JP2023069841A - Metal replacement process liquid, surface treatment method for aluminum or aluminum alloy - Google Patents

Metal replacement process liquid, surface treatment method for aluminum or aluminum alloy Download PDF

Info

Publication number
JP2023069841A
JP2023069841A JP2021182009A JP2021182009A JP2023069841A JP 2023069841 A JP2023069841 A JP 2023069841A JP 2021182009 A JP2021182009 A JP 2021182009A JP 2021182009 A JP2021182009 A JP 2021182009A JP 2023069841 A JP2023069841 A JP 2023069841A
Authority
JP
Japan
Prior art keywords
aluminum
metal
compound
plating
treatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021182009A
Other languages
Japanese (ja)
Inventor
拓摩 前川
Takuma Maekawa
克久 田邉
Katsuhisa Tanabe
小百合 田中
Sayuri Tanaka
文徳 柴山
Fuminori Shibayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
C Uyemura and Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
C Uyemura and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd, C Uyemura and Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP2021182009A priority Critical patent/JP2023069841A/en
Priority to CN202210500745.9A priority patent/CN114807918A/en
Priority to TW111140222A priority patent/TW202336272A/en
Priority to EP22204326.7A priority patent/EP4177376A1/en
Priority to US18/052,569 priority patent/US20230151493A1/en
Priority to KR1020220147573A priority patent/KR20230067550A/en
Publication of JP2023069841A publication Critical patent/JP2023069841A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1831Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1841Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/12Light metals
    • C23G1/125Light metals aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium

Abstract

To provide a metal replacement process liquid which provides excellent adhesion with a plating film (metallic film), and a surface treatment method for aluminum or aluminum alloy using the metal replacement process liquid.SOLUTION: A metal replacement process liquid includes a zinc compound, a nickel compound, a germanium compound, and a fluorine compound.SELECTED DRAWING: Figure 2

Description

本発明は、金属置換処理液、アルミニウム又はアルミニウム合金の表面処理方法に関する。 The present invention relates to a metal displacement treatment liquid and a method for surface treatment of aluminum or aluminum alloys.

アルミニウムは大気中、水中で容易に酸化膜を形成する。この酸化膜に起因し、アルミニウム又はアルミニウム合金にめっき処理を施す際に、めっき皮膜の密着性が低いことが知られている。そのため、めっき処理に先立って、アルミニウム又はアルミニウム合金表面の酸化被膜を除去しアルミニウム上に形成されるめっき皮膜との密着性を確保する目的で亜鉛置換処理(ジンケート処理)工程が行われている(例えば、特許文献1~3、非特許文献1~3)。 Aluminum easily forms an oxide film in air and water. It is known that due to this oxide film, the adhesion of the plating film is low when plating aluminum or an aluminum alloy. Therefore, prior to plating, a zincate treatment is performed for the purpose of removing the oxide film on the surface of aluminum or aluminum alloy and ensuring adhesion with the plating film formed on aluminum ( For example, Patent Documents 1 to 3, Non-Patent Documents 1 to 3).

特開2000-256864号公報JP-A-2000-256864 特開2020-196914号公報JP 2020-196914 A 特開2009-127101号公報JP 2009-127101 A

表面技術 Vol.64(2013), No.12, p.645-649Surface Technology Vol. 64 (2013), No. 12, p. 645-649 表面技術 Vol.66(2015), No.12, p.658-665Surface Technology Vol. 66 (2015), No. 12, p. 658-665 表面技術 Vol.47(1996), No.9 , p.802-807Surface Technology Vol. 47 (1996), No. 9, p. 802-807

本発明者らが鋭意検討した結果、従来の技術では、めっき皮膜との密着性について改善の余地があることが判明した。 As a result of intensive studies by the present inventors, it has been found that there is room for improvement in the adhesion to the plating film in the conventional technique.

本発明は、本発明者らが新たに見出した前記課題を解決し、めっき皮膜(金属皮膜)との良好な密着性を付与できる金属置換処理液、該金属置換処理液を用いたアルミニウム又はアルミニウム合金の表面処理方法を提供することを目的とする。 The present invention solves the problems newly found by the present inventors, and provides a metal replacement treatment solution capable of imparting good adhesion to a plating film (metal film), aluminum using the metal replacement treatment solution, or aluminum It is an object of the present invention to provide a surface treatment method for alloys.

本発明者らは、鋭意検討した結果、特定の組成の金属置換処理液を用いることにより、めっき皮膜(金属皮膜)との良好な密着性を付与できることを見出し、本発明を完成した。
すなわち、本発明は、亜鉛化合物、ニッケル化合物、ゲルマニウム化合物、フッ素化合物を含む金属置換処理液に関する。
As a result of intensive studies, the present inventors have found that good adhesion to a plating film (metal film) can be imparted by using a metal displacement treatment solution having a specific composition, and have completed the present invention.
That is, the present invention relates to a metal replacement processing solution containing a zinc compound, a nickel compound, a germanium compound and a fluorine compound.

前記金属置換処理液は、亜鉛化合物を亜鉛濃度として0.2~5.0g/L含むことが好ましい。 The metal substitution treatment liquid preferably contains a zinc compound at a zinc concentration of 0.2 to 5.0 g/L.

前記金属置換処理液は、ニッケル化合物をニッケル濃度として0.2~10g/L含むことが好ましい。 The metal substitution treatment liquid preferably contains a nickel compound at a nickel concentration of 0.2 to 10 g/L.

前記金属置換処理液は、ゲルマニウム化合物をゲルマニウム濃度として0.2~5.0g/L含むことが好ましい。 The metal substitution treatment liquid preferably contains a germanium compound at a germanium concentration of 0.2 to 5.0 g/L.

前記金属置換処理液は、フッ素化合物をフッ素濃度として5.0~50g/L含むことが好ましい。 The metal substitution treatment liquid preferably contains a fluorine compound at a fluorine concentration of 5.0 to 50 g/L.

前記金属置換処理液は、亜鉛濃度、ゲルマニウム濃度の比率が1:5~5:1であることが好ましい。 The metal substitution treatment liquid preferably has a ratio of zinc concentration to germanium concentration of 1:5 to 5:1.

前記金属置換処理液は、pHが4.0~6.5であることが好ましい。 The metal substitution treatment liquid preferably has a pH of 4.0 to 6.5.

前記金属置換処理液は、アルミニウム又はアルミニウム合金用であることが好ましい。 The metal replacement treatment liquid is preferably for aluminum or an aluminum alloy.

本発明はまた、アルミニウム又はアルミニウム合金を表面に有する被処理物を、前記金属置換処理液に接触させ、前記アルミニウム又はアルミニウム合金上の酸化皮膜を除去し、前記アルミニウムを前記金属置換処理液に含有される金属に置換させる金属置換処理を行い、前記被処理物の表面に前記金属を含む置換金属皮膜を形成するアルミニウム又はアルミニウム合金の表面処理方法に関する。 In the present invention, an object to be treated having aluminum or an aluminum alloy on its surface is brought into contact with the metal replacement treatment liquid to remove the oxide film on the aluminum or aluminum alloy, and the aluminum is contained in the metal replacement treatment liquid. The present invention relates to a method for surface treatment of aluminum or an aluminum alloy, comprising performing a metal substitution treatment for substituting a metal to be treated to form a substitution metal film containing the metal on the surface of the object to be treated.

前記置換金属皮膜を形成した後、該置換金属皮膜表面にめっき皮膜を形成することが好ましい。 After forming the substitution metal film, it is preferable to form a plating film on the surface of the substitution metal film.

本発明によれば、亜鉛化合物、ニッケル化合物、ゲルマニウム化合物、フッ素化合物を含む金属置換処理液であるので、めっき皮膜(金属皮膜)との良好な密着性を付与できる。 According to the present invention, since the metal displacement treatment liquid contains a zinc compound, a nickel compound, a germanium compound, and a fluorine compound, good adhesion to the plating film (metal film) can be imparted.

折り割り試験の概要を示す模式図である。It is a schematic diagram which shows the outline|summary of a folding-splitting test. (a)Alスパイクが見られない場合の一例を示す写真である。(b)Alスパイクが見られる場合の一例を示す写真である。(a) is a photograph showing an example when Al spikes are not seen. (b) A photograph showing an example in which Al spikes are observed.

本発明の金属置換処理液は、亜鉛化合物、ニッケル化合物、ゲルマニウム化合物、フッ素化合物を含む。これにより、めっき皮膜(金属皮膜)との良好な密着性を付与できる。 The metal substitution treatment liquid of the present invention contains a zinc compound, a nickel compound, a germanium compound and a fluorine compound. This makes it possible to impart good adhesion to the plating film (metal film).

前記金属置換処理液で前述の効果が得られる理由は、以下のように推察される。
アルミニウム又はアルミニウム合金を表面に有する被処理物を、前記金属置換処理液に接触させ、前記アルミニウム又はアルミニウム合金上の酸化皮膜を除去し、前記アルミニウムを前記金属置換処理液に含有される金属に置換させる金属置換処理を行うことにより、亜鉛(Zn)と共に、ニッケル(Ni)、ゲルマニウム(Ge)が共析し、Zn、Ni、Geを含有する置換金属皮膜をアルミニウム又はアルミニウム合金表面に形成できる。
このようなZn、Ni、Geを含有する置換金属皮膜を表面に有するアルミニウム又はアルミニウム合金にめっき処理を行い、めっき皮膜(金属皮膜、例えば、ニッケル皮膜)を形成すると、アルミニウム又はアルミニウム合金と、めっき皮膜(金属皮膜、例えば、ニッケル皮膜)間で、置換金属皮膜中に存在するZn、Ni、Geが相乗的に作用することとなり、アルミニウム又はアルミニウム合金に、めっき皮膜(金属皮膜)との良好な密着性を付与できる。
Zn、Ni、Geが相乗的に作用していることは、Zn、Ni、Ge単独の場合、Zn、Niの組み合わせ(Geなし)の場合、Zn、Geの組み合わせ(Niなし)の場合、Ni、Geの組み合わせ(Znなし)の場合では、めっき皮膜(金属皮膜)との良好な密着性を付与できないことから明らかである。
The reason why the above-mentioned effects are obtained with the metal-substitution treatment liquid is presumed as follows.
An object to be treated having aluminum or an aluminum alloy on its surface is brought into contact with the metal replacement treatment liquid to remove the oxide film on the aluminum or aluminum alloy and replace the aluminum with the metal contained in the metal replacement treatment liquid. Nickel (Ni) and germanium (Ge) co-deposit together with zinc (Zn) by performing a metal substitution treatment to form a substitution metal film containing Zn, Ni and Ge on the aluminum or aluminum alloy surface.
When a plating film (a metal film, for example, a nickel film) is formed by performing a plating treatment on aluminum or an aluminum alloy having such a substitution metal film containing Zn, Ni, and Ge on the surface, aluminum or an aluminum alloy and plating Between films (metal films, for example, nickel films), Zn, Ni, and Ge present in the substituted metal film act synergistically, so that aluminum or aluminum alloys have a good relationship with the plating film (metal film). Adhesion can be imparted.
The fact that Zn, Ni, and Ge act synergistically is that Zn, Ni, and Ge alone; , and Ge (without Zn) cannot provide good adhesion to the plating film (metal film).

<金属置換処理液>
本発明の金属置換処理液は、亜鉛化合物、ニッケル化合物、ゲルマニウム化合物、フッ素化合物を含む。
<Metal replacement treatment liquid>
The metal substitution treatment liquid of the present invention contains a zinc compound, a nickel compound, a germanium compound and a fluorine compound.

<<亜鉛化合物>>
亜鉛化合物は、水溶性の亜鉛化合物であれば特に限定されない。その具体例としては、例えば、硫酸亜鉛、硝酸亜鉛、塩化亜鉛、酢酸亜鉛、酸化亜鉛、グルコン酸亜鉛等を例示できる。これらは単独で用いてもよく、2種以上を併用してもよい。なかでも、硫酸亜鉛が好ましい。
<<Zinc compound>>
The zinc compound is not particularly limited as long as it is a water-soluble zinc compound. Specific examples thereof include zinc sulfate, zinc nitrate, zinc chloride, zinc acetate, zinc oxide, and zinc gluconate. These may be used alone or in combination of two or more. Among them, zinc sulfate is preferred.

金属置換処理液は、亜鉛化合物を亜鉛(金属亜鉛(Zn))濃度として0.1~7.0g/L含むことが好ましく、0.2~5.0g/L含むことがより好ましく、0.2~4.0g/L含むことが更に好ましい。0.1g/L未満では、Zn析出量が少なく充分な密着性が確保できない傾向がある。7.0g/L超では、Znの析出量が過剰となり充分な密着性が確保できない傾向がある。 The metal substitution treatment liquid preferably contains a zinc compound (zinc metal (Zn)) at a concentration of 0.1 to 7.0 g/L, more preferably 0.2 to 5.0 g/L. More preferably, it contains 2 to 4.0 g/L. If it is less than 0.1 g/L, there is a tendency that the amount of Zn precipitated is small and sufficient adhesion cannot be ensured. If it exceeds 7.0 g/L, the amount of precipitated Zn tends to be excessive and sufficient adhesion cannot be ensured.

<<ニッケル化合物>>
ニッケル化合物は、水溶性のニッケル化合物であれば特に限定されない。その具体例としては、例えば、硫酸ニッケル、硝酸ニッケル、塩化ニッケル、酢酸ニッケル、グルコン酸ニッケル等を例示できる。これらは単独で用いてもよく、2種以上を併用してもよい。なかでも、硫酸ニッケルが好ましい。
<<Nickel compound>>
The nickel compound is not particularly limited as long as it is a water-soluble nickel compound. Specific examples thereof include nickel sulfate, nickel nitrate, nickel chloride, nickel acetate, and nickel gluconate. These may be used alone or in combination of two or more. Among them, nickel sulfate is preferred.

金属置換処理液は、ニッケル化合物をニッケル(金属ニッケル(Ni))濃度として0.1~12g/L含むことが好ましく、0.2~10g/L含むことがより好ましい。0.1g/L未満では、Znとの共析量が低下し充分な密着性が確保できない傾向がある。12g/L超では、Znとの共析量が過剰となり充分な密着性が確保できない傾向がある。 The metal replacement treatment liquid preferably contains a nickel compound at a nickel (metallic nickel (Ni)) concentration of 0.1 to 12 g/L, more preferably 0.2 to 10 g/L. If it is less than 0.1 g/L, the amount of co-precipitation with Zn tends to decrease and sufficient adhesion cannot be ensured. If it exceeds 12 g/L, the amount of eutectoid with Zn becomes excessive and there is a tendency that sufficient adhesion cannot be ensured.

<<ゲルマニウム化合物>>
ゲルマニウム化合物は、水溶性のゲルマニウム化合物であれば特に限定されない。その具体例としては、例えば、二酸化ゲルマニウム、硫酸ゲルマニウム、硫化ゲルマニウム、フッ化ゲルマニウム、塩化ゲルマニウム、ヨウ化ゲルマニウム等を例示できる。これらは単独で用いてもよく、2種以上を併用してもよい。なかでも、二酸化ゲルマニウムが好ましい。
なお、本明細書において、フッ化ゲルマニウムなど、ゲルマニウム化合物にもフッ素化合物にも該当する場合、ゲルマニウム化合物として扱う。亜鉛化合物、ニッケル化合物についても同様の場合、同様に、亜鉛化合物、ニッケル化合物として扱う。
<<Germanium compound>>
The germanium compound is not particularly limited as long as it is a water-soluble germanium compound. Specific examples include germanium dioxide, germanium sulfate, germanium sulfide, germanium fluoride, germanium chloride, and germanium iodide. These may be used alone or in combination of two or more. Among them, germanium dioxide is preferable.
In this specification, germanium compounds and fluorine compounds, such as germanium fluoride, are handled as germanium compounds. Zinc compounds and nickel compounds are similarly treated as zinc compounds and nickel compounds in the same case.

金属置換処理液は、ゲルマニウム化合物をゲルマニウム(金属ゲルマニウム(Ge))濃度として0.1~7.0g/L含むことが好ましく、0.2~5.0g/L含むことがより好ましい。0.1g/L未満では、Znとの共析量が低下し充分な密着性が確保できない傾向がある。7.0g/L超では、Znとの共析量が過剰となり充分な密着性が確保できない傾向がある。 The metal substitution treatment liquid preferably contains a germanium compound at a germanium (metal germanium (Ge)) concentration of 0.1 to 7.0 g/L, more preferably 0.2 to 5.0 g/L. If it is less than 0.1 g/L, the amount of co-precipitation with Zn tends to decrease and sufficient adhesion cannot be ensured. If it exceeds 7.0 g/L, the amount of eutectoid with Zn becomes excessive and there is a tendency that sufficient adhesion cannot be ensured.

亜鉛濃度、ゲルマニウム濃度の比率(亜鉛濃度:ゲルマニウム濃度)は、1:5~5:1であることが好ましい。 The ratio of zinc concentration to germanium concentration (zinc concentration:germanium concentration) is preferably 1:5 to 5:1.

<<フッ素化合物>>
フッ素化合物は、アルミニウム又はアルミニウム合金表面の酸化被膜中のアルミニウムを溶解して、亜鉛などの金属との置換をスムーズに進行させる。
フッ素化合物の具体例としては、例えば、ホウフッ化水素酸、フッ化ナトリウム、フッ化カリウム、フッ化水素アンモニウム、フッ化アンモニウム、フッ化水素、フッ化リチウム等を例示できる。これらは単独で用いてもよく、2種以上を併用してもよい。なかでも、ホウフッ化水素酸、フッ化ナトリウム、フッ化カリウム、フッ化水素アンモニウム、フッ化アンモニウム、フッ化水素が好ましく、ホウフッ化水素酸、フッ化ナトリウム、フッ化カリウム、フッ化水素アンモニウム、フッ化アンモニウムがより好ましい。
<<fluorine compound>>
A fluorine compound dissolves aluminum in an oxide film on the surface of aluminum or an aluminum alloy, and smoothly progresses substitution with a metal such as zinc.
Specific examples of fluorine compounds include hydroboric acid, sodium fluoride, potassium fluoride, ammonium hydrogen fluoride, ammonium fluoride, hydrogen fluoride, and lithium fluoride. These may be used alone or in combination of two or more. Among these, preferred are fluoroboric acid, sodium fluoride, potassium fluoride, ammonium hydrogen fluoride, ammonium fluoride and hydrogen fluoride. ammonium chloride is more preferred.

金属置換処理液は、フッ素化合物をフッ素(F)濃度として1.0~100g/L含むことが好ましく、5.0~50g/L含むことがより好ましい。1.0g/L未満では、アルミニウムを溶解させる作用が弱くなり充分な密着性が確保できない傾向がある。100g/L超では、 アルミニウムが過剰に溶解して充分な密着性が確保できない傾向がある。
なお、本明細書において、金属置換処理液中の、亜鉛(金属亜鉛(Zn))濃度、ニッケル(金属ニッケル(Ni))濃度、ゲルマニウム(金属ゲルマニウム(Ge))濃度は、ICP(堀場製作所社製)により測定される。
また、本明細書において、金属置換処理液中のフッ素(F)濃度は、フッ素イオン電極を用いて測定される。
The metal substitution treatment liquid preferably contains a fluorine compound at a fluorine (F) concentration of 1.0 to 100 g/L, more preferably 5.0 to 50 g/L. If it is less than 1.0 g/L, the action of dissolving aluminum tends to be weak and sufficient adhesion cannot be ensured. If it exceeds 100 g/L, there is a tendency that aluminum is excessively dissolved and sufficient adhesion cannot be ensured.
In this specification, the zinc (metallic zinc (Zn)) concentration, nickel (metallic nickel (Ni)) concentration, and germanium (metallic germanium (Ge)) concentration in the metal replacement treatment solution are defined as ICP (Horiba Ltd.) manufactured by).
Further, in this specification, the fluorine (F) concentration in the metal substitution treatment liquid is measured using a fluorine ion electrode.

<<pH>>
金属置換処理液のpHは、好ましくは1.0~12.0、より好ましくは2.0~10.0である。すなわち、本発明の金属置換処理液は、アルカリ性、酸性のいずれにおいても使用可能である。ここで、通常のジンケート処理では、アルカリ性の場合、アルミニウムが過剰に溶出することがあり(例えば、非特許文献3の図9)、アルミニウムスパイクが生じる傾向があり、酸性の場合は、アルミニウムが過剰に溶出することがないものの、充分な密着性が確保できない傾向がある。
一方、本発明の金属置換処理液は、酸性の場合であっても、充分な密着性が確保できるもので、酸性で用いることにより、より顕著な密着性の改善効果が得られる。更には、酸性の場合、アルミニウムが過剰に溶出することがなく、アルミニウムスパイクも低減できる。ただし、pHが3.5未満になると、アルミニウムが過剰に溶出するおそれもある。
そのため、金属置換処理液のpHは、更に好ましくは3.5~6.5、特に好ましくは4.0~6.5、最も好ましくは4.5~6.5である。これにより、前記の通り、より顕著な密着性の改善効果が得られると共に、アルミニウムが過剰に溶出することがなく、アルミニウムスパイクも低減できる。ここで、アルミニウムが過剰に溶出され、アルミニウムスパイクが生じると、アルミニウム表面に多数のくさび状の凹みが生じてしまい、その後のめっき皮膜形成工程において、例えばニッケルめっきがその凹みに入り込み、平滑性の乏しいめっき皮膜が形成されてしまい、導通性にも影響をもたらし、外観も大きく損なわれる。よって、アルミニウムスパイクの低減により、平滑性が高く、めっき外観の優れためっき皮膜を形成できる。
なお、本明細書において、金属置換処理液のpHは、25℃において測定される値である。
<<pH>>
The pH of the metal substitution treatment solution is preferably 1.0 to 12.0, more preferably 2.0 to 10.0. That is, the metal substitution treatment liquid of the present invention can be used in either alkaline or acidic conditions. Here, in the normal zincate treatment, when alkaline, aluminum may be excessively eluted (for example, FIG. 9 of Non-Patent Document 3), and aluminum spikes tend to occur, and when acidic, aluminum is excessive. However, there is a tendency that sufficient adhesion cannot be secured.
On the other hand, the metal substitution treatment liquid of the present invention can ensure sufficient adhesion even in the case of acidity, and by using it in acidity, a more remarkable effect of improving adhesion can be obtained. Furthermore, in the case of acidity, excessive elution of aluminum does not occur, and aluminum spikes can also be reduced. However, if the pH is less than 3.5, aluminum may be excessively eluted.
Therefore, the pH of the metal substitution treatment solution is more preferably 3.5 to 6.5, particularly preferably 4.0 to 6.5, and most preferably 4.5 to 6.5. As a result, as described above, a more remarkable effect of improving adhesion can be obtained, aluminum can be prevented from being excessively eluted, and aluminum spikes can be reduced. Here, when aluminum is excessively eluted and aluminum spikes are generated, a large number of wedge-shaped dents are formed on the aluminum surface. A poor plating film is formed, which affects the conductivity and greatly impairs the appearance. Therefore, by reducing aluminum spikes, it is possible to form a plated film with high smoothness and excellent plating appearance.
In addition, in this specification, the pH of the metal substitution treatment liquid is a value measured at 25°C.

金属置換処理液のpHの調整は、亜鉛化合物、ニッケル化合物、ゲルマニウム化合物、フッ素化合物の種類の選択により行なうこともできる。また必要に応じて、アルカリ成分、酸成分を添加してもよい。
アルカリ成分は、特に限定されるものではないが、例えば、水酸化ナトリウム、アンモニウム等が挙げられる。酸成分は、特に限定されるものではないが、例えば、硫酸、リン酸等が挙げられる。これらアルカリ成分、酸成分は単独で用いてもよく、2種以上を併用してもよい。
The pH of the metal substitution treatment solution can also be adjusted by selecting the type of zinc compound, nickel compound, germanium compound, and fluorine compound. Moreover, you may add an alkali component and an acid component as needed.
Alkaline components are not particularly limited, but examples include sodium hydroxide, ammonium hydroxide, and the like. Examples of the acid component include, but are not limited to, sulfuric acid, phosphoric acid, and the like. These alkaline components and acid components may be used alone, or two or more of them may be used in combination.

金属置換処理液は、pH緩衝性を高めるために、緩衝剤を含有してもよい。
緩衝剤としては、緩衝性があれば特に限定されず、例えば、pH4.0~6.5付近に緩衝性がある化合物としては、例えば、酢酸、リンゴ酸、コハク酸、クエン酸、マロン酸、乳酸、シュウ酸、グルタル酸、アジピン酸、ギ酸等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
金属置換処理液中の緩衝剤濃度は、好ましくは1.0~50g/L、より好ましくは5.0~30g/Lである。
The metal-displacement treatment liquid may contain a buffering agent in order to enhance pH buffering properties.
The buffering agent is not particularly limited as long as it has a buffering property. Lactic acid, oxalic acid, glutaric acid, adipic acid, formic acid and the like. These may be used alone or in combination of two or more.
The concentration of the buffering agent in the metal replacement treatment solution is preferably 1.0-50 g/L, more preferably 5.0-30 g/L.

<<その他>>
金属置換処理液は、前記成分と共に、金属置換処理液に汎用されている成分、例えば、界面活性剤、光沢剤等を含有してもよい。また、上記以外の金属、例えば、鉄、銅、銀、パラジウム、鉛、ビスマス、タリウム等の金属の水溶性塩類を含有してもよい。これらは単独で用いてもよく、2種以上を併用してもよい。
<<Others>>
The metal-replacement treatment liquid may contain, together with the above components, components commonly used in metal-replacement treatment liquids, such as surfactants and brighteners. Moreover, water-soluble salts of metals other than the above, such as iron, copper, silver, palladium, lead, bismuth, and thallium, may be contained. These may be used alone or in combination of two or more.

金属置換処理液は、溶媒(好ましくは水)を用いて、各成分を適宜混合することにより製造することができる。金属置換処理液は、操作の安全性の観点から水溶液として調製されることが好ましいが、その他の溶媒、例えばメタノール、エタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、IPA等を用いたり、水との混合溶媒とすることも可能である。なお、これらの溶媒は単独で用いてもよく、2種以上を併用してもよい。 The metal substitution treatment liquid can be produced by appropriately mixing each component using a solvent (preferably water). The metal-substitution treatment liquid is preferably prepared as an aqueous solution from the viewpoint of operational safety. It is also possible to use a mixed solvent with These solvents may be used alone, or two or more of them may be used in combination.

金属置換処理液は、アルミニウム又はアルミニウム合金用の金属置換処理液として好適に使用可能である。 The metal-replacement treatment liquid can be suitably used as a metal-replacement treatment liquid for aluminum or aluminum alloys.

<アルミニウム又はアルミニウム合金の表面処理方法>
次に、本発明の金属置換処理液を用いた、本発明のアルミニウム又はアルミニウム合金の表面処理方法について説明する。
本発明のアルミニウム又はアルミニウム合金の表面処理方法は、アルミニウム又はアルミニウム合金を表面に有する被処理物を、本発明の金属置換処理液に接触させ、前記アルミニウム又はアルミニウム合金上の酸化皮膜を除去し、前記アルミニウムを前記金属置換処理液に含有される金属に置換させる金属置換処理を行い、前記被処理物の表面に前記金属を含む置換金属皮膜を形成する。
この表面処理方法は、被処理物に対してめっき皮膜、例えばニッケルめっき皮膜やパラジウムめっき皮膜を施すための前処理方法であり、アルミニウム又はアルミニウム合金を少なくとも表面に有する被処理物に、本発明の金属置換処理液を接触させて、表面に付着した酸化皮膜を除去し、置換金属皮膜を形成することによって、後に処理するニッケルめっき皮膜等の密着性を高めるようにしている。
<Method for surface treatment of aluminum or aluminum alloy>
Next, the method for surface treatment of aluminum or aluminum alloy of the present invention using the metal displacement treatment liquid of the present invention will be described.
The method for surface treatment of aluminum or aluminum alloy of the present invention comprises contacting an object to be treated having aluminum or aluminum alloy on its surface with the metal displacement treatment liquid of the present invention to remove an oxide film on the aluminum or aluminum alloy, A metal replacement treatment is performed to replace the aluminum with a metal contained in the metal replacement treatment liquid, thereby forming a replacement metal film containing the metal on the surface of the object to be treated.
This surface treatment method is a pretreatment method for applying a plating film, such as a nickel plating film or a palladium plating film, to an object to be treated. By contacting the metal replacement treatment liquid to remove the oxide film adhering to the surface and forming a replacement metal film, the adhesion of the nickel plating film or the like to be treated later is enhanced.

本発明のアルミニウム又はアルミニウム合金の表面処理方法では、本発明の金属置換処理液によって、少なくとも表面にアルミニウム又はアルミニウム合金を有する被処理物(以下、アルミニウム基板とも記載する。)上に付着した酸化皮膜が除去され、亜鉛等の金属とアルミニウムとの電極電位差による置換反応により亜鉛粒子、ニッケル粒子、ゲルマニウム粒子が被処理物の表面に析出する。 In the method for surface treatment of aluminum or aluminum alloy of the present invention, an oxide film deposited on an object to be treated (hereinafter also referred to as an aluminum substrate) having at least aluminum or an aluminum alloy on its surface by the metal displacement treatment solution of the present invention. is removed, and zinc particles, nickel particles, and germanium particles are deposited on the surface of the object to be treated by a substitution reaction caused by an electrode potential difference between a metal such as zinc and aluminum.

一般的に、ジンケート処理液を用いた、アルミニウム基板へのめっき前処理では、2回の亜鉛置換処理を施すダブルジンケート処理プロセスで行われる。すなわち、(1)アルミニウム基板に第1亜鉛置換処理を施し、(2)酸洗後、(3)次いで第2亜鉛置換処理を施すというプロセスであり、このダブルジンケート処理後に、(4)無電解ニッケルめっき等のめっき処理を行う。
一方、本発明の金属置換処理液を用いた、本発明のアルミニウム又はアルミニウム合金の表面処理方法では、非常に良好な密着性が得られるため、ダブルジンケート処理を行う必要が無く、シングルジンケート処理により良好な密着性を付与できる。よって、本発明のアルミニウム又はアルミニウム合金の表面処理方法では、(1)アルミニウム基板に金属置換処理を施し、このシングルジンケート処理後に、(4)無電解ニッケルめっき等のめっき処理を行うことが好ましい。すなわち、金属置換処理と、めっき処理の間に、(2)酸洗処理、(3)酸洗処理後の第2金属置換処理を行わないことが好ましい。
In general, the pre-plating treatment of an aluminum substrate using a zincating solution is performed by a double zincating process in which zinc substitution is performed twice. That is, it is a process of (1) subjecting an aluminum substrate to a first zinc substitution treatment, (2) after pickling, (3) then subjecting it to a second zinc substitution treatment, and after this double zincate treatment, (4) electroless Plating such as nickel plating is performed.
On the other hand, in the method for surface treatment of aluminum or aluminum alloy of the present invention using the metal substitution treatment solution of the present invention, very good adhesion can be obtained, so there is no need to perform double zincate treatment, and single zincate treatment is performed. Good adhesion can be imparted. Therefore, in the aluminum or aluminum alloy surface treatment method of the present invention, it is preferable that (1) the aluminum substrate is subjected to metal substitution treatment, and after this single zincate treatment, (4) plating treatment such as electroless nickel plating is performed. That is, it is preferable not to perform (2) the pickling process and (3) the second metal replacing process after the pickling process between the metal replacement process and the plating process.

<<(1)金属置換処理>>
めっき被処理物であるアルミニウム基板は、少なくともその表面にアルミニウム又はアルミニウム合金を有していればよい。アルミニウム基板は、例えば、アルミニウム又はアルミニウム合金を材質とする各種の物品のほか、非アルミニウム材(例えば、セラミックス、ウェハ等の各種の基材)上にアルミニウム又はアルミニウム合金皮膜が形成されてなる物品、溶融アルミニウムめっき処理を施した物品、鋳物、ダイキャスト等を使用することができる。アルミニウム基板の形状も特に限定されるものではなく、通常の板状物(フィルム、シート等の薄膜状物を含む)や各種の形状に成形された成型品のいずれでもよい。また、上記板状物には、アルミニウム又はアルミニウム合金単独の板状物に限らず、例えばセラミックスやウェハ等の基板上にスパッタリング法、真空蒸着法、イオンプレーティング法等の常法に従って成形されたアルミニウム皮膜(基板と一体化されたもの)も包含される。
<<(1) Metal replacement treatment>>
The aluminum substrate, which is the object to be plated, should have at least aluminum or an aluminum alloy on its surface. Aluminum substrates include, for example, various articles made of aluminum or aluminum alloys, as well as articles in which aluminum or aluminum alloy films are formed on non-aluminum materials (for example, various substrates such as ceramics and wafers), Articles subjected to hot-dip aluminum plating, castings, die castings, etc. can be used. The shape of the aluminum substrate is also not particularly limited, and it may be an ordinary plate (including thin films such as films and sheets) or a molded article molded into various shapes. In addition, the plate-like material is not limited to a plate-like material made of aluminum or an aluminum alloy alone. Aluminum coatings (integrated with the substrate) are also included.

アルミニウム合金としては特に限定されず、例えば、アルミニウムを主要金属成分とする各種合金を用いることができる。例えば、A1000系の準アルミニウム、A2000系の銅及びマンガンを含むアルミニウム合金、A3000系のアルミニウム-マンガン合金、A4000系のアルミニウム-シリコン合金、A5000系のアルミニウム-マグネシウム合金、A6000系のアルミニウム-マグネシウム-シリコン合金、A7000系のアルミニウム-亜鉛-マグネシウム合金、A8000系のアルミニウム-リチウム系合金等を適用対象とすることができる。 The aluminum alloy is not particularly limited, and for example, various alloys containing aluminum as a main metal component can be used. For example, A1000 series quasi-aluminum, A2000 series aluminum alloy containing copper and manganese, A3000 series aluminum-manganese alloy, A4000 series aluminum-silicon alloy, A5000 series aluminum-magnesium alloy, A6000 series aluminum-magnesium- Silicon alloys, A7000 series aluminum-zinc-magnesium alloys, A8000 series aluminum-lithium alloys, etc. can be applied.

アルミニウム又はアルミニウム合金のアルミニウム純度は、めっき平滑性の観点から、好ましくは98%以上、より好ましくは98.5%以上、さらに好ましくは99%以上である。 The purity of aluminum or aluminum alloy is preferably 98% or higher, more preferably 98.5% or higher, and still more preferably 99% or higher, from the viewpoint of plating smoothness.

めっき被処理物であるアルミニウム基板は、周知の方法、例えばスパッタリング法等によって、非アルミニウム材、例えばシリコン板に、アルミニウム層を被覆して作成することができる。アルミニウム層の被覆は、非アルミニウム材の全部に対する被覆であっても、その一部のみの被覆でもよく、通常0.5μm以上、好ましくは1μm以上の厚みを有するアルミニウム層が被覆される。また、このアルミニウム基板の形成方法も、スパッタリング法に限られるものではなく、真空蒸着法、イオンプレーティング法等を用いて作成することができる。 The aluminum substrate, which is the object to be plated, can be prepared by coating a non-aluminum material such as a silicon plate with an aluminum layer by a known method such as sputtering. The coating of the aluminum layer may cover the entire non-aluminum material or may cover only a part of it, and the aluminum layer is usually coated with a thickness of 0.5 μm or more, preferably 1 μm or more. Further, the method for forming this aluminum substrate is not limited to the sputtering method, and it can be produced using a vacuum vapor deposition method, an ion plating method, or the like.

まず、このアルミニウム基板を、周知の方法で、脱脂処理等のクリーナー処理を施し、適宜水洗後、アルカリ又は酸によって周知のエッチング処理を施す。具体的に、脱脂処理は、アルミニウム用の脱脂液に浸漬させたり、電解脱脂を行うことによって行う。また、エッチング処理は、例えば約1~10%のアルカリ溶液、又は約1~20%の酸性溶液を用い、約25~75℃の液温で、約1~15分間溶液に浸漬させることによって行う。 First, the aluminum substrate is subjected to cleaning treatment such as degreasing treatment by a well-known method, washed with water as appropriate, and then subjected to well-known etching treatment with alkali or acid. Specifically, the degreasing treatment is performed by immersion in a degreasing solution for aluminum or electrolytic degreasing. Further, the etching treatment is performed by using, for example, about 1 to 10% alkaline solution or about 1 to 20% acidic solution, at a liquid temperature of about 25 to 75° C., and immersing in the solution for about 1 to 15 minutes. .

次に、アルカリ又は酸によるエッチング残渣(スマット)を除去することを目的として、酸性溶液に所定時間、浸漬させる。具体的には、例えば、約10~800ml/L、好ましくは約100~600ml/Lの濃度範囲を有し、液温が約15~35℃の硝酸水溶液に、エッチングを施したアルミニウム基板を、約30秒~2分間浸漬させて、スマットを除去する。 Next, it is immersed in an acidic solution for a predetermined time for the purpose of removing etching residues (smut) caused by alkali or acid. Specifically, for example, an aluminum substrate having a concentration range of about 10 to 800 ml/L, preferably about 100 to 600 ml/L and a solution temperature of about 15 to 35° C. is etched in an aqueous nitric acid solution. Allow to soak for about 30 seconds to 2 minutes to remove smut.

そして、このようにデスマット処理等が施されたアルミニウム基板を、水洗後、本発明の金属置換処理液(ジンケート処理液)に浸漬し、金属置換処理を施す。具体的には、例えば、上述した組成を有する、液温が10~50℃、好ましくは15~30℃のジンケート処理液に、アルミニウム基板を浸漬させる。ジンケート処理液の温度が10℃以上であれば、置換反応が遅くなりすぎず、ムラが生じることがなく金属皮膜を形成でき、また50℃以下であれば、置換反応が増大しすぎず、置換金属皮膜表面が粗くなってしまうことも防止することができることから、上述した温度が好ましい。 After being washed with water, the aluminum substrate thus subjected to the desmutting treatment or the like is immersed in the metal replacement treatment liquid (zincate treatment liquid) of the present invention to carry out the metal replacement treatment. Specifically, for example, the aluminum substrate is immersed in the zincate treatment liquid having the composition described above and having a liquid temperature of 10 to 50.degree. C., preferably 15 to 30.degree. If the temperature of the zincate treatment solution is 10°C or higher, the substitution reaction does not become too slow, and a metal film can be formed without unevenness. The temperature described above is preferable because it is possible to prevent the surface of the metal film from becoming rough.

浸漬時間に関する条件も、特に制限されるものではなく、除去すべきアルミニウム酸化皮膜の厚さ等を鑑みて適宜設定することができ、例えば、通常約5秒以上、好ましくは10秒以上、上限として5分以下である。浸漬時間が短すぎると、置換が進まず酸化皮膜の除去が不十分となり、一方で浸漬時間が長すぎると、置換金属層の小さな穴から処理液が侵入し、アルミニウム又はアルミニウム合金が溶出してしまうおそれがあることから、これらの点を考慮して、条件設定する必要がある。 The conditions for the immersion time are not particularly limited, and can be appropriately set in consideration of the thickness of the aluminum oxide film to be removed. 5 minutes or less. If the immersion time is too short, the replacement will not progress and the oxide film will not be removed sufficiently. On the other hand, if the immersion time is too long, the treatment solution will enter through small holes in the replacement metal layer, and aluminum or aluminum alloy will be eluted. Therefore, it is necessary to set the conditions in consideration of these points.

このようにジンケート処理液にアルミニウム基板を浸漬させることによって、その基板表面に付着した酸化皮膜を除去させることができるとともに、Zn、Ni、Geを含有する置換金属皮膜をさらに被覆してアルミニウム表面を活性化することより、被処理物に対して、良好な密着性を有するめっき皮膜を形成させることが可能となる。 By immersing the aluminum substrate in the zincate treatment solution in this manner, the oxide film adhering to the substrate surface can be removed, and the aluminum surface is further coated with a substitution metal film containing Zn, Ni, and Ge. Activation makes it possible to form a plating film having good adhesion to the object to be treated.

金属置換処理では、アルミニウム基板の表面に、本発明の金属置換処理液が接触可能な態様である限り特に制限されない。該接触方法としては、浸漬以外にも、例えば、塗布、スプレー等の方法を採用することができる。 The metal replacement treatment is not particularly limited as long as the metal replacement treatment solution of the present invention can come into contact with the surface of the aluminum substrate. As the contact method, other than immersion, for example, a method such as coating or spraying can be adopted.

<<(4)めっき処理>>
このめっき処理は、ジンケート処理が施されたアルミニウム基板に対して、無電解めっき又は電解めっきによって行われる。例えば、無電解ニッケル、無電解パラジウム又は銅めっき浴のような適当な金属めっき液で所望の最終膜厚にめっきさせる。
<<(4) Plating treatment>>
This plating treatment is performed by electroless plating or electrolytic plating on the zincate-treated aluminum substrate. For example, a suitable metal plating solution such as an electroless nickel, electroless palladium or copper plating bath is plated to the desired final film thickness.

具体的に、一例として、無電解ニッケルめっきについて説明する。無電解ニッケルめっき液は、例えば、硫酸ニッケル、塩化ニッケル、酢酸ニッケル等の水溶性のニッケル塩の使用によってニッケルイオンが与えられ、このニッケルイオンの濃度としては、例えば約1~10g/Lである。また、無電解ニッケルめっき液には、例えば約20~80g/Lの濃度範囲を有する酢酸塩、コハク酸塩、クエン酸塩等の有機酸塩や、アンモニウム塩、アミン塩等のニッケルの錯化剤が含有され、さらに約10~40g/Lの濃度範囲を有する次亜リン酸又は次亜リン酸ナトリウム等の次亜リン酸塩が還元剤として含有される。次亜リン酸塩等を還元剤として含有させることにより、めっき液の安定性が高められ、コストの安価なニッケル-リンの合金皮膜を形成させることができる。そして、これらの化合物からなるめっき液は、pHが約4~7となるように調製して用いられ、さらにこのめっき液を60~95℃の液温に調製し、めっき処理液へのアルミニウム基板の浸漬時間としては、約15秒~120分間浸漬させることによってめっき処理が行われる。また、適宜、このめっき処理時間を変えることによって、めっき皮膜の厚みを変えることができる。 Specifically, electroless nickel plating will be described as an example. The electroless nickel plating solution is provided with nickel ions by using a water-soluble nickel salt such as nickel sulfate, nickel chloride, or nickel acetate, and the concentration of the nickel ions is, for example, about 1 to 10 g/L. . Further, the electroless nickel plating solution contains, for example, organic acid salts such as acetates, succinates, and citrates having a concentration range of about 20 to 80 g/L, and nickel complexes such as ammonium salts and amine salts. and hypophosphite such as hypophosphorous acid or sodium hypophosphite having a concentration range of about 10-40 g/L as a reducing agent. By containing hypophosphite or the like as a reducing agent, the stability of the plating solution is enhanced, and an inexpensive nickel-phosphorus alloy film can be formed. The plating solution comprising these compounds is used after being adjusted to have a pH of about 4 to 7. This plating solution is further adjusted to a solution temperature of 60 to 95° C., and the aluminum substrate to the plating solution. As for the immersion time of , the plating treatment is performed by immersing for about 15 seconds to 120 minutes. Moreover, the thickness of the plating film can be changed by appropriately changing the plating treatment time.

なお、上述したように、めっき処理としては、無電解めっき処理に限られず、電解めっきによって行ってもよい。また、めっき金属の種類は、以上に例示したものの他、Cu、Au等のめっき金属を用いて行ってもよく、さらに置換めっき法等によって、2層以上の層を形成するようにめっき処理を行ってもよい。 In addition, as described above, the plating treatment is not limited to the electroless plating treatment, and electrolytic plating may be performed. In addition to the types of plating metals exemplified above, plating metals such as Cu and Au may be used, and furthermore, plating is performed by displacement plating or the like so as to form two or more layers. you can go

以上に説明したジンケート処理及びめっき処理における処理条件や、各種の濃度設定に関しては、以上のような条件に限られるものではなく、形成する皮膜の厚み等によって適宜変更できることは言うまでもない。 It goes without saying that the treatment conditions and various concentration settings in the zincate treatment and plating treatment described above are not limited to the conditions described above, and can be appropriately changed depending on the thickness of the film to be formed.

本発明のアルミニウム又はアルミニウム合金の表面処理方法では、アルミニウム又はアルミニウム合金を表面に有する被処理物を、本発明の金属置換処理液に接触させ、前記アルミニウム又はアルミニウム合金上の酸化皮膜を除去し、前記アルミニウムを前記金属置換処理液に含有される金属に置換させる金属置換処理を行うことにより、Znと共に、Ni、Geが共析し、Zn、Ni、Geを含有する置換金属皮膜をアルミニウム又はアルミニウム合金表面に形成できる。
このようなZn、Ni、Geを含有する置換金属皮膜を表面に有するアルミニウム又はアルミニウム合金にめっき処理を行い、めっき皮膜(金属皮膜、例えば、ニッケル皮膜)を形成すると、アルミニウム又はアルミニウム合金と、めっき皮膜(金属皮膜、例えば、ニッケル皮膜)間で、置換金属皮膜中に存在するZn、Ni、Geが相乗的に作用することとなり、アルミニウム又はアルミニウム合金に、めっき皮膜(金属皮膜)との良好な密着性を付与できる。
In the aluminum or aluminum alloy surface treatment method of the present invention, an object to be treated having aluminum or an aluminum alloy on its surface is brought into contact with the metal replacement treatment liquid of the present invention to remove the oxide film on the aluminum or aluminum alloy, By performing a metal substitution treatment for substituting the aluminum with the metal contained in the metal substitution treatment solution, Ni and Ge are co-deposited together with Zn, and the substitution metal film containing Zn, Ni and Ge is formed of aluminum or aluminum. It can form on the alloy surface.
When a plating film (a metal film, for example, a nickel film) is formed by performing a plating treatment on aluminum or an aluminum alloy having such a substitution metal film containing Zn, Ni, and Ge on the surface, aluminum or an aluminum alloy and plating Between films (metal films, for example, nickel films), Zn, Ni, and Ge present in the substituted metal film act synergistically, so that aluminum or aluminum alloys have a good relationship with the plating film (metal film). Adhesion can be imparted.

本発明により得られためっき皮膜(金属皮膜)が施されたアルミニウム又はアルミニウム合金は、様々な電子部品に用いることが可能である。電子部品としては、例えば、家電機器、車載機器、送電システム、輸送機器、通信機器等に用いられる電子部品が挙げられ、具体的には、エアコン、エレベーター、電気自動車、ハイブリッド自動車、電車、発電装置用のパワーコントロールユニット等のパワーモジュール、一般家電、パソコン等が挙げられる。
本発明では、金属置換処理液のpHを4.0~6.5とすることにより、アルミニウムスパイクも低減でき、平滑性が高く、めっき外観の優れためっき皮膜を形成するための、めっき前表面処理を施すことができるため、半導体用途、好ましくはウェハ用途に好適に使用でき、特に、ウェハにアンダーバンプメタル又はバンプを形成する場合の前処理に有効なアルミニウム又はアルミニウム合金上の金属置換処理液及びこの金属置換処理液を用いたアルミニウム又はアルミニウム合金の表面処理方法として好適である。
Aluminum or an aluminum alloy provided with a plating film (metal film) obtained by the present invention can be used for various electronic components. Examples of electronic components include electronic components used in home appliances, in-vehicle equipment, power transmission systems, transportation equipment, communication equipment, etc. Specific examples include air conditioners, elevators, electric vehicles, hybrid vehicles, trains, and power generators. power modules such as power control units for electronic devices, general home appliances, personal computers, and the like.
In the present invention, by setting the pH of the metal replacement treatment solution to 4.0 to 6.5, aluminum spikes can be reduced, and the surface before plating for forming a plated film with high smoothness and excellent plating appearance. Since it can be processed, it can be suitably used for semiconductor applications, preferably wafer applications, and is particularly effective for pretreatment when forming underbump metal or bumps on a wafer. And it is suitable as a surface treatment method of aluminum or aluminum alloy using this metal replacement treatment liquid.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 EXAMPLES The present invention will be specifically described based on Examples, but the present invention is not limited to these.

表1~3に示す条件に従い、アルミニウム基板に各処理を施してめっき皮膜を形成した。ここで、アルミニウム基板として、1cm×2cmのAl-Cu TEG wafeを用いた。得られためっき皮膜、めっき皮膜が設けられた基板について、下記の方法で評価した。評価結果を表2、3に示す。
なお、表2、3において、表中の数値(濃度)は、コハク酸を除き、フッ素(F)又は各金属元素換算濃度(g/L)である。
Under the conditions shown in Tables 1 to 3, aluminum substrates were subjected to various treatments to form plating films. Here, a 1 cm×2 cm Al—Cu TEG wafer was used as the aluminum substrate. The resulting plated film and the substrate provided with the plated film were evaluated by the following methods. Tables 2 and 3 show the evaluation results.
In addition, in Tables 2 and 3, the numerical values (concentrations) in the tables are fluorine (F) or each metal element conversion concentration (g/L) except for succinic acid.

<密着性評価:折り割り試験>
得られためっき皮膜が設けられた基板について、エアーブロー乾燥させ、めっき面にセロハンテープを貼り付けた。そして、テープを貼り付けたwafer中央部に傷をつけ半分に割った。割った中央部からテープを剥がし、Al下地とNi皮膜間で剥がれた量を100分率として求めた。なお、折り割り試験の概要を図1に示した。
0%は、テープを剥がした際に全くめっき皮膜が剥がれないことを、100%は、テープを剥がした際に全面でめっき皮膜が剥がれることを意味する。
<Adhesion evaluation: folding test>
The obtained substrate provided with the plated film was air-blown dried, and a cellophane tape was attached to the plated surface. Then, the center portion of the wafer to which the tape was pasted was scratched and split in half. The tape was peeled off from the center of the split, and the amount of peeling between the Al substrate and the Ni coating was determined as 100%. In addition, the outline|summary of a folding-splitting test was shown in FIG.
0% means that the plating film is not peeled off at all when the tape is peeled off, and 100% means that the plating film is peeled off over the entire surface when the tape is peeled off.

<アルミニウム(Al)スパイク評価>
得られためっき皮膜について日立ハイテクノロジーズ社製のXVision 210DBを用いてFIB(集束イオンビーム)断面観察を行った。図2(a)にAlスパイクが見られない場合の一例を、図2(b)にAlスパイクが見られる場合の一例を示した。図2(a)のようにAlスパイクが見られない場合に良好であると判断した。
<Aluminum (Al) spike evaluation>
FIB (Focused Ion Beam) cross-sectional observation of the obtained plating film was performed using XVision 210DB manufactured by Hitachi High-Technologies Corporation. FIG. 2(a) shows an example in which no Al spike is observed, and FIG. 2(b) shows an example in which an Al spike is observed. It was judged to be good when no Al spike was observed as shown in FIG. 2(a).

Figure 2023069841000002
脱脂/エッチング:エピタスMCE-31(上村工業(株)製)
無電解Ni:エピタスNPR-18(上村工業(株)製)
Figure 2023069841000002
Degreasing/etching: Epitas MCE-31 (manufactured by Uemura Kogyo Co., Ltd.)
Electroless Ni: Epitas NPR-18 (manufactured by Uyemura & Co., Ltd.)

Figure 2023069841000003
Figure 2023069841000003

Figure 2023069841000004
Figure 2023069841000004

表2、3より、亜鉛化合物、ニッケル化合物、ゲルマニウム化合物、フッ素化合物を含む実施例の金属置換処理液は、めっき皮膜(金属皮膜)との良好な密着性を付与できることが分かった。また、金属置換処理液のpHを3.5~6.5とすることにより、アルミニウムスパイクも低減できることが分かった。なお、表2、3は、アルミニウム基板として、Al-Cu TEG wafeを用いた場合の結果であるが、アルミニウム基板として、・Al-Si TEG waferを用いた場合も同様の結果であった。
From Tables 2 and 3, it was found that the metal replacement treatment liquids of Examples containing zinc compounds, nickel compounds, germanium compounds, and fluorine compounds can impart good adhesion to plating films (metal films). It was also found that aluminum spikes can be reduced by adjusting the pH of the metal replacement treatment solution to 3.5 to 6.5. Tables 2 and 3 show the results when an Al--Cu TEG wafer was used as the aluminum substrate, but similar results were obtained when an .Al--Si TEG wafer was used as the aluminum substrate.

Claims (10)

亜鉛化合物、ニッケル化合物、ゲルマニウム化合物、フッ素化合物を含む金属置換処理液。 A metal replacement treatment liquid containing a zinc compound, a nickel compound, a germanium compound, and a fluorine compound. 亜鉛化合物を亜鉛濃度として0.2~5.0g/L含む請求項1記載の金属置換処理液。 2. The metal replacement treatment liquid according to claim 1, which contains a zinc compound at a zinc concentration of 0.2 to 5.0 g/L. ニッケル化合物をニッケル濃度として0.2~10g/L含む請求項1又は2記載の金属置換処理液。 3. The metal replacement treatment liquid according to claim 1, which contains a nickel compound with a nickel concentration of 0.2 to 10 g/L. ゲルマニウム化合物をゲルマニウム濃度として0.2~5.0g/L含む請求項1~3のいずれかに記載の金属置換処理液。 4. The metal replacement treatment liquid according to any one of claims 1 to 3, which contains a germanium compound with a germanium concentration of 0.2 to 5.0 g/L. フッ素化合物をフッ素濃度として5.0~50g/L含む請求項1~4のいずれかに記載の金属置換処理液。 5. The metal substitution treatment liquid according to any one of claims 1 to 4, which contains a fluorine compound at a fluorine concentration of 5.0 to 50 g/L. 亜鉛濃度、ゲルマニウム濃度の比率が1:5~5:1である請求項1~5のいずれかに記載の金属置換処理液。 6. The metal replacement treatment solution according to claim 1, wherein the ratio of zinc concentration to germanium concentration is 1:5 to 5:1. pHが4.0~6.5である請求項1~6のいずれかに記載の金属置換処理液。 7. The metal substitution treatment liquid according to any one of claims 1 to 6, which has a pH of 4.0 to 6.5. アルミニウム又はアルミニウム合金用である請求項1~7のいずれかに記載の金属置換処理液。 8. The metal replacement treatment liquid according to any one of claims 1 to 7, which is for aluminum or an aluminum alloy. アルミニウム又はアルミニウム合金を表面に有する被処理物を、請求項1~8のいずれかに記載の金属置換処理液に接触させ、前記アルミニウム又はアルミニウム合金上の酸化皮膜を除去し、前記アルミニウムを前記金属置換処理液に含有される金属に置換させる金属置換処理を行い、前記被処理物の表面に前記金属を含む置換金属皮膜を形成するアルミニウム又はアルミニウム合金の表面処理方法。 An object to be treated having aluminum or an aluminum alloy on its surface is brought into contact with the metal replacement treatment liquid according to any one of claims 1 to 8, the oxide film on the aluminum or aluminum alloy is removed, and the aluminum is replaced with the metal. A method for surface treatment of aluminum or an aluminum alloy, comprising performing a metal substitution treatment for substituting a metal contained in a substitution treatment liquid to form a substitution metal film containing the metal on the surface of the object to be treated. 前記置換金属皮膜を形成した後、該置換金属皮膜表面にめっき皮膜を形成する請求項9記載のアルミニウム又はアルミニウム合金の表面処理方法。
10. The method for surface treatment of aluminum or aluminum alloy according to claim 9, wherein after forming the substitution metal film, a plating film is formed on the surface of the substitution metal film.
JP2021182009A 2021-11-08 2021-11-08 Metal replacement process liquid, surface treatment method for aluminum or aluminum alloy Pending JP2023069841A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021182009A JP2023069841A (en) 2021-11-08 2021-11-08 Metal replacement process liquid, surface treatment method for aluminum or aluminum alloy
CN202210500745.9A CN114807918A (en) 2021-11-08 2022-04-28 Metal replacement treatment liquid, and surface treatment method for aluminum or aluminum alloy
TW111140222A TW202336272A (en) 2021-11-08 2022-10-24 Metal displacement solution, method for surface treatment of aluminum or aluminum alloy
EP22204326.7A EP4177376A1 (en) 2021-11-08 2022-10-28 Metal displacement solution and corresponding method for surface treatment of aluminum or aluminum alloy
US18/052,569 US20230151493A1 (en) 2021-11-08 2022-11-03 Metal displacement solution, method for surface treatment of aluminum or aluminum alloy
KR1020220147573A KR20230067550A (en) 2021-11-08 2022-11-08 Metal displacement solution, method for surface treatment of aluminum or aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021182009A JP2023069841A (en) 2021-11-08 2021-11-08 Metal replacement process liquid, surface treatment method for aluminum or aluminum alloy

Publications (1)

Publication Number Publication Date
JP2023069841A true JP2023069841A (en) 2023-05-18

Family

ID=82512418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021182009A Pending JP2023069841A (en) 2021-11-08 2021-11-08 Metal replacement process liquid, surface treatment method for aluminum or aluminum alloy

Country Status (6)

Country Link
US (1) US20230151493A1 (en)
EP (1) EP4177376A1 (en)
JP (1) JP2023069841A (en)
KR (1) KR20230067550A (en)
CN (1) CN114807918A (en)
TW (1) TW202336272A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230173025A (en) * 2022-06-16 2023-12-26 우에무라 고교 가부시키가이샤 Etching solution, method for surface treatment of aluminum or aluminum alloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930081A (en) * 1972-11-06 1975-12-30 Oxy Metal Industries Corp Composition and process for displacement plating of zinc surfaces
JPH07188971A (en) * 1993-12-28 1995-07-25 Nkk Corp Method for galvanizing aluminum and aluminum alloy sheet
JP2000256864A (en) 1999-03-05 2000-09-19 Okuno Chem Ind Co Ltd Zinc substitution method for aluminum or aluminum alloy surface, substitution solution therefor and aluminum or aluminum alloy having zinc substitution film
JP2001026896A (en) * 1999-07-16 2001-01-30 Nisshin Steel Co Ltd Surface treated metallic sheet
US7407689B2 (en) * 2003-06-26 2008-08-05 Atotech Deutschland Gmbh Aqueous acidic immersion plating solutions and methods for plating on aluminum and aluminum alloys
JP5136746B2 (en) * 2007-01-12 2013-02-06 上村工業株式会社 Surface treatment method of aluminum or aluminum alloy
JP4538490B2 (en) 2007-11-26 2010-09-08 上村工業株式会社 Metal substitution treatment liquid on aluminum or aluminum alloy and surface treatment method using the same
JP4605409B2 (en) * 2008-08-21 2011-01-05 上村工業株式会社 Surface treatment method of aluminum or aluminum alloy
JP5643484B2 (en) * 2009-01-13 2014-12-17 日本パーカライジング株式会社 Metal surface treatment liquid, metal surface treatment method and metal material
JP2020196914A (en) 2019-05-31 2020-12-10 奥野製薬工業株式会社 Plating pretreatment method

Also Published As

Publication number Publication date
CN114807918A (en) 2022-07-29
TW202336272A (en) 2023-09-16
KR20230067550A (en) 2023-05-16
EP4177376A1 (en) 2023-05-10
US20230151493A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
JP4538490B2 (en) Metal substitution treatment liquid on aluminum or aluminum alloy and surface treatment method using the same
US8414711B2 (en) Method of surface treatment for aluminum or aluminum alloy
JP2007056286A (en) Aqueous solution for treating metal surface and method for preventing metal surface from discoloring
JP5755231B2 (en) Electroless plating of tin and tin alloys
EP3489385B1 (en) Electroless palladium/gold plating process
JP2023069841A (en) Metal replacement process liquid, surface treatment method for aluminum or aluminum alloy
JP2016536453A (en) Method for selectively treating copper in the presence of additional metals
JP3959044B2 (en) Pretreatment method for plating aluminum and aluminum alloy
US20160108254A1 (en) Zinc immersion coating solutions, double-zincate method, method of forming a metal plating film, and semiconductor device
JPH03236476A (en) Manufacture of aluminium memory disk finished by flat and smooth metal plating
JP5337760B2 (en) Metal surface treatment aqueous solution and method for preventing discoloration of metal surface
US20230407487A1 (en) Etchant and method of surface treatment of aluminum or aluminum alloy
JP2023184437A (en) Etching treatment liquid and method for surface treatment of aluminum or aluminum alloy
KR20130044661A (en) Electroless ni-p plating solution and plating method using the same
JP2010121151A (en) Method for treating surface
TW202407151A (en) Eatchant and method of surface treatment of aluminum or aluminum alloy
JP7416425B2 (en) Plating pretreatment method for aluminum and aluminum alloys
CN117248215A (en) Etching treatment liquid, aluminum or aluminum alloy surface treatment method
JP3484367B2 (en) Electroless plating method and pretreatment method thereof
US2871172A (en) Electro-plating of metals
JPS6015706B2 (en) Surface treatment method of Al and Al alloy for soldering
KR101365662B1 (en) ELECTROLESS Ni-P PLATING METHOD
Li et al. Novel Pd-catalyzed electroless Au deposition method using a sulfite solution
TW200806820A (en) Whisker preventing agent for tin or tin alloy plating and whisker preventing method using the same
Pearson Pretreatment of aluminium for electrodeposition