JP2020196914A - Plating pretreatment method - Google Patents

Plating pretreatment method Download PDF

Info

Publication number
JP2020196914A
JP2020196914A JP2019102591A JP2019102591A JP2020196914A JP 2020196914 A JP2020196914 A JP 2020196914A JP 2019102591 A JP2019102591 A JP 2019102591A JP 2019102591 A JP2019102591 A JP 2019102591A JP 2020196914 A JP2020196914 A JP 2020196914A
Authority
JP
Japan
Prior art keywords
plating
treatment
zinc
aluminum
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019102591A
Other languages
Japanese (ja)
Inventor
純一 中里
Junichi Nakazato
純一 中里
和久 内藤
Kazuhisa Naito
和久 内藤
典彦 長谷川
Norihiko Hasegawa
典彦 長谷川
克茂 岩松
Katsushige Iwamatsu
克茂 岩松
佳 橋爪
Yoshi Hashizume
佳 橋爪
村田 俊也
Toshiya Murata
俊也 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Original Assignee
Okuno Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd filed Critical Okuno Chemical Industries Co Ltd
Priority to JP2019102591A priority Critical patent/JP2020196914A/en
Publication of JP2020196914A publication Critical patent/JP2020196914A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1841Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

To provide a plating technique having improved plating uniformity and plating smoothness.SOLUTION: A plating pretreatment method for an aluminum material has (step 1) a step for treating an aluminum material with an acidic surface control liquid containing a surfactant and/or (step 2) a step for treating the aluminum material with an acidic zinc substituted treatment liquid and then with an alkaline zinc substituted treatment liquid.SELECTED DRAWING: None

Description

本発明は、アルミニウム材のめっき前処理方法等に関する。 The present invention relates to a pretreatment method for plating an aluminum material and the like.

従来、アルミニウム材をめっき処理する方法としては、めっき前処理として脱脂処理、エッチング処理、デスマット処理、亜鉛置換処理等を行った後、めっきを行なう方法が採られている。しかしながら、アルミニウム種の合金組成の違いにより、同じ前処理では処理が難しく、めっきの不均一性の発生や密着に乏しいめっきとなり、エッチング、デスマット、亜鉛置換をアルミニウム種に合わせて変える必要があった。特に、純度高いアルミニウム素材は、数μmの減膜がともなうエッチングが必要であり、めっきの平滑性が損なわれる場合があった。また、パワーデバイスに搭載されるシリコンウエハ上のアルミニウム電極は、スパッタや蒸着により純度の高いアルミニウムが数μmオーダーで形成されている。このため、減膜の少ない処理が提案されているが(特許文献1)、一般のアルミニウム合金にこの処理を行なっても密着に乏しいめっきとなる場合がある。 Conventionally, as a method of plating an aluminum material, a method of performing degreasing treatment, etching treatment, desmat treatment, zinc replacement treatment and the like as pre-plating treatment and then plating is adopted. However, due to the difference in the alloy composition of the aluminum type, the same pretreatment is difficult to process, resulting in plating non-uniformity and poor adhesion, and it is necessary to change the etching, desmat, and zinc substitution according to the aluminum type. .. In particular, a high-purity aluminum material requires etching accompanied by a film reduction of several μm, which may impair the smoothness of the plating. Further, the aluminum electrode on the silicon wafer mounted on the power device is formed of high-purity aluminum on the order of several μm by sputtering or vapor deposition. For this reason, a treatment with less film thinning has been proposed (Patent Document 1), but even if this treatment is applied to a general aluminum alloy, plating with poor adhesion may occur.

特開2000−256864号公報JP-A-2000-256864

本発明は、めっき均一性及びめっき平滑性により優れためっき技術を提供することを課題とする。好ましくは、さらに、素材の減膜がより抑制されためっき技術を提供することを課題とする。 An object of the present invention is to provide a plating technique superior in plating uniformity and plating smoothness. Preferably, it is further an object to provide a plating technique in which the film thinning of the material is more suppressed.

本発明者は鋭意研究を進めた結果、(工程1)界面活性剤を含有する酸性表面調整液でアルミニウム材を処理する工程、及び/又は(工程2)アルミニウム材を、酸性亜鉛置換処理液で処理した後、アルカリ性亜鉛置換処理液で処理する工程、を含む、アルミニウム材のめっき前処理方法の後、めっき処理することにより、上記課題を解決できることを見出した。この知見に基づいてさらに研究を進めた結果、本発明を完成させた。即ち、本発明は、下記の態様を包含する。 As a result of diligent research, the present inventor (step 1) treats the aluminum material with an acidic surface adjusting solution containing a surfactant, and / or (step 2) treats the aluminum material with an acidic zinc substitution treatment solution. It has been found that the above problems can be solved by performing a plating treatment after a pre-plating method for an aluminum material, which includes a step of treating with an alkaline zinc substitution treatment liquid after the treatment. As a result of further research based on this finding, the present invention has been completed. That is, the present invention includes the following aspects.

項1. (工程1)界面活性剤を含有する酸性表面調整液でアルミニウム材を処理する工程、及び/又は
(工程2)アルミニウム材を、酸性亜鉛置換処理液で処理した後、アルカリ性亜鉛置換処理液で処理する工程、
を含む、アルミニウム材のめっき前処理方法。
Item 1. (Step 1) A step of treating the aluminum material with an acidic surface conditioning liquid containing a surfactant and / or (Step 2) Treating the aluminum material with an acidic zinc replacement treatment liquid and then with an alkaline zinc replacement treatment liquid. Process to do,
A pretreatment method for plating aluminum materials, including.

項2. 前記工程1の後に前記工程2が行われる、項1に記載のめっき前処理方法。 Item 2. Item 2. The plating pretreatment method according to Item 1, wherein the step 2 is performed after the step 1.

項3. 前記界面活性剤がノニオン系界面活性剤である、項1又は2に記載の前処理方法。 Item 3. Item 2. The pretreatment method according to Item 1 or 2, wherein the surfactant is a nonionic surfactant.

項4. 前記酸性表面調整液のpHが1以下である、項1〜3のいずれかに記載の前処理方法。 Item 4. Item 2. The pretreatment method according to any one of Items 1 to 3, wherein the pH of the acidic surface adjusting solution is 1 or less.

項5. 前記酸性亜鉛置換処理液が亜鉛化合物及びフッ素化合物を含有する、項1〜4のいずれかに記載の前処理方法。 Item 5. Item 2. The pretreatment method according to any one of Items 1 to 4, wherein the acidic zinc substitution treatment solution contains a zinc compound and a fluorine compound.

項6. 前記酸性亜鉛置換処理液が水溶性ノニオン界面活性剤、並びに鉄、ニッケル、銅、銀、パラジウム、鉛、ビスマス、及びタリウムからなる群より選択される少なくとも1種の金属の水溶性塩類からなる群より選択される少なくとも1種の成分を含有する、項1〜5のいずれかに記載の前処理方法。 Item 6. The group consisting of a water-soluble nonionic surfactant and a water-soluble salt of at least one metal selected from the group consisting of iron, nickel, copper, silver, palladium, lead, bismuth, and thallium. Item 2. The pretreatment method according to any one of Items 1 to 5, which contains at least one component selected from the above.

項7. 前記酸性亜鉛置換処理液のpHが1〜7である、項1〜6のいずれかに記載の前処理方法。 Item 7. Item 2. The pretreatment method according to any one of Items 1 to 6, wherein the pH of the acidic zinc substitution treatment liquid is 1 to 7.

項8. エッチング処理及び/又はデスマット処理を含まない、項1〜7のいずれかに記載の前処理方法。 Item 8. Item 4. The pretreatment method according to any one of Items 1 to 7, which does not include an etching treatment and / or a desmat treatment.

項9. 前記アルカリ性亜鉛置換処理液における亜鉛イオン源濃度が12g/L以下である、項1〜8のいずれかに記載の前処理方法。 Item 9. Item 2. The pretreatment method according to any one of Items 1 to 8, wherein the zinc ion source concentration in the alkaline zinc replacement treatment liquid is 12 g / L or less.

項10. 項1〜9のいずれかに記載のめっき前処理方法により得られる、めっき処理用アルミニウム材。 Item 10. An aluminum material for plating treatment obtained by the plating pretreatment method according to any one of Items 1 to 9.

項11. 項10に記載のめっき対象アルミニウム材をめっき処理する工程を含む、アルミニウム材のめっき方法。 Item 11. Item 4. A method for plating an aluminum material, which comprises a step of plating the aluminum material to be plated according to Item 10.

項12. 前記めっき処理が無電解ニッケルめっき処理である、項11に記載のめっき方法。 Item 12. Item 2. The plating method according to Item 11, wherein the plating treatment is an electroless nickel plating treatment.

項13. 前記アルミニウム材が、非アルミニウム材上にアルミニウム又はアルミニウム合金皮膜が形成されてなる物品である、項11又は12に記載のめっき方法。 Item 13. Item 2. The plating method according to Item 11 or 12, wherein the aluminum material is an article in which an aluminum or aluminum alloy film is formed on a non-aluminum material.

項14. 項11〜13のいずれかに記載のめっき方法により得られる、アルミニウム材めっき物。 Item 14. An aluminum material plated product obtained by the plating method according to any one of Items 11 to 13.

項15. 界面活性剤を含有し且つ酸性である、アルミニウム材のめっき前処理液。 Item 15. A pretreatment liquid for plating aluminum materials that contains a surfactant and is acidic.

項16. 項1〜9のいずれかに記載の前処理方法に用いるための、項15に記載のめっき前処理液。 Item 16. Item 15. The plating pretreatment liquid according to Item 15, for use in the pretreatment method according to any one of Items 1 to 9.

項17. 亜鉛化合物及びフッ素化合物を含有し且つ酸性である、項1〜9のいずれかに記載の前処理方法に用いるための亜鉛置換処理液。 Item 17. Item 5. A zinc substitution treatment solution for use in the pretreatment method according to any one of Items 1 to 9, which contains a zinc compound and a fluorine compound and is acidic.

本発明によれば、めっき均一性及びめっき平滑性により優れためっき技術を提供することができる。さらには、上記に加えて、素材の減膜がより抑制されためっき技術を提供することも可能である。またさらに、本発明の好ましい一態様においては、上記特性を発揮しながらもめっき密着性に優れためっき技術を提供することが可能である。また、本発明のめっき技術は、種々のアルミニウム材に適用することができる。 According to the present invention, it is possible to provide a plating technique superior in plating uniformity and plating smoothness. Further, in addition to the above, it is also possible to provide a plating technique in which the film thinning of the material is further suppressed. Furthermore, in a preferred embodiment of the present invention, it is possible to provide a plating technique having excellent plating adhesion while exhibiting the above characteristics. Further, the plating technique of the present invention can be applied to various aluminum materials.

本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 In the present specification, the expressions "contains" and "contains" include the concepts of "contains", "contains", "substantially consists" and "consists of only".

1.めっき前処理方法
本発明は、その一態様において、(工程1)界面活性剤を含有する酸性表面調整液でアルミニウム材を処理する工程、及び/又は(工程2)アルミニウム材を、酸性亜鉛置換処理液で処理した後、アルカリ性亜鉛置換処理液で処理する工程、を含む、アルミニウム材のめっき前処理方法(本明細書において、「本発明のめっき前処理方法」と示すこともある。)に関する。以下に、これについて説明する。
1. 1. Plating Pretreatment Method In one embodiment of the present invention, (step 1) a step of treating an aluminum material with an acidic surface adjusting liquid containing a surfactant, and / or (step 2) an acidic zinc substitution treatment of the aluminum material. The present invention relates to a pre-plating method for an aluminum material (sometimes referred to as “the pre-plating method of the present invention” in the present invention), which comprises a step of treating with a liquid and then treating with an alkaline zinc substitution treatment liquid. This will be described below.

1−1.工程1
工程1の処理対象のアルミニウム材としては、処理対象となる表面部分がアルミニウム又はアルミニウム合金によって形成されている物品であれば特に制限されない。例えば、アルミニウム又はアルミニウム合金を材質とする各種の物品のほか、非アルミニウム材(例えば、セラミックス、ウェハ等の各種の基材)上にアルミニウム又はアルミニウム合金皮膜が形成されてなる物品、溶融アルミニウムめっき処理を施した物品、鋳物、ダイキャスト等を使用することができる。また、アルミニウム材の形状も特に限定されるものではなく、通常の板状物(フィルム、シート等の薄膜状物を含む)や各種の形状に成形された成型品のいずれでもよい。また、上記板状物には、アルミニウム又はアルミニウム合金単独の板状物に限らず、例えばセラミックスやウェハ等の基板上にスパッタリング法、真空蒸着法、イオンプレーティング法等の常法に従って成形されたアルミニウム皮膜(基板と一体化されたもの)も包含される。
1-1. Process 1
The aluminum material to be treated in step 1 is not particularly limited as long as the surface portion to be treated is an article formed of aluminum or an aluminum alloy. For example, in addition to various articles made of aluminum or aluminum alloy, articles in which an aluminum or aluminum alloy film is formed on a non-aluminum material (for example, various base materials such as ceramics and wafers), molten aluminum plating treatment. Articles, castings, die-casting, etc. can be used. Further, the shape of the aluminum material is not particularly limited, and may be either an ordinary plate-like material (including a thin film-like material such as a film or a sheet) or a molded product molded into various shapes. Further, the plate-like material is not limited to the plate-like material of aluminum or an aluminum alloy alone, but is formed on a substrate such as ceramics or a wafer according to a conventional method such as a sputtering method, a vacuum vapor deposition method, or an ion plating method. An aluminum film (integrated with the substrate) is also included.

アルミニウム合金としては特に限定されず、アルミニウムを主要金属成分とする各種合金を用いることができる。例えば、A1000系の準アルミニウム、A2000系の銅及びマンガンを含むアルミニウム合金、A3000系のアルミニウム−マンガン合金、A4000系のアルミニウム−シリコン合金、A5000系のアルミニウム−マグネシウム合金、A6000系のアルミニウム−マグネシウム−シリコン合金、A7000系のアルミニウム−亜鉛−マグネシウム合金、A8000系のアルミニウム−リチウム系合金等を適用対象とすることができる。 The aluminum alloy is not particularly limited, and various alloys containing aluminum as a main metal component can be used. For example, A1000 series quasi-aluminum, A2000 series aluminum alloy containing copper and manganese, A3000 series aluminum-manganese alloy, A4000 series aluminum-silicon alloy, A5000 series aluminum-magnesium alloy, A6000 series aluminum-magnesium- Silicon alloys, A7000-based aluminum-zinc-magnesium alloys, A8000-based aluminum-lithium alloys, and the like can be applied.

アルミニウム又はアルミニウム合金のアルミニウム純度は、めっき平滑性の観点から、好ましくは98%以上、より好ましくは98.5%以上、さらに好ましくは99%以上である。 From the viewpoint of plating smoothness, the aluminum purity of aluminum or an aluminum alloy is preferably 98% or more, more preferably 98.5% or more, still more preferably 99% or more.

工程1で使用される酸性表面調整液は、従来のエッチングにより表面凹凸を形成することで濡れ性を得ていた工程と異なり、実質的にアルミニウムがエッチングされず、減膜がない状態で濡れ性を付与する工程である。酸性表面調整液を使用することで、エッチングによる減膜が実質的に無いことにより、めっき均一性、めっき平滑性に優れた無電解ニッケルめっき処理が提供できる。 The acidic surface adjusting liquid used in step 1 is wettability in a state where aluminum is not substantially etched and there is no film reduction, unlike the step in which wettability is obtained by forming surface irregularities by conventional etching. Is a process of imparting. By using the acidic surface adjusting liquid, it is possible to provide an electroless nickel plating treatment having excellent plating uniformity and plating smoothness because there is substantially no film reduction due to etching.

酸性表面調整液が含有する界面活性剤としては、特に制限されず、例えばノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤等が挙げられる。これらの中でも、好ましくはノニオン系界面活性剤が挙げられる。ノニオン系界面活性剤としては、例えばポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンフェニルエーテル、ポリオキシアルキレンナフチルエーテル、ポリオキシアルキレンアルキルエステル、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレンソルビット脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシアルキレングリセリン脂肪酸エステル、ポリオキシアルキレンアルキルアミン、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル等が挙げられる。界面活性剤は、1種のみを使用することができるし、又は2種以上を組合せて使用することもできる。 The surfactant contained in the acidic surface adjusting liquid is not particularly limited, and examples thereof include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants and the like. Among these, a nonionic surfactant is preferable. Examples of the nonionic surfactant include polyoxyalkylene alkyl ether, polyoxyalkylene phenyl ether, polyoxyalkylene naphthyl ether, polyoxyalkylene alkyl ester, polyoxyalkylene sorbitan fatty acid ester, polyoxyalkylene sorbit fatty acid ester, and polyethylene glycol fatty acid. Examples thereof include esters, polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene alkylamines, sorbitan fatty acid esters, and glycerin fatty acid esters. Only one type of surfactant can be used, or two or more types can be used in combination.

酸性表面調整液中の界面活性剤の濃度は、めっき均一性、めっき平滑性、めっき密着性等の観点から、例えば0.01〜100g/L、好ましくは0.05〜50g/L、より好ましくは0.1〜10g/L、さらに好ましくは0.5〜8g/L、特に好ましくは1〜5g/Lである。 The concentration of the surfactant in the acidic surface adjusting liquid is, for example, 0.01 to 100 g / L, preferably 0.05 to 50 g / L, more preferably from the viewpoint of plating uniformity, plating smoothness, plating adhesion and the like. Is 0.1 to 10 g / L, more preferably 0.5 to 8 g / L, and particularly preferably 1 to 5 g / L.

酸性表面調整液のpHは、めっき均一性、めっき平滑性、めっき密着性等の観点から、好ましくは4以下、より好ましくは3以下、さらに好ましくは2以下、よりさらに好ましくは1以下である。 The pH of the acidic surface adjusting liquid is preferably 4 or less, more preferably 3 or less, still more preferably 2 or less, still more preferably 1 or less, from the viewpoints of plating uniformity, plating smoothness, plating adhesion and the like.

酸性表面調整液は、pHを上記範囲に調整するために、酸を含有する。酸としては、例えば硫酸、塩酸、硝酸、リン酸、葉酸、蓚酸、メタンスルフォン酸等が挙げられる。 The acidic surface conditioner contains an acid to adjust the pH to the above range. Examples of the acid include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, folic acid, oxalic acid, methanesulphonic acid and the like.

酸性表面調整液には、本発明の効果が著しく阻害されない限りにおいて、上記以外の他の成分が含まれていてもよい。他の成分としては、例えばギ酸、酢酸等のモノカルボン酸又はこれらの塩(例えば、ナトリウム塩、カリウム塩、アンモニウム塩等);マロン酸、コハク酸、アジピン酸、マレイン酸、フマル酸等のジカルボン酸又はこれらの塩(例えば、ナトリウム塩、カリウム塩、アンモニウム塩等);リンゴ酸、乳酸、グリコール酸、クエン酸等のヒドロキシカルボン酸又はこれらの塩(例えば、ナトリウム塩、カリウム塩、アンモニウム塩等);エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸又はこれらの塩(例えば、ナトリウム塩、カリウム塩、アンモニウム塩等);アラニン、アルギニン等のアミノ酸等が挙げられる。 The acidic surface adjusting solution may contain components other than the above as long as the effects of the present invention are not significantly impaired. Other components include monocarboxylic acids such as formic acid and acetic acid or salts thereof (eg, sodium salt, potassium salt, ammonium salt, etc.); dicarboxylic acids such as malonic acid, succinic acid, adipic acid, maleic acid, fumaric acid, etc. Acids or salts thereof (eg, sodium salt, potassium salt, ammonium salt, etc.); hydroxycarboxylic acids such as malic acid, lactic acid, glycolic acid, citric acid, etc. or salts thereof (eg, sodium salt, potassium salt, ammonium salt, etc.) ); Ethylenediaminediacetic acid, ethylenediaminetetraacetic acid or salts thereof (for example, sodium salt, potassium salt, ammonium salt, etc.); amino acids such as alanine and arginine.

他の成分の含有量は、酸性表面調整液100質量%に対して、例えば0〜90質量%、好ましくは0〜50質量%、より好ましくは0〜25質量%、さらに好ましくは0〜10質量%、よりさらに好ましくは0〜1質量%である。 The content of other components is, for example, 0 to 90% by mass, preferably 0 to 50% by mass, more preferably 0 to 25% by mass, and further preferably 0 to 10% by mass with respect to 100% by mass of the acidic surface adjusting liquid. %, More preferably 0 to 1% by mass.

酸性表面調整液は、溶媒として水を含有する。酸性表面調整液は、水を用いて、各成分を適宜混合することにより製造することができる。溶媒としては水のみならず、本発明の効果が著しく阻害されない限りにおいて、水に加えて他の溶媒を追加してもよい。 The acidic surface conditioner contains water as a solvent. The acidic surface adjusting liquid can be produced by appropriately mixing each component with water. The solvent is not limited to water, and other solvents may be added in addition to water as long as the effects of the present invention are not significantly impaired.

工程1の処理の態様は、アルミニウム材の表面上に酸性表面調整液が接触可能な態様である限り特に制限されない。該接触方法としては、例えば、浸漬、塗布、スプレー等の方法を採用することができる。 The mode of the treatment in step 1 is not particularly limited as long as the acidic surface adjusting liquid can come into contact with the surface of the aluminum material. As the contact method, for example, a method such as dipping, coating, or spraying can be adopted.

処理時の温度は、特に制限されないが、例えば5〜80℃、好ましくは10〜60℃、より好ましくは30〜50℃である。 The temperature during the treatment is not particularly limited, but is, for example, 5 to 80 ° C, preferably 10 to 60 ° C, and more preferably 30 to 50 ° C.

処理時間は、処理温度に応じて異なるが、例えば1〜15分間、好ましくは1.5〜8分間である。 The treatment time varies depending on the treatment temperature, but is, for example, 1 to 15 minutes, preferably 1.5 to 8 minutes.

1−2.工程2
1−2−1.酸性亜鉛置換処理
工程2の処理対象のアルミニウム材としては、工程1の処理対象と同様である。めっき均一性、めっき平滑性、めっき密着性等の観点から、好ましくは、工程2の処理対象は、工程1の処理後のアルミニウム材である。この観点から、本発明のめっき前処理方法においては、工程1の後に工程2が行われることが好ましい。
1-2. Process 2
1-2-1. The aluminum material to be treated in the acidic zinc substitution treatment step 2 is the same as the treatment target in step 1. From the viewpoint of plating uniformity, plating smoothness, plating adhesion, etc., the treatment target of step 2 is preferably the aluminum material after the treatment of step 1. From this point of view, in the plating pretreatment method of the present invention, it is preferable that step 2 is performed after step 1.

工程2で使用される酸性亜鉛置換処理液は、亜鉛化合物を含有する酸性pHの亜鉛置換処理液である限り特に制限されない。 The acidic zinc substitution treatment liquid used in step 2 is not particularly limited as long as it is a zinc replacement treatment liquid having an acidic pH containing a zinc compound.

亜鉛化合物は、特に制限されない。その具体例としては、例えば硫酸亜鉛、硝酸亜鉛、塩化亜鉛、酸化亜鉛等を例示できる。之等の内では、酸性域における陰イオンのアルミニウムに対する溶解速度に影響の少ない、例えば硫酸亜鉛が好適である。之等の亜鉛化合物は、金属亜鉛(Zn)濃度として、亜鉛置換速度、亜鉛粒子の密着力等の観点から好ましくは、1〜50g/Lとなる範囲から選択されるのがよい。 The zinc compound is not particularly limited. Specific examples thereof include zinc sulfate, zinc nitrate, zinc chloride, zinc oxide and the like. Among these, zinc sulfate, for example, which has little effect on the dissolution rate of anions in aluminum in an acidic region, is preferable. These zinc compounds are preferably selected from the range of 1 to 50 g / L as the metallic zinc (Zn) concentration from the viewpoint of zinc substitution rate, adhesion of zinc particles, and the like.

酸性亜鉛置換処理液は、アルミニウムを溶解してその亜鉛との置換をスムーズに進行させるという観点から、フッ素化合物を含有することが好ましい。フッ素化合物は、の代表例としては、比較的少量の使用で適度の速度でしかも均一にアルミニウムを溶解させ得るものとして、例えばフッ酸や二フッ化水素アンモニウムを例示できる。上記二フッ化水素アンモニウムを利用する場合、得られる液は何らpH調整を行なわずとも所望の適当なpHを有するものとなる。本発明ではまた、上記例示のフッ素化合物の代わりに、例えばフッ化リチウム、フッ化ナトリウム、フッ化カリウム等のフッ化物塩も上記フッ素化合物として使用することができる。之等のフッ化物塩を用いる場合、得られる液のpHは所望の酸性域とならない場合があり、その場合は、別個にpH調整剤として、例えば塩酸、硫酸、硝酸等の強酸を添加したり、上記フッ酸、二フッ化水素アンモニウムを併用して、所望のpH範囲とすることができる。之等フッ素化合物は、酸性亜鉛置換処理液中に、亜鉛置換速度の観点から好ましくは、フッ素として0.1〜20g/Lとなる量範囲で添加配合される。 The acidic zinc substitution treatment liquid preferably contains a fluorine compound from the viewpoint of dissolving aluminum and smoothly proceeding with the substitution with zinc. As a typical example of the fluorine compound, hydrofluoric acid and ammonium hydrogen difluoride can be exemplified as those capable of uniformly dissolving aluminum at an appropriate speed with a relatively small amount of use. When the above-mentioned ammonium hydrogen fluoride is used, the obtained liquid has a desired appropriate pH without any pH adjustment. In the present invention, instead of the above-exemplified fluorine compound, fluoride salts such as lithium fluoride, sodium fluoride, potassium fluoride and the like can also be used as the above-mentioned fluorine compound. When using such a fluoride salt, the pH of the obtained liquid may not be in the desired acidic range. In that case, a strong acid such as hydrochloric acid, sulfuric acid or nitric acid may be added separately as a pH adjuster. , The above-mentioned hydrofluoric acid and ammonium hydrogen difluoride can be used in combination to obtain a desired pH range. From the viewpoint of the zinc substitution rate, the fluorine compound is preferably added and blended in the acidic zinc substitution treatment solution in an amount range of 0.1 to 20 g / L as fluorine.

酸性亜鉛置換処理液は、亜鉛置換効率等の観点から、pHが1〜7であることが好ましい。このpHの調整は上記必須成分である亜鉛化合物及びフッ素化合物の種類の選択により行なうことができ、また必要に応じて、通常のアルカリ成分の添加により行なうことができる。ここで用いられるpH調整のためのアルカリ成分は、特に限定されるものではないが、液中の塩濃度を上昇させないためには、少量の添加で所望のpH調整が可能な強アルカリ水溶液、例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水等であるのが好ましい。 The acidic zinc replacement treatment solution preferably has a pH of 1 to 7 from the viewpoint of zinc replacement efficiency and the like. This pH adjustment can be performed by selecting the types of the zinc compound and the fluorine compound which are the above-mentioned essential components, and can be performed by adding an ordinary alkaline component, if necessary. The alkaline component for pH adjustment used here is not particularly limited, but in order not to increase the salt concentration in the liquid, a strong alkaline aqueous solution capable of adjusting the desired pH with a small amount of addition, for example, It is preferably an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, water of ammonia or the like.

酸性亜鉛置換処理液には、本発明の効果が著しく阻害されない限りにおいて、上記以外の他の成分が含まれていてもよい。酸性亜鉛置換処理液は、上記以外にも、アルミニウム材表面への亜鉛の置換速度をコントロール(通常促進)するためや、亜鉛置換皮膜の緻密性、均一性、平滑性等を改善するための、各種の添加剤成分を適宜追加配合することができる。かかる亜鉛の置換速度を促進するための成分には、例えば鉄、ニッケル、銅、銀、パラジウム、鉛、ビスマス、及びタリウムからなる群から選ばれる少なくとも1種の金属の水溶性塩類が含まれる。その例としては、例えば上記金属の塩化物、硝酸塩、硫酸塩等が挙げられる。特に好ましい具体例には、塩化第一鉄、塩化ニッケル、塩化第一銅、硝酸銀、塩化パラジウム等が包含される。之等は、通常入手される水和物形態であってもよく、1種単独で用いても、また2種以上併用することもできる。之等金属の水溶性塩類は、金属元素として0.05mg/L以上の濃度となる量で添加することにより、その添加による所望の効果、即ち亜鉛置換速度の促進効果を発揮し得る。特に、アルミニウムよりも貴な金属程、少量の使用で上記効果を奏することができる。一般には、例えば金属元素換算で銀、パラジウム、鉛、タリウム、ビスマスは0.05〜100mg/L程度、銅は0.5〜500mg/L程度、鉄、ニッケルは10〜10000mg/L程度の濃度範囲となる量から選ばれるのが好ましい。 The acidic zinc substitution treatment solution may contain components other than the above as long as the effects of the present invention are not significantly impaired. In addition to the above, the acidic zinc substitution treatment solution is used for controlling (usually promoting) the substitution rate of zinc on the surface of the aluminum material and for improving the denseness, uniformity, smoothness, etc. of the zinc substitution film. Various additive components can be additionally blended as appropriate. Ingredients for promoting such zinc substitution rates include, for example, water-soluble salts of at least one metal selected from the group consisting of iron, nickel, copper, silver, palladium, lead, bismuth, and thallium. Examples thereof include chlorides, nitrates and sulfates of the above metals. Particularly preferred specific examples include ferrous chloride, nickel chloride, cuprous chloride, silver nitrate, palladium chloride and the like. These may be in the form of a hydrate that is usually obtained, or may be used alone or in combination of two or more. By adding the water-soluble salts of the same metal as a metal element at a concentration of 0.05 mg / L or more, the desired effect of the addition, that is, the effect of promoting the zinc substitution rate can be exhibited. In particular, a metal nobler than aluminum can achieve the above effect with a small amount of use. Generally, for example, silver, palladium, lead, thallium, and bismuth have a concentration of about 0.05 to 100 mg / L, copper has a concentration of about 0.5 to 500 mg / L, and iron and nickel have a concentration of about 10 to 10,000 mg / L. It is preferably selected from the amount in the range.

また、置換速度をコントロールし得る添加剤成分には、脂肪族オキシカルボン酸類が包含される。その例としては、例えばグリコール酸、乳酸、リンゴ酸、クエン酸、酒石酸等を例示でき、之等は1種単独でも、2種以上でも利用できる。その添加量は、通常酸性亜鉛置換処理液中に1〜50g/L程度の範囲から選ばれるのがよく、これによって、上記亜鉛の置換速度を適度にコントロールし得、また析出亜鉛金属粒子をより緻密なものとすることができる。 In addition, aliphatic oxycarboxylic acids are included in the additive component capable of controlling the substitution rate. Examples thereof include glycolic acid, lactic acid, malic acid, citric acid, tartaric acid and the like, and these can be used alone or in combination of two or more. The amount to be added is usually selected from the range of about 1 to 50 g / L in the acidic zinc substitution treatment solution, whereby the zinc substitution rate can be appropriately controlled, and the precipitated zinc metal particles can be further adjusted. It can be precise.

更に、亜鉛置換皮膜の均一性、平滑性等を向上し得る添加剤成分としては、界面活性剤を例示することができる。金属イオンその他のイオン類との反応による沈殿物の析出や耐酸性等を考慮すると、上記界面活性剤の内では、水溶性ノニオン系界面活性剤が好ましい。かかる水溶性ノニオン系界面活性剤には、例えばアルキルポリオキシエチレンエーテル型、アルキルポリオキシエチレンポリオキシプロピレンエーテル型のものが含まれる。之等の内では、特にアルキルフェノールや高級アルコールのエチレンオキサイド付加物及び/又はプロピレンオキサイド付加物等が好適であり、その曇点は40℃以上であるのが好ましい。之等はその1種を単独でも2種以上を併用しても利用することができ、通常、酸性亜鉛置換処理液中に0.1〜3g/L程度の範囲で添加配合することにより、所望の効果、特にアルミニウム金属表面に対する濡れ性を改善して、置換亜鉛皮膜の均一性を向上させ、該置換亜鉛皮膜の緻密化や該皮膜表面の平滑化に寄与し得る。 Further, as an additive component capable of improving the uniformity, smoothness and the like of the zinc substitution film, a surfactant can be exemplified. Among the above-mentioned surfactants, a water-soluble nonionic surfactant is preferable in consideration of precipitation of a precipitate due to a reaction with metal ions and other ions, acid resistance and the like. Such water-soluble nonionic surfactants include, for example, alkyl polyoxyethylene ether type and alkyl polyoxyethylene polyoxy propylene ether type. Among these, ethylene oxide adducts and / or propylene oxide adducts of alkylphenols and higher alcohols are particularly preferable, and the cloud point thereof is preferably 40 ° C. or higher. These can be used alone or in combination of two or more, and are usually desired by adding and blending them in the acidic zinc substitution treatment solution in the range of about 0.1 to 3 g / L. It is possible to improve the effect of the above, particularly the wettability to the aluminum metal surface, improve the uniformity of the substituted zinc film, and contribute to the densification of the substituted zinc film and the smoothing of the film surface.

酸性亜鉛置換処理液は、溶媒として水を含有する。酸性亜鉛置換処理液は、水を用いて、各成分を適宜混合することにより製造することができる。溶媒としては水のみならず、本発明の効果が著しく阻害されない限りにおいて、水に加えて他の溶媒を追加してもよい。 The acidic zinc substitution treatment solution contains water as a solvent. The acidic zinc substitution treatment liquid can be produced by appropriately mixing each component with water. The solvent is not limited to water, and other solvents may be added in addition to water as long as the effects of the present invention are not significantly impaired.

酸性亜鉛置換処理の処理態様は、アルミニウム材の表面上に酸性亜鉛置換処理液が接触可能な態様である限り特に制限されない。該接触方法としては、例えば、浸漬、塗布、スプレー等の方法を採用することができる。 The treatment mode of the acidic zinc substitution treatment is not particularly limited as long as the acidic zinc replacement treatment liquid can come into contact with the surface of the aluminum material. As the contact method, for example, a method such as dipping, coating, or spraying can be adopted.

酸性亜鉛置換処理の処理温度及び処理時間は、液組成等に応じて適宜決定することができる。一般には、液組成に応じて、液温は5〜80℃の範囲から選択され、所望の膜厚に応じて浸漬時間を5秒〜10分程度の範囲から選ばれるのが適当である。特に、作業性のよい液温としては、常温又はその付近の温度である20〜40℃程度の範囲が好ましく、この範囲の温度条件を採用する場合には、一般に約5秒〜3分程度の浸漬時間を採用するのが好ましい。 The treatment temperature and treatment time of the acidic zinc substitution treatment can be appropriately determined according to the liquid composition and the like. Generally, the liquid temperature is selected from the range of 5 to 80 ° C. according to the liquid composition, and the immersion time is appropriately selected from the range of about 5 seconds to 10 minutes according to the desired film thickness. In particular, the liquid temperature with good workability is preferably in the range of about 20 to 40 ° C., which is a temperature at or near normal temperature, and when a temperature condition in this range is adopted, it is generally about about 5 seconds to 3 minutes. It is preferable to adopt the immersion time.

酸性亜鉛置換処理の後は、後述のアルカリ性亜鉛置換処理が行われる。この際、酸性亜鉛置換処理の後、後述のアルカリ性亜鉛置換処理の前に、他の処理を介在させることができる。本発明の一態様において、好ましくは、酸性亜鉛置換処理の後、後述のアルカリ性亜鉛置換処理の前に、硝酸水溶液で表面を洗浄することができる。酸洗することにより、粗雑な亜鉛置換膜が除去され、アルミニウム表面電位をシフトして、次のアルカリ性亜鉛置換処理で薄く均一で緻密な置換膜を得ることができる。 After the acidic zinc replacement treatment, the alkaline zinc replacement treatment described later is performed. At this time, another treatment can be interposed after the acidic zinc substitution treatment and before the alkaline zinc substitution treatment described later. In one aspect of the present invention, the surface can be preferably washed with an aqueous nitric acid solution after the acidic zinc substitution treatment and before the alkaline zinc substitution treatment described later. By pickling, the coarse zinc substitution film is removed, the aluminum surface potential is shifted, and a thin, uniform and dense substitution film can be obtained by the next alkaline zinc substitution treatment.

1−2−2.アルカリ性亜鉛置換処理
工程2で使用されるアルカリ性亜鉛置換処理液は、亜鉛イオン源を含有するアルカリ性pHの亜鉛置換処理液である限り特に制限されない。
1-2-2. The alkaline zinc replacement treatment liquid used in the alkaline zinc replacement treatment step 2 is not particularly limited as long as it is a zinc replacement treatment liquid having an alkaline pH containing a zinc ion source.

亜鉛イオン源、その他の成分については、公知の成分、組合せ、濃度等を採用することができる。アルカリ性亜鉛置換処理液は、水を用いて、各成分を適宜混合することにより製造することができる。溶媒としては水のみならず、本発明の効果が著しく阻害されない限りにおいて、水に加えて他の溶媒を追加してもよい。 For the zinc ion source and other components, known components, combinations, concentrations and the like can be adopted. The alkaline zinc replacement treatment liquid can be produced by appropriately mixing each component with water. The solvent is not limited to water, and other solvents may be added in addition to water as long as the effects of the present invention are not significantly impaired.

アルカリ性亜鉛置換処理液は、めっき均一性をより向上させることができるという観点から、好ましくは、亜鉛イオン源濃度がより低いものが好ましく、例えば12g/L以下、好ましくは10g/L以下、より好ましくは7g/L以下である。該濃度の下限は、例えば0.1g/L、0.5g/L、1g/L、1.5g/Lである。 From the viewpoint that the plating uniformity can be further improved, the alkaline zinc replacement treatment liquid preferably has a lower zinc ion source concentration, for example, 12 g / L or less, preferably 10 g / L or less, more preferably. Is 7 g / L or less. The lower limit of the concentration is, for example, 0.1 g / L, 0.5 g / L, 1 g / L, 1.5 g / L.

また、アルカリ性亜鉛置換処理液は、好ましくは、アルカリ、亜鉛イオン源、カルボン酸源、及び金属塩を含有する。 In addition, the alkaline zinc substitution treatment liquid preferably contains an alkali, a zinc ion source, a carboxylic acid source, and a metal salt.

アルカリとしては、特に制限されないが、例えばナトリウム、カリウム等のアルカリ金属の水酸化物(例えば水酸化ナトリウム、水酸化カリウム等); マグネシウム、カルシウム等のアルカリ土類金属の水酸化物(例えば水酸化マグネシウム、水酸化カルシウム等)等が挙げられる。これらの中でも、好ましくはアルカリ金属の水酸化物が挙げられ、より好ましくは水酸化ナトリウム、水酸化カリウムが挙げられ、さらに好ましくは水酸化ナトリウムが挙げられる。 The alkali is not particularly limited, but is, for example, a hydroxide of an alkali metal such as sodium or potassium (for example, sodium hydroxide or potassium hydroxide); a hydroxide of an alkaline earth metal such as magnesium or calcium (for example, hydroxide). Magnesium, calcium hydroxide, etc.) and the like. Among these, alkali metal hydroxides are preferable, sodium hydroxide and potassium hydroxide are more preferable, and sodium hydroxide is more preferable.

アルカリは、1種単独であってもよいし、2種以上の組み合わせであってもよい。 The alkali may be one kind alone or a combination of two or more kinds.

アルカリ性亜鉛置換処理液におけるアルカリの濃度は、特に制限されない。該濃度は、例えば5〜300g/L、好ましくは10〜200g/L、より好ましくは20〜100g/L、さらに好ましくは30〜70g/Lである。 The concentration of alkali in the alkaline zinc replacement treatment solution is not particularly limited. The concentration is, for example, 5 to 300 g / L, preferably 10 to 200 g / L, more preferably 20 to 100 g / L, and even more preferably 30 to 70 g / L.

亜鉛イオン源としては、特に制限されず、水中で亜鉛イオンを電離可能なものを広く使用することができる。亜鉛イオン源としては、例えば酸化亜鉛、硝酸亜鉛、ホウ酸亜鉛、塩化亜鉛、硫酸亜鉛、臭化亜鉛、塩基性炭酸亜鉛、硫化亜鉛等が挙げられる。これらの中でも、好ましくは酸化亜鉛、酢酸亜鉛、硝酸亜鉛、硫酸亜鉛等が挙げられ、より好ましくは酸化亜鉛が挙げられる。 The zinc ion source is not particularly limited, and a source capable of ionizing zinc ions in water can be widely used. Examples of the zinc ion source include zinc oxide, zinc nitrate, zinc borate, zinc chloride, zinc sulfate, zinc bromide, basic zinc carbonate, zinc sulfide and the like. Among these, zinc oxide, zinc acetate, zinc nitrate, zinc sulfate and the like are preferable, and zinc oxide is more preferable.

亜鉛イオン源は、1種単独であってもよいし、2種以上の組み合わせであってもよい。 The zinc ion source may be one kind alone or a combination of two or more kinds.

アルカリ性亜鉛置換処理液における亜鉛イオン源の濃度は、特に制限されない。該濃度は、例えば30g/L以下である。該濃度は、めっき均一性をより向上させることができるという観点から、より低いことが好ましく、例えば12g/L以下、好ましくは10g/L以下、より好ましくは7g/L以下である。該濃度の下限は、例えば0.1g/L、0.5g/L、1g/L、1.5g/Lである。 The concentration of the zinc ion source in the alkaline zinc replacement treatment solution is not particularly limited. The concentration is, for example, 30 g / L or less. The concentration is preferably lower, for example, 12 g / L or less, preferably 10 g / L or less, and more preferably 7 g / L or less, from the viewpoint that the plating uniformity can be further improved. The lower limit of the concentration is, for example, 0.1 g / L, 0.5 g / L, 1 g / L, 1.5 g / L.

カルボン酸源は、水中に溶解した際にカルボン酸を遊離可能なものである限り、特に制限されず、カルボン酸、その塩等を使用することができる。カルボン酸源としては、例えば酒石酸、グルコン酸、クエン酸、乳酸、サリチル酸、グリコール酸、リンゴ酸、マンデル酸等のヒドロキシカルボン酸; グリシン、アラニン、エチレンジアミン四酢酸、エチレンジアミン二酢酸、ニトリロ四酢酸、グルタミン酸-N,N-二酢酸、アスパラギン酸-N,N-二酢酸等のアミノカルボン酸等; 酢酸、しゅう酸、マロン酸等のその他のカルボン酸; 及びそれらの塩が挙げられる。これらの中でも、ヒドロキシカルボン酸、その塩が好ましく、酒石酸、グルコン酸、それらの塩がより好ましく、酒石酸、その塩がさらに好ましい。カルボン酸の塩としては、特に制限されないが、例えばナトリウム塩、カリウム塩等のアルカリ金属塩; カルシウム塩、マグネシウム塩等のアルカリ土類金属塩等が挙げられる。カルボン酸と共に塩を構成する元素は、1種単独でもよいし、2種以上の組み合わせであってもよい。酒石酸の塩としては、カリウム及びナトリウムとの塩(酒石酸カリウムナトリウム、ロッシェル塩)が好ましい。 The carboxylic acid source is not particularly limited as long as it can liberate the carboxylic acid when dissolved in water, and a carboxylic acid, a salt thereof, or the like can be used. Examples of the carboxylic acid source include hydroxycarboxylic acids such as tartrate, gluconic acid, citric acid, lactic acid, salicylic acid, glycolic acid, malic acid, and mandelic acid; Aminocarboxylic acids such as -N, N-diacetic acid, aspartic acid-N, N-diacetic acid; other carboxylic acids such as acetic acid, oxalic acid, malonic acid; and salts thereof. Among these, hydroxycarboxylic acid and salts thereof are preferable, tartaric acid, gluconic acid and salts thereof are more preferable, and tartaric acid and salts thereof are further preferable. The salt of the carboxylic acid is not particularly limited, and examples thereof include alkali metal salts such as sodium salt and potassium salt; and alkaline earth metal salts such as calcium salt and magnesium salt. The elements constituting the salt together with the carboxylic acid may be one kind alone or a combination of two or more kinds. As the salt of tartaric acid, a salt of potassium and sodium (sodium potassium tartrate, Rochelle salt) is preferable.

カルボン酸源は、1種単独であってもよいし、2種以上の組み合わせであってもよい。 The carboxylic acid source may be one kind alone or a combination of two or more kinds.

アルカリ性亜鉛置換処理液におけるカルボン酸源の濃度は、特に制限されない。該濃度は、例えば30g/L以下である。該濃度は、好ましくは0.5〜20g/L、より好ましくは1〜12g/L、さらに好ましくは2〜8g/Lである。 The concentration of the carboxylic acid source in the alkaline zinc replacement treatment solution is not particularly limited. The concentration is, for example, 30 g / L or less. The concentration is preferably 0.5 to 20 g / L, more preferably 1 to 12 g / L, and even more preferably 2 to 8 g / L.

金属塩としては、特に制限されないが、例えば亜鉛以外の遷移金属、例えば鉄、銅、ニッケル、コバルト、マンガン、銀、スズ等の金属の塩が挙げられる。これらの中でも、鉄、銅等の塩が好ましく、鉄の塩がより好ましい。塩の種類は特に制限されず、例えば塩酸塩、硝酸塩、硫酸塩、酢酸塩等が挙げられる。金属塩として、好ましくは塩酸鉄、硝酸鉄、硫酸鉄等が挙げられる。 The metal salt is not particularly limited, and examples thereof include salts of transition metals other than zinc, such as metals such as iron, copper, nickel, cobalt, manganese, silver, and tin. Among these, salts of iron, copper and the like are preferable, and iron salts are more preferable. The type of salt is not particularly limited, and examples thereof include hydrochloride, nitrate, sulfate, and acetate. Preferred examples of the metal salt include iron hydrochloride, iron nitrate, iron sulfate and the like.

金属塩は、1種単独であってもよいし、2種以上の組み合わせであってもよい。 The metal salt may be used alone or in combination of two or more.

アルカリ性亜鉛置換処理液における金属塩の濃度は、特に制限されない。該濃度は、例えば20g/L以下である。該濃度は、好ましくは0.1〜12g/L、より好ましくは0.2〜7g/L、さらに好ましくは0.5〜4g/Lである。 アルカリ性亜鉛置換処理液は、亜鉛置換効率等の観点から、pHが9以上であることが好ましい。該pHは、より好ましくは11以上、さらに好ましくは12以上、よりさらに好ましくは13以上、特に好ましくは13.5以上である。 The concentration of the metal salt in the alkaline zinc replacement treatment solution is not particularly limited. The concentration is, for example, 20 g / L or less. The concentration is preferably 0.1 to 12 g / L, more preferably 0.2 to 7 g / L, and even more preferably 0.5 to 4 g / L. The alkaline zinc replacement treatment solution preferably has a pH of 9 or more from the viewpoint of zinc replacement efficiency and the like. The pH is more preferably 11 or higher, even more preferably 12 or higher, even more preferably 13 or higher, and particularly preferably 13.5 or higher.

アルカリ性亜鉛置換処理の処理態様は、アルミニウム材の表面上にアルカリ性亜鉛置換処理液が接触可能な態様である限り特に制限されない。該接触方法としては、例えば、浸漬、塗布、スプレー等の方法を採用することができる。 The treatment mode of the alkaline zinc replacement treatment is not particularly limited as long as the alkaline zinc replacement treatment liquid can come into contact with the surface of the aluminum material. As the contact method, for example, a method such as dipping, coating, or spraying can be adopted.

アルカリ性亜鉛置換処理の処理温度及び処理時間は、液組成等に応じて適宜決定することができる。一般には、液組成に応じて、液温は5〜60℃の範囲から選択され、所望の膜厚に応じて浸漬時間を5秒〜10分程度の範囲から選ばれるのが適当である。特に、作業性のよい液温としては、常温又はその付近の温度である20〜40℃程度の範囲が好ましく、この範囲の温度条件を採用する場合には、一般に約20秒〜3分程度の浸漬時間を採用するのが好ましい。 The treatment temperature and treatment time of the alkaline zinc substitution treatment can be appropriately determined according to the liquid composition and the like. Generally, the liquid temperature is selected from the range of 5 to 60 ° C. according to the liquid composition, and the immersion time is appropriately selected from the range of about 5 seconds to 10 minutes according to the desired film thickness. In particular, the liquid temperature with good workability is preferably in the range of about 20 to 40 ° C., which is a temperature at or near normal temperature, and when a temperature condition in this range is adopted, it is generally about about 20 seconds to 3 minutes. It is preferable to adopt the immersion time.

1−3.他の前処理
本発明の前処理方法が、工程1を含み、且つ工程2を含まない場合は、工程1の後に、亜鉛置換処理を行うことが好ましい。亜鉛置換処理は2回以上繰り返して行ってもよい。亜鉛置換処理に使用する亜鉛置換処理液としては、特に制限されず、公知の処理液を使用することができる。
1-3. Other Pretreatments When the pretreatment method of the present invention includes step 1 and does not include step 2, it is preferable to carry out zinc substitution treatment after step 1. The zinc replacement treatment may be repeated twice or more. The zinc replacement treatment liquid used for the zinc replacement treatment is not particularly limited, and a known treatment liquid can be used.

本発明の前処理方法が、工程2を含み、且つ工程1を含まない場合は、工程2の前に、亜鉛置換処理の前に行う公知の前処理、例えば脱脂処理、エッチング処理、デスマット処理等を行うことができる。 When the pretreatment method of the present invention includes step 2 and does not include step 1, known pretreatments to be performed before the zinc substitution treatment, such as degreasing treatment, etching treatment, desmat treatment, etc., are performed before the step 2. It can be performed.

本発明のめっき前処理方法によれば、エッチング処理及びデスマット処理を含まなくとも、めっき均一性及びめっき平滑性により優れためっきが可能である。さらには、上記に加えて、素材の減膜がより抑制されためっきも可能である。このため、本発明のめっき前処理方法は、エッチング処理及びデスマット処理を含まないことが好ましい。さらに、本発明の一態様においては、エッチング処理及びデスマット処理に加えて、脱脂処理も含まない。 According to the plating pretreatment method of the present invention, it is possible to perform plating excellent in plating uniformity and plating smoothness without including etching treatment and desmat treatment. Further, in addition to the above, plating in which the film thinning of the material is further suppressed is also possible. Therefore, the plating pretreatment method of the present invention preferably does not include an etching treatment and a desmat treatment. Further, in one aspect of the present invention, the degreasing treatment is not included in addition to the etching treatment and the desmat treatment.

1−4.めっき処理用アルミニウム材
本発明は、その一態様において、本発明のめっき前処理方法により得られるめっき処理用アルミニウム材に関する。該めっき処理用アルミニウム材は、めっき処理に供するために用いられる。
1-4. Aluminum Material for Plating In one aspect of the present invention, the present invention relates to an aluminum material for plating obtained by the pre-plating method of the present invention. The aluminum material for plating treatment is used for subjecting to the plating treatment.

2.めっき方法
本発明は、その一態様において、本発明のめっき前処理方法により得られるめっき処理用アルミニウム材をめっき処理する工程を含む、アルミニウム材のめっき方法(本明細書において、「本発明のめっき方法」と示すこともある。)に関する。以下に、これについて説明する。
2. 2. Plating Method In one aspect of the present invention, a method for plating an aluminum material, which comprises a step of plating an aluminum material for plating obtained by the pretreatment method of the present invention (in the present invention, "plating of the present invention". It may also be referred to as "method"). This will be described below.

めっき処理は、アルミニウム材の亜鉛置換処理後に行い得るものである限り特に制限されない。めっき処理は、無電解めっき処理、電気めっき処理のいずれでもよい。無電解めっきとしては、従来より知られている各種の無電解めっきでよく、その例としては酸性、アルカリ性の無電解ニッケルめっき、アルカリ性無電解銅めっき等を例示できる。上記酸性無電解ニッケルめっきにおいては、ホウ酸系、リン酸系等の還元剤を用いためっき浴の利用によっても良好に所望のニッケルめっきを行ない得る。また、電気めっきとしては、青化銅めっき、硫酸銅めっき等の銅めっきや、ワット浴等を用いた電気ニッケルめっき等を好ましく採用できる。かかる電気ニッケルめっきにより得られる皮膜上には、更に例えば電気クロムめっき等を施すことができる。 The plating treatment is not particularly limited as long as it can be performed after the zinc replacement treatment of the aluminum material. The plating treatment may be either an electroless plating treatment or an electroplating treatment. The electroless plating may be various conventionally known electroless platings, and examples thereof include acidic and alkaline electroless nickel platings and alkaline electroless copper platings. In the above acidic electroless nickel plating, desired nickel plating can be satisfactorily performed by using a plating bath using a reducing agent such as boric acid or phosphoric acid. Further, as the electroplating, copper plating such as bluish copper plating and copper sulfate plating, electronickel plating using a watt bath or the like can be preferably adopted. For example, electrochromium plating can be further applied on the film obtained by such electro-nickel plating.

めっき処理は、好ましくは無電解ニッケルめっき処理である。この好ましい態様において、無電解ニッケルリンめっき液としては、次亜リン酸塩を還元剤とする無電解ニッケルリンめっき液であれば、特に限定なく使用することができる。以下、この好ましい態様について詳細に説明する。 The plating treatment is preferably an electroless nickel plating treatment. In this preferred embodiment, the electroless nickel-phosphorus plating solution can be used without particular limitation as long as it is an electroless nickel-phosphorus plating solution using hypophosphate as a reducing agent. Hereinafter, this preferred embodiment will be described in detail.

無電解ニッケルリンめっき液として、例えば、ニッケル塩、次亜リン酸塩、及びオキシカルボン酸を含有する無電解ニッケルリンめっき液が挙げられる。ニッケル塩として、例えば、硫酸ニッケル、塩化ニッケル、炭酸ニッケル等が挙げられる。次亜リン酸塩として、例えば、次亜リン酸ナトリウム、次亜リン酸カリウム等が挙げられる。オキシカルボン酸として、例えば、乳酸、リンゴ酸、これらの塩(ナトリウム塩、カリウム塩、アンモニウム塩等)等が挙げられる。前記めっき液中の各成分の濃度としては、ニッケル塩は、5〜60g/L程度が好ましく、15〜40g/L程度がより好ましい。次亜リン酸塩は、5〜60g/L程度が好ましく、20〜40g/L程度がより好ましい。オキシカルボン酸は、5〜50g/L程度が好ましく、10〜30g/L程度がより好ましい。 Examples of the electroless nickel phosphorus plating solution include electroless nickel phosphorus plating solutions containing a nickel salt, a hypophosphite, and an oxycarboxylic acid. Examples of the nickel salt include nickel sulfate, nickel chloride, nickel carbonate and the like. Examples of the hypophosphite include sodium hypophosphate, potassium hypophosphite and the like. Examples of the oxycarboxylic acid include lactic acid, malic acid, and salts thereof (sodium salt, potassium salt, ammonium salt, etc.). The concentration of each component in the plating solution is preferably about 5 to 60 g / L, more preferably about 15 to 40 g / L for the nickel salt. The hypophosphite is preferably about 5 to 60 g / L, more preferably about 20 to 40 g / L. The oxycarboxylic acid is preferably about 5 to 50 g / L, more preferably about 10 to 30 g / L.

めっき液のpHは、4以上であることが必要であり、5.0〜8程度が好ましい。pHは、水酸化ナトリウム、アンモニア水等で調整することができる。処理温度は、60〜100℃程度が好ましく、80〜90℃程度がより好ましい。処理時間は、必要とする厚みのめっき皮膜が形成されるまでの時間であり、めっき皮膜の厚みに応じて適宜調整すればよい。 The pH of the plating solution needs to be 4 or more, preferably about 5.0 to 8. The pH can be adjusted with sodium hydroxide, aqueous ammonia or the like. The treatment temperature is preferably about 60 to 100 ° C, more preferably about 80 to 90 ° C. The treatment time is the time until a plating film having a required thickness is formed, and may be appropriately adjusted according to the thickness of the plating film.

本発明は、その一態様において、本発明のめっき方法により得られる、アルミニウム材めっき物に関する。該アルミニウム材めっき物は、本発明のめっき前処理方法により得られるめっき処理用アルミニウム材の表面上にめっき膜が形成されてなる。該アルミニウム材めっき物は、めっき均一性及びめっき平滑性により優れている。さらには、素材の減膜がより低減されている。また、本発明の好ましい一態様においては、上記特性を発揮しながらも、めっき密着性にも優れる。 The present invention relates to an aluminum plated product obtained by the plating method of the present invention in one aspect thereof. The aluminum material plated product has a plating film formed on the surface of the aluminum material for plating treatment obtained by the pretreatment method of the present invention. The aluminum-plated product is excellent in plating uniformity and plating smoothness. Furthermore, the film reduction of the material is further reduced. Further, in a preferred embodiment of the present invention, the plating adhesion is also excellent while exhibiting the above-mentioned characteristics.

めっき平滑性(算術平均粗さ(Ra))は、好ましくは0.65μm以下、より好ましくは0.6μm以下、さらに好ましくは0.5μm以下、よりさらに好ましくは0.4μm以下、とりわけさらに好ましくは0.3μm以下、とりわけよりさらに好ましくは0.2μm以下、特に好ましくは0.1μm以下である。下限は特に制限されず、例えば0.001μm、0.01μmである。 The plating smoothness (arithmetic mean roughness (Ra)) is preferably 0.65 μm or less, more preferably 0.6 μm or less, still more preferably 0.5 μm or less, still more preferably 0.4 μm or less, and particularly more preferably. It is 0.3 μm or less, more preferably 0.2 μm or less, and particularly preferably 0.1 μm or less. The lower limit is not particularly limited, and is, for example, 0.001 μm and 0.01 μm.

めっき平滑性(算術平均粗さ(Ra))は、形状測定レーザマイクロスコープ(キーエンス社製 VK−X100)で測定し、JIS B 0601:2001に基づく算術平均粗さ(Ra)を算出することにより、得られる。 The plating smoothness (arithmetic mean roughness (Ra)) is measured by a shape measurement laser microscope (VK-X100 manufactured by KEYENCE CORPORATION), and the arithmetic mean roughness (Ra) based on JIS B 0601: 2001 is calculated. ,can get.

減膜量は、例えば1μm以下、好ましくは0.5μm以下、より好ましくは0.4μm以下、さらに好ましくは0.3μm以下である。下限は特に制限されず、例えば0.0001、0.001μmである。 The amount of film thinning is, for example, 1 μm or less, preferably 0.5 μm or less, more preferably 0.4 μm or less, still more preferably 0.3 μm or less. The lower limit is not particularly limited, and is, for example, 0.0001 or 0.001 μm.

減膜量は、未処理時の重量とめっき処理後にめっき膜を溶解(例えば無電解ニッケルめっきの場合であれば、62%硝酸500ml/Lで溶解)した後の重量を分析用電子天びん(株式会社エー・アンド・デイ製HR−120)で測り、その重量差、アルミニウムの比重を2.7g/cmとし、減膜量を算出して、得られる。 For the amount of film reduction, the weight before treatment and the weight after dissolving the plating film after plating (for example, in the case of electroless nickel plating, dissolve with 62% nitrate 500 ml / L) are used for analytical electronic balances (stocks). It is obtained by measuring with HR-120) manufactured by A & D Co., Ltd., setting the weight difference and the specific gravity of aluminum to 2.7 g / cm 3, and calculating the amount of film reduction.

以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.

試験例1
めっき前処理として、界面活性剤を含有する酸性表面調整液による処理を行った後、めっき処理を行った。具体的には、A1085板材(鏡面仕上げ)の50mm×100mmに、めっき前処理した後、無電解ニッケルめっきを3μm施工した。実施例及び比較例について、各種性質を評価した。具体的には以下のようにして行った。
Test Example 1
As a pre-plating treatment, a treatment with an acidic surface conditioning liquid containing a surfactant was performed, and then a plating treatment was performed. Specifically, electroless nickel plating was applied to 50 mm × 100 mm of A1085 plate material (mirror finish) by 3 μm after pre-plating. Various properties were evaluated for Examples and Comparative Examples. Specifically, it was carried out as follows.

<試験例1−1.処理工程>
実施例は、以下の表に示す工程で処理した。
<Test Example 1-1. Processing process>
Examples were processed in the steps shown in the table below.

Figure 2020196914
Figure 2020196914

Figure 2020196914
Figure 2020196914

Figure 2020196914
Figure 2020196914

Figure 2020196914
Figure 2020196914

比較例は、以下の表に示す工程で処理した。 The comparative example was processed in the steps shown in the table below.

Figure 2020196914
Figure 2020196914

<試験例1−2.めっき評価>
無電解ニッケルめっき後の各種性質を評価した。
<Test Example 1-2. Plating evaluation>
Various properties after electroless nickel plating were evaluated.

(めっき均一性)
めっきの均一性は、目視評価でムラの有無を評価した。全面同じ光沢具合、さらに光沢良好の場合は◎、全面同じ光沢具合の場合は○、一部光沢ムラがある場合は△、全体に酷いムラがある場合は×とした。
(Plating uniformity)
The uniformity of plating was evaluated by visual evaluation for the presence or absence of unevenness. If the glossiness is the same on the entire surface and the glossiness is good, the glossiness is ⊚, if the glossiness is the same on the entire surface, the glossiness is ○, if there is some uneven glossiness, the result is Δ, and if the entire surface is severely uneven, the image is ×.

(めっき平滑性)
めっき平滑性は、形状測定レーザマイクロスコープ(キーエンス社製 VK−X100)で測定し、JIS B 0601:2001に基づく算術平均粗さ(Ra)で評価した。
(Plating smoothness)
The plating smoothness was measured with a shape measuring laser microscope (VK-X100 manufactured by KEYENCE CORPORATION) and evaluated by an arithmetic mean roughness (Ra) based on JIS B 0601: 2001.

(めっき密着性)
めっき密着性は、90°折り曲げ試験により評価を実施した。めっきと素材の密着性が良好な場合は○、工業的に問題ないが一部剥がれが認められる場合は△、明らかな剥がれが認められる場合は×とした。なお、○及び△を合格の評価とした。
(Plating adhesion)
The plating adhesion was evaluated by a 90 ° bending test. When the adhesion between the plating and the material was good, it was evaluated as ◯, when there was no industrial problem but some peeling was observed, it was evaluated as Δ, and when obvious peeling was observed, it was evaluated as ×. In addition, ○ and △ were evaluated as passing.

<試験例1−3.前処理評価>
(素材表面の濡れ性)
素材表面の濡れ性は、表面調整処理後(実施例)又はデスマット処理後(比較例)に空気中で60秒放置し、十分濡れているか撥水が認められているかを評価した。十分濡れている場合は○、部分的に撥水が認められる場合は△、全体がほぼ撥水している場合には×とした。
<Test Example 1-3. Pretreatment evaluation>
(Wetability of material surface)
The wettability of the surface of the material was evaluated after being left in the air for 60 seconds after the surface adjustment treatment (Example) or the desmat treatment (Comparative Example), and whether it was sufficiently wet or water repellent was observed. When it was sufficiently wet, it was evaluated as ◯, when it was partially water-repellent, it was evaluated as Δ, and when it was almost entirely water-repellent, it was evaluated as ×.

(素材減膜)
亜鉛置換処理の前処理(表面調整処理(実施例)、又はアルカリ脱脂+エッチング+デスマット(比較例)による素材の減膜は、重量法で評価した。前処理前後の重量を分析用電子天びん(株式会社エー・アンド・デイ製HR−120)で測り、その重量差、アルミニウムの比重を2.7g/cmとし、減膜量を算出した。
(Material thinning)
The thinning of the material by the pretreatment of the zinc substitution treatment (surface adjustment treatment (Example) or alkaline degreasing + etching + desmat (Comparative Example) was evaluated by the gravimetric method. The weight before and after the pretreatment was evaluated by the electronic balance for analysis (electronic balance for analysis). It was measured by HR-120) manufactured by A & D Co., Ltd., and the weight difference and the specific gravity of aluminum were set to 2.7 g / cm 3, and the amount of film reduction was calculated.

<試験例1−4.結果>
結果を表6−1及び6−2に示す。アルミニウム材を表面調整液に浸漬することで、素材の減膜を抑制しながらも、従来のエッチングにより濡れ性を得ていた工程よりも、めっきの均一性及び平滑性向上に効果が認められた。
<Test Example 1-4. Result>
The results are shown in Tables 6-1 and 6-2. By immersing the aluminum material in the surface conditioning liquid, it was found that while suppressing the film thinning of the material, it was more effective in improving the uniformity and smoothness of the plating than in the conventional process of obtaining wettability by etching. ..

Figure 2020196914
Figure 2020196914

Figure 2020196914
Figure 2020196914

試験例2
めっき前処理として、酸性亜鉛置換処理を行った後、めっき処理を行った。具体的には、素材にシリコンウェハ上の1μmアルミニウム系スパッタ膜4種((1)Al99.5%<、(2)Al−(0.5〜1%)Si、(3)Al−(0.5〜1%)Cu、(4)Al−(0.5〜1%)Si−(0.5〜1%)Cu)、ニラコ社製 アルミ箔Al99%<、山本鍍金試験器社製 ハルセル陰極アルミニウム板A1085、日本テストパネル社製A1050、A2024、A5052、A6061、A7075板を使用し、めっき前処理した後、無電解ニッケルめっきを3μm施工した。実施例及び比較例について、各種性質を評価した。具体的には以下のようにして行った。
Test Example 2
As a pre-plating treatment, an acidic zinc substitution treatment was performed, and then a plating treatment was performed. Specifically, four types of 1 μm aluminum-based sputtered film on a silicon wafer ((1) Al99.5% <, (2) Al- (0.5 to 1%) Si, (3) Al- (0) are used as materials. .5-1%) Cu, (4) Al- (0.5-1%) Si- (0.5-1%) Cu), Aluminum foil made by Niraco Al99% <, Halsel manufactured by Yamamoto Plating Tester Using a cathode aluminum plate A1085 and A1050, A2024, A5052, A6061 and A7075 plates manufactured by Nippon Test Panel Co., Ltd., after pretreatment for plating, electroless nickel plating was applied for 3 μm. Various properties were evaluated for Examples and Comparative Examples. Specifically, it was carried out as follows.

<試験例2−1.処理工程>
実施例は、以下の表に示す工程で処理した。
<Test Example 2-1. Processing process>
Examples were processed in the steps shown in the table below.

Figure 2020196914
Figure 2020196914

Figure 2020196914
Figure 2020196914

Figure 2020196914
Figure 2020196914

比較例は、上記の表5に示す工程で処理した。 The comparative example was processed in the steps shown in Table 5 above.

<試験例2−2.めっき評価>
(めっき均一性)
試験例1−2と同様。
<Test Example 2-2. Plating evaluation>
(Plating uniformity)
Same as Test Example 1-2.

(めっき平滑性)
試験例1−2と同様。素材ごとに表面凹凸が異なるため、素材の表面粗さも測定。
(Plating smoothness)
Same as Test Example 1-2. Since the surface unevenness is different for each material, the surface roughness of the material is also measured.

(めっき密着性)
試験例1−2と同様。
(Plating adhesion)
Same as Test Example 1-2.

(アルミ素材の減膜)
アルミ箔、アルミ板は、50mm×100mmを使用し、未処理時の重量と無電解ニッケルめっき処理後に62%硝酸500ml/Lにめっき膜を溶解した後の重量を分析用電子天びん(株式会社エー・アンド・デイ製HR−120)で測り、その重量差から、アルミニウムの比重を2.7g/cmとし、減膜量を算出した。スパッタAl系膜は、断面観察により、残存しているスパッタAl系膜の厚みを測定し、1μmからの差を減膜量とした。
(Aluminum material thinning)
50 mm x 100 mm is used for the aluminum foil and aluminum plate, and the weight when untreated and the weight after dissolving the plating film in 62% nitric acid 500 ml / L after electroless nickel plating are analyzed electronic balance (A Co., Ltd.). -Measured with HR-120 manufactured by And Day), and the specific gravity of aluminum was set to 2.7 g / cm 3 from the weight difference, and the amount of film reduction was calculated. For the sputtered Al-based film, the thickness of the remaining sputtered Al-based film was measured by observing the cross section, and the difference from 1 μm was taken as the amount of film reduction.

<試験例2−3.結果>
結果を表11−1及び11−2に示す。酸性亜鉛置換を実施することで、めっきの平滑性が大幅に向上することが分かった。
<Test Example 2-3. Result>
The results are shown in Tables 11-1 and 11-2. It was found that the smoothness of the plating was significantly improved by performing the acid zinc substitution.

Figure 2020196914
Figure 2020196914

Figure 2020196914
Figure 2020196914

試験例3
めっき前処理として、酸性亜鉛置換処理を行った後、アルカリ性亜鉛置換処理し、その後、めっき処理を行った。実施例及び比較例について、各種性質を評価した。具体的には、第2亜鉛置換において以下のアルカリ亜鉛置換液を使用する以外は、試験例2の実施例と同様にして行った。
Test Example 3
As a pre-plating treatment, an acidic zinc replacement treatment was performed, an alkaline zinc replacement treatment was performed, and then a plating treatment was performed. Various properties were evaluated for Examples and Comparative Examples. Specifically, it was carried out in the same manner as in the example of Test Example 2 except that the following alkaline zinc substitution solution was used in the second zinc substitution.

Figure 2020196914
Figure 2020196914

結果を表12に示す。酸性亜鉛置換後にアルカリ亜鉛置換を実施することで、密着性がさらに向上することが分かった。 The results are shown in Table 12. It was found that the adhesion was further improved by performing alkali zinc substitution after acid zinc substitution.

Figure 2020196914
Figure 2020196914

試験例4
めっき前処理として、酸性亜鉛置換処理を行った後、アルカリ性亜鉛置換処理し、その後、めっき処理を行った。実施例及び参考例について、めっき均一性を試験例1と同様にして評価した。処理は、表13に示す工程で行った。また、条件及び結果を表14−1及び表14−2に示す。
Test Example 4
As a pre-plating treatment, an acidic zinc replacement treatment was performed, an alkaline zinc replacement treatment was performed, and then a plating treatment was performed. The plating uniformity of Examples and Reference Examples was evaluated in the same manner as in Test Example 1. The treatment was carried out in the steps shown in Table 13. The conditions and results are shown in Table 14-1 and Table 14-2.

酸性亜鉛置換後のアルカリ亜鉛置換を、低濃度亜鉛アルカリ亜鉛置換処理液で行うことにより、めっき均一性をより向上することが分かった。 It was found that the plating uniformity was further improved by performing the alkali-zinc substitution after the acid-zinc substitution with a low-concentration zinc-alkali-zinc substitution treatment solution.

Figure 2020196914
Figure 2020196914

Figure 2020196914
Figure 2020196914

Figure 2020196914
Figure 2020196914

Claims (17)

(工程1)界面活性剤を含有する酸性表面調整液でアルミニウム材を処理する工程、及び/又は
(工程2)アルミニウム材を、酸性亜鉛置換処理液で処理した後、アルカリ性亜鉛置換処理液で処理する工程、
を含む、アルミニウム材のめっき前処理方法。
(Step 1) A step of treating the aluminum material with an acidic surface conditioning liquid containing a surfactant and / or (Step 2) Treating the aluminum material with an acidic zinc replacement treatment liquid and then with an alkaline zinc replacement treatment liquid. Process to do,
A pretreatment method for plating aluminum materials, including.
前記工程1の後に前記工程2が行われる、請求項1に記載のめっき前処理方法。 The plating pretreatment method according to claim 1, wherein the step 2 is performed after the step 1. 前記界面活性剤がノニオン系界面活性剤である、請求項1又は2に記載の前処理方法。 The pretreatment method according to claim 1 or 2, wherein the surfactant is a nonionic surfactant. 前記酸性表面調整液のpHが4以下である、請求項1〜3のいずれかに記載の前処理方法。 The pretreatment method according to any one of claims 1 to 3, wherein the pH of the acidic surface adjusting solution is 4 or less. 前記酸性亜鉛置換処理液が亜鉛化合物及びフッ素化合物を含有する、請求項1〜4のいずれかに記載の前処理方法。 The pretreatment method according to any one of claims 1 to 4, wherein the acidic zinc substitution treatment liquid contains a zinc compound and a fluorine compound. 前記酸性亜鉛置換処理液が水溶性ノニオン界面活性剤、並びに鉄、ニッケル、銅、銀、パラジウム、鉛、ビスマス、及びタリウムからなる群より選択される少なくとも1種の金属の水溶性塩類からなる群より選択される少なくとも1種の成分を含有する、請求項1〜5のいずれかに記載の前処理方法。 The group consisting of a water-soluble nonionic surfactant and a water-soluble salt of at least one metal selected from the group consisting of iron, nickel, copper, silver, palladium, lead, bismuth, and thallium. The pretreatment method according to any one of claims 1 to 5, which contains at least one component selected from the above. 前記酸性亜鉛置換処理液のpHが1〜7である、請求項1〜6のいずれかに記載の前処理方法。 The pretreatment method according to any one of claims 1 to 6, wherein the pH of the acidic zinc substitution treatment liquid is 1 to 7. エッチング処理及び/又はデスマット処理を含まない、請求項1〜7のいずれかに記載の前処理方法。 The pretreatment method according to any one of claims 1 to 7, which does not include an etching treatment and / or a desmat treatment. 前記アルカリ性亜鉛置換処理液における亜鉛イオン源濃度が12g/L以下である、請求項1〜8のいずれかに記載の前処理方法。 The pretreatment method according to any one of claims 1 to 8, wherein the zinc ion source concentration in the alkaline zinc replacement treatment liquid is 12 g / L or less. 請求項1〜9のいずれかに記載のめっき前処理方法により得られる、めっき処理用アルミニウム材。 An aluminum material for plating treatment obtained by the plating pretreatment method according to any one of claims 1 to 9. 請求項10に記載のめっき処理用アルミニウム材をめっき処理する工程を含む、アルミニウム材のめっき方法。 A method for plating an aluminum material, which comprises the step of plating the aluminum material for plating according to claim 10. 前記めっき処理が無電解ニッケルめっき処理である、請求項11に記載のめっき方法。 The plating method according to claim 11, wherein the plating treatment is an electroless nickel plating treatment. 前記アルミニウム材が、非アルミニウム材上にアルミニウム又はアルミニウム合金皮膜が形成されてなる物品である、請求項11又は12に記載のめっき方法。 The plating method according to claim 11 or 12, wherein the aluminum material is an article in which an aluminum or aluminum alloy film is formed on a non-aluminum material. 請求項11〜13のいずれかに記載のめっき方法により得られる、アルミニウム材めっき物。 An aluminum plated product obtained by the plating method according to any one of claims 11 to 13. 界面活性剤を含有し且つ酸性である、アルミニウム材のめっき前処理液。 A pretreatment liquid for plating aluminum materials that contains a surfactant and is acidic. 請求項1〜9のいずれかに記載の前処理方法に用いるための、請求項15に記載のめっき前処理液。 The plating pretreatment liquid according to claim 15, for use in the pretreatment method according to any one of claims 1 to 9. 亜鉛化合物及びフッ素化合物を含有し且つ酸性である、請求項1〜9のいずれかに記載の前処理方法に用いるための亜鉛置換処理液。 A zinc substitution treatment solution for use in the pretreatment method according to any one of claims 1 to 9, which contains a zinc compound and a fluorine compound and is acidic.
JP2019102591A 2019-05-31 2019-05-31 Plating pretreatment method Pending JP2020196914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102591A JP2020196914A (en) 2019-05-31 2019-05-31 Plating pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102591A JP2020196914A (en) 2019-05-31 2019-05-31 Plating pretreatment method

Publications (1)

Publication Number Publication Date
JP2020196914A true JP2020196914A (en) 2020-12-10

Family

ID=73649796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102591A Pending JP2020196914A (en) 2019-05-31 2019-05-31 Plating pretreatment method

Country Status (1)

Country Link
JP (1) JP2020196914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4177376A1 (en) 2021-11-08 2023-05-10 C. Uyemura & Co., Ltd. Metal displacement solution and corresponding method for surface treatment of aluminum or aluminum alloy
EP4293136A1 (en) * 2022-06-16 2023-12-20 C. Uyemura & Co., Ltd. Etchant and method of surface treatment of aluminum or aluminum alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256864A (en) * 1999-03-05 2000-09-19 Okuno Chem Ind Co Ltd Zinc substitution method for aluminum or aluminum alloy surface, substitution solution therefor and aluminum or aluminum alloy having zinc substitution film
JP2001316831A (en) * 2000-05-02 2001-11-16 Meltex Inc Treating agent for zinc immersion coating
JP2010047802A (en) * 2008-08-21 2010-03-04 C Uyemura & Co Ltd Surface treatment method for aluminum or aluminum alloy
JP2011105977A (en) * 2009-11-13 2011-06-02 Tosoh Corp Zinc-plating solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256864A (en) * 1999-03-05 2000-09-19 Okuno Chem Ind Co Ltd Zinc substitution method for aluminum or aluminum alloy surface, substitution solution therefor and aluminum or aluminum alloy having zinc substitution film
JP2001316831A (en) * 2000-05-02 2001-11-16 Meltex Inc Treating agent for zinc immersion coating
JP2010047802A (en) * 2008-08-21 2010-03-04 C Uyemura & Co Ltd Surface treatment method for aluminum or aluminum alloy
JP2011105977A (en) * 2009-11-13 2011-06-02 Tosoh Corp Zinc-plating solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4177376A1 (en) 2021-11-08 2023-05-10 C. Uyemura & Co., Ltd. Metal displacement solution and corresponding method for surface treatment of aluminum or aluminum alloy
KR20230067550A (en) 2021-11-08 2023-05-16 우에무라 고교 가부시키가이샤 Metal displacement solution, method for surface treatment of aluminum or aluminum alloy
EP4293136A1 (en) * 2022-06-16 2023-12-20 C. Uyemura & Co., Ltd. Etchant and method of surface treatment of aluminum or aluminum alloy

Similar Documents

Publication Publication Date Title
US9039882B2 (en) Metal material with a bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same
US3032436A (en) Method and composition for plating by chemical reduction
EP2494094B1 (en) Immersion tin silver plating in electronics manufacture
CN1416478A (en) Surface treated Tin-plated steel sheet and chemical treatment solution
JP2004124261A (en) Electroless precipitation method for metal
TWI548782B (en) Cyanide-free acidic matte silver electroplating compositions and methods
JPH06128757A (en) Zincate solution improved to process aluminum and aluminum alloy and its processing method
JP2020196914A (en) Plating pretreatment method
US20090286104A1 (en) Multi-layered nickel-phosphorous coatings and processes for forming the same
US20070175359A1 (en) Electroless gold plating solution and method
JP2022141949A (en) Controlled method for depositing chromium layer or chromium alloy layer on at least one substrate
WO2009139384A1 (en) Copper‑zinc alloy electroplating bath and plating method using same
US5578187A (en) Plating process for electroless nickel on zinc die castings
JP2000256864A (en) Zinc substitution method for aluminum or aluminum alloy surface, substitution solution therefor and aluminum or aluminum alloy having zinc substitution film
JP6547232B2 (en) Plating solution and method of producing plated product
US8936672B1 (en) Polishing and electroless nickel compositions, kits, and methods
JPH0734254A (en) Electroless plating method to aluminum material
IT9067773A1 (en) METHOD FOR PREPARING ALUMINUM MEMORY DISCS WITH A SMOOTH PLATED FINISH
KR101365661B1 (en) ELECTROLESS Ni-P PLATING SOLUTION AND PLATING METHOD USING THE SAME
Tikhonov Metallization of aluminum alloys with electrodeposition by rubbing
JP2023069841A (en) Metal replacement process liquid, surface treatment method for aluminum or aluminum alloy
JP6168826B2 (en) Steel with Mn layer
JP2011099126A (en) Trivalent chromium plating bath
JPH11302570A (en) Production of antimicrobial coating film
WO2010089840A1 (en) Product having gadolinium-containing metal layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328