KR20130124820A - Method for tranferring metal oxide/nitride/sulfide thin film and transfer sheet used therefor - Google Patents

Method for tranferring metal oxide/nitride/sulfide thin film and transfer sheet used therefor Download PDF

Info

Publication number
KR20130124820A
KR20130124820A KR20120048247A KR20120048247A KR20130124820A KR 20130124820 A KR20130124820 A KR 20130124820A KR 20120048247 A KR20120048247 A KR 20120048247A KR 20120048247 A KR20120048247 A KR 20120048247A KR 20130124820 A KR20130124820 A KR 20130124820A
Authority
KR
South Korea
Prior art keywords
metal
thin film
nitride
oxide
transfer sheet
Prior art date
Application number
KR20120048247A
Other languages
Korean (ko)
Other versions
KR101431595B1 (en
Inventor
이선숙
정대성
이영국
안기석
김성준
강성구
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020120048247A priority Critical patent/KR101431595B1/en
Priority to PCT/KR2013/003961 priority patent/WO2013168968A1/en
Publication of KR20130124820A publication Critical patent/KR20130124820A/en
Application granted granted Critical
Publication of KR101431595B1 publication Critical patent/KR101431595B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Thin Film Transistor (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A transfer sheet is obtained by removing a base material after forming a metal oxide/nitride/sulfide thin film and a polymer support layer on the base material. The transfer sheet is used for transferring the metal oxide/nitride/sulfide thin film by removing the polymer support layer after the polymer support layer is attached to the desired base material. Various electronic devices using a graphene electrode and the like are easily used by forming the transferred metal oxide/nitride/sulfide thin film with a desired thickness.

Description

금속 산화물/질화물/황화물 박막의 전사 방법 및 이에 사용되는 전사용 시트 {METHOD FOR TRANFERRING METAL OXIDE/NITRIDE/SULFIDE THIN FILM AND TRANSFER SHEET USED THEREFOR}TECHNICAL FIELD The present invention relates to a method for transferring a metal oxide / nitride / sulfide thin film and a transfer sheet used therefor,

본 발명은 금속 산화물/질화물/황화물 박막을 원하는 기재에 전사하는 방법 및 이에 사용되는 전사용 시트에 관한 것이다. The present invention relates to a method for transferring a metal oxide / nitride / sulfide thin film onto a desired substrate and a transfer sheet used therefor.

최근의 액정 디스플레이(LCD)와 유기전자발광 디스플레이(OLED)를 비롯한 유연성(flexibilty) 및 투명성(transparency)을 갖춘 다양한 전자소자의 제조에는, 고분자 필름(polymer film), 유리(glass), 그래핀(graphene) 등을 주요 기질로 사용하여 절연층, 채널층, 전극층, 배선층, 보호층 등 다양한 기능의 박막층을 성장시켜 원하는 소자를 제조하고 있다. BACKGROUND ART [0002] In recent years, various electronic devices having flexibility and transparency including a liquid crystal display (LCD) and an organic electroluminescence display (OLED) have been widely used in the fields of polymer films, glass, graphene or the like is used as a main substrate to grow a thin film layer having various functions such as an insulating layer, a channel layer, an electrode layer, a wiring layer, and a protective layer to produce a desired device.

그러나 기질이 고분자, 유리, 그래핀 등일 경우에는 낮은 내열성 때문에, 보다 향상된 소자 특성을 얻기 위한 고온 열처리나 도핑 등의 후속 공정을 수행하기가 어려운 문제가 있다.However, when the substrate is a polymer, glass, graphene or the like, there is a problem that it is difficult to carry out subsequent processes such as high temperature heat treatment and doping to obtain improved device characteristics because of low heat resistance.

따라서, 고분자, 유리, 그래핀 등과 같이 내열성이 낮은 기질에서 보다 향상된 소자 특성을 구현하기 위하여 새로운 방식의 소자 제조 방식이 요구된다.Therefore, a new method of manufacturing a device is required in order to realize improved device characteristics in a substrate having low heat resistance such as a polymer, glass, or graphene.

따라서, 본 발명의 목적은 다양한 기재에 대해 원하는 두께를 갖는 금속 산화물/질화물/황화물 박막을 전사하는 방법, 및 이에 사용되는 전사용 시트를 제공하는 것이다. Accordingly, an object of the present invention is to provide a method for transferring a metal oxide / nitride / sulfide thin film having a desired thickness to various substrates, and a transfer sheet used therefor.

상기 목적에 따라, 본 발명은 (a) 제 1 기재 상에 금속 산화물, 금속 질화물, 금속 황화물 및 이들의 혼합물로 이루어진 군으로부터 선택된 물질을 포함하는 금속계 박막을 형성하는 단계; (b) 형성된 금속계 박막 위에 고분자 지지층을 형성하는 단계; (c) 상기 제 1 기재를 제거하여 고분자 지지층과 금속계 박막이 적층된 전사용 시트를 수득하는 단계; (d) 상기 전사용 시트를 금속계 박막 면이 접하도록 제 2 기재에 접착시키는 단계; 및 (e) 상기 전사용 시트의 고분자 지지층을 제거하는 단계를 포함하는, 금속계 박막의 전사 방법을 제공한다.According to the above object, the present invention provides a method for manufacturing a thin film transistor comprising the steps of: (a) forming a metal thin film on a first substrate, the thin film including a material selected from the group consisting of metal oxides, metal nitrides, metal sulfides and mixtures thereof; (b) forming a polymer support layer on the formed metal thin film; (c) removing the first substrate to obtain a transfer sheet in which the polymer support layer and the metal thin film are laminated; (d) adhering the transfer sheet to the second substrate such that the metal-based thin film surface is in contact with the transfer sheet; And (e) removing the polymer support layer of the transfer sheet.

상기 다른 목적에 따라, 본 발명은 금속 산화물, 금속 질화물, 금속 황화물 및 이들의 혼합물로 이루어진 군으로부터 선택된 물질을 포함하는 금속계 박막, 및 상기 금속계 박막 위에 형성된 고분자 지지층을 포함하는, 금속계 박막의 전사용 시트를 제공한다.According to another aspect of the present invention, there is provided a method of manufacturing a metal thin film including a metal thin film including a material selected from the group consisting of metal oxides, metal nitrides, metal sulfides, and mixtures thereof, and a polymer support layer formed on the metal thin film Sheet.

또한, 본 발명은 상기 방법에 의해 전사된 금속계 박막을 포함하는, 전자 소자를 제공한다.The present invention also provides an electronic device comprising the metal-based thin film transferred by the above method.

본 발명의 방법에 따르면, 금속 산화물/질화물/황화물 박막 형성이 어려운 기판 상에, 전사를 통해 용이하게 금속 산화물/질화물/황화물 박막을 원하는 두께로 형성할 수 있으므로, 금속 산화물/질화물/황화물 박막을 포함하는 그래핀 소자와 같은 다양한 전자 소자를 용이하게 제조할 수 있다.
According to the method of the present invention, since a metal oxide / nitride / sulfide thin film can be easily formed to a desired thickness on a substrate which is difficult to form a metal oxide / nitride / sulfide thin film, the metal oxide / nitride / Various electronic devices such as a graphene device including the electron-emitting device can be easily manufactured.

도 1은 본 발명에 따른 금속 산화물/질화물/황화물 박막의 전사 방법에 사용되는 전사용 시트를 제조하는 공정의 일례를 나타낸 것이다 (10: 금속 산화물/질화물/황화물 박막, 20: 고분자 지지층, 30: 기재).
도 2는 본 발명에 따라 금속 산화물/질화물/황화물 박막을 전사하여 전극 소자를 제조하는 공정의 일례를 나타낸 것이다 (10: 금속 산화물/질화물/황화물 박막, 20: 고분자 지지층, 50: 하부 전극, 60: 지지체, 70: 상부 전극).
도 3은 본 발명에 따라 제조된 전사용 시트의 표면에 대해 전자현미경으로 얻은 이미지이다.
FIG. 1 shows an example of a process for producing a transfer sheet used in a transfer method of a metal oxide / nitride / sulfide thin film according to the present invention (10: metal oxide / nitride / sulfide thin film, 20: polymer support layer, materials).
FIG. 2 shows an example of a process for manufacturing an electrode device by transferring a metal oxide / nitride / sulfide thin film according to the present invention (10: metal oxide / nitride / sulfide thin film, 20: polymer support layer, 50: : Support, 70: upper electrode).
Fig. 3 is an image obtained by an electron microscope on the surface of the transfer sheet produced according to the present invention.

이하, 본 발명에 따라 원하는 기재 상에 금속 산화물/질화물/황화물 박막을 전사시키는 방법을 보다 구체적으로 설명한다. 본 발명에서 전사의 대상으로 하는 "금속 산화물/질화물/황화물 박막"은 구체적으로는 금속 산화물, 금속 질화물, 금속 황화물 및 이들의 혼합물로 이루어진 군으로부터 선택된 물질을 포함하는 박막을 의미하는 것으로서, 이하 명세서에서는 이를 "금속계 박막"이라 간략히 칭한다.
Hereinafter, a method for transferring a metal oxide / nitride / sulfide thin film onto a desired substrate according to the present invention will be described in more detail. The "metal oxide / nitride / sulfide thin film" to be transferred in the present invention refers specifically to a thin film containing a material selected from the group consisting of metal oxides, metal nitrides, metal sulfides and mixtures thereof, Quot; metal thin film "

전사용 시트의 제조Production of transfer sheet

본 발명에 따르는 전사용 시트는, (a) 제 1 기재 상에 금속계 박막을 형성하는 단계; (b) 상기 금속계 박막 위에 고분자 지지층을 형성하는 단계; 및 (c) 상기 제 1 기재를 제거하여 금속계 박막 상에 고분자 지지층이 적층된 전사용 시트를 수득하는 단계를 포함하는 방법에 의해 제조할 수 있다.
The transfer sheet according to the present invention comprises: (a) forming a metal thin film on a first substrate; (b) forming a polymer support layer on the metal thin film; And (c) removing the first substrate to obtain a transfer sheet in which a polymer support layer is laminated on the metal-based thin film.

상기 단계 (a)에 있어서, 금속계 박막이 형성되는 기재(제 1 기재)는 제거가 용이한 기재라면 특별히 한정되지 않으며, 예를 들어 금속 기재, 반도체 기재, 고분자 기재, 또는 이들이 조합된 기재가 가능하다.In the step (a), the substrate (first substrate) on which the metal thin film is formed is not particularly limited as long as it is a readily removable substrate. For example, a metal substrate, a semiconductor substrate, a polymer substrate, Do.

예를 들어, 제 1 기재는, 사파이어(sapphire), 실리콘 등의 기질 상에, 구리, 니켈, 코발트, 스텐레스스틸 및 이들의 합금으로 이루어진 군으로부터 선택되는 금속 박막이, 스퍼터링법, 열증착법(thermal evaporation), 전자빔증착법(e-beam evaporation) 등의 방법에 의해 적절한 두께로 형성된 것일 수 있다. For example, the first substrate may be formed by depositing a metal thin film selected from the group consisting of copper, nickel, cobalt, stainless steel, and alloys thereof on a substrate such as sapphire, silicon or the like by a sputtering method, evaporation, e-beam evaporation, or the like.

또한, 금속계 박막은, 금속 산화물, 금속 질화물, 금속 황화물 및 이들의 혼합물로 이루어진 군으로부터 선택된 물질을 포함하는 박막이 가능하다. Further, the metal thin film may be a thin film containing a material selected from the group consisting of metal oxides, metal nitrides, metal sulfides, and mixtures thereof.

구체적으로, 금속 산화물로는 산화알루미늄(Al2O3), 산화실리콘(SiO2), 산화아연(ZnO), 산화하프늄(HfO2), 산화지르코늄(ZrO2), 산화티타늄(TiO2), 산화주석 (SnO2), 또는 이들의 혼합물이 가능하다.Specific examples of the metal oxide include aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), zinc oxide (ZnO), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ) Tin oxide (SnO 2 ), or mixtures thereof.

또한, 금속 질화물로는 질화갈륨(GaN), 질화붕소(BN), 질화알루미늄(AlN), 질화티타늄(TiN), 질화인듐(InN), 또는 이들의 혼합물이 가능하다.The metal nitride may be gallium nitride (GaN), boron nitride (BN), aluminum nitride (AlN), titanium nitride (TiN), indium nitride (InN), or a mixture thereof.

또한, 금속 황화물로는 이황화몰리브덴(MoS2), 황화카드뮴(CdS), 황화아연(ZnS), 이황화텅스텐(WS2), 또는 이들의 혼합물이 가능하다. Examples of the metal sulfides include molybdenum disulfide (MoS 2 ), cadmium sulfide (CdS), zinc sulfide (ZnS), tungsten disulfide (WS 2 ), and mixtures thereof.

또한, 상기 금속 박막 상에 금속계 박막을 형성하는 방법으로는 원자층증착법(ALD), 화학기상증착법(CVD), 화학적용액성장법(CBD), 잉크젯, 스핀코팅, 졸겔법, 인쇄공정(화학적 증착법), 스퍼터링법(물리적 증착법), 열 증착법 등이 가능하며, 예를 들어 원자층증착법(ALD)을 이용할 경우 균일하고 얇은 두께의 박막을 증착할 수 있다. 이때 증착되는 금속계 박막의 두께는 필요에 따라 조절할 수 있으며, 예를 들어 0.5nm 내지 5㎛ 범위가 가능하며, 보다 바람직하게는 10nm 내지 30nm 범위인 것이 좋다.
As a method of forming the metal thin film on the metal thin film, there can be used ALD, CVD, CBD, ink jet, spin coating, sol-gel method, chemical vapor deposition ), A sputtering method (physical vapor deposition method), a thermal evaporation method, and the like. For example, when atomic layer deposition (ALD) is used, a uniform thin film can be deposited. At this time, the thickness of the metal thin film to be deposited can be adjusted as required, for example, it is preferably in the range of 0.5 nm to 5 μm, more preferably in the range of 10 nm to 30 nm.

상기 단계 (b)에 있어서, 상기 금속계 박막 위에 형성되는 고분자 지지층은 폴리메틸메타크릴레이트(PMMA), 폴리디메틸실록산(PDMS), 및 열박리성테이프(thermal release tape)로 이루어진 군으로부터 선택될 수 있으며, 예를 들어 PMMA 지지층을 형성할 경우 잔여 불순물이 적고 금속계 박막을 변형시키지 않아 유리하며, 이와 같이 PMMA의 경우 아세톤과 같은 유기 용매에 의해 쉽게 제거될 수 있도록 분자량(Mw)이 100,000 내지 500,000, 보다 바람직하게는 120,000 내지 350,000인 것이 좋다. In the step (b), the polymer support layer formed on the metal thin film may be selected from the group consisting of polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS), and thermal release tape For example, when a PMMA support layer is formed, residual impurities are small and the metal thin film is not deformed. Thus, PMMA has a molecular weight (Mw) of 100,000 to 500,000 And preferably from 120,000 to 350,000.

고분자 지지층의 형성 방법으로는, PMMA 지지층 또는 PDMS 지지층을 형성할 경우 스핀 코팅법(spin coating), 딥 코팅법(dip coating) 등이 가능하다. 예를 들어, 스핀 코팅법을 이용하여 500rpm으로 10초간 코팅 후 2000rpm으로 20초간 코팅하는 것에 의해, 수 ㎛의 균일한 두께의 고분자막을 형성할 수 있다. 또한, 코팅법을 이용할 경우 500 내지 3000 nm의 두께 범위로 코팅하는 것이 바람직하다. As a method for forming the polymer support layer, spin coating, dip coating, or the like can be used to form a PMMA support layer or a PDMS support layer. For example, a polymer film having a uniform thickness of several micrometers can be formed by spin coating at 500 rpm for 10 seconds and then coating at 2000 rpm for 20 seconds using a spin coating method. Further, when the coating method is used, it is preferable to coat in a thickness range of 500 to 3000 nm.

이와 같이 형성된 고분자 지지층은 추후 금속계 박막과 함께 전사용 시트를 형성하며, 금속계 박막의 지지체 역할을 수행한다.
The polymer support layer thus formed forms a transfer sheet together with the metal thin film and serves as a support for the metal thin film.

상기 단계 (c)에 있어서, 제 1 기재의 제거는 에칭 용액, 유기 용매 등에 의해 이루어질 수 있다.In the step (c), the removal of the first substrate may be performed by an etching solution, an organic solvent, or the like.

예를 들어, 제 1 기재가 금속 소재일 경우에 에칭 용액을 사용할 수 있으며 , 구체적으로 염화철(III)(FeCl3) 수용액, 염산 수용액, 또는 이들의 혼합 용액이 가능하고, 특히 제 1 기재가 구리일 경우 0.5~1.5M 농도의 염화철(III) 수용액을 사용할 수 있다. 에칭 용액을 사용하는 경우 침지법을 적용할 수 있으며, 예를 들어 산이 섞여 있지 않은 염화철(III) 수용액으로 농도를 최대한 묽혀서 에칭 속도를 낮추면 금속계 박막에 영향을 주지 않고 에칭을 할 수 있다. For example, when the first base material is a metal material, an etching solution can be used. Specifically, an aqueous solution of iron (III) chloride (FeCl 3 ), an aqueous solution of hydrochloric acid or a mixed solution thereof can be used. , An aqueous solution of iron (III) chloride at a concentration of 0.5 to 1.5 M may be used. If an etching solution is used, a dipping method can be applied. For example, if the etching rate is lowered by diluting the concentration with an aqueous solution of iron chloride (III) in which no acid is mixed, etching can be performed without affecting the metal thin film.

또한, 제 1 기재가 고분자 소재일 경우에 적절한 유기 용매를 사용하여 제거시킬 수 있다.
Further, when the first base material is a polymer material, it can be removed by using an appropriate organic solvent.

도 1은 본 발명에 따라 전사용 시트를 제조하는 공정의 일례를 나타낸 것으로서, 이를 참조하여 설명하면, 먼저 기재(30, 제 1 기재) 상에 금속계 박막(10)을 증착하고(A1), 상기 금속계 박막(10) 상에 고분자 지지층(20)을 형성한 뒤(A2), 기재(30)를 제거함으로써(A3), 전사용 시트를 얻을 수 있다.
Referring to FIG. 1, there is shown an example of a process for manufacturing a transfer sheet according to the present invention. First, a metal thin film 10 is deposited on a substrate 30 (first substrate) The transfer sheet can be obtained by forming the polymer supporting layer 20 on the metal thin film 10 (A2) and then removing the substrate 30 (A3).

이로써 제조된 전사용 시트 중의 금속계 박막은 두께를 매우 얇게 제조하는 것이 가능하며, 예를 들어 금속계 박막은 10nm 내지 30nm의 두께를 가질 수 있다. 또한, 동시에 미세 구조상으로 매우 편평한(atomic-flat) 표면을 가질 수 있으며, 예를 들어 0.3nm 내지 1.5nm의 표면 거칠기(roughness), 보다 바람직하게는 0.5nm 내지 1nm 범위의 최소화된 표면 거칠기를 가질 수 있다.The metal thin film in the transfer sheet thus produced can be made very thin. For example, the metal thin film may have a thickness of 10 nm to 30 nm. It can also have an atomic-flat surface on its microstructure at the same time, for example having a surface roughness of 0.3 nm to 1.5 nm, more preferably having a minimized surface roughness in the range of 0.5 nm to 1 nm .

제조된 전사용 시트는 이하의 단계에서 금속계 박막의 전사에 사용될 수 있으며, 기타 전자 소자의 제조에 유용하게 사용될 수 있다.
The transfer sheet thus prepared can be used for the transfer of the metal thin film in the following steps and can be usefully used for manufacturing other electronic devices.

금속 산화물/질화물/황화물 박막의 전사Transcription of metal oxide / nitride / sulfide thin film

앞서의 단계에서 제조된 전사용 시트를 이용하여, (d) 전사용 시트의 금속계 박막을 원하는 기재(제 2 기재)에 접착시키는 단계; 및 (e) 전사용 시트의 고분자 지지층을 제거하는 단계를 통해, 금속계 박막을 원하는 기재에 전사시킬 수 있다.
(D) adhering the metal-based thin film of the transfer sheet to a desired substrate (second substrate) using the transfer sheet produced in the previous step; And (e) removing the polymer support layer of the transfer sheet, the metal thin film can be transferred to the desired substrate.

상기 단계 (d)에 있어서, 접착 공정은 특별히 한정되지는 않으나, 반데르발스 힘에 의한 접착이 가능하다. 예를 들어, 전사용 시트의 금속계 박막에 물을 적시고 기재에 접합시킨 뒤 건조를 통해 물을 증발시키면서 반데르발스 힘에 의해 접착되도록 하거나, 또는 약간의 물리적 힘을 가함으로써 접합시킬 수 있다.In the step (d), the bonding step is not particularly limited, but bonding by van der Waals force is possible. For example, the metal-based thin film of the transfer sheet can be bonded by wetting with water, bonding it to the substrate, and then adhering by van der Waals force while evaporating the water through drying, or by applying a slight physical force.

또한 상기 단계 (e)에 있어서, 고분자 지지층을 제거하는 방법으로는 고분자 지지층의 종류에 따라 적절한 방법을 사용할 수 있으며, 예를 들어, PMMA 지지층의 경우 아세톤과 같은 유기 용매로 녹여 제거할 수 있고, 지지층으로서 열박리성테이프를 사용하였을 경우에는 열을 가함으로써 제거할 수 있다.
In the step (e), the polymer support layer may be removed by an appropriate method depending on the type of the polymer support layer. For example, in the case of the PMMA support layer, the polymer support layer may be removed by dissolving it with an organic solvent such as acetone, When a heat-peelable tape is used as the support layer, it can be removed by applying heat.

이와 같은 본 발명의 방법에 의하면, 종래에는 금속 산화물/질화물/황화물 박막을 부가하기가 어려웠던 부분에도 용이하고 간단한 절차로 부가할 수 있으며, 박막의 표면 거칠기가 매우 낮아서 그래핀 등의 전극 상에 부가하는 것이 가능하므로, 박막트랜지스터(TFT)나 가요성(flexible) 기판과 같은 전자 소재를 효율적으로 제조할 수 있다.
According to the method of the present invention, it is possible to easily and easily add the metal oxide / nitride / sulfide thin film to a portion where it is difficult to add the thin film, and since the surface roughness of the thin film is very low, It is possible to efficiently manufacture an electronic material such as a thin film transistor (TFT) or a flexible substrate.

도 2는 본 발명의 전사 방법을 이용하여 전자 소자를 제조하는 공정의 일례를 나타낸 것으로서, 이를 참조하여 설명하면, 먼저 지지체(60) 상에 전극(50, 하부전극)이 형성된 기재(제 2 기재)를 준비하고(B1), 상기 기재(제 2 기재)의 전극(50) 상에 고분자 지지층(20)과 금속계 박막(10)이 적층된 전사용 시트를 접착한 뒤(B2), 고분자 지지층(20)을 제거함으로써 금속계 박막(10)의 전사를 완료할 수 있다(B3). Referring to FIG. 2, an example of a process for manufacturing an electronic device using the transfer method of the present invention will be described. First, a substrate having electrodes 50 (lower electrodes) formed on a support 60 (B1), a transfer sheet in which the polymer supporting layer 20 and the metal thin film 10 are laminated is bonded on the electrode 50 of the substrate (second substrate) (B2), and the polymer supporting layer 20 can be removed to complete the transfer of the metal thin film 10 (B3).

또한 필요한 경우, 상기 전사된 금속계 박막(10) 상에 추가적인 전극(70, 상부 전극)을 전사하여 다양한 전자 소자를 제조할 수 있다(B4).
In addition, if necessary, various electronic devices can be manufactured by transferring the additional electrode (upper electrode) 70 onto the transferred metal thin film 10 (B4).

따라서, 본 발명은 상기 전사용 시트를 사용하는 전사 방법에 의해 전사된 금속계 박막(금속 산화물/질화물/황화물 박막)을 포함하는 전자 소자를 제공한다. Accordingly, the present invention provides an electronic device comprising a metal-based thin film (metal oxide / nitride / sulfide thin film) transferred by a transfer method using the transfer sheet.

예를 들어, 지지체 위에 형성된 전극 상에 금속계 박막을 전사하고 그 위에 추가적인 패턴 등을 형성하거나 추가적인 기판, 필름 등을 적층함으로써 전자 소자를 완성할 수 있다.For example, an electronic device can be completed by transferring a metal thin film onto an electrode formed on a support, forming an additional pattern thereon, or laminating an additional substrate, film, or the like.

이 때 상기 전자 소자는 그래핀(graphene), 산화인듐주석(ITO), 산화인듐아연(IZO), 폴리(3,4-에틸렌디옥시티오펜)(PEDOT) 및 이들의 조합으로 이루어진 군으로부터 선택되는 전극 또는 채널층을 포함할 수 있다.Wherein the electronic device is selected from the group consisting of graphene, indium tin oxide (ITO), indium zinc oxide (IZO), poly (3,4-ethylenedioxythiophene) (PEDOT) An electrode or a channel layer.

또한, 상기 전자 소자를 구성하는 지지체, 기판, 및 필름은 폴리에틸렌테레프탈레이트(PET), 폴리디메틸실록산(PDMS), 폴리이미드(polyimide) 및 이들의 조합으로 이루어진 군으로부터 선택되는 물질을 포함할 수 있다.In addition, the support, substrate, and film constituting the electronic device may include a material selected from the group consisting of polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), polyimide, and combinations thereof .

특히, 본 발명은 전극으로서 그래핀(graphene)을 사용하는 그래핀 전자 소자를 제공하며, 이 때 전극의 지지체로서 PET와 같은 가요성 필름을 사용할 경우 유연한(flexible) 그래핀 전자 소자의 제조가 가능하다.
Particularly, the present invention provides a graphene electronic device using graphene as an electrode, and it is possible to manufacture a flexible graphene electronic device when a flexible film such as PET is used as a support of an electrode Do.

이하, 본 발명을 실시예에 의해 보다 상세히 설명한다. 단 하기 실시예는 본 발명을 예시하는 것일 뿐, 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. The following examples are illustrative of the present invention, but the invention is not limited to the following examples.

실시예 1: 전사용 시트의 제조Example 1: Preparation of Transfer Sheet

사파이어(sapphire) 기재 상에 구리 박막을 스퍼터링법에 의해 500nm의 두께로 증착하였다(증착 조건 - 전원: 2W, 시간: 3시간, 증착 속도: 4nm/분). 이후, 상기 구리 박막 상에 산화알루미늄(Al2O3) 박막을 원자층증착법(ALD; atomic layer deposition)에 의해 30nm의 두께로 증착하였다 (증착 조건 - Al source: TMA, O(산소) source: 물, 증착 기판 온도: 200℃, 1 cycle: Ar-TMA-Ar-H2O). A copper thin film was deposited on a sapphire substrate to a thickness of 500 nm by sputtering (conditions for deposition: power: 2 W, time: 3 hours, deposition rate: 4 nm / min). Then, an aluminum oxide (Al 2 O 3 ) thin film was deposited on the copper thin film by atomic layer deposition (ALD) to a thickness of 30 nm (Al deposition source: TMA, O (oxygen) source: Water, deposition substrate temperature: 200 ° C, 1 cycle: Ar-TMA-Ar-H 2 O).

증착된 산화 알루미늄 박막 위에 PMMA(Mw:350,000)를 스핀코팅법에 의해 2,000nm의 두께로 코팅하였다.PMMA (Mw: 350,000) was coated on the deposited aluminum oxide thin film to a thickness of 2,000 nm by spin coating.

수득한 PMMA 지지층이 형성된 기판을 에칭 용액(1M FeCl3 수용액)에 담가 구리를 완전히 녹여냄으로써, PMMA 지지층과 산화알루미늄 박막이 적층된 전사용 시트를 분리해 내었다.The obtained substrate on which the PMMA support layer was formed was immersed in an etching solution (1M FeCl 3 aqueous solution) to completely dissolve the copper, thereby separating the transfer sheet in which the PMMA support layer and the aluminum oxide thin film were laminated.

도 3은 실시예 1에서 얻은 전사용 시트의 산화알루미늄 박막 표면에 대해 얻은 전자현미경 이미지로서, RMS 거칠기값(root-mean-square roughenss)이 1.176 nm으로 측정되었다.
FIG. 3 is an electron microscope image obtained on the aluminum oxide thin film surface of the transfer sheet obtained in Example 1, wherein the root-mean-square roughenss were measured at 1.176 nm.

실시예 2: 산화알루미늄 박막이 전사된 전자 소자의 제조Example 2: Manufacture of an electronic device in which an aluminum oxide thin film was transferred

(1) 하부 전극의 전사 (1) Transfer of the lower electrode

구리 호일 위에 그래핀 박막을 화학기상증착법(CVD)을 이용하여 형성하였다. 상기 형성된 그래핀 박막 상에 PMMA 지지층을 스핀코팅법에 의해 형성하였다. 이를 에칭 용액인 1M FeCl3 수용액에 담가 구리를 녹여낸 후, 그래핀 박막 상에 잔류하는 에칭 용액을 증류수로 씻어내었다.Graphene thin films were formed on copper foil by chemical vapor deposition (CVD). A PMMA support layer was formed on the formed graphene thin film by spin coating. The copper solution was immersed in an aqueous solution of 1M FeCl 3 as an etching solution, and the etching solution remaining on the graphene thin film was rinsed with distilled water.

이로써 제조된 그래핀 박막을 포함하는 시트를 PET 필름 상에 접착시킨 뒤, 아세톤으로 PMMA 지지층을 녹여 제거하였다. 그 결과, PET 필름 상에 하부 전극으로서 PET 필름과 거의 유사한 대면적(large-area)의 그래핀이 전사된 기판을 얻었다.The sheet including the thus-produced graphene thin film was adhered onto the PET film, and then the PMMA support layer was dissolved with acetone to remove it. As a result, a substrate on which a large-area graphene almost similar to the PET film was transferred as a lower electrode on the PET film was obtained.

(2) 산화알루미늄 박막의 전사(2) Transcription of aluminum oxide thin film

실시예 1에서 제조한 전사용 시트를 물에 적신 뒤, 앞서 얻은 기판의 그래핀 위에 접합시켰다. 이를 기울인 상태로 자연 건조시켜, 물이 증발되면서 그래핀과 산화알루미늄 박막이 반데르발스 힘에 의해 접착되도록 하였다. 건조가 끝나면 100℃의 온도로 20분간 열을 가하여 물기를 완전히 제거하면서 접착력을 높였다. 이후, 아세톤을 이용하여 PMMA 지지층을 제거함으로써 산화알루미늄 박막의 전사를 완료하였다.The transfer sheet prepared in Example 1 was wetted with water and bonded onto the graphene of the above-obtained substrate. The slurry was naturally dried in a tilted state, and water was evaporated, so that the graphene and aluminum oxide thin films were bonded by van der Waals force. After drying, heat was applied at a temperature of 100 ° C for 20 minutes to completely remove moisture, thereby increasing the adhesion. Thereafter, transfer of the aluminum oxide thin film was completed by removing the PMMA support layer using acetone.

(3) 상부 전극의 전사(3) Transfer of the upper electrode

전사된 산화알루미늄 박막 상에 상부 전극으로서 다수의 소면적(small-area) 그래핀을 전사함으로써, 그래핀 전자 소자를 완성하였다.
A plurality of small-area graphenes were transferred as the upper electrode onto the transferred aluminum oxide thin film to complete the graphene electronic device.

이상, 본 발명을 상기 실시예를 중심으로 하여 설명하였으나 이는 예시에 지나지 아니하며, 본 발명은 본 발명의 기술분야에서 통상의 지식을 가진 자에게 자명한 다양한 변형 및 균등한 기타의 실시예를 이하에 첨부한 청구범위 내에서 수행할 수 있다는 사실을 이해하여야 한다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, It is to be understood that the invention may be practiced within the scope of the appended claims.

10: 금속계(금속 산화물/질화물/황화물) 박막 20: 고분자 지지층
30: 기재(제 1 기재) 50: 하부 전극
60: 지지체 70: 상부 전극
10: metal (metal oxide / nitride / sulfide) thin film 20: polymer support layer
30: substrate (first substrate) 50: lower electrode
60: Support 70: Upper electrode

Claims (15)

(a) 제 1 기재 상에 금속 산화물, 금속 질화물, 금속 황화물 및 이들의 혼합물로 이루어진 군으로부터 선택된 물질을 포함하는 금속계 박막을 형성하는 단계;
(b) 상기 금속계 박막 위에 고분자 지지층을 형성하는 단계;
(c) 상기 제 1 기재를 제거하여 고분자 지지층과 금속계 박막이 적층된 전사용 시트를 수득하는 단계;
(d) 상기 전사용 시트를 금속계 박막 면이 접하도록 제 2 기재에 접착시키는 단계; 및
(e) 상기 전사용 시트의 고분자 지지층을 제거하는 단계를 포함하는, 금속계 박막의 전사 방법.
(a) forming a metal thin film on a first substrate, the metal thin film including a material selected from the group consisting of metal oxides, metal nitrides, metal sulfides, and mixtures thereof;
(b) forming a polymer support layer on the metal thin film;
(c) removing the first substrate to obtain a transfer sheet in which the polymer support layer and the metal thin film are laminated;
(d) adhering the transfer sheet to the second substrate such that the metal-based thin film surface is in contact with the transfer sheet; And
(e) removing the polymer support layer of the transfer sheet.
제 1 항에 있어서,
상기 단계 (e) 이후에 추가로 단계 (a) 내지 (e)를 1회 이상 반복하여,
상기 제 2 기재 상에 상기 금속계 박막을 복수개 전사하는 것을 특징으로 하는, 금속계 박막의 전사 방법.
The method of claim 1,
After step (e), steps (a) to (e) are repeated one or more times,
And transferring the plurality of metal thin films onto the second substrate.
제 1 항에 있어서,
상기 단계 (a)에서
상기 금속 산화물이 산화알루미늄(Al2O3), 산화실리콘(SiO2), 산화아연(ZnO), 산화하프늄(HfO2), 산화지르코늄(ZrO2), 산화티타늄(TiO2), 산화주석 (SnO2) 및 이들의 혼합물로부터 선택되고;
상기 금속 질화물이 질화갈륨(GaN), 질화붕소(BN), 질화알루미늄(AlN), 질화티타늄(TiN), 질화인듐(InN), 및 이들의 혼합물로부터 선택되고;
상기 금속 황화물이 이황화몰리브덴(MoS2), 황화카드뮴(CdS), 황화아연(ZnS), 이황화텅스텐(WS2), 및 이들의 혼합물로부터 선택되는 것을 특징으로 하는, 금속계 박막의 전사 방법.
The method of claim 1,
In step (a)
Wherein the metal oxide is selected from the group consisting of aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), zinc oxide (ZnO), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ) It is selected from SnO 2), and mixtures thereof;
Wherein the metal nitride is selected from gallium nitride (GaN), boron nitride (BN), aluminum nitride (AlN), titanium nitride (TiN), indium nitride (InN), and mixtures thereof;
Wherein the metal sulfide is selected from molybdenum disulfide (MoS 2 ), cadmium sulfide (CdS), zinc sulfide (ZnS), tungsten disulfide (WS 2 ), and mixtures thereof.
제 1 항에 있어서,
상기 단계 (a)에서 금속계 박막의 형성이 원자층증착법(ALD), 화학기상증착법(CVD), 화학적용액성장법(CBD), 잉크젯, 스핀코팅, 졸겔법, 인쇄공정, 스퍼터링법, 또는 열 증착법에 의해 실시되는 것을 특징으로 하는, 금속계 박막의 전사 방법.
The method of claim 1,
In the step (a), the formation of the metal thin film may be performed by atomic layer deposition (ALD), chemical vapor deposition (CVD), chemical solution growth (CBD), inkjet, spin coating, sol-gel method, printing, sputtering, Wherein the metal thin film is formed by a method comprising the steps of:
제 1 항에 있어서,
상기 단계 (b)에서 고분자 지지층이 폴리메틸메타크릴레이트(PMMA), 폴리디메틸실록산(PDMS), 및 열박리성테이프(thermal release tape)로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 금속계 박막의 전사 방법.
The method of claim 1,
Wherein the polymeric support layer is selected from the group consisting of polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and thermal release tape in the step (b) .
제 1 항에 있어서,
상기 단계 (c)에서 제 1 기재의 제거가 에칭 용액 또는 유기 용매에 의해 이루어지는 것을 특징으로 하는, 금속계 박막의 전사 방법.
The method of claim 1,
Wherein the removal of the first substrate in step (c) is performed by an etching solution or an organic solvent.
제 1 항에 있어서,
상기 단계 (d)에서 금속계 박막의 접착이, 상기 전사용 시트의 금속계 박막 면에 물을 적시고 제 2 기재에 접합시킨 뒤 건조를 통해 물을 증발시키면서 반데르발스 힘에 의해 접착하는 것을 특징으로 하는, 금속계 박막의 전사 방법.
The method of claim 1,
In the step (d), the adhesion of the metal-based thin film is wetted with water on the metal-based thin film surface of the transfer sheet and bonded to the second substrate, characterized in that the adhesion by van der Waals force while evaporating the water through drying , Metal-based thin film transfer method.
제 1 항에 있어서,
상기 단계 (b)에서 고분자 지지층이 폴리메틸메타크릴레이트(PMMA)이고,
상기 단계 (e)에서 유기 용매에 의해 고분자 지지층을 제거하는 것을 특징으로 하는, 금속계 박막의 전사 방법.
The method of claim 1,
In the step (b), the polymer support layer is polymethyl methacrylate (PMMA)
Wherein the polymer supporting layer is removed by an organic solvent in the step (e).
금속 산화물, 금속 질화물, 금속 황화물 및 이들의 혼합물로 이루어진 군으로부터 선택된 물질을 포함하는 금속계 박막, 및 상기 금속계 박막 위에 형성된 고분자 지지층을 포함하는, 금속계 박막의 전사용 시트.
A metal-based thin film containing a material selected from the group consisting of metal oxides, metal nitrides, metal sulfides and mixtures thereof, and a polymer support layer formed on the metal-based thin film, the sheet for transferring a metal-based thin film.
제 9 항에 있어서,
상기 금속계 박막의 두께가 0.5nm 내지 5㎛인 것을 특징으로 하는, 전사용 시트.
The method of claim 9,
The thickness of the metal-based thin film is a transfer sheet, characterized in that 0.5nm to 5㎛.
제 9 항에 있어서,
상기 금속 산화물이 산화알루미늄(Al2O3), 산화실리콘(SiO2), 산화아연(ZnO), 산화하프늄(HfO2), 산화지르코늄(ZrO2), 산화티타늄(TiO2), 산화주석 (SnO2) 및 이들의 혼합물로 이루어진 군으로부터 선택되고;
상기 금속 질화물이 질화갈륨(GaN), 질화붕소(BN), 질화알루미늄(AlN), 질화티타늄(TiN), 질화인듐(InN), 및 이들의 혼합물로 이루어진 군으로부터 선택되고;
상기 금속 황화물이 이황화몰리브덴(MoS2), 황화카드뮴(CdS), 황화아연(ZnS), 이황화텅스텐(WS2), 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 전사용 시트.
The method of claim 9,
The metal oxide may be aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), zinc oxide (ZnO), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), tin oxide ( SnO 2 ) and mixtures thereof;
The metal nitride is selected from the group consisting of gallium nitride (GaN), boron nitride (BN), aluminum nitride (AlN), titanium nitride (TiN), indium nitride (InN), and mixtures thereof;
The metal sulfide is selected from the group consisting of molybdenum disulfide (MoS 2 ), cadmium sulfide (CdS), zinc sulfide (ZnS), tungsten disulfide (WS 2 ), and mixtures thereof.
제 9 항에 있어서,
상기 고분자 지지층이 폴리메틸메타크릴레이트(PMMA), 폴리디메틸실록산(PDMS), 및 열박리성테이프(thermal release tape)로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 전사용 시트.
The method of claim 9,
And the polymer support layer is selected from the group consisting of polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS), and thermal release tape.
제 9 항에 있어서,
상기 전사용 시트가 제 1 항의 단계 (a) 내지 (c)를 포함하는 방법에 의해 제조된 것임을 특징으로 하는, 전사용 시트.
The method of claim 9,
The transfer sheet is produced by the method comprising the steps (a) to (c) of claim 1.
제 1 항 내지 제 8 항 중 어느 한 항의 방법에 의해 전사된 금속계 박막을 포함하는, 전자 소자.
An electronic device comprising a metal-based thin film transferred by the method of any one of claims 1 to 8.
제 14 항에 있어서,
상기 전자 소자가 그래핀(graphene) 소재의 전극 또는 채널층을 포함하는 것을 특징으로 하는, 전자 소자.
15. The method of claim 14,
Wherein the electronic device comprises an electrode or channel layer of a graphene material.
KR1020120048247A 2012-05-07 2012-05-07 Method for tranferring metal oxide/nitride/sulfide thin film and transfer sheet used therefor KR101431595B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120048247A KR101431595B1 (en) 2012-05-07 2012-05-07 Method for tranferring metal oxide/nitride/sulfide thin film and transfer sheet used therefor
PCT/KR2013/003961 WO2013168968A1 (en) 2012-05-07 2013-05-07 Method for transferring metal oxide/nitride/sulfide thin film, and transfer sheet used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120048247A KR101431595B1 (en) 2012-05-07 2012-05-07 Method for tranferring metal oxide/nitride/sulfide thin film and transfer sheet used therefor

Publications (2)

Publication Number Publication Date
KR20130124820A true KR20130124820A (en) 2013-11-15
KR101431595B1 KR101431595B1 (en) 2014-08-22

Family

ID=49550941

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120048247A KR101431595B1 (en) 2012-05-07 2012-05-07 Method for tranferring metal oxide/nitride/sulfide thin film and transfer sheet used therefor

Country Status (2)

Country Link
KR (1) KR101431595B1 (en)
WO (1) WO2013168968A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174351A1 (en) * 2017-03-24 2018-09-27 서울대학교산학협력단 Functional contact lens and manufacturing method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10867768B2 (en) * 2017-08-30 2020-12-15 Uchicago Argonne, Llc Enhanced electron amplifier structure and method of fabricating the enhanced electron amplifier structure
KR102253452B1 (en) * 2018-10-11 2021-05-18 성균관대학교산학협력단 Transfer method of thin films using van der waals force
KR102265089B1 (en) * 2019-12-17 2021-06-14 순천대학교 산학협력단 Graphene synthetic method for conductive property control
CN111933650B (en) * 2020-07-22 2022-10-14 华中科技大学 Molybdenum sulfide thin film imaging array device and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3974749B2 (en) * 2000-12-15 2007-09-12 シャープ株式会社 Functional element transfer method
KR100569881B1 (en) * 2004-08-31 2006-04-11 한국과학기술원 Method for Transfer of High-Quality Thin Silicon Film Using Epitaxial Silicide Layer
JP2008243831A (en) * 2007-03-23 2008-10-09 Nippon Denki Kagaku Co Ltd Transferring method of thin-film element and transferring material
KR101462401B1 (en) * 2008-06-12 2014-11-17 삼성전자주식회사 Method for exfoliating carbonization catalyst from graphene sheet, method for transferring graphene sheet where carbonization catalyst is exfoliated to device, graphene sheet and device according to the methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174351A1 (en) * 2017-03-24 2018-09-27 서울대학교산학협력단 Functional contact lens and manufacturing method therefor
KR20180108328A (en) * 2017-03-24 2018-10-04 서울대학교산학협력단 Functional contact lens and method for manufacturing the same
JP2020514835A (en) * 2017-03-24 2020-05-21 ソウル大学校産学協力団Seoul National University R&Db Foundation Functional contact lens and manufacturing method thereof
US11927835B2 (en) 2017-03-24 2024-03-12 Seoul National University R&Db Foundation Functional contact lens and manufacturing method therefor

Also Published As

Publication number Publication date
WO2013168968A1 (en) 2013-11-14
KR101431595B1 (en) 2014-08-22

Similar Documents

Publication Publication Date Title
KR102513763B1 (en) Method for the fabrication and transfer of graphene
CN103299448B (en) Use the manufacture method of flexible electronic device, flexible electronic device and the flexible base board of roll shape mother substrate
KR101431595B1 (en) Method for tranferring metal oxide/nitride/sulfide thin film and transfer sheet used therefor
US20160137507A1 (en) Large-area graphene transfer method
KR101063361B1 (en) Method of manufacturing flexible electronic device, flexible electronic device and flexible substrate
CN102386329B (en) Manufacturing method of flexible electronic device
US20120261167A1 (en) Transparent Electrodes, Electrode Devices, and Associated Methods
KR100951946B1 (en) Transparent and flexible thin film transistor having carbon nano tube, and method of fabricating thereof
Kim et al. Organic thin-film transistors with short channel length fabricated by reverse offset printing
KR101712003B1 (en) 2-Dimensional laminated composite structured bistable non-volatile memory device and methods of manufacturing the same
TWI712175B (en) Thin film transistor and manufacturing method thereof
US20170210629A1 (en) Method for producing graphene with controlled number of layers, and method for manufacturing electronic device using same
JP2009246342A (en) Field-effect transistor, method of manufacturing the same, and image display apparatus
JP2006148056A (en) Nanostructured electrode
KR101299597B1 (en) Organic field-effect transistor, and preparing method of the same
WO2010137664A1 (en) Alkylsilane laminate, method for producing the same, and thin-film transistor
KR20160130017A (en) Method for manufacturing transparent electrode and transparent electrode manufatured by the same
Ko et al. Ultrathin, Flexible, and Transparent Oxide Thin‐Film Transistors by Delamination and Transfer Methods for Deformable Displays
JP5807738B2 (en) Organic transistor manufacturing method, organic transistor, semiconductor device manufacturing method, semiconductor device, and electronic apparatus
KR102072888B1 (en) Method for doping of graphene films by using graphene oxides
An et al. Solution-based flexible indium oxide thin-film transistors with high mobility and stability by selective surface modification
KR102183047B1 (en) Method for doping of graphene films by using graphene oxides
WO2017112932A1 (en) Patterning and inverted deposition engineering for solution-processed electrodes and semiconducting films
KR102460130B1 (en) Method for producing ductile thin films having inorganic semiconductors for stretchable electronic devices
US20220293874A1 (en) Electrode for source/drain of organic semiconductor device, organic semiconductor device using same, and method for manufacturing same

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170801

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180627

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190711

Year of fee payment: 6