最大となる濃度範囲では、アンチモンが吸着しやすいパターン端部(エッジ部)に対して抑制作用が現れ、アンチモンが吸着しにくい端部以外では促進作用が主として現れ、これにより、良好な膜厚のめっき皮膜を形成させながら、パターン外へのめっき析出の広がり(はみ出し)を抑制できることが分かる。   As shown in Experimental Examples 1 and 2 as described above, although depending on the plating bath composition, plating base conditions, stirring conditions, etc., the deposition rate becomes slow even if the concentration is too low or too high. It can be clearly seen that there is a tendency that there is a concentration range where the speed is maximum. And, in the concentration range where the deposition rate is maximum, an inhibitory action appears on the pattern edge (edge part) where antimony is likely to be adsorbed, and an accelerating action mainly appears at the edge other than the edge where antimony is difficult to adsorb. It can be seen that the spread (protrusion) of the plating deposition outside the pattern can be suppressed while forming a plating film having a good film thickness.

したがって、このようにめっき浴に所定の濃度のアンチモン化合物を添加することによって、めっき析出促進の効果と、アンチモンの吸着に伴う触媒毒効果による析出阻害の効果のバランスに基づいて、析出速度向上とはみ出し抑制の効果を得てパターン選択性を高めることができ、はみ出しを抑制した良好な膜厚を有するめっき皮膜を形成することができる。   Therefore, by adding an antimony compound having a predetermined concentration to the plating bath in this way, the deposition rate can be improved based on the balance between the effect of promoting plating deposition and the effect of inhibiting the deposition due to the catalytic poison effect accompanying the adsorption of antimony. The effect of suppressing protrusion can be obtained and pattern selectivity can be enhanced, and a plating film having a good film thickness with suppressed protrusion can be formed.

具体的なアンチモン化合物の添加量(濃度)については、上述したように、他のめっき浴の構成成分(めっき組成)や下地の条件、攪拌条件等によって異なるため、それらの他の条件に応じて適宜変更することが好ましいが、例えば、0.1〜20mg/Lとし、好ましくは0.5〜10mg/Lとし、より好ましくは1〜4mg/Lとすることができる。   As described above, the specific amount (concentration) of the antimony compound varies depending on the constituent components (plating composition) of other plating baths, the conditions of the base, the stirring conditions, and the like. Although it is preferable to change appropriately, for example, it is 0.1-20 mg / L, Preferably it is 0.5-10 mg / L, More preferably, it can be 1-4 mg / L.

アンチモン化合物としては、めっき浴中で溶解する水溶性化合物であれば特に限定されず、例えば酸化アンチモン、塩化アンチモン等を用いることができる。   The antimony compound is not particularly limited as long as it is a water-soluble compound that dissolves in the plating bath. For example, antimony oxide, antimony chloride, and the like can be used.

<含窒素芳香族化合物>
本実施の形態に係る無電解銅めっき浴は、含窒素芳香族化合物を含有する。
<Nitrogen-containing aromatic compound>
The electroless copper plating bath according to the present embodiment contains a nitrogen-containing aromatic compound.

従来、例えば2,2’−ビピリジル、1,10−フェナントロリン等の含窒素芳香族化合物は、めっき浴の安定剤や皮膜物性改善剤として用いられている。しかしながら、詳細なメカニズムは定かではないが、本実施の形態に係る無電解銅めっき浴に含窒素芳香族化合物を添加することによって、その含窒素芳香族化合物がめっき金属を促進させる促進剤として作用するようになる。   Conventionally, nitrogen-containing aromatic compounds such as 2,2'-bipyridyl and 1,10-phenanthroline have been used as stabilizers for plating baths and film property improving agents. However, although the detailed mechanism is not clear, by adding a nitrogen-containing aromatic compound to the electroless copper plating bath according to the present embodiment, the nitrogen-containing aromatic compound acts as an accelerator for promoting the plating metal. To come.

具体的に、この含窒素芳香族化合物としては、イミダゾール又はその置換誘導体、ピラゾール又はその置換誘導体、オキサゾール又はその置換誘導体、チアゾール又はその置換誘導体、ピリジン又はその置換誘導体、ピラジン又はその置換誘導体、ピリミジン又はその置換誘導体、ピリダジン又はその置換誘導体、トリアジン又はその置換誘導体、ベンゾチオフェン又はその置換誘導体、ベンゾチアゾール又はその置換誘導体、2,2’−ジピリジル、4,4’−ジピリジル、ニコチン酸、ニコチンアミド、ピコリン類、ルチジン類などのピリジン又はその置換誘導体、ヒドロキシキノリンなどのキノリン又はその置換誘導体、3,6−ジメチルアミノアクリジン、プロフラビン、アクリジン酸、キノリン−1,2−ジカルボン酸などのアクリジン又はその置換誘導体、ウラシル、ウリジン、チミン、2−チオウラシル、6−メチル−2−チオウラシル、6−プロピル−2−チオウラシルなどのピリミジン又はその置換誘導体、1,10−フェナントロリン、ネオクプロイン、バソフェナントロリンなどのフェナントロリン又はその置換誘導体、アミノプリン、アデニン、アデノシン、グアニン、ヒダントイン、アデノシン、キサンチン、ヒポキサンチン、カフェイン、テオフィリン、テオブロミン、アミノフィリンなどのプリン又はその置換誘導体等を挙げることができる。   Specifically, as this nitrogen-containing aromatic compound, imidazole or its substituted derivative, pyrazole or its substituted derivative, oxazole or its substituted derivative, thiazole or its substituted derivative, pyridine or its substituted derivative, pyrazine or its substituted derivative, pyrimidine Or substituted derivatives thereof, pyridazine or substituted derivatives thereof, triazine or substituted derivatives thereof, benzothiophene or substituted derivatives thereof, benzothiazole or substituted derivatives thereof, 2,2′-dipyridyl, 4,4′-dipyridyl, nicotinic acid, nicotinamide Pyridine such as picolines and lutidines or substituted derivatives thereof, quinoline such as hydroxyquinoline or substituted derivatives thereof, 3,6-dimethylaminoacridine, proflavine, acridine acid, quinoline-1,2-dicarboxylic acid and the like. Gin or substituted derivatives thereof, uracil, uridine, thymine, 2-thiouracil, 6-methyl-2-thiouracil, pyrimidine such as 6-propyl-2-thiouracil or substituted derivatives thereof, 1,10-phenanthroline, neocuproin, bathophenanthroline, etc. Phenanthroline or a substituted derivative thereof, and purines such as aminopurine, adenine, adenosine, guanine, hydantoin, adenosine, xanthine, hypoxanthine, caffeine, theophylline, theobromine, aminophylline, or substituted derivatives thereof.

含窒素芳香族化合物の濃度としては、特に限定されないが、0.01〜1000mg/Lとすることが好ましい。濃度が0.01mg/L未満であると、促進剤としての効果が得られず、速度が遅くなりめっき時間が長くなるため経済的でない。また、初期における銅の析出が悪くなり、下地基材へのダメージが生じたり、未析出箇所が生じる可能性がある。一方で、濃度が1000mg/Lを超えると、析出速度が速くなりすぎて粗雑な皮膜となる。また、ノジュールやザラが発生しやすくなり、またパターン性が低下する。さらに、めっき浴が不安定になる可能性がある。   Although it does not specifically limit as a density | concentration of a nitrogen-containing aromatic compound, It is preferable to set it as 0.01-1000 mg / L. When the concentration is less than 0.01 mg / L, the effect as an accelerator cannot be obtained, and the speed becomes slow and the plating time becomes long, which is not economical. In addition, copper deposition in the initial stage may be deteriorated, resulting in damage to the base substrate or unprecipitated portions. On the other hand, when the concentration exceeds 1000 mg / L, the deposition rate becomes too high, resulting in a rough film. In addition, nodules and roughness are likely to occur, and pattern properties are reduced. Furthermore, the plating bath may become unstable.

<その他条件>
めっき浴のpHとしては、pH4.0〜9.0とし、好ましくはpH5.0〜9.0、より好ましくはpH6.0〜8.0とする。上述のように、本実施の形態に係る無電解銅めっき浴では、還元剤として、中性からアルカリ性の条件で用いることができるアミノボラン又はその置換誘導体を含有させている。このことから、pH4.0〜9.0の範囲で用いることができ、被めっき物である基材に対してダメージを与えることなくめっき処理を施すことができる。
<Other conditions>
The pH of the plating bath is pH 4.0 to 9.0, preferably pH 5.0 to 9.0, more preferably pH 6.0 to 8.0. As described above, in the electroless copper plating bath according to the present embodiment, aminoborane or a substituted derivative thereof that can be used under neutral to alkaline conditions is contained as a reducing agent. From this, it can be used in the range of pH 4.0-9.0, and can perform a plating process without giving a damage with respect to the base material which is a to-be-plated thing.

ここで、pHが4.0未満であると、還元剤の自然消耗が多くなりコストアップにつながるとともに、めっき浴が不安定になる。一方で、pHが9.0より大きくなると、被めっき物となる基材へのダメージが大きくなる。   Here, when the pH is less than 4.0, natural consumption of the reducing agent increases, leading to an increase in cost, and the plating bath becomes unstable. On the other hand, when pH becomes larger than 9.0, the damage to the base material used as a to-be-plated object will become large.

めっき浴のpHは、例えば水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム等のpH調整剤を含有させることによって行うことができる。   The pH of the plating bath can be adjusted, for example, by containing a pH adjusting agent such as sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide.

また、めっき浴の温度としては、特に限定されないが、20〜90℃とし、好ましくは40〜80℃とし、より好ましくは60〜70℃とする。浴温が20℃未満であると、析出速度が遅くなりめっき時間が長くなるため経済的でない。一方で、浴温が90℃を超えると、析出速度が速くなりすぎて粗雑な皮膜となり、まためっき後の皮膜の熱収縮により基材のソリが発生することがある。また、ノジュールやザラが発生しやすくなり、パターン性が低下する可能性もある。さらに、めっき浴が不安定になるとともに、還元剤の自然消耗が多くなりコストアップにつながる。   The temperature of the plating bath is not particularly limited, but is 20 to 90 ° C, preferably 40 to 80 ° C, and more preferably 60 to 70 ° C. When the bath temperature is less than 20 ° C., the deposition rate becomes slow and the plating time becomes long, which is not economical. On the other hand, when the bath temperature exceeds 90 ° C., the deposition rate becomes too fast, resulting in a rough film, and warping of the substrate may occur due to thermal contraction of the film after plating. In addition, nodules and roughness are likely to occur, and pattern properties may be reduced. Furthermore, the plating bath becomes unstable and the natural consumption of the reducing agent increases, leading to an increase in cost.

以上のように、本実施の形態に係る無電解銅めっき浴では、還元剤としてアミノボラン又はその置換誘導体とを含み、ホルムアルデヒドを含有しない無電解銅めっき浴であって、錯化剤としてのポリアミノポリホスホン酸と、アニオン界面活性剤と、アンチモン化合物と、含窒素芳香族化合物とを含有させるようにしている。この無電解銅めっき浴によれば、中性付近において使用することができるので、被めっき物に対してダメージを与えることなく、例えばアルミニウム等の劣化しやすい被めっき物に対しても、良好なめっき処理を施すことができる。   As described above, the electroless copper plating bath according to the present embodiment is an electroless copper plating bath that contains aminoborane or a substituted derivative thereof as a reducing agent and does not contain formaldehyde. A phosphonic acid, an anionic surfactant, an antimony compound, and a nitrogen-containing aromatic compound are included. According to this electroless copper plating bath, since it can be used in the vicinity of neutrality, it does not damage the object to be plated, and is good even for an object to be easily deteriorated such as aluminum. Plating treatment can be performed.

また、この無電解銅めっき浴によれば、めっき浴の安定性を向上させることができるとともに、めっき析出の促進作用と抑制作用とのバランスを制御することができるので、パターン外へのめっきはみ出しを効果的に抑制しながら、一方で端部かじり等を生じさせず、所望とする良好な膜厚を有するめっき皮膜を形成させることができる。   Moreover, according to this electroless copper plating bath, the stability of the plating bath can be improved and the balance between the promotion and suppression of plating deposition can be controlled, so that plating outside the pattern protrudes. On the other hand, it is possible to form a plating film having a desired good film thickness without causing edge galling or the like.

これにより、例えば、アルミニウム又はアルミニウム合金やマグネシウム又はマグネシウム合金上に、パターン外析出を防止するためのバリア層等を設けることなく、はみ出しのない良好なめっき皮膜を簡便に形成することができ、例えば半導体ウエハの製造において好適に用いることができる。   Thereby, for example, without providing a barrier layer or the like for preventing out-of-pattern precipitation on aluminum or aluminum alloy or magnesium or magnesium alloy, it is possible to easily form a good plating film without protrusion, for example, It can be suitably used in the production of semiconductor wafers.

また、上述のようにめっき析出の促進作用と抑制作用とのバランスを制御することができることから、形成されるめっき皮膜が平滑となり、例えばワイヤーボンディングのピール強度を向上させることができる。また、そのめっき皮膜の外観も非常に良好となる。   Moreover, since the balance between the promoting action and the suppressing action of plating deposition can be controlled as described above, the formed plating film becomes smooth, and for example, the peel strength of wire bonding can be improved. Also, the appearance of the plating film is very good.

≪2.無電解銅めっき方法≫
次に、上述した無電解銅めっき浴を用いた無電解銅めっき方法について説明する。無電解めっき方法としては、公知の方法を用いることができる。また、前処理として触媒付与処理等が必要な場合の触媒付与処理も、公知の方法を適用することができる。
≪2. Electroless copper plating method >>
Next, an electroless copper plating method using the above-described electroless copper plating bath will be described. As the electroless plating method, a known method can be used. In addition, a known method can be applied to the catalyst application process when a catalyst application process or the like is necessary as the pretreatment.

無電解銅めっき処理時の温度としては、上述のように、無電解銅めっき浴の浴温を20〜90℃、好ましくは40〜80℃、より好ましくは60〜70℃に制御して行う。   As described above, the temperature during the electroless copper plating treatment is performed by controlling the bath temperature of the electroless copper plating bath to 20 to 90 ° C, preferably 40 to 80 ° C, and more preferably 60 to 70 ° C.

また、無電解銅めっき処理時間としては、特に限定されるものではなく、所望とする膜厚となるように適宜設定すればよい。具体的には、例えば30秒〜15時間程度とすることができる。   Moreover, it does not specifically limit as electroless copper plating processing time, What is necessary is just to set suitably so that it may become a desired film thickness. Specifically, for example, it can be about 30 seconds to 15 hours.

また、無電解銅めっき処理を行うにあたっては、めっき処理の進行により、銅イオンが還元剤によって金属銅に還元されて基材上に析出していく結果、めっき液中の銅イオン濃度や還元剤濃度が低下し、またpHも変化することになる。したがって、連続的に又は定期的に、無電解銅めっき液中に、銅イオン源としての水溶性銅塩、還元剤、錯化剤、その他添加剤を補給して、それらの濃度を一定の濃度範囲に維持させておくことが好ましい。   In addition, when performing the electroless copper plating process, as a result of the progress of the plating process, copper ions are reduced to metallic copper by the reducing agent and deposited on the substrate, resulting in the concentration of copper ions in the plating solution and the reducing agent. The concentration will decrease and the pH will also change. Therefore, continuously or periodically, the electroless copper plating solution is supplemented with a water-soluble copper salt, reducing agent, complexing agent, or other additive as a copper ion source, and the concentration thereof is kept constant. It is preferable to keep it within the range.

また、無電解銅めっき浴は、必要に応じて、エアバブリング等の方法で攪拌することが好ましい。   The electroless copper plating bath is preferably stirred by a method such as air bubbling as necessary.

具体的に、上述の無電解銅めっき浴を用いた無電解銅めっき方法としては、例えば、バリア層を設けることなく、アルミニウム又はアルミニウム合金、マグネシウム又はマグネシウム合金からなる基材に対してジンケート(亜鉛置換)処理を行った後、上述した無電解銅めっき浴を用いて無電解銅めっき処理を行う。本実施の形態に係る無電解銅めっき方法では、上述のようにパターン外析出を効果的に抑制することができるので、バリア層等を設けることなく簡便に、良好なめっき皮膜を形成させることができる。   Specifically, as an electroless copper plating method using the above-described electroless copper plating bath, for example, a zincate (zinc) is applied to a substrate made of aluminum or an aluminum alloy, magnesium or a magnesium alloy without providing a barrier layer. After performing the (replacement) process, an electroless copper plating process is performed using the electroless copper plating bath described above. In the electroless copper plating method according to the present embodiment, since the out-of-pattern precipitation can be effectively suppressed as described above, it is possible to easily form a good plating film without providing a barrier layer or the like. it can.

または、無電解銅めっき方法の他の例としては、例えば、銅、ニッケル、パラジウム、白金、タングステン、モリブデン、ロジウム、チタン、タンタル等を含む薄膜上へ、パラジウムや白金、銅等によって置換してアクチベート処理を行った後、上述した無電解銅めっき浴を用いて無電解銅めっき処理を行う。   Alternatively, as another example of the electroless copper plating method, for example, a thin film containing copper, nickel, palladium, platinum, tungsten, molybdenum, rhodium, titanium, tantalum, or the like is substituted with palladium, platinum, copper, or the like. After performing the activation treatment, the electroless copper plating treatment is performed using the above-described electroless copper plating bath.

または、上述したアクチベート処理後に、ボラン又はその置換誘導体を含む処理液で還元処理を行った後、上述した無電解銅めっき浴を用いて無電解銅めっき処理を行う。   Alternatively, after the above-described activation treatment, a reduction treatment is performed with a treatment liquid containing borane or a substituted derivative thereof, and then an electroless copper plating treatment is performed using the above-described electroless copper plating bath.

≪3.実施例≫
以下、本発明の具体的な実施例について説明する。なお、下記のいずれかの実施例に本発明が限定されるものではない。
≪3. Examples >>
Hereinafter, specific examples of the present invention will be described. Note that the present invention is not limited to any of the following examples.

<無電解銅めっき浴の組成についての検討>
まず、下記に示す実施例1〜実施例2、並びに比較例1〜比較例10において、無電解めっき浴の組成を変更し、めっき皮膜の膜厚とパターン外析出量(はみ出し量)について調べた。
<Examination of composition of electroless copper plating bath>
First, in Examples 1 to 2 and Comparative Examples 1 to 10 shown below, the composition of the electroless plating bath was changed, and the film thickness of the plating film and the amount of precipitation outside the pattern (extruding amount) were examined. .

[実施例1]
(無電解銅めっき浴組成)
エチレンジアミンテトラ(メチレンホスホン酸) :0.08mol/L
銅(硫酸銅・5水塩) :0.063mol/L(銅濃度として4g/L)
ジメチルアミンボラン :8g/L
ラウリル硫酸ナトリウム :20mg/L
o−フェナントロリン :4mg/L
酸化アンチモン :アンチモン濃度として2mg/L
pH :7.7
浴温 :60℃
[Example 1]
(Electroless copper plating bath composition)
Ethylenediaminetetra (methylenephosphonic acid): 0.08 mol / L
Copper (copper sulfate / pentahydrate): 0.063 mol / L (4 g / L as copper concentration)
Dimethylamine borane: 8 g / L
Sodium lauryl sulfate: 20 mg / L
o-phenanthroline: 4 mg / L
Antimony oxide: Antimony concentration 2mg / L
pH: 7.7
Bath temperature: 60 ° C

(無電解銅めっき方法)
シリコンウエハー上の形成したAl−Si合金スパッタ上にTiN膜にてパターン形成した後、定法に従ってダブルジンケート処理を行ったサンプルを、上記組成からなる無電解銅めっき浴に1時間浸漬することによって無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
(Electroless copper plating method)
After forming a pattern with a TiN film on an Al-Si alloy sputter formed on a silicon wafer, a sample subjected to double zincate treatment according to a conventional method is immersed in an electroless copper plating bath having the above composition for 1 hour. Electrolytic copper plating treatment was performed to form a copper plating film on the pattern.

(評価)
形成されためっき皮膜について、レーザー顕微鏡によって、めっき処理前後の高低差測定からめっき膜厚を計測した。その結果、形成されためっき皮膜は、その膜厚が5.3μmと良好な膜厚を有し、またパターンからのはみ出しは5μmと殆どなかった。
(Evaluation)
About the formed plating film, the plating film thickness was measured from the height difference measurement before and after the plating treatment by a laser microscope. As a result, the formed plating film had a good film thickness of 5.3 μm, and the protrusion from the pattern was almost 5 μm.

[実施例2]
(無電解銅めっき浴組成)
グリシン−N,N−ビス(メチレンホスホン酸) :0.13mol/L
銅(硫酸銅・5水塩) :0.063mol/L(銅濃度として4g/L)
ジメチルアミンボラン :8g/L
ラウリル硫酸ナトリウム :20mg/L
2,9−ジメチル−1,10−フェナントロリン :2mg/L
酸化アンチモン :アンチモン濃度として2mg/L
pH :7.7
浴温 :60℃
[Example 2]
(Electroless copper plating bath composition)
Glycine-N, N-bis (methylenephosphonic acid): 0.13 mol / L
Copper (copper sulfate / pentahydrate): 0.063 mol / L (4 g / L as the copper concentration)
Dimethylamine borane: 8 g / L
Sodium lauryl sulfate: 20 mg / L
2,9-dimethyl-1,10-phenanthroline: 2 mg / L
Antimony oxide: Antimony concentration 2mg / L
pH: 7.7
Bath temperature: 60 ° C

(無電解銅めっき方法)
シリコンウエハー上の形成したAl−Si合金スパッタ上にTiN膜にてパターン形成した後、定法に従ってダブルジンケート処理を行ったサンプルを、上記組成からなる無電解銅めっき浴に1時間浸漬することによって無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
(Electroless copper plating method)
After forming a pattern with a TiN film on an Al-Si alloy sputter formed on a silicon wafer, a sample subjected to double zincate treatment according to a conventional method is immersed in an electroless copper plating bath having the above composition for 1 hour. Electrolytic copper plating treatment was performed to form a copper plating film on the pattern.

(評価)
形成されためっき皮膜について、レーザー顕微鏡によって、めっき処理前後の高低差測定からめっき膜厚を計測した。その結果、形成されためっき皮膜は、その膜厚が5.3μmと良好な膜厚を有し、またパターンからのはみ出しは5μmと殆どなかった。
(Evaluation)
About the formed plating film, the plating film thickness was measured from the height difference measurement before and after the plating treatment by a laser microscope. As a result, the formed plating film had a good film thickness of 5.3 μm, and the protrusion from the pattern was almost 5 μm.

[比較例1]
無電解銅めっき浴組成について、アンチモン化合物を添加しなかったこと以外は、実施例1と同様にして無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
[Comparative Example 1]
The electroless copper plating bath composition was subjected to electroless copper plating in the same manner as in Example 1 except that no antimony compound was added, and a copper plating film was formed on the pattern.

その結果、形成されためっき皮膜の膜厚は2.6μmと実施例1及び2に比べて薄く、またパターンからのはみ出しは15μmもあった。このように、めっき析出が抑制されたとともに、多量のはみ出し析出を生じさせてパターン選択性は非常に低かった。   As a result, the thickness of the formed plating film was 2.6 μm, which was thinner than those in Examples 1 and 2, and the protrusion from the pattern was 15 μm. Thus, plating deposition was suppressed, and a large amount of protrusion deposition was caused, resulting in very low pattern selectivity.

[比較例2]
無電解銅めっき浴組成について、アンチモン2mg/Lに替えて鉛2mg/Lを添加したこと以外は、実施例1と同様にして無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
[Comparative Example 2]
The electroless copper plating bath composition was subjected to electroless copper plating in the same manner as in Example 1 except that lead 2 mg / L was added instead of antimony 2 mg / L, and a copper plating film was formed on the pattern. It was.

その結果、形成されためっき皮膜の膜厚は2.2μmと実施例1及び2に比べて薄く、またパターンからのはみ出しは12μmもあった。このように、めっき析出が抑制されたとともに、多量のはみ出し析出を生じさせてパターン選択性は非常に低かった。   As a result, the thickness of the formed plating film was 2.2 μm, which was thinner than those of Examples 1 and 2, and the protrusion from the pattern was 12 μm. Thus, plating deposition was suppressed, and a large amount of protrusion deposition was caused, resulting in very low pattern selectivity.

[比較例3]
無電解銅めっき浴組成について、アンチモン2mg/Lに替えてタリウム0.3mg/Lを添加したこと以外は、実施例1と同様にして無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
[Comparative Example 3]
The electroless copper plating bath composition was subjected to electroless copper plating treatment in the same manner as in Example 1 except that thallium 0.3 mg / L was added instead of antimony 2 mg / L, and a copper plating film was formed on the pattern. Formed.

その結果、形成されためっき皮膜の膜厚は1.8μmと実施例1及び2に比べて非常に薄かった。また、パターンからのはみ出し量が多く、そのはみ出しによってパターン間の接続(ブリッジ)が生じてしまったため、はみ出し量の測定ができなかった。このように、めっき析出が抑制されたとともに、多量のはみ出し析出を生じさせてパターン選択性は非常に低かった。   As a result, the thickness of the formed plating film was 1.8 μm, which was very thin compared to Examples 1 and 2. Further, the amount of protrusion from the pattern was large, and the connection between the patterns (bridge) occurred due to the protrusion, so that the amount of protrusion could not be measured. Thus, plating deposition was suppressed, and a large amount of protrusion deposition was caused, resulting in very low pattern selectivity.

[比較例4]
無電解銅めっき浴組成について、ラウリル硫酸ナトリウムを添加しなかったこと以外は、実施例1と同様にして無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
[Comparative Example 4]
The electroless copper plating bath composition was subjected to electroless copper plating in the same manner as in Example 1 except that sodium lauryl sulfate was not added to form a copper plating film on the pattern.

この比較例4では、めっき処理中にめっき浴の分解が発生し、正常にめっき処理を行うことができなかった。   In Comparative Example 4, the plating bath was decomposed during the plating process, and the plating process could not be performed normally.

[比較例5]
無電解銅めっき浴組成について、o−フェナントロリンを添加しなかったこと以外は、実施例1と同様にして無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
[Comparative Example 5]
The electroless copper plating bath composition was subjected to electroless copper plating in the same manner as in Example 1 except that o-phenanthroline was not added to form a copper plating film on the pattern.

その結果、パターンからのはみ出しは0.5μmと少なかったものの、めっき膜厚は1.2μmと非常に薄くなり、めっき速度が著しく低下した。
[比較例6]
無電解銅めっき浴組成について、ラウリル硫酸ナトリウム20mg/Lに替えてポリエチレングリコール(PEG)#1000を0.5g/L添加したこと以外は、実施例1と同様にして無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
As a result, the protrusion from the pattern was as small as 0.5 μm, but the plating film thickness was as extremely thin as 1.2 μm, and the plating rate was significantly reduced.
[Comparative Example 6]
For the electroless copper plating bath composition, electroless copper plating treatment was performed in the same manner as in Example 1 except that 0.5 g / L of polyethylene glycol (PEG) # 1000 was added instead of 20 mg / L of sodium lauryl sulfate. A copper plating film was formed on the pattern.

この比較例6では、めっき処理中にめっき浴の分解が発生し、正常にめっき処理を行うことができなかった。   In Comparative Example 6, the plating bath was decomposed during the plating process, and the plating process could not be performed normally.

[比較例7]
無電解銅めっき浴組成について、アンチモン2mg/Lに替えてビスマス2mg/Lを添加したこと以外は、実施例1と同様にして無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
[Comparative Example 7]
The electroless copper plating bath composition was subjected to electroless copper plating in the same manner as in Example 1 except that bismuth 2 mg / L was added instead of antimony 2 mg / L, and a copper plating film was formed on the pattern. It was.

その結果、形成されためっき皮膜の膜厚は4.4μmと良好であったものの、パターン外へのめっきのはみ出しによってパターン間の接続(ブリッジ)が生じてしまったため、はみ出し量の測定ができなかった。   As a result, although the film thickness of the formed plating film was as good as 4.4 μm, it was not possible to measure the amount of protrusion because the connection (bridge) between patterns occurred due to the protrusion of the plating outside the pattern. It was.

[比較例8]
無電解銅めっき浴組成について、エチレンジアミンテトラ(メチレンホスホン酸)0.08mol/Lに替えてジエチレントリアミン五酢酸0.08ml/Lを添加したこと以外は、実施例1と同様にして無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
[Comparative Example 8]
The electroless copper plating bath composition was the same as in Example 1 except that 0.08 ml / L of diethylenetriaminepentaacetic acid was added instead of 0.08 mol / L of ethylenediaminetetra (methylenephosphonic acid). And a copper plating film was formed on the pattern.

この比較例8では、銅めっきは析出されず、パターンを構成しているAl−Si合金スパッタの腐食が発生した。   In Comparative Example 8, copper plating was not deposited, and corrosion of the Al—Si alloy spatter forming the pattern occurred.

[比較例9]
下記組成からなる無電解銅めっき浴を用いたこと以外は、実施例1と同様にして無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
[Comparative Example 9]
An electroless copper plating treatment was performed in the same manner as in Example 1 except that an electroless copper plating bath having the following composition was used, and a copper plating film was formed on the pattern.

(無電解銅めっき浴組成)
エチレンジアミン4酢酸 :0.08mol/L
銅(硫酸銅・5水塩) :0.0315mol/L(銅濃度として2g/L)
ホルムアルデヒド :2g/L
ポリエチレングリコール(PEG)#1000 :1g/L
2,2’’−ジピリジル :20mg/L
pH :13.2(NaOHにより調整)
浴温 :60℃
(Electroless copper plating bath composition)
Ethylenediaminetetraacetic acid: 0.08 mol / L
Copper (copper sulfate, pentahydrate): 0.0315 mol / L (2 g / L as the copper concentration)
Formaldehyde: 2g / L
Polyethylene glycol (PEG) # 1000: 1 g / L
2,2 ″ -dipyridyl: 20 mg / L
pH: 13.2 (adjusted with NaOH)
Bath temperature: 60 ° C

この比較例9では、Al−Si合金スパッタが溶解してしまい正常にめっきを行うことができなかった。これは、めっき浴がホルムアルデヒドを還元剤として用いるものであって高アルカリ性であることから、基材に対するダメージが強くなってしまったと考えられる。   In Comparative Example 9, the Al—Si alloy sputter was dissolved, and plating could not be performed normally. This is presumably because the plating bath uses formaldehyde as a reducing agent and is highly alkaline, so that the damage to the substrate has increased.

[比較例10]
下記組成からなる無電解銅めっき浴を用いたこと以外は、実施例1と同様にして無電解銅めっき処理を施し、パターン上に銅めっき皮膜を形成させた。
[Comparative Example 10]
An electroless copper plating treatment was performed in the same manner as in Example 1 except that an electroless copper plating bath having the following composition was used, and a copper plating film was formed on the pattern.

(無電解銅めっき浴組成)
エチレンジアミン4酢酸 :0.08mol/L
銅(硫酸銅・5水塩) :0.0315mol/L(銅濃度として2g/L)
グリオキシル酸 :6g/L
ポリエチレングリコール(PEG)#1000 :1g/L
2,2’’−ジピリジル :20mg/L
pH :13.2(NaOHにより調整)
浴温 :60℃
(Electroless copper plating bath composition)
Ethylenediaminetetraacetic acid: 0.08 mol / L
Copper (copper sulfate, pentahydrate): 0.0315 mol / L (2 g / L as the copper concentration)
Glyoxylic acid: 6 g / L
Polyethylene glycol (PEG) # 1000: 1 g / L
2,2 ″ -dipyridyl: 20 mg / L
pH: 13.2 (adjusted with NaOH)
Bath temperature: 60 ° C

この比較例10では、Al−Si合金スパッタが溶解してしまい正常にめっきを行うことができなかった。これは、めっき浴がグリオキシル酸を還元剤として用いるものであって、ホルムアルデヒドと同様に高アルカリ性であることから、基材に対するダメージが強くなってしまったと考えられる。   In Comparative Example 10, the Al—Si alloy sputter was dissolved and plating could not be performed normally. This is considered that the plating bath uses glyoxylic acid as a reducing agent and is highly alkaline like formaldehyde, so that the damage to the base material has increased.

Claims (7)

水溶性銅塩と、還元剤としてアミノボラン又はその置換誘導体とを含み、ホルムアルデヒドを含有しないpH4〜9の無電解銅めっき浴であって、
錯化剤としてのポリアミノポリホスホン酸と、アニオン界面活性剤と、アンチモン化合物と、含窒素芳香族化合物とを含有し、
上記アンチモン化合物の濃度が1〜4mg/Lであることを特徴とする無電解銅めっき浴。
An electroless copper plating bath having a pH of 4 to 9, which contains a water-soluble copper salt and aminoborane or a substituted derivative thereof as a reducing agent and does not contain formaldehyde,
Containing a polyaminopolyphosphonic acid as a complexing agent, an anionic surfactant, an antimony compound, and a nitrogen-containing aromatic compound ,
An electroless copper plating bath , wherein the concentration of the antimony compound is 1 to 4 mg / L.
上記無電解銅めっき浴のpHが、6.0〜8.0であることを特徴とする請求項1記載の無電解銅めっき浴。2. The electroless copper plating bath according to claim 1, wherein the electroless copper plating bath has a pH of 6.0 to 8.0. 上記ポリアミノポリホスホン酸の濃度が、0.01〜1mol/Lであることを特徴とする請求項1又は2記載の無電解銅めっき浴。 The electroless copper plating bath according to claim 1 or 2 , wherein the concentration of the polyaminopolyphosphonic acid is 0.01 to 1 mol / L. 上記アニオン界面活性剤の濃度が、0.01〜2000mg/Lであることを特徴とする請求項1乃至3記載の無電解銅めっき浴。 The anionic surfactant concentration is, electroless copper plating bath according to claim 1 to 3, wherein the a 0.01~2000mg / L. 上記含窒素芳香族化合物の濃度が、0.01〜1000mg/Lであることを特徴とする請求項1乃至4の何れか1項記載の無電解銅めっき浴。   The electroless copper plating bath according to any one of claims 1 to 4, wherein the concentration of the nitrogen-containing aromatic compound is 0.01 to 1000 mg / L. 基材に対して、上記請求項1記載の無電解銅めっき浴を用いて銅めっき皮膜を形成することを特徴とする無電解銅めっき方法。   An electroless copper plating method, wherein a copper plating film is formed on the substrate using the electroless copper plating bath according to claim 1. 上記基材が、アルミニウム又はアルミニウム合金、若しくはマグネシウム又はマグネシ
ウム合金であることを特徴とする請求項6記載の無電解銅めっき方法。
The electroless copper plating method according to claim 6, wherein the base material is aluminum, an aluminum alloy, magnesium, or a magnesium alloy.
JP2012105924A 2012-05-07 2012-05-07 Electroless copper plating bath and electroless copper plating method Active JP6030848B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012105924A JP6030848B2 (en) 2012-05-07 2012-05-07 Electroless copper plating bath and electroless copper plating method
TW101149801A TWI593824B (en) 2012-05-07 2012-12-25 Electroless copper plating bath and electroless copper plating method
US13/729,721 US20130295294A1 (en) 2012-05-07 2012-12-28 Electroless copper plating bath and electroless copper plating method
KR1020130007542A KR20130124880A (en) 2012-05-07 2013-01-23 Electroless copper plating bath and electroless copper plating method
CN201310038268.XA CN103388138B (en) 2012-05-07 2013-01-31 Non-electrolytic copper plating solution and electroless copper plating method
KR1020200016929A KR102092929B1 (en) 2012-05-07 2020-02-12 Electroless copper plating bath and electroless copper plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012105924A JP6030848B2 (en) 2012-05-07 2012-05-07 Electroless copper plating bath and electroless copper plating method

Publications (2)

Publication Number Publication Date
JP2013234343A JP2013234343A (en) 2013-11-21
JP6030848B2 true JP6030848B2 (en) 2016-11-24

Family

ID=49512720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012105924A Active JP6030848B2 (en) 2012-05-07 2012-05-07 Electroless copper plating bath and electroless copper plating method

Country Status (5)

Country Link
US (1) US20130295294A1 (en)
JP (1) JP6030848B2 (en)
KR (2) KR20130124880A (en)
CN (1) CN103388138B (en)
TW (1) TWI593824B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6645881B2 (en) 2016-03-18 2020-02-14 上村工業株式会社 Copper plating solution and copper plating method
CN105648426B (en) * 2016-03-23 2017-03-15 深圳市松柏实业发展有限公司 Heavy copper combines liquid
JP7064115B2 (en) * 2016-08-15 2022-05-10 アトテック ドイチュラント ゲー・エム・ベー・ハー ウント コー. カー・ゲー Acidic aqueous composition for electrolytic copper plating
CN108336473A (en) * 2018-02-06 2018-07-27 北京宏诚创新科技有限公司 Copper-aluminium nanometer junction normal-temperature processing method
JP7170849B2 (en) * 2019-04-10 2022-11-14 三菱電機株式会社 Semiconductor device and its manufacturing method
CN116194618A (en) * 2020-11-10 2023-05-30 美录德有限公司 Electroless copper plating solution
CN113463074B (en) * 2021-06-03 2022-06-14 广东硕成科技股份有限公司 Copper deposition composition and copper deposition method
CN115440989A (en) * 2022-09-30 2022-12-06 楚能新能源股份有限公司 Negative current collector for lithium ion battery, pole piece and preparation method of negative current collector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615737A (en) * 1969-08-04 1971-10-26 Photocircuits Corp Electroless copper deposition
NL7304650A (en) * 1973-04-04 1974-10-08
US4143186A (en) * 1976-09-20 1979-03-06 Amp Incorporated Process for electroless copper deposition from an acidic bath
CA1144304A (en) * 1978-10-23 1983-04-12 Glenn O. Mallory, Jr. Electroless deposition of copper
USH325H (en) * 1980-07-30 1987-09-01 Richardson Chemical Company Electroless deposition of transition metals
US4374009A (en) * 1981-09-28 1983-02-15 Xerox Corporation Electrochemical post treatment of perpendicular magnetic recording media
JPH05195237A (en) * 1992-01-21 1993-08-03 Hitachi Ltd Chemical copper plating method without using formalin
JP2001131761A (en) * 1999-11-02 2001-05-15 Murata Mfg Co Ltd Electroless copper plating bath, method of electroless copper plating and electronic parts
JP2004273315A (en) * 2003-03-10 2004-09-30 Sharp Corp Apparatus for generating ion, air conditioner, and charging device

Also Published As

Publication number Publication date
KR20130124880A (en) 2013-11-15
TWI593824B (en) 2017-08-01
JP2013234343A (en) 2013-11-21
CN103388138B (en) 2018-07-24
US20130295294A1 (en) 2013-11-07
CN103388138A (en) 2013-11-13
TW201346068A (en) 2013-11-16
KR20200020750A (en) 2020-02-26
KR102092929B1 (en) 2020-03-24

Similar Documents

Publication Publication Date Title
JP6030848B2 (en) Electroless copper plating bath and electroless copper plating method
CA2875317C (en) Plating bath for electroless deposition of nickel layers
JP6980017B2 (en) Tin plating bath and method of depositing tin or tin alloy on the surface of the substrate
JP2018119209A (en) Electroless copper plating composition
JPH06184788A (en) Gold and gold alloy plating composition and method
TW201544632A (en) Cyanide-free acidic matte silver electroplating compositions and methods
TW201109480A (en) Silver-containing alloy plating bath and method for electrolytic plating using same
TW201720955A (en) Plating bath composition for electroless plating of gold and a method for depositing a gold layer
JP2003253456A (en) Plating method
JP6448634B2 (en) Method and apparatus for reducing tin whisker growth on tin and tin plated surfaces by doping tin with gold
JP2020196914A (en) Plating pretreatment method
JP2001192886A (en) Gold-tin alloy electroplating bath
JP2008274444A (en) Electroless nickel plating bath, and plating method using the same
JP7111410B1 (en) Electroless copper plating solution
US20070175358A1 (en) Electroless gold plating solution
TW202028541A (en) Indium electroplating compositions and methods for electroplating indium on nickel
JP4960142B2 (en) Electroless nickel plating solution and electroless nickel plating method using the same
JP4822714B2 (en) Whisker inhibitor for tin or tin alloy plating and whisker prevention method using the same
JP2005126734A (en) Electroless nickel plating bath, and plating method using the same
EP3792374B1 (en) Electroless copper plating bath
CN114959705A (en) Copper etching solution applied to low-side etching in RDL packaging process and preparation method thereof
JP5263775B2 (en) Strike copper plating solution for articles made of zinc-containing metal or magnesium-containing metal
JPS60194081A (en) Improved electroless copper plating bath and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161021

R150 Certificate of patent or registration of utility model

Ref document number: 6030848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250